
HAL Id: hal-00275774
https://hal.science/hal-00275774v2

Preprint submitted on 12 Aug 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spectral extrema and Lifshitz tails for non monotonous
alloy type models

Frédéric Klopp, Shu Nakamura

To cite this version:
Frédéric Klopp, Shu Nakamura. Spectral extrema and Lifshitz tails for non monotonous alloy type
models. 2008. �hal-00275774v2�

https://hal.science/hal-00275774v2
https://hal.archives-ouvertes.fr


Spectral extrema and Lifshitz tails for non

monotonous alloy type models

Frédéric Klopp∗ and Shu Nakamura†

August 12, 2008

Abstract

In the present note, we determine the ground state energy and study
the existence of Lifshitz tails near this energy for some non monotonous
alloy type models. Here, non monotonous means that the single site
potential coming into the alloy random potential changes sign. In
particular, the random operator is not a monotonous function of the
random variables.

Résumé. Cet article est consacré à la détermination de l’énergie de
l’état fondamental et à l’étude de possibles asymptotiques de Lifshitz
au voisinage de cette énergie pour certains modèles d’Anderson con-
tinus non monotones. Ici, non monotone signifie que le potentiel de
simple site entrant dans la composition du potentiel aléatoire change
de signe. En particulier, l’opérateur aléatoire n’est pas une fonction
monotone des variables aléatoires.

0 Introduction and results

In this paper, we consider the continuous alloy type (or Anderson) random
Schrödinger operator:

Hω = −∆ + Vω where Vω(x) =
∑

γ∈Zd

ωγV (x− γ) (0.1)

on R
d, d ≥ 1, where V is the site potential, and (ωγ)γ∈Zd are the random

coupling constants. Throughout this paper, we assume

(H1) (1) V : R
d → R is Lp (where p = 2 if d ≤ 3 and p > d/2 if d > 3),

non identically vanishing and supported in (−1/2, 1/2)d ;
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(2) (ωγ)γ are independent identically distributed (i.i.d.) random vari-
ables distributed in [a, b] (a < b) with essential infimum a and
essential supremum b.

Let Σ be the almost sure spectrum of Hω and E− = inf Σ. When V has a
fixed sign, it is well known that the E− = inf(σ(−∆ + Vb)) if V ≤ 0 and
E− = inf(σ(−∆+Va)) if V ≥ 0. Here, x is the constant vector x = (x)γ∈Zd .
Moreover, in this case, it is well known that the integrated density of states
of the Hamiltonian (see e.g. (0.3)) admits a Lifshitz tail near E−, i.e., that
the integrated density of states at energy E decays exponentially fast as
E goes to E− from above. We refer to [9, 7, 22, 20, 6, 5, 11] for precise
statements.

In the present paper, we address the case when V changes sign, i.e., there
may exist x+ 6= x− such that

V (x−) · V (x+) < 0. (0.2)

The basic difficulty this property introduces is that the variations of the
potential Vω as a function of ω are not monotonous. In the monotonous
case, to get the minimum, one can simply minimize with respect to each of
the random variables individually. In the non monotonous case, this uncou-
pling between the different random variables may fail. Our results concern
reflection symmetric potentials since, as we will see, for these potentials we
also have an analogous decoupling between the different random variables.
Thus, we make the following symmetry assumption on V :

(H2) V is reflection symmetric i.e. for any σ = (σ1, . . . , σd) ∈ {0, 1}d and
any x = (x1, . . . , xd) ∈ R

d,

V (x1, . . . , xd) = V ((−1)σ1x1, . . . , (−1)σdxd).

We now consider the operator HN
λ = −∆ + λV with Neumann boundary

conditions on the cube [−1/2, 1/2]d . Its spectrum is discrete, and we let
E−(λ) be its ground state energy. It is a simple eigenvalue and λ 7→ E−(λ)
is a real analytic concave function defined on R. We first observe:

Proposition 0.1. Under the above assumptions (H1) and (H2),

E− = inf(E−(a), E−(b)).

For a and b sufficiently small, this result was proven in [17] without the as-

sumption (H2) but with an additional assumption on the sign of

∫

Rd

V (x)dx.

The method used by Najar relies on a small coupling constant expansion for
the infimum of Σ. These ideas were first used in [3] to treat other non
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monotonous perturbations, in this case magnetic ones, of the Laplace oper-
ator. In [1], the authors study the minimum of the almost sure spectrum
for a random displacement model i.e. the random potential is defined as
Vω(x) =

∑

γ∈Zd V (x − γ − ξγ) where (ξγ)γ are i.i.d. random variables sup-
ported in a sufficiently small compact.
We now turn to the results on Lifshitz tails. We denote by N(E) the inte-
grated density of states of Hω, i.e., it is defined by the limit

N(E) = lim
L→+∞

#{eigenvalues of HN
ω,L ≤ E}

(2L+ 1)d
(0.3)

where HN
ω,L is the operator Hω restricted to the cube [−L− 1/2, L + 1/2]d

with Neumann boundary conditions. This limit exists for a.s. ω and is
independent of ω; it has been the object of a lot of studies and we refer
to [20, 23, 24] for extensive reviews.

We first give an upper bound on the integrated density of states. In the
applications of the Lifshitz tails asymptotics, in particular, to localization,
this side of the bound is the most important and also the difficult one to
obtain.

Theorem 0.1. Suppose assumptions (H1) and (H2) are satisfied. Assume
moreover that

E−(a) 6= E−(b). (0.4)

Then

lim sup
E→E+

−

log | logN(E)|

log(E − E−)
≤ −

d

2
− α+ (0.5)

where we have set c = a if E−(a) < E−(b) and c = b if E−(a) > E−(b), and

α+ = −
1

2
lim inf

ε→0

log | log P({|c− ω0| ≤ ε})|

log ε
≥ 0.

As will be clear from the proofs, we could also consider the model Hω =
H0 + Vω where Vω is as above and H0 = −∆ +W where W is a Z

d-periodic
potential that satisfies the symmetry assumption (H2).

We now study a lower bound for the integrated density of states that we
will prove in a more general case than the upper bound, i.e., we don’t need
to assume (H2). The assumption is as follows:

(HP) there exists ωP ∈ [a, b]Z
d

that is periodic (, i.e., for some L0 ∈ N, for
all γ ∈ Z

d and β ∈ Z
d, ωP

γ+L0β = ωP
γ ) such that inf Σ = inf σ(HωP ).

Under this assumption, we have

Theorem 0.2. Let Hω be defined as above, and assume (H1) and (HP)
hold. Then

−
d

2
− α− ≤ lim inf

E→E+
−

log | logN(E)|

log(E − E−)
, (0.6)
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where

α− = − lim inf
ε→0

log | log P({∀γ ∈ Z
d/L0Z

d; |ωP
γ − ωγ | ≤ ε})|

log ε
.

Assume now that (H1) and (H2) hold, and hence, (HP) holds with ωP = a or
ωP = b. Indeed, as we will see in the proof of Proposition 0.1 in Section 1,
under assumption (H2), E−(a) is also the bottom of the spectrum of the
periodic operator Ha. If we assume that α+ = α− = 0 and E−(a) 6= E−(b),
we obtain the following corollary:

Theorem 0.3. Assume that (H1) and (H2) and (0.4) hold and that α− =
α+ = 0 then

lim
E→E+

−

log | logN(E)|

log(E − E−)
= −

d

2
.

Combining Theorem 0.1 with the Wegner estimates obtained in [10, 4] and
the multiscale analysis as developed in [2], we learn

Theorem 0.4. Assume (H1), (H2) and (0.4) hold. Assume, morevoer,
that the common distribution of the random variables admits an absolutely
continuous density. Then, the bottom edge of the spectrum of Hω exhibits
complete localization in the sense of [2].

Lifshitz tail have already been proved for various non monotonous random
models, mainly models with a random magnetic fields (see e.g. [3, 15, 18,
19]). In the models we consider, we will now see that Lifshitz tails do not
always appear.

In a companion paper (see [14]), we study the case when E−(a) = E−(b).
This requires techniques different from the ones used in the present paper
and gets particularly interesting when the random variables are Bernoulli
distributed. However, it is quite easy to see that, when E−(a) = E−(b),
Lifshitz tails may fail; the density of states can even exhibit a van Hove
singularity.

Theorem 0.5. There exists potentials V and random variables (ωγ)γ sa-
tisfying (H1) and (H2) such that

• E−(a) = E−(b) = 0

• there exists C > 0 such that, for E ≥ 0, one has

1

C
Ed/2 ≤ N(E) ≤ CEd/2.

This paper is constructed as follows. In Section 1, we determine the bot-
tom of the almost sure spectrum, and prove Proposition 0.1. In Section 2,

4



we prove our main theorems, Theorem 0.2 and Theorem 0.4. Finally, in
section 3, we prove Theorem 0.5.

Acknowledgment. FK would like to thank the University of Tokyo where
part of this work was done. A part of this research was done when SN was
invited to Univ. Paris 13 in 2007, and he would like to thank it. SN is
partially supported by JSPS Research Grant, Kiban (B) 17340033.

1 Determining the bottom of the spectrum

We denote by t 7→ E−(t) the ground state energy of the operator HN
t,0, i.e.,

−∆+ tV on [−1/2, 1/2]d with Neumann boundary conditions. We first note
that E−(t) is a concave function of t as, by the variational principle, it is
the infimum of a family of affine functions of t. Hence, for t ∈ [a, b], we
have E−(t) ≥ min(E−(a), E−(b)). Then, partitioning R

d into the cubes
γ + [−1/2, 1/2]d for γ ∈ Z

d, and, restricting Hω to each of these cubes with
Neumann boundary conditions, we obtain

Hω ≥
⊕

γ∈Zd

HN
ωγ ,0

So, we learn
Hω ≥ min(E−(a), E−(b)).

We let L ≥ 1, and consider HP
ω,L, the operator Hω restricted to the cube

[−L− 1/2, L+ 1/2]d with periodic boundary conditions. Clearly, this oper-
ator depends only on finitely many random variables. We prove

Lemma 1.1.

Σ =
⋃

L≥1

⋃

ω admissible

σ(HP
ω,L),

where ω is called admissible if all the components of ω are in the support
of the distribution of the random variables defining the alloy type random
operator.

This lemma is a variant of a standard characterization of the almost sure
spectrum of an alloy type model. To prove Proposition 0.1, i.e., that E− =
min(E−(a), E−(b)), it is hence enough to prove that, for any L sufficiently
large,

inf
ω∈[a,b]

Cd
L

inf σ(HP
ω,L) ≤ min(E−(a), E−(b)) (1.1)

where Cd
L = Z

d ∩ [−L − 1/2, L + 1/2]d. To prove (1.1), we will use the
assumption (H.2). For the sake of definiteness, let us assumeE−(a) ≤ E−(b).

The ground state of HN
a,0, say ψ, is simple and can be chosen uniquely

as a normalized positive function. The reflection symmetry of the poten-
tial V guarantees that ψ is reflection symmetric. For γ ∈ Z

d such that
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|γ| = |γ1| + · · · + |γd| = 1, we can continue ψ to the γ + [−1/2, 1/2]d by re-
flection symmetry with respect to the common boundary of [−1/2, 1/2]d and
γ + [−1/2, 1/2]d . As ψ is reflection symmetric, we continue this process of
reflection with respect to the boundaries of the new cubes to obtain a con-
tinuation of ψ that is Z

d-periodic, positive and reflection symmetric with
respect to any plane that is common boundary to two cubes of the form
γ + [−1/2, 1/2]d . Moreover, ψ satisfies, for any L ≥ 0, HP

a,Lψ = HP
a,0ψ =

HN
a,0ψ = E−(a)ψ. This proves that E−(a) ≥ inf σ(HP

a,L). Hence, (1.1) holds.
This completes the proof of Proposition 0.1.

Proof of Lemma 1.1. Recall a well known characterization of the almost sure
spectrum of an alloy type model in terms of periodic approximations (see
e.g. [20, 5]). Therefore, for L ≥ 1, define the LZ

d-periodic operator

Hω,L = −∆ + Vω,L, Vω,L(·) =
∑

β∈LZd

∑

γ∈Zd/(LZd)

ωγV (· − β − γ). (1.2)

Then, one has

Σ =
⋃

L≥1

⋃

(ωγ)
γ∈Zd/(LZd)

admissible

σ(Hω,L)

where (ωγ)γ∈Zd/(LZd) is admissible if all its components belong to the support
of the random variables defining the alloy type model.
Floquet theory (see e.g. [21]) guarantees that σ(HP

ω,L) ⊂ σ(Hω,L). So, in
order to prove Lemma 1.1, it is sufficient to prove that

σ(Hω,L) ⊂
⋃

n≥1

σ(HP
ωL,nL

) (1.3)

for some well chosen admissible ωL.
Consider ωL defined by ωL

γ+Lβ = ωγ for γ ∈ Z
d/(LZ

d) and β ∈ Z
d.

Clearly, VωL = Vω,L; hence, if En(θ) are the Floquet eigenvalues of Hω,L,
the spectrum of the operator HP

ωL,nL
is the set {En(2πγ/n); γ ∈ Z

d/(nLZ
d)}

(see e.g.[13]). The inclusion (1.3) follows from the continuity of the Floquet
eigenvalues as function of the Floquet parameter (see e.g Lemma 7.1 in [16]).

2 Lifshitz tails

To fix ideas let us assume E−(a) < E−(b). The two bounds in Theorem 0.1
and Theorem 0.2 will be proved separately.
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2.1 The upper bound

The upper bound on the integrated density of states, Theorem 0.1, will be
an immediate consequence of the following result.

Theorem 2.1. Suppose assumptions (H1) and (H2) are satisfied, and, that
E−(a) < E−(b). Then, there exists c > 0 such that, for E ≥ E−(a), one has

N(E) ≤ Nm(C(E − E−(a))) (2.1)

where Nm is the integrated density of states of the random operator

Hm
ω = Ha − E−(a) +

∑

γ∈Zd

(ωγ − a)1[−1/2,1/2]d(x− γ) (2.2)

and Ha is defined above.

The upper bound is then deduced from the same bound for the integrated
density of states of Hm

ω which is standard, see e.g. [20, 5, 22] and references
therein.

Proof. We first note it is well known that, at E, a continuity point of N(E),
the sequence

NN
L (E) = E

(

#{eigenvalues of HN
ω,L ≤ E}

(2L+ 1)d

)

(2.3)

is decreasing and converges to N(E) (see e.g. [20, 5]). So to prove Theo-
rem 2.1, it suffices to prove that, there exists C > 0 such that, for E real
and L large

NN
L (E) ≤ Nm

L (C(E − E−(a)))

where Nm
L (E) is defined by (2.3) where HN

ω,L is replaced by Hm
ω,L , i.e., the

restriction ofHm
ω to [−L−1/2, L+1/2]d with Neumann boundary conditions.

By the Rayleigh-Ritz principle ([21], Section XIII.1), this follows from the
quadratic form inequality

Hm
ω,L ≤ C(HN

ω,L − E−(a)).

Under our assumptions on V , the form domain of both of these operators
is H1([−L− 1/2, L+ 1/2]d). Now, as for ψ ∈ H1([−L− 1/2, L+ 1/2]d) and
γ ∈ Z

d ∩ [−L− 1/2, L + 1/2]d, ψ1γ+[−1/2,1/2]d ∈ H1(γ + [−1/2, 1/2]d), this
inequality in turns follows from the inequalities

∀γ ∈ Z
d ∩ +[−L− 1/2, L+ 1/2]d, ∀ψ ∈ H1(γ + [−1/2, 1/2]d),

〈Hm
ω,Lψ,ψ〉γ+[−1/2,1/2]d ≤ C〈(HN

ω,L − E−(a))ψ,ψ〉γ+[−1/2,1/2]d .
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Note that, here, the choice of the boundary condition is crucial: the form
domain of the Neumann operator is the whole H1-space; moreover, the
Neumann quadratic form does not involve boundary terms. Taking into
account the structure of our random potentials, we see that this will follow
from the operator inequality

(HN
a,0 − E−(a)) + (t− a) ≤ C(HN

t,0 − E−(a)), t ∈ [a, b], (2.4)

where HN
t,0 = −∆ + tV on [−1/2, 1/2]d with Neumann boundary conditions

as before.

Lemma 2.1. Let H0 be self-adjoint on H a separable Hilbert space such that
0 = inf σ(H0). Let V1 be a closed symmetric operator relatively bounded with
respect to H0 with bound 0. Set H1 = H0 +V1 and E1 = inf σ(H1). Assume
E1 > 0. Then, there exists C > 0 such that, for t ∈ [0, 1], one has

C(H0 + tV1) ≥ H0 + t.

Lemma 2.1 applies to our case and, as a result, we obtain (2.4). This
completes the proof of Theorem 2.1.

Proof of Lemma 2.1. Regular perturbation theory ensures that, for some
β > 1, inf σ(H0 + βV1) = δ > 0. Then, for t ∈ [0, 1], we have

H0 + tV1 = (1 − t/β)H0 + (t/β)(H0 + βV1)

≥ (1 − 1/β)H0 + (t/β)δ ≥
1

C
(H0 + t)

where C−1 = min(1 − 1/β, δ/β).

2.2 The lower bound

We will use the techniques set up in [12, 16]. We first recall two results from
these papers which are valid in the generality of the present work. Consider
a random Schrödinger operator of the form (0.1) where

(HL1) V is a not identically vanishing, real valued, compactly supported
function that is in Lp (where p = 2 if d ≤ 3 and p > d/2 if d > 3);

(HL2) the random variables (ωγ)γ∈Γ are independent, identically distributed,
non trivial and bounded.

Clearly these two assumptions are consequences of assumption (H1).
The existence of N(E), the integrated density of states defined by (0.3) is
known ([20, 23]).
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Theorem 2.2 ([12]). Assume (HL1) and (HL2) hold. Pick η0 > 0 and
I ⊂ R, a compact interval. Then, there exists ν0 > 0 and ε0 > 0 such that,
for 0 < ε < ε0, E− ∈ I and n ≥ ε−ν0 , we have

E(Nω,n(E−+ε/2) −Nω,n(E− − ε/2)) − e−(n εν0)−η0

≤ N(E− + ε) −N(E− − ε)

≤ E(Nω,n(E− + 2ε) −Nω,n(E− − 2ε)) + e−(n εν0)−η0
.

(2.5)

where Nω,n is the integrated density of states of the periodic operator Hω,n

defined in (1.2).

In [12], Theorem 2.2 is not stated in exactly the same form and under
slightly stronger but unnecessary assumptions. The modifications necessary
to obtain the form given here are simple and left to the reader.

The second result we use is the following

Lemma 2.2 ([12]). Consider a periodic Schrödinger operator of the form
HωP where ωP satisfies (HP). Let E− = inf σ(HωP ). Then, for any α ∈
(0, 1) and any ε sufficiently small, there exists a function wε with the fol-
lowing properties

(1) wε is supported in a ball of center 0 and radius 2ε−(1+2α)/2;

(2) 1 ≤ ‖wε‖
2
L2 ≤ 2;

(3) ‖(HωP − E−)wε‖
2
L2 ≤ Cε2(1+α) for some C > 0 (independent of ε).

Though not formulated as a lemma, this result is proved in section 2 of [12].

We now prove the lower bound (0.6). Pick α ∈ (0, 1) arbitrary. Let Γ′ be the
lattice with respect to which ωP is periodic. Pick n ∈ N

∗ such that n ∼ ε−ν

for ν > ν0 (ν0 given by Theorem 2.2), ν to be chosen sufficiently large. As wε

constructed in Lemma 2.2 has compact support in the interior of C(0, n),
it can be “periodized” to satisfy quasi-periodic boundary conditions; for
θ ∈ R

d, we set

wε,θ(·) =
∑

β∈(2n+1)Γ′

e−iβθwε(· + β).

Then, wε,θ satisfies wε,θ(x+β) = eiβθwε,θ(x) for x ∈ R
d and β ∈ (2n+ 1)Γ′,

and we have
‖wε,θ‖

2
L2(C(0,n)) ≥ 1. (2.6)

We define

Λα(ε) =
{

γ ∈ Γ′; for 1 ≤ j ≤ d, |γj | ≤ ε−(1+3α)/2
}

.

Since V satisfies (HL1), if we assume ωγ ≤ ε1+α for γ ∈ Λα(ε), then

‖Vω,n(HωP − E− − 1)−1‖ ≤ Cε1+α.
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This, (2.6) and point (3) of Lemma 2.2 imply that, for some C > 0 and ε
sufficiently small, we have

‖(Hω,n,θ −E−)wε,θ‖ ≤ Cε1+α‖wε,θ‖.

This proves that, for ε sufficiently small, if ωγ ≤ ε1+α for γ ∈ Λα(ε), then
for all θ ∈ T

∗
n, Hω,n,θ has an eigenvalue in [E− − ε/2, E− + ε/2]. Hence, we

learn that

E(Nω,n(E− + ε/2) −Nω,n(E− − ε/2)) ≥
1

C
n−dP (ε, α) (2.7)

where P (ε, α) is the probability of the event {ω; ∀γ ∈ Λα(ε), ωγ ≤ ε1+α}.
By assumption (HL2) and as n ∼ ε−ν , we have

lim inf
ε→0
ε>0

log | log(P (ε, α))|

log ε
≥ −

d

2
(1 + 3α) − α− (2.8)

where α− is defined in Theorem 0.2. Plugging (2.8) and (2.7) into (2.5),
since α > 0 is arbitrary, this completes the proof of Theorem 0.2.

3 An example where Lifshitz tails fail to exist

We now will construct an example of the type described in Theorem 0.5.
Let ϕ ∈ C∞((−1/2, 1/2)d) be positive, reflection symmetric, constant near
the boundary of [−1/2, 1/2]d and normalized in the cube. Let V = ∆ϕ/ϕ; it
satisfies (0.2) and assumption (H2). Moreover, ϕ is the positive normalized
ground state of −∆ + V on [−1/2, 1/2]d with Neumann boundary condi-
tions, the associated ground state energy being 0. Let (ωγ)γ∈Zd be Bernoulli
random variables with support {0, 1}. Pick L ≥ 1 and let ϕL be the ground
state of the operator HN

ω,L acting on [−1/2, L−1/2]d with Neumann bound-
ary conditions defined in Section 1. Then, this ground state can be described
as follows

• in γ + [−1/2, 1/2]d , ϕL(·) = L−d/2ϕ(· − γ) if ωγ = 1;

• in γ + [−1/2, 1/2]d , ϕL(·) = L−d/2C0 if ωγ = 0

where the constant C0 is chosen to be equal to the constant value of ϕ near
the boundary of [−1/2, 1/2]d . The thus constructed ground state is not
normalized.
We can now use the results of [8] to obtain a lower bound on the second
eigenvalue of HN

ω,L that is independent of ω. Indeed, the construction above
shows that, for any ω,

C0 ≤ Ld/2 · max
x∈[−1/2,L−1/2]d

ϕL(x) ≤ max
x∈[−1/2,1/2]d

ϕ(x),

min
x∈[−1/2,1/2]d

ϕ(x) ≤ Ld/2 · min
x∈[−1/2,L−1/2]d

ϕL(x) ≤ C0.
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Then, Theorem 1.4 of [8] applied to HN
ω,L and the Neumann Laplacian on

the same cube guarantees that the second eigenvalue of HN
ω,L is larger than

cL−2 where the constant c does not depend on ω, nor on L. The standard
upper bound for the integrated density of states by the normalized Neumann
counting function (see e.g. [20, 5, 22]) yields, for any L ≥ 1,

N(E) ≤ E

(

#{eigenvalues of HN
ω,L ≤ E}

Ld

)

.

If we pick L = (C2E)−1/2 for some C > 0 such that cC2 ≥ 2, the second
eigenvalue of HN

ω,L is larger than 2E, this for any realization of ω, we obtain

N(E) ≤ L−d = CdEd/2.

The standard lower bound for the integrated density of states by the nor-
malized Dirichlet counting function (see e.g. [20, 5, 22]) yields

E

(

#{eigenvalues of HD
ω,L ≤ E}

Ld

)

≤ N(E) (3.1)

where HD
ω,L is the Dirichlet restriction of Hω to [−1/2, L − 1/2]d. Let ψL

be the (positive normalized) ground state of the Dirichlet Laplacian on
[−1/2, L − 1/2]d. And define φL = ψL · ϕL. This smooth function clearly
satisfies Dirichlet boundary conditions and one computes, for some C > 1,

〈HD
ω,LφL, φL〉 = 〈(−∆ + Vω)φL, φL〉

= 〈(−∆ψL)ϕL, φL〉 − 2〈∇ψL · ∇ϕL, φL〉

= 2
π2

L2
‖φL‖

2 + ‖ϕL |∇ψL| ‖
2 ≤

C

L2
‖φL‖

2.

(3.2)

where, in the final step, we integrated by parts and used the explicit form
of the positive normalized ground state of the Dirichlet Laplacian.
Hence, taking L = CE−1/2, as C > 1, (3.2) ensures that the ground state
energy of HD

ω,L is less than E. Thus, from (3.1), we learn

1

Cd
Ed/2 = L−d ≤ N(E).

Finally, combining the two estimates, we have proved that, for the above
random model, the density of states exhibits a van Hove singularity at the
bottom of the spectrum that is, there exists C > 1 such that, for E ≥ 0,
one has

1

C
Ed/2 ≤ N(E) ≤ CEd/2.

This completes the proof of Theorem 0.5.
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[14] F. Klopp and S. Nakamura. In progress.

12



[15] F. Klopp, S. Nakamura, F. Nakano, and Y. Nomura. Anderson local-
ization for 2D discrete Schrödinger operators with random magnetic
fields. Ann. Henri Poincaré, 4(4):795–811, 2003.
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