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Abstract—In this paper, we present a closed-form expression
of a Bayesian Cramér-Rao lower bound for the estimation of a
dynamical carrier phase offset. This bound is derived in an on-
line oversampled scenario. Our numerical results show that using
the oversampled signal for estimating the phase offset we can
obtain better performances than using a classical synchronizer.

Index Terms—Phase estimation, bayesian Cramér-Rao lower
bound, oversampling, carrier synchronization.

I. INTRODUCTION

Synchronization is a fundamental part in modern digital
receivers. A synchronizer has to estimate some parameters,
such as carrier frequency, carrier phase and timing epoch,
to correct the distortions introduced by the channel. This
knowledge makes possible to recover the signal of interest
correctly. In this paper we focus our attention in the phase
estimation problem.

Many methods for estimating the phase introduced by an
unknown channel have been proposed over the past decades,
from Phase Locked Loops (PLL) to the most sophisticted sig-
nal processing techniques. When having an estimation process
we need to have lower bounds on the estimation performance
to be used as a benchmark. The family of Cramér-Rao Bounds
(CRBs) has been shown to give accurate estimation lower
bounds in many scenarios [1].

Several Cramér-Rao lower bounds have appeared in the
literature. Rife et al. [10] have derived CRB closed-form
expressions for constant phase-offset estimation in the so-
called Data-Aided (DA) scenario, and Cowley [11] did so in
the Non-Data-Aided (NDA) scenario. In many cases, these
lower bounds require a big computational complexity. A
modified CRB (MCRB) has been introduced in [8], [9], to
avoid this problem. The MCRB is much simpler but in general
looser. CRBs for time-varying parameter estimation has also
been derived. Tichavský [7] derived a general on-line recursive
Bayesian CRB (BCRB) analytical expression. Bay et al. [5] [6]
presented an Asymptotic BCRB(ABCRB) and an analytical
expression of the off-line CRB and BCRB. Most of the lower
bounds mentioned before, consider signal models with white
observation noise.

In this contribution we investigate the BCRB related to the
estimation of the carrier phase in a DA scenario. We consider
an oversampled signal model after receiver matched filter, this
implies having a coloured reception noise. In Section II, we
set the signal model. In Section III, we recall general BCRB

expressions and we derive a closed-form expression of the on-
line Cramér-Rao Bound for oversampled dynamical phase es-
timation. Finally in Section IV, the different numerical results
for the BCRB resulting from BPSK transmission are presented
and interpreted. Appendix gives also some complementary
results.

Notations: italic indicates a scalar quantity, as in a; bold-
face indicates a vector quantity, as in a and capital boldface
indicates a matrix quantity as in A. The (k, l)th entry of a
matrix A is denoted [A]k,l. The matrix transpose and self-
adjoint operators are indicated by the superscripts T and H

respectively as in AT and AH . �(·) and (·)∗ are the real part
and conjugate of a complex number or matrix, respectively. Ex

denotes the expectation over x. mod(·) refers to the modulo
operator,�·� means integer part and | a | is the absolute
value of a. ∇θ and ∆θψ represent the first and second-order

partial derivatives operator i.e., ∇θ =
[

∂
∂θ1

· · · ∂
∂θK

]T

and

∆θψ = ∇ψ∇T
θ . 1 stands for the all-ones matrix.

II. SIGNAL MODEL

Let us consider a detailed signal model. We propose the sig-
nal model for the transmission of a known sequence {am}m∈Z

over an Additive White Gaussian Noise (AWGN) channel
affected by a carrier phase offset θ(t).

A. Oversampled Signal Model

The received complex baseband signal after matched filter-
ing is

y(t) =

[{
T

∑
m

amΠ(t − mT ) + n(t)

}
eiθ(t)

]
∗ Π∗(−t)

(1)
where T, Π(t) and n(t) stands for the symbol period, shap-

ing pulse and circular gaussian noise with a known bilateral
power spectral density (psd) N0.

We define

b(t) =
[
n(t)eiθ(t)

]
∗ Π∗(−t) (2)

we note that n(t) and n(t)eiθ(t) have the same statistical
properties as n(t) is supposed to be circular. We define
σ2

n = N0D as the variance of the AWGN n(t) measured in the
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band
[−D

2 , D
2

]
where D is the shaping pulse noise equivalent

bandwidth.
We also define g̃m(t) as

g̃m(t) = T

∫ +∞

−∞
Π∗(−α)eiθ(t−α+mT )Π(t − α)dα (3)

Then the received signal can be written as

y(t) =
∑
m

amg̃m (t − mT ) + b(t) (4)

Hereafter we suppose a shaping pulse with support in [0, T ]
and a slow varying phase evolution during a period T . In this
case we can approximate g̃m(t) by

g̃m(t) ≈ g(t)eiθ(t+(m+ 1
2 )T ) (5)

where

g(t) = T

∫ 0

−T

Π∗(−α)Π(t − α)dα (6)

If the received signal is fractionally-spaced at tk = k T
s + τ ,

where s is an integer oversampling factor and τ a known offset
from the optimum sampling instants, we have that

y

(
k

T

s
+ τ

)
=

∑
m

amg̃m

(
k

T

s
+ τ − mT

)
+b

(
k

T

s
+ τ

)
(7)

and from (eq.5) we have that

y

(
k

T

s
+ τ

)
= eiθ(k T

s +τ+ T
2 )Ak + b

(
k

T

s
+ τ

)
(8)

where

Ak =
∑
m

amg

(
k

T

s
+ τ − mT

)
(9)

and we can finally write the received oversampled signal as

yk = Akeiθk + bk (10)

where k refers to tk instants.
The samples bk are a non-white noise with variance σ2

n,
and covariance matrix Γ which depends on the oversampling
factor s. This is a N × N matrix where N is the size of the
oversampled vector y. For example with s = 2, we have

Γ =
N0

T




g(0) g(−T
2
) 0 0 · · · 0

g(T
2
) g(0) g(−T

2
) 0 · · · 0

0 g(T
2
) g(0) g(−T

2
) 0

0 0
. . .

. . . 0
...

... g(0) g(−T
2
)

0 0 · · · 0 g(T
2
) g(0)




(11)

When considering the offset τ in the interval
[
0, T

s

]
. The

coefficients Ak can be written as

Ak = amg(τ + pT ) + am+1g(τ − (1 − p)T ) (12)

where p = k
s mod(s) and m = �k

s �.
Note that {Ak}k∈Z

is a non-stationary sequence for s > 1,
even if {am}m∈Z

is a stationary symbols sequence.

B. Phase-offset evolution model

We consider the case of a Wiener phase-offset evolution

θk = θk−1 + wk k ≥ 2 (13)

where wk is an i.i.d. zero-mean Gaussian noise with known
variance σ2

w

s . Here σ2
w stands for the variance growth of the

phase noise in one symbol period. If the initial condition θ1

has a zero-mean gaussian distribution with variance σ2
θ1

, we
have that the covariance matrix of the phase-offset evolution
is

Σ =
σ2

w

s




1 1 1 · · · 1
1 2 2 · · · 2
1 2 3 · · · 3
...

...
...

. . .
1 2 3 N


 + σ2

θ1
1 (14)

We note that θ = [θ1 · · · θN ]T .

III. CRAMÉR-RAO BOUNDS

In this section we present the family of Cramér-Rao Bounds.
When dealing with an estimation problem we aim to know
the ultimate accuracy that can be achieved by the estimator.
The Cramér-Rao Bounds provide a lower bound on the Mean
Square Error (MSE) achievable by any unbiased estimator. In
the sequel we give the general expression of one of the bounds
of this family, the Bayesian Cramér-Rao Bound (BCRB).
Also the closed-form expression for an on-line BCRB for an
oversampled dynamical phase estimation is presented. In the
on-line synchronization mode, at time k the receiver updates
the observation vector y = [y1 · · · yk−1]T including the new
observation yk to obtain the updated vector y = [y1 · · · yk]T in
order to estimate θk : only the past and the current observations
are available.

A. Bayesian Cramér-Rao Bound (BCRB)

Also called Posterior Cramér-Rao Bound (PCRB), this
bound is particularly suited for problems where an a priori
information is available.

We have a set of measurements y and we want to estimate a
N -dimensional real random parameter θ. The joint probability
density of the pair (y,θ) is py,θ(y,θ). If g(y) is our estimate
of θ, a Bayesian CRB has been proposed in [1] such that

Ey,θ
{
[g(y) − θ][g(y) − θ]T } ≥ BCRB (15)

The BCRB is the inverse of the Bayesian Information
Matrix (BIM), which can be written as

B = Eθ [F(θ)] + Eθ

[
−∆θθ ln p(θ)

]
(16)
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where p(θ) is the unknown parameter distribution and F(θ)
is the Fisher Information Matrix (FIM) defined as

F(θ) = Ey|θ
[
−∆θθ ln p(y | θ)

]
(17)

Equivalently we can say that the (i, j)th element of the BIM
is

[B]i,j = Ey,θ

{
−

∂2 ln py,θ(y,θ)

∂θi∂θj

}
(18)

and since py,θ(y,θ) = py|θ(y | θ)pθ(θ)
we can also write that

[B]i,j =
[
BD

]
i,j

+
[
BP

]
i,j

(19)

where

[
BD

]
i,j

= Ey,θ

{
−

∂2 ln py|θ(y | θ)
∂θi∂θj

}
(20)

[
BP

]
i,j

= Ey,θ

{
−∂2 ln pθ(θ)

∂θi∂θj

}
(21)

We can see that BD
ij represents the average information

about θ brought by the observations y and BP
ij represents

the information available from the prior knowledge on θ, i.e.,
p(θ).

B. The On-Line BCRB for Dynamical Phase Estimation

In this paragraph, an analytical expression of the BCRB for
an on-line fractionally-spaced phase-offset estimation problem
is presented.

We use the model presented in section II (eq.10, eq.13)

yk = Akeiθk + bk

θk = θk−1 + wk
(22)

where, as stated before, bk is a non-white noise with
covariance matrix Γ. The index k refers to tk instants and
Ak are the coefficients specified in (eq.9).

The first step to obtain (eq.16) is to find the joint distribution
p(y,θ), so the likelihood function p(y | θ), to compute the
FIM (see eq.17). From the state-space model (eq.22) we have
that

p(y | θ) =
1

πN | det(Γ) |e
−[y−m]HΓ−1

[y−m] (23)

where y is the N -dimensional received signal array and m
is the mean vector of y, where the kth component is [m]k =
Akeiθk .

As the elements of the FIM (see eq.17) are

[F]k,l = Ey|θ

{
−∂2 ln p(y | θ)

∂θk∂θl

}
for k, l = 1, · · · , N

(24)
we first compute Λ(θ) = ln p(y | θ)

Λ(θ) = − ln(πN | det(Γ) |) − [y − m]HΓ−1[y − m] (25)

Then we find the first derivative of Λ(θ)

∂Λ(θ)
∂θl

= ∂
∂θl

{−[y − m]HΓ−1[y − m]
}

=
{

∂mH

∂θl
Γ−1[y − m] + [y − m]HΓ−1 ∂m

∂θl

}
= 2�

{
∂mH

∂θl
Γ−1[y − m]

} (26)

and then the second one

∂2Λ(θ)

∂θk∂θl
= 2�

{
∂2mH

∂θk∂θl
Γ−1[y − m] − ∂mH

∂θl
Γ−1 ∂m

∂θk

}
(27)

If we compute the expectation over y | θ we obtain directly
the FIM’s coefficients,

[F]k,l = Ey|θ

{
−∂2Λ(θ)

∂θk∂θl

}
= 2�

{
∂mH

∂θl
Γ−1 ∂m

∂θk

}
(28)

We note that

∂mH

∂θl
=

[
0, · · · , 0,−iA∗

l e
−iθl , 0, · · · , 0

]
(29)

∂m
∂θk

=
[
0, · · · , 0, iAkeiθk , 0, · · · , 0

]T
(30)

So the coefficients can be written as

[F]k,l = 2�
{

A∗
l Ak · [Γ−1

]
k,l

ej(θk−θl)
}

(31)

From this result we can compute the coefficients
[
BD

]
k,l

=

Eθ

{
[F]k,l

}
as

[
BD

]
k,l

= Eθ

{
2�

{
A∗

l Ak

[
Γ−1

]
k,l

ei(θk−θl)
}}

= 2�
{

A∗
l Ak

[
Γ−1

]
k,l

Eθ
{
ei(θk−θl)

}} (32)

We can write that

Eθ
{
ei(θk−θl)

}
= Eθ

{
ei(uT

klθ)
}

= φ (ukl)
(33)

where uT
kl = [0, · · · , 0, (+1), 0, · · · , 0, (−1), 0, · · · , 0], +1

in the kth position and −1 in the lth position of the array, φ(·)
is the characteristic function of a Gaussian random variable θ:

φ (ukl) = exp
{− 1

2
uT

klΣ
−1 ukl

}
= exp

{
− 1

2

([
Σ−1

]
k,k

+
[
Σ−1

]
l,l

− 2
[
Σ−1

]
k,l

)}
(34)

with Σ the covariance matrix of the phase evolution θ
(eq.14), finally

[
BD

]
k,l

= 2�
{

A∗
l Ak

[
Γ−1

]
k,l

eΨ
}

(35)
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where

Ψ =
{
−1

2

([
Σ−1

]
k,k

+
[
Σ−1

]
l,l

− 2
[
Σ−1

]
k,l

)}
(36)

But to compute the BCRB we need not only the coefficients[
BD

]
k,l

but also the a priori coefficients
[
BP

]
k,l

. We aim to
compute the a priori matrix

BP = Eθ

{
−∆θθ ln pθ(θ)

}
(37)

As we have a Wiener phase-offset evolution model (see
eq.13), the distribution can be computed as

p(θ) = p(θ1) · ΠN
k=2 p(θk | θk−1) (38)

and due to this expansion we can rewrite the expression as

∆θθ ln p(θ) = ∆θθ ln p(θ1) +
N∑

k=1

∆θθ ln p(θk | θk−1) (39)

We have to compute the following

Eθ

{
−∆θθ ln p(θ)

}
(40)

The first term is a matrix with only one non-zero element,
namely, the entry (1,1) which is equal to

[
∆θθ ln p(θ1)

]
1,1

=
∂2 ln p(θ1)

∂θ2
1

(41)

The other terms in (eq.39) are matrices with only four non-
zero elements, namely, the entries (k-1,k-1), (k-1,k), (k,k-1)
and (k,k). Due to the Gaussian nature of the noise, one finds

[
∆θθ ln p(θk | θk−1)

]
k,k

=
[
∆θθ ln p(θk | θk−1)

]
k−1,k−1

= −s
σ2

w
(42)

[
∆θθ ln p(θk | θk−1)

]
k,k−1

=
[
∆θθ ln p(θk | θk−1)

]
k−1,k

= s
σ2

w
(43)

So we obtain

BP = Eθ

{
−∆θθ ln p(θ)

}

= 1
σ2

w/s




1 − Eθ1

[
∆θθ ln p(θ1)

]
−1 0 · · · 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

... −1 2 −1
0 · · · 0 −1 1



(44)

We can consider Eθ1

[
∆θθ ln p(θ1)

]
= 0. This corresponds

to the case of non-informative prior about θ1 (see [2]).
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Fig. 1. BOC and NRZ shaping functions Π(t) and their autocorrelation g(t)

Finally we obtain the BCRB matrix as

BCRB = {B}−1 =
{

BD + BP
}−1

(45)

The on-line BCRB associated to observation vector y =
[y1 · · · yN ] is clearly equal to entry (N,N) of the inverse of
the BIM, [BCRB]N,N .

IV. DISCUSSION

In this section we show the behaviour of the previous bound
by considering different scenarios. We assume the transmission
of BPSK symbols over an AWGN channel. We consider three
oversampling factors (s = 1, 2 and 4) and two shaping pulses,
BOC and NRZ (see figure 1). The NRZ shaping is used in
GPS systems and the BOC shaping is used in Galileo.

Equation (45) gives us the bound for a known sequence a,
so the bound depends on the sequence, BCRB(a). As we want
to obtain a lower bound on the estimation error independent
from the sequence we take the minimal bound over the set of
sequences.

BCRB = min
a

{
[BCRB(a)]N,N

}
(46)

We obtain the bound by Monte Carlo trials.
In the BCRB presented we plot the Root Mean Square Error

(RMSE) versus the Signal to Noise Ratio (SNR). The SNR
corresponds to the Carrier to Noise Ratio ( C

N ) in entrance of
the receiver. In our case, as shaping pulses and symbols ak are
normalised (i.e σ2

a = 1; g(0) = 1) this ratio is simply C
N = 1

σ2
n

.
Figure 2 and 3 superimpose versus the SNR, the on-line

BCRB (see eq.(45)) for both BOC and NRZ shaping pulses
and oversampling factors s = 1, 2 and 4. We consider a phase
noise with variance σ2

w = 0.01 rad2 and σ2
w = 0.1 rad2

respectively, and a null offset τ = 0.
First of all we note that the performances are the same for

both shaping pulses except for s = 4 in figure 3. One can see
that performance increase with the oversampling factor s and
the interest of oversampling becomes clear at low SNR. The
gain due to oversampling goes to zero as the SNR goes to ∞.
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Fig. 2. Bayesian CRBs for three different oversampling factors s = 1, 2 and
4, with a phase-noise variance σ2

w = 0.01 rad2. BOC and NRZ shaping
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Fig. 3. Bayesian CRBs for three different oversampling factors s = 1, 2 and
4, with a phase-noise variance σ2

w = 0.1 rad2. BOC and NRZ shaping

Note that in the s = 4 case, for a fixed SNR and τ = 0,
the SNR computed after matched filter and sampling, called
discrete-time SNR (SNRd), is higher for the NRZ pulse than
for the BOC pulse (see Appendix I).

In figure 4 we analyse the bound behaviour for a fixed SNR
versus phase-noise variance. We present a scenario with a low
SNR value, SNR = 0dB. Here we can still measure the gain
given by the oversampling.

We have analysed the Bayesian CRB which uses the a
priori information. But what do we gain using this a priori
information? We show in figure 5 the difference between
a Bayesian CRB and a Standard CRB (SCRB) for a BOC
shaping, two different oversampling factors s = 1 and 2 and
a variance σ2

w = 0.1 rad2. We can easily see that at low SNR
the BCRB is more accurate than the SCRB.

The SCRB is equal to the inverse of the Fisher Information
Matrix (see eq.17).

In figure 6 we show the peformance of the SCRB and the
BCRB for a variance σ2

w = 0.01 rad2. We can see that using
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Fig. 4. Bayesian CRBs for three different oversampling factors s = 1, 2 and
4, SNR = 0dB.

−30 −20 −10 0 10 20 30 40
0

1

2

3

4

5

6

7

8

9

10
BCRB and SCRB versus SNR

R
M

S
E

SNR (dB)

 

 

BCRB s=1
SCRB s=1
BCRB s=2
SCRB s=2

Fig. 5. BCRB and SCRB for s = 1 and 2, BOC shaping and σ2
w = 0.1

rad2

the a priori is more important when having weak phase-noise
variances.

The performance of the bound for a known non-null offset
τ are presented in Appendix II. We can see in this scenario
(figure 9) that we have an important loose of performance
when s = 1 and 2, otherwise when having s = 4, the
performance are the same as obtained with the optimal offset,
τ = 0.

V. CONCLUSION

In this contribution, we have derived an analytical expres-
sion of a Bayesian Cramér-Rao Bound for a realistic dynami-
cal carrier phase estimation in an oversampled scenario. This
bound is useful when having phase-tracking estimators in an
on-line oversampled scenario and looking for a benchmark
on the estimator performance. We have presented numerical
results with time limited pulses as used in satellite positioning
systems. In such scenario, where the Shannon sampling the-
orem is not respected, we have shown the interest of using a
fractionally-spaced method for phase estimation.
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APPENDIX I: DISCRETE-TIME SNR AFTER MATCHED

FILTER AND SAMPLING

The average signal to noise ratio on the discrete-time
sequence Ak, obtained after matched filter and sampling, for
a known offset τ and oversampling factor s is

SNRd(τ, s) =
E{|Ak|2}

σ2
n

=
σ2

a
sσ2

n

∑s−1
p=0

[
g2(τ + pT ) + g2(τ − (1 − pT ))

] (47)
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Fig. 7. Discrete-time SNR for diffrent oversampling factors s = 1, 2 and 4
and τ = 0. BOC and NRZ shaping.
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Fig. 8. Discrete-time SNR for diffrent oversampling factors s = 1, 2 and 4
and τ = T

8
. BOC and NRZ shaping.

where p is defined as in (eq.12). Note that, with τ = 0,
the mean variance of the cyclostationary samples Ak, σ2

A, is
the same for NRZ and BOC pulses if s = 1 and s = 2 but
is in the advantage of NRZ if s = 4. For τ 	= 0 the mean
variance σ2

A is different for both oversampling factors and
shaping pulses, for a given entrance SNR. This influence the
different performances obtained when using different shaping
pulses.

Figures 7 and 8 present the discrete-time SNR after matched
filter versus the SNR for τ = 0 and τ = T

8 respectively.
We note that for τ = 0 and s = 1, the SNRd is equal to

the SNR and that for s > 1, SNRd < SNR because we use
the intermediate samples to compute it.

APPENDIX II: PERFORMANCES FOR NON-NULL

OVERSAMPLING OFFSET

In figure 9 we superimpose the BCRB for τ = 0 and τ = T
8

for three different oversampling factors, s = 1, 2 and 4, and
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Fig. 9. Bayesian CRBs for three different oversampling factors s = 1, 2 and
4, with oversampling offset τ = 0 and τ = T
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Fig. 10. Bayesian CRBs for three different oversampling factors s = 1, 2
and 4, with oversampling offset τ = T

8
and SNR = 0dB

BOC shaping. We can mesure a loose of performance up to
2dB when having a positive known offset τ for the cases s = 1
and s = 2. We note that for the case s = 4 the offset only
affects slightly the bound.

Figure 10 shows the bound for both shaping pulses, a fixed
SNR and a non-null offset τ = T

8 versus phase-noise variance.
Comparing figure 10 to figure 4 we can see that for a non-
null offset τ we obtain different performances for both shaping
pulses even with s = 1 and 2, due to the difference between
the Ak values, necessary to compute the bound. We can see
in Appendix I that the SNRd obtained are different.
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