
HAL Id: hal-00275642
https://hal.science/hal-00275642

Preprint submitted on 24 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An hybrid model for radiative transfer
Rodolphe Turpault

To cite this version:

Rodolphe Turpault. An hybrid model for radiative transfer. 2008. �hal-00275642�

https://hal.science/hal-00275642
https://hal.archives-ouvertes.fr


e-mail: rodolphe.turpault@univ-nantes.fr

Mathematical Modelling and Numerical Analysis Will be set by the publisher

Modélisation Mathématique et Analyse Numérique

AN HYBRID MODEL FOR RADIATIVE TRANSFER

Rodolphe Turpault1

Abstract. Radiative transfer is a phenomenon that has an importance in a wide range of applications
from climatology to astrophysics. Depending on the physical regimes involved, a hierarchy of models
may be used, each of which having drawbacks and qualities. However, there are still applications for
which no model is fully satisfying. An example is ICF (Inertial Confinement Fusion) where dozens of
lasers converge on a fuel pellet of the size of a pinehead. This kind of simulation requires a coupling
between radiation and other processes and hence one would require a model that is cheap enough in
terms of computation cost to carry it out. The M1 model [3] may then seem to be an interesting
choice. But the directional complexity of the problem and the fact that the energy is mainly located
inside a narrow frequency interval is hardly compatible with this model and one would rather use an
(expensive) model such as a kinetic model.
In this paper, we introduce an hybrid model that mixes the multigroup-M1 model and a kinetic
model. This hybrid model intends to be an extension of both of them and therefore adds degrees of
freedom that allows to properly take into account a wide variety of problems. We also show that it
possesses important properties including the correct asymptotic limit in the diffusion regime and the
local decreasing of the total entropy.
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Introduction

The radiative transfer equation (RTE) describes the evolution of the radiative intensity Iν(Ω) = I(t, x,Ω, ν)
where Ω is the photons’ direction of propagation and ν is the frequency. This radiative intensity Iν(Ω) is linked
to the photons’ distribution function. Assuming local thermal equilibrium and neglecting scattering, the RTE
writes:

1
c
∂tIν(Ω) + Ω.∇Iν(Ω) = σν

(
Bν(T )− Iν(Ω)

)
, (0.1)

where c is the speed of the light, σν is the emission opacity, T is the material temperature and Bν(T ) is
Planck’s blackbody function given by:

Bν(Ω) =
2hν3

c2

[
exp
( hν

kT

)
− 1
]−1

. (0.2)

The constants h and k are respectively Planck and Boltzmann constants. It is to note that the energy of
B (ie its integral over all directions and frequencies) is proportional to T 4. The constant of proportionality is
denoted by a(' 7.56.10−16 SI).
Due to emission and absorption process, the radiative energy is not conserved. To preserve the conservation of
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1 Université de Nantes, Laboratoire de Mathématiques Jean Leray, 2 rue de la Houssinière 44322 Nantes Cedex 03

c© EDP Sciences, SMAI 1999



2 TITLE WILL BE SET BY THE PUBLISHER

the total (radiative+material) energy, the following simplified temperature evolution equation will be used in
this paper:

ρCv∂tT =

∞∫
0

∫
S2

σν

(
Iν(Ω)−Bν(T )

)
dΩdν. (0.3)

The direction of propagation Ω and the frequency ν play a very different role in the RTE. Indeed, the opacity
σν is a critical parameter. When σν = 0 the RTE is nothing but a convection equation and the associated regime
is called the transport (or free-streaming) regime. On the other hand, when σν →∞, the RTE degenerates into
the diffusion equation (see [5], [11] and [8]):

∂t(ρCvT + 4aT 4)−∇x

(4acT 3

3σ
∇xT

)
= 0. (0.4)

A lot of simulations involve free-streaming, diffusion as well as in-between regimes altogether. It is therefore
crucial to insure that the models we use correctly handle all regimes.
Moreover, σν has huge frequencial variations due to phenomena such as bound-bound transitions which produce
emission lines that are very narrow. Thus grey models (ie integrated over all frequencies) are often too coarse
and introduce significant errors due to frequency averaging. The models we use hence have several frequency
degrees of freedom. The frequencies are split into groups and bands respectively indexed by q and k:

[0,+∞[ν=
( Q⋃

q=1

Qq

)⋃( K⋃
k=1

Qk

)
.

As a notation and to avoid confusion, every frequency group in this paper will be indexed by q and every
frequency band will be indexed by k. Inside the bands Qk, a quadrature formula is used to approximate integrals
over directions and frequencies. The following notations will be used throughout this paper:

< • >q =
1
c

∫
Qq

∫
S2
• dΩdν,

< • > =
K∑

k=1

L∑
l=1

• ωlξk ' 1
c

∫
∪Q

∫
S2
• dΩdν,

< • > =
Q∑

q=1

< • >q +< • >.

Throughout this paper, frequency and direction indexes will be omitted inside integrals and quadrature
formulas except when necessary.

• Bands refer to frequency intervals that are small enough to make several assumptions. For instance,
Planck’s function may be supposed to be constant inside a band. Among others, these assumptions allow
to use several useful techniques to compute mean values of σν (eg CK methods). A typical simulation
may take into account thousands of frequency bands.

• Groups refer to large frequency intervals where the previous assumptions cannot be made. A particular
attention must then be paid to the way to compute mean values of σν . A typical multigroup simulation
may consider a few frequency groups (up to several dozens).

The computation of the opacities’ mean values inside groups may be problematic for modelling issues as we will
see later. Among the classical choices to do so are Planck and Rosseland mean values, respectively denoted by
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σP and σR and given by:

σP = σP (T ) =
< σB(T ) >

< B(T ) >
, (0.5)

σR = σR(T ) =
< ∂T B(T ) >

< 1
σ ∂T B(T ) >

. (0.6)

A lot of physical applications involve radiation in a wide range of regimes. It is possible to distinguish between
two categories considering the influence of radiation on the flow:

• The radiation impact on the flow is neglectable. This is the case for instance of climatology applications.
• The radiation effects have an impact on the flow. This happens in superorbital atmospheric reentry,

astrophysics (radiative shocks,. . . ) and ICF (fusion obtained by impacting laser beams on a deu-
terium/tritium target).

These two categories imply very different levels of modelling. For the latter, a full coupling between hydrody-
namics and radiation may be mandatory and requires the use of a robust and cheap radiative model.

The objective of this paper is to introduce an hybrid model which mixes a kinetic and a moments model.
This hybrid model shall be supple enough to naturally adapt to any simulation, even though the main target
applications requires a full coupling between radiation and material and a specific geometry (eg convergence of
lasers for ICF).
This article will be organized as follows. In the next section, we will briefly recall a kinetic model suitable for a
narrow-band level of frequencial resolution. We will mainly focus on its construction and its main properties.
Then a section will be dedicated to the M1 model. The multigroup version will be recalled, we will also see
that it has several important properties that make it robust and a very interesting candidate for multigroup
simulations. We will focus on one of its most essential characteristic which is the possibility to consistantly
handle the opacities’ mean values.
Finally, we will introduce the way of coupling these two models inside an hybrid model. We will then show that
this model still preserves two fundamental properties: the asymptotic behaviour in the diffusion regime and the
local decreasing of the total entropy. A simple numerical example will illustrate its interest.

1. A kinetic model (Q = 0)

This model was first introduced in [1]. It is designed for using frequency bands. One of the consequences
of this choice is that the mean values of the opacity σk do not depend on variations of B or I. Therefore, σk

has the same value that Planck (0.5) or Rosseland (0.6) mean values. Aside from these frequency bands, we
also consider a finite number of directions (Ωl)l=1...L and look for an approximation of Iνk

(Ωl) = I(t, x,Ωl, νk)
denoted Jk,l which is solution of the following discrete system:

1
c
∂tJk,l + Ωl∇Jk,l = σk

[
Bk(T )− Jk,l], (k, l) ∈ [1 . . .K]× [1 . . . L] (1.1)

ρCv∂tT = < cσ(J − B(T )) >. (1.2)

The main difficulty is to carefully define the discrete equilibrium function Bk(T ). The “naive” choice Bk(T ) =
Bνk

(T ) is not sufficient enough to insure the conservation of several important physical properties. For example,
it is easy to see that in general

∑K
k=1

∑L
l=1 Bνk

(T ) ωlξk 6= aT 4. Therefore, some energy is artificially created
(or lost) only due to this form of the discrete equilibrium function.
A solution is to use Levermore’s technique of minimum entropy principle [7] in a fashion related to Mieussens’
choice for Boltzmann-BGK [9]: the discrete equilibrium function is chosen to be the minimum of the discrete
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radiative entropy:

B = (Bk,l(T ))k,l = argmin{< hd(J) >, < J > = aT 4}, (1.3)

hd(J) =
2kν2

k

c3

[
nk,l ln(nk,l)− (nk,l + 1) ln(nk,l + 1)

]
,

nk,l = n(J)k,l =
c2

2hν3
k

Jk,l.

This choice is consistent in the sense that Planck’s function is the minimum of the radiative entropy among
all the functions whose energy is aT 4. Therefore (Bk,l)k,l can be considered as an approximation of Bν .

Theorem 1.1. If T > 0 then there exists a unique B such that:

Bk,l = Bk =
2hν3

k

c2

[
exp
(hνkα

k

)
− 1
]−1

, (1.4)

where α is the unique solution of < B > = aT 4.

Proof. This results comes from a straightforward computation, which is briefly (and formally) recalled here.
Let us introduce the Lagrangian of the problem (1.3):

L(J, λ) = < hd(J) >− λ(aT 4 −< J >). (1.5)

According to Lagrange’s theorem, if B is a solution of (1.3) then there exists α ∈ IR such that (B, α) is a saddle-
point of L. Moreover, thanks to the convexity of the discrete entropy, we can say that if (B, α) is a saddle-point
of L, then it is a solution of (1.3). At the saddle-points of L, if L is derivable, we have ∂JL(B, α) = 0 hence:

∀ϕ ∈ D(S2 × IR+), < < h
′
d(J) >,ϕ >D′ ,D= − < < α >, ϕ >D′ ,D .

In particular, the last equality stands for all ϕ ∈ D(S2
l × Qk), where S2

l is the part of the unit sphere around
the direction Ωl. Thus we can say that:

∀ k, l, h
′

d(Bk,l) = −α,

k

hνk
ln(1 +

1
n(B)k,l

) = −α,

hence

Bk,l =
2hν3

k

c2

[
exp
(hνkα

k

)
− 1
]−1

.

�

There are two points that have to be emphasized here. First, the discrete equilibrium function -as Planck’s
function- is isotropic: Bk,l = Bk. Among others, a consequence of this is that only the sum over k is required
to compute α.
Lagrange’s multiplier α = α(T ) plays an important role. It is a scalar regardless of the number of frequency
bands considered and its determination requires to solve the nonlinear scalar equation < B(α) > = aT 4.
If the quadrature formula was exact, then we would have α = 1/T . Using 1/T as a starting value for any
suitable efficient numerical method allows to converge quickly, hence the determination of α does not involve
expensive computations.
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Proposition 1.2. The system (1.1)-(1.2) is hyperbolic symmetrizable. Moreover, if the quadrature formula
< • > is wisely chosen then it has the following properties:

• the total energy is conserved:

∂t(< J > + ρCvT ) + c ∇x< ΩlJ > = 0,

• if J(t = 0) ∈ L∞ then ∀t > 0, J(t) ∈ L∞,
• the total entropy is locally decreasing:

∂t

(
< h(J) >

c
+ ρCvU

)
+∇x< Ωlhd(J) > ≤ 0.

where U = −
∫ T

0
α(T )dT is a convex function of T .

• it is asymptotic preserving in the diffusive limit.

The first two results above were proved in previous papers (see [1] and [15]). The last two will be proved for
the more general hybrid model -which includes this kinetic model- later in this article.

Unfortunately, the number of bands required for any kinetic model implies that these models are way to
expensive in a fully coupled context involving radiation, hydrodynamics and other processes such as chemical
reactions or turbulence.

2. Multigroup-M1 model (K = 0)

Since our main objective is to perform fully coupled simulations, we have to consider cheaper models ie
models that are somehow integrated over directions and frequencies. There are two categories of such models:
flux-limited diffusion and moments models (see [12] and references therein for a list of the classic choices). Our
choice is to select the M1 model, which belongs to the category of moments models. It was introduced in [2]
and has several variations among which [14], [3], [13] and [4]. To built it, the first step consists in obtaining the
moments equations from (0.1). To do so, an integration over directions and inside each frequency group Qq is
performed for (0.1) and Ω× (0.1). It leads to the following system:

q = 1 . . . Q, ∂tEq +∇Fq = σe
qaθ4

q − σa
q Eq, (2.1)

∂tFq + c2∇Pq = −σf
q Fq. (2.2)

The radiative energy Eq, the radiative flux vector Fq and the radiative pressure tensor Pq are the first three
moments of the radiative intensity inside the qth frequency group. Moreover, σe, σa and σf are mean values of
the opacity and their choice will be discussed later. These variables are defined as:
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Eq =< I >q,

Fq =< cΩI >q,

Pq =< Ω⊗ ΩI >q,

aθ4
q =< B(T ) >q,

σe
q =

< σB(T ) >q

aθ4
q

, (2.3)

σa
q =

< σI >q

Eq
, (2.4)

σf
q =


< σΩxI >q

F x
q

0

0
< σΩyI >q

F y
q

 . (2.5)

The system (2.1)-(2.2) is the generic multigroup moments system. It is not closed. To close it, one has to
make an hypothesis on the radiative pressure Pq so that it can be expressed as a function of Eq and Fq. The
choice of the closure determines the model. There are several ways to choose the closure, including the classic
P1 model where Pq := IdEq/3. This shape is based on the fact that at the radiative equilibrium (ie whenever
Iν(Ω) = Bν(T )), the radiative pressure is indeed one third of the radiative energy times the identity tensor.
The main drawback of the P1-model is that it does not predict physical solutions far from the radiative
equilibrium.

Definition 2.1. A solution (Eq, Fq) will be said to be physically relevant if Eq > 0 and ‖Fq‖ ≤ cEq.

In fact, this definition is simply the consequence that Eq and Fq are the first two moments of some (positive)
radiative intensity. The second property is called the (radiative) flux limitation. It is very important yet hard to
preserve in models. For instance, the P1 model violates this property and thus sometimes predicts unphysical
solutions.
There are several other options to close the system (2.1)-(2.2) (see [12] and references in [14]). One of which is
to use a minimum entropy principle in a fashion similar to what Levermore did for fluid mechanics [6]. It is to
note that other models based on a minimum entropy principle exist to close this system (see for example [10]),
however the M1 model is based on the (physical) radiative entropy:

h(I) =
2kν2

c3

[
nI ln(nI)− (nI + 1) ln(nI + 1)

]
, (2.6)

nI =
c2

2hν3
Iν(Ω). (2.7)

The first step is to build an underlying radiative intensity I thanks to the minimum entropy principle:

I = argmin{< h(I) > / ∀q = 1 . . . Q < I >q= Eq, < cΩI >q= Fq}. (2.8)

The solution of this minimization problem is:

I =
∑

q

1q
2hν3

c2

[
exp(

hν

kT
αq.(1,Ω)>)− 1

]−1

, (2.9)
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where 1q is the characteristic function of the qth group and αq is the Lagrange multiplier of the minimization
problem (fully determined by the constraints).
The M1 form of the radiative pressure is simply the corresponding moment of the underlying radiative intensity:

Pq :=< Ω⊗ ΩI >q .

Pq may be expressed in Eddington form as follows:

Pq = DqEq, (2.10)

Dq =
1− χq

2
Id +

3χq − 1
2

Fq ⊗ Fq

‖Fq‖
, (2.11)

where the Eddington factor χq is the eigenvalue of Dq associated with Fq.

Proposition 2.2. The system (2.1)-(2.2) with the M1 choice of the closure is hyperbolic symmetrizable. More-
over, it has the following properties:

• the total energy is conserved,
• the total entropy is locally decreasing,
• it is asymptotic preserving in the diffusive limit,
• it has a natural flux limitation inside each group (ie ‖Fq‖ ≤ cEq).

Once again, these properties were proved in previous articles ( [14], [15]) or will be proved for the more
general hybrid model in the next section of this article.
One of the edges the M1 model has compared to other related models is the possibility to chose consistent
mean opacities. As a matter of fact, the opacities’ mean values required for moments or flux-limited diffusion
models are problematic since their expression should be given by (2.3), (2.4) and (2.5). On the one hand,
(2.3) is nothing but Planck’s mean value of the opacity which is relatively easy to compute. But on the other
hand, (2.4) and (2.5) are mean values relatively to functions of I, which is not reachable (the unknowns of our
model are its moments). As a consequence, one has to make an additional assumption to compute these mean
opacities. Classic choices include taking Planck, Rosseland or Chandrasekhar mean values but this additional
assumption has a cost in terms of precision of the model.
Hopefully for the M1 model, even if the real radiative intensity cannot be used, we have built an underlying
one I which may be considered to approximate (2.4) and (2.5). For instance:

σa
q '

< σI >q

Eq
. (2.12)

Since I is fully determined by the knowledge of Eq and Fq, it is possible to make all the computations. This
choice is consistent in the sense that no additional assumption is made. It allows to have a good precision even
with a few number of groups: see the test-cases in [14].

Using the consistent mean values of the opacity, the multigroup-M1 model is equivalent to the following
formulation:

<
1
c
∂tI + Ω∇I >q =< σ

[
B(T )− I

]
>q, q = 1 . . . Q (2.13)

<
1
c
∂t(ΩI) +∇(Ω⊗ ΩI) >q = − < σΩI >q, (2.14)

Iq = 1qIq(Eq, Fq), (2.15)

where Iq is the underlying radiative intensity used as a closure function for the M1 model (2.9).
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The multigroup-M1 is usually a good choice for full coupling purposes. It is relatively cheap, very robust,
conserves the fundamental physical properties and even has a natural way to approximate mean opacities.
However, it has a directional drawback since it has to cope with only one direction of anisotropy per group
(colinear to Fq): it cannot handle the case when at a given point two or more comparable energies converge
from opposite directions (see [3] for an example). Depending on the geometry of the problem, this drawback
may be problematic or not. For instance, for computing the fluxes on the front shield of a probe or to simulate
an explosion, this directional effect has nearly no impact.
The M1 model has been declined into half and partial space M1 models [3], [13], [4]. For 1D simulations, the
half-M1 model (ie integrated over half of the unit sphere for directions) nearly annihilate the directional effect,
but for 2D and 3D simulations, even partial M1 might not be sufficient. An example of tricky simulation would
be a ICF-type problem where dozens of lasers converge on 1 mm-radius zone.

3. Hybrid Model

As we have seen in previous sections, both the kinetic and the multigroup M1 models may have some
drawbacks. The former is often too expensive and the latter sometimes has directional problems. Starting
from the observation that these two models are complementary, we derive an hybrid model which mixes the
multigroup-M1 model inside frequency groups and the kinetic model inside frequency bands:

∀q = 1 . . . Q, ∂tEq +∇.Fq = c
[
σe

qaθ4
q − σa

q Eq

]
, (3.1)

∂tFq + c2∇Pq = −cσf
q Fq, (3.2)

∀k = 1 . . .K, ∀l = 1 . . . L,
1
c
∂tJk,l + Ωl∇Jk,l = σk

[
Bk(T )− Jk,l], (3.3)

ρCv∂t(T − T ) =
Q∑

q=1

(σa
q Eq − σe

qaθ4
q) (3.4)

ρCv∂tT = < cσ(J − B(T )) > (3.5)

Iq = argmin
{

< h(I) >q /∀q = 1 . . . Q, < I >q= Eq and < cΩI >q= Fq

}
(3.6)

B = argmin
{

< hd(I) >/< I > = aT 4 −
Q∑

q=1

aθ4
q}. (3.7)

Where T = T (T ) is such that:

T =
(< B(T ) >

a

)1/4

. (3.8)

This model may be seen as an improvement of either the M1 or the kinetic model. Typically, groups may
be chosen in regions were either very little energy exists or there is no directional problem whereas bands are
chosen where a large amount of energy lies inside a few narrow bands (eg lasers) or may converge at a given point.

Of course, it is crucial to insure that this hybrid model behaves well. The conservation of the energy is straight-
forward and the next two theorems respectively show that it is still asymptotic preserving in the diffusive limit
and locally decreases the total entropy.

Theorem 3.1. If (Q)k are narrow bands, σν is constant inside each frequency group Qq and if the quadrature
formula < • > is at least 2nd-order, then the model (3.1)− (3.7) is asymptotic preserving in the diffusive limit
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ie when σ →∞ it degenerates into the equation:

∂t(ρCvT + 4aT 4)−∇
(4acT 3

3σR
∇xT

)
= 0, (3.9)

where σR is Rosseland’s mean value of the opacity given by (0.6).

Proof. Adding (3.4) and (3.5) together, and using the Eddington form of Pq (2.10), the system (3.1) − (3.7)
may be written as:

∀q = 1 . . . Q, ∂tEq +∇.Fq = c
[
σqaθ4

q − σqEq

]
,

∂tFq + c2∇(DqEq) = −cσqFq,

<
1
c
∂t(ΩI) +∇(Ω⊗ ΩI) >q = − < σΩI >q,

1
c
∂tJk,l + Ωl∇Jk,l = σk

[
Bk(T )− Jk,l], k = 1 . . .K, l = 1 . . . L,

ρCv∂tT =
Q∑

q=1

(σqEq − σqaθ4
q) + < cσ(J − B(T )) >.

To exhibit the asymptotic limit of this model in the diffusion regime, a Chapmann-Enskog-like expansion is
used. First, the equations are scaled setting:

t̃ := εt, σ̃ := εσ.

The system thus becomes:

ε2

c
∂t̃Eq + ε∇Fq = σ̃q

[
aθ4

q − Eq

]
, q = 1 . . . Q, (3.10)

ε2

c
∂t̃Fq + ε∇(DqEq) = −σ̃qFq, (3.11)

ε2

c
∂t̃Jk,l + εΩl∇Jk,l = σ̃k

[
Bk(T )− Jk,l], k = 1 . . .K, l = 1 . . . L, (3.12)

ε2ρCv∂t̃T =
Q∑

q=1

(σqEq − σqaθ4
q) + < cσ̃(J − B) >. (3.13)

Then an asymptotic expansion of E, F and J is performed:

E = E0 + εE1 + ε2E2 + . . . ,

F = F 0 + εF 1 + ε2F 2 + . . . ,

J = J0 + εJ1 + εJ2 + . . . .
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The use of this expansion in (3.10)-(3.13) and an identification of the coefficients lead to:

ε0 terms : E0
q = aθ4

q , (3.14)

F 0
q = 0, (3.15)

J0
k,l = Bk(T ), (3.16)

0 =
Q∑

q=1

(σ̃qE
0
q − σ̃aθ4

q +
〈
cσ̃(J0 − B)

〉
. (3.17)

ε1 terms : ∇F 0
q = −σ̃qE

1
q , (3.18)

∇(DE)0q = −σ̃qF
1
q , (3.19)

Ωl∇J0
k,l = −σ̃kJ1

k,l, (3.20)

0 =
Q∑

q=1

σ̃qE
1
q +

〈
cσ̃J1

〉
. (3.21)

ε2 terms :
1
c
∂t̃E

0
q +∇F 1

q = −σ̃qE
2
q , (3.22)

1
c
∂t̃F

0
q +∇(DE)1q = −σ̃qF

2
q , (3.23)

1
c
∂t̃J

0
k,l + Ωl∇J1

k,l = −σ̃kJ2
k,l, (3.24)

ρCv∂t̃T =
Q∑

q=1

σ̃qE
2
q +

〈
cσ̃J2

〉
. (3.25)

The expression of F 1
q and J1

k,l are respectively taken from (3.19) and (3.20):

F 1
q = − 1

σ̃q
∇(DE)0q, (3.26)

J1
k,l = − 1

σ̃k
Ωl∇J0

k,l. (3.27)

The expressions (3.27) and (3.26) may be inserted in (3.22) and (3.24) to get:

1
c
∂t̃(E

0
q )− div

( 1
σ̃q
∇
(
(DE)0q

))
= −σ̃qE

2
q ,

1
c
∂t̃J

0
k,l − Ωldiv

( 1
σ̃k

Ωl∇J0
k,l

)
= −σ̃kJ2

k,l.

Then E0
q and J0

k,l can be replaced by aθ4
q andBk(T ) thanks to (3.14) and (3.16):

1
c
∂t̃

(
aθ4

q

)
− div

( 1
3σ̃q

∇
(
aθ4

q

))
= −σ̃qE

2
q , (3.28)

1
c
∂t̃Bk(T )− Ωldiv

( 1
σ̃k

Ωl∇Bk(T )
)

= −σ̃kJ2
k,l. (3.29)
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Let us now sum over all l the second equation. Since B is isotropic and the quadrature formula < • > exactly
integrates 2nd order polynomials, we get:

4π

c
∂t̃Bk(T )− div

( 4π

3σ̃k
∇Bk(T )

)
= −

L∑
l=1

σ̃kJ2
k,lωl.

Hence,

4π

c
∂t̃Bk(T )− div

( 4π

3σ̃k
∂TBk(T )∇T

)
= −

L∑
l=1

σ̃kJ2
k,lωl. (3.30)

Finally, summing all the equations (3.28) and (3.30) over all groups and bands:

∂t̃(aT 4)− c

3
div
(
<

∂T B(T )
σ̃

> ∇T
)

= −
Q∑

q=1

σ̃qE
2
q −< cσ̃J2 >, (3.31)

This last equality is true thanks to the narrow band hypothesis that allows us to correctly handle the σ̃k. The
last step is performed by adding (3.25) to this last equation:

∂t(ρCvT + aT 4)−∇x

(4acT 3

3σR
∇T
)

= 0.

�

Theorem 3.2. If (ωk)k are chosen such that α(T ) is a positive, decreasing convex function of T , then the model
(3.1)− (3.7) has a total entropy which is locally decreasing:

∂t

(< ȟ >

c
+ ρCvU

)
+∇ < Ωȟ >≤ 0, (3.32)

where U = U(T ) is a convex function and ȟ is given by:

ȟ =

{
h if ν ∈ ∪Qq

hd if ν ∈ ∪Qk

(3.33)

Remark 3.3. In the above theorem α is Lagrange’s multiplier that defines B, see (1.4) and (3.7).

Remark 3.4. The condition on (ωk)k is not restrictive for the applications considered in this paper. Indeed,
if the quadrature formula was exact, then α = 1/T . Only the quadrature errors may prevent α to be positive,
decreasing and convex. Whenever only a few narrow bands are considered, it is easy to find a quadrature
formula that allows to conserve these properties.

Proof. First, let us recall that the form of I given in (2.9) depends on a parameter per group denoted by αq

which is a vector of IR1+d (d is the space dimension). In this proof, we will write αq = (α0
q , α

x
q , αy

q )>, assuming
that d = 2 (extensions to other dimensions are straightforward).
We will also use the following notations:

Aq =
(

αx
q 0
0 αy

q

)
,

βq = αq.(1, Ω)>.
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It is to note that by construction of I, βq is nothing but:

βq = ∂Ih(Iq). (3.34)

Let us now multiply (??) by α0
q and (??) by Aq:

< α0
q∂tI >q + < cα0

q∇(ΩI) >q =< cσα0
q(B(T )− I) >q,

< AqΩ∂tI >q + < cAq∇(Ω⊗ ΩI) >q =< cσAqΩ(B(T )− I) >q,

Adding these two equations we get:

< βq∂tI >q + < cβqΩ∇I >q=< cσβq(B(T )− I) >q .

Now, replacing β by its value according to (3.34), this last equation becomes:

∂t < h(I) >q +∇ < cΩh(I) >q =< cσ∂Ih(I)
(
B(T )− I

)
>q, (3.35)

which can be written as:

∂t < h(I) >q +∇ < cΩh(I) >q =< cσ
(
∂Ih(B)− ∂Ih(I)

)(
B(T )− I

)
>q (3.36)

+ < cσ∂Ih(B)
(
B(T )− I

)
>q, (3.37)

and since h is a convex function and ∂Ih(B) = 1/T , we have:

∂t < h(I) >q +∇ < cΩh(I) >q ≤< c
σ

T

(
B(T )− I

)
>q . (3.38)

Similarly, multiplying (3.3) by ∂Ihd(Jk,l) leads to:

1
c
∂Ihd(Jk,l)∂tJk,l + ∂Ihd(Jk,l)Ωl∇lJk,l = σk∂Ihd(Jk,l)

(
Bk − Jk,l

)
, (3.39)

then:

1
c
∂t

(
hd(Jk,l)

)
+ Ωl∇

(
hd(Jk,l)

)
= σk∂Ihd(Jk,l)

(
Bk − Jk,l

)
, (3.40)

and using the quadrature formula:

∂t< hd(Jk,l) > +∇< cΩlhd(Jk,l) > = < cσk∂Ihd(Jk,l)
(
Bk − Jk,l

)
>. (3.41)

Proceeding as above and since ∂Ihd(B) = α we have:

∂t< hd(Jk,l) > +∇< cΩlhd(Jk,l) > ≤ < cσkα
(
Bk − Jk,l

)
>. (3.42)

Now, let us respectively multiply (3.4) and (3.5) by 1/T and α (Lagrange’s multiplier that defines B, see
(1.4) ) to get:
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ρCv

T
∂t(T − T ) =< c

σ

T

(
I −B

)
>, (3.43)

ρCvα∂tT = < cσα
(
J − B

)
>. (3.44)

Finally, summing (3.38) over q and adding (3.42), (3.43) and (3.44) leads to:

∂t

[< ȟ >

c
+ ρCvU

]
+∇ < Ωȟ >≤ 0, (3.45)

U = −
∫ T 1

T
∂T (T − T ) + α∂TT . (3.46)

If α has the required behavior, all four terms inside the integral are positive, decreasing and convex functions
of T , then U is a (negative, decreasing) convex function of T . �

4. Numerical Example

This numerical example intends to emphasize the behavior of the hybrid model. A 1 m2 wide square domain
is considered. Radiative equilibrium at T0 = 1000 K is initially assumed. For t > 0, four ”beams” are enforced
at the NW, NE and SE corners as well as at the middle of the bottom of the domain (see figure 4.1 below).
Each ”beam” has the following profile:

Iν(Ω) =

{
Bν(Tb), if |ν − νb| ≤ ∆ν,

Bν(T0), otherwise.

where Tb = 6000 K, νb = 1.1014 Hz and ∆ν = 0.1014 Hz. The simulation is made with two groups and one
narrow band. Figure 4.1 shows the predicted radiative intensity integrated over all the frequencies and located
at coordinates (0.5, 0.5) compared with the same computation carried out with a multigroup-M1 model:

As figure 4.1 shows, the hybrid model perfectly deals with this simple test-case: each beam is fully preserved
with the correct amplitude and direction. Moreover, since there is only one narrow band, the computation is
very cheap (almost immediate for a 100× 100 mesh).
On the other hand, the M1 model, as any direction-integrated model, cannot properly deal with these four
beams of the same amplitude converging. This is due to the fact that it has to cope with only one direction
of anisotropy. This is a typical case where moments or flux-limited diffusion models fail to predict a realistic
solution.
Even though this test is very simple, it is representative of what can be done for simulating a ICF-type problem
where dozens of lasers coming from the same source (and hence having the energy concentrated inside the same
frequencies) converge.
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