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Inverse conductivity problem on Riemann surfaces

An electrical potential U on a bordered Riemann surface X with conductivity function σ > 0 satisfies equation d(σd c U ) = 0. The problem of effective reconstruction of σ from electrical currents measurements (Dirichlet-to-Neumann mapping) on the boundary: U bX → σd c U bX is studied. We extend to the case of Riemann surfaces the reconstruction scheme given, firstly, by R.Novikov [N1] for simply connected X. We apply for this new kernels for ∂ on the affine algebraic Riemann surfaces constructed in [H2].

0. Introduction 0.1. Inverse conductivity problem. Let X be bordered oriented real two-dimensional manifold in R 3 equiped with a smooth symmetric and positive tensor σ : T * X → T * X on cotangent bundle T * X, called anisotropic conductivity tensor on X, σ is called symmetric and positive if σa ∧ b = σb ∧ a and σa ∧ a > 0 for any a, b ∈ T * X.

Let u (correspondingly U ) be a smooth function on bX (correspondingly on X) such that U bX = u, called electric potential on bX and correspondingly on X. 1-form σdU on X is called electrical current on X. By Maxwell equation d(σdU ) = 0 on X.

Inverse conductivity problem consists in this case in the following: what kind of information about X and σ can be efficiently extracted from the knowledge of Dirichlet-to-Neumann mapping u bX → σdU bX ∀ u ∈ C (1) (bX).

This important problem in the mathematical setting goes back to the inverse boundary values problems posed by I.M.Gelfand [G] and by A.P.Calderon [C]. This real problem is deeply related with complex analysis on Riemann surfaces. The first indication to this relation gives the following statement, obtaind at first by J.Sylvester [S] for simply connected X.

Under conditions above ∀ couple (X, σ) there exist a unique complex structure c on X and smooth scalar valued, positive conductivity function σ such that the equation d(σdU ) = 0 takes the form d(σd c U ) = 0, where

d c = i( ∂ -∂), σ 2 (x) = det σ(x), x ∈ X.
This statement permits to reduce the inverse conductivity problem to the questions about reconstruction from Dirichlet-to-Neumann mapping of the genus of X, of the complex structure of X and of the scalar conductivity function σ on X.

These questions are well answered for the important case when X is a domain in R 2 , due to the sequence of works: [F1], [F2], [START_REF] Beals | Multidimensional inverse scattering and nonlinear partial differential equations[END_REF], [SU], [N3], [N1], [GN], [START_REF] Beals | The spectral problem for the Davey-Stewartson and Ishimori hierarchies[END_REF], [N2], [Na].

The exact reconstruction scheme for this case was discovered by R.Novikov [N1]. Formulated questions are well answered also for the case when conductivity function σ is known to be constant on X, i.e. when only Riemann surface X must be reconstructed from Dirichlet-to-Neumann data [LU], [Be], [HM].

In this paper we study another important case of this problem, when bordered twodimensional manifold X and complex structure on X are known, but conductivity function σ on X must be reconstructed from Dirichlet-to-Neumann data. 0.2. Main results.

We extend here the R.Novikov's reconstruction scheme for the case of bordered Riemann surfaces. Our method (announced firstly in [H1]) is based on the appropriate new kernels for ∂ on the affine algebraic Riemann surfaces constructed in [H2].

By this reason we use some special embedding of X into C 2 . Let X be compactification of X such that X = X ∪ X 0 be compact Riemann surface of genus g. Let A = {A 1 , . . . , A d } be divisor, generic, effective with support in X 0 , consisting of d = g + 2 points.

By Riemann-Roch formula there exist three independent functions f 0 , f 1 , f 2 ∈ M( X)∩ O( X\A) having at most simple poles in the points of A. Without restriction of generality one can put f 0 = const. Let V be algebraic curve in C 2 of the form

V = {(z 1 , z 2 ) ∈ C 2 : z 1 = f 1 (x), z 2 = f 2 (x), x ∈ X\A}.
Let Ṽ be compactification of V in CP 2 of the form Ṽ = {w ∈ CP 2 : P (w) = 0}, where P is homogeneous holomorphic polynomial of homogeneous coordinates w = (w 0 : w 1 : w 2 ). Without loss of generality one can suppose: functions

f 1 , f 2 are such that i) Ṽ intersects CP 1 ∞ = {w ∈ CP 2 : w 0 = 0} transversally Ṽ ∩ CP 1 ∞ = {a 1 , . . . , a d }, where points a j = 0, 1, lim x→A j f 2 (x) f 1 (x) , j = 1, 2, . . . , d are different points of CP 1 ∞ . ii) V = Ṽ \CP 1 ∞ is connected curve in C 2 with equation V = {z ∈ C 2 : P (z) = 0}, where P (z) = P (1, z 1 , z 2 ) such that | ∂P ∂z 1 | ≤ const(V )| ∂P ∂z 2 |, if |z 1 | ≥ r 0 = const(V ). iii) For any z * ∈ V , where ∂P ∂z 2 (z * ) = 0 we have ∂ 2 P ∂z 2 2 (z * ) = 0.
With certain restriction of generality we suppose, in addition, that iv) curve V is a regular curve, i.e. grad P (z) = 0 ∀ z ∈ V . This restriction must be eliminated in other publication.

Let us equip V by euclidean volume form

dd c |z| 2 V . Let ϕ → f = Rϕ be operator for solution of ∂f = ϕ on V from [H2], Proposition 2, f → u = R λ f be operator for solution of (∂ + λdz 1 )u = f -Hf on V , where Hf is projection of f on subspace of holomorphic (1,0)-forms on Ṽ from [H2], Proposition 3, ϕ ∈ L ∞ 1,1 ∩ L 1 1,1 (V ), f ∈ W 1, p 1,0 (V ), u ∈ W 2, p(V ), p > 2. Let g λ (z, ξ), z, ξ ∈ V , λ ∈ C be kernel of operator R λ • R from [H2]. Let V X = {(z 1 , z 2 ) ∈ V : z 1 = f 1 (x), z 2 = f 2 (x), x ∈ X}. Let σ be conductivity function on V with conditions σ ∈ C (3) (V ), σ > 0 on V , σ(z(x)) = σ(x), x ∈ X, σ = const on V \V X . Function ψ(z, λ), z ∈ V , λ ∈ C will be called Faddeev type function on V × C if dd c ψ = dd c √ σ √ σ ψ on V and ∀λ ∈ C e -λz ψ(z, λ) def = µ(z, λ) → 1, z → ∞, | ∂µ| = O( 1 |z|+1 ), z ∈ V .
Theorem Under formulated conditions I. There exists unique Faddeev type function ψ(z, λ), z ∈ V , λ ∈ C.

II. Function ψ and as a conseqence conductivity function σ can be reconstructed through

Dirichlet-to-Neumann data by the following procedure. II a . From Dirichlet-to-Neumann data on bX by Proposition 3.1 (section 3) one can find restriction ψ bV X of the Faddeev type function ψ(z, λ), z ∈ V , λ ∈ C as a unique solution of the Fredholm integral equation

ψ(z, λ) bV X = e λz 1 + ξ∈bV X e λ(z 1 -ξ 1 ) g λ (z, ξ) • ( Φψ(ξ) -Φ0 ψ(ξ)), where Φψ = ∂ψ bV X , Φ0 ψ = ∂ψ 0 bV X , dd c ψ 0 V X = 0, ψ 0 bV X = ψ bV X . II b .
Using values of ψ(z, λ) in arbitrary point z * ∈ bV X by Proposition 2.2 (section 2) one can find " ∂ scattering data":

b(λ) def = lim z→∞ z∈V z1 λ e -λz 1 ∂ψ ∂ z1 (z, λ) = ( ψ(z * , λ)) -1 ∂ψ ∂ λ (z * , λ), z * ∈ bV X
with estimate (2.12). II c . Using b(λ), λ ∈ C by Proposition 2.3 (section 2) one can find values of

µ(z, λ) V X = ψ(z, λ)e -λz 1 V X , λ ∈ C
as a unique solution of Fredholm integral equation

µ(z, λ) = 1 - 1 2πi ξ∈C b(ξ)e ξz 1 -ξz 1 µ(z, ξ) dξ ∧ d ξ ξ -λ .
From equality dd c ψ = dd c √ σ √ σ ψ on X we find finally dd c √ σ √ σ on X.

Remarks

For the case V = C the reconstraction scheme I-II for potential q in the Schrödinger equation -∆U + qU = EU on X ⊂ V through the Dirichlet-to-Neumann data on bX was given for the first time by R.Novikov [N1]. However, in [N1] this scheme was rigorously justified only for the case when estimates of the type (2.12) are available, for example, if for E = 0 q ≤ const(E). By the additional result of A.Nachman [Na] the estimates of the type (2.12) are valid also if E = 0 and q

= ∆ √ σ √ σ , σ > 0, σ ∈ C (2) (X).
Part II a in the present paper is completely similar to the related result of [N1] for

V = C.
Part II b of this scheme for V = C is a consequence of works R.Beals, R.Coifman [START_REF] Beals | Multidimensional inverse scattering and nonlinear partial differential equations[END_REF], P.Grinevich, S.Novikov [GN] and R.Novikov [N2].

Part II c of this scheme follows from part II b and the classical result of I.Vekua [V]. §1. Faddeev type function on affine algebraic Riemann surface.

Uniqueness and existence

Let V be smooth algebraic curve in C 2 defined in introduction, equiped by euclidean volume form d d c |z| 2

V . Let V 0 = {z ∈ V : |z 1 | ≤ r 0 }, where r 0 satisfies condition ii) of introduction.

Definition

Let q be (1,1)-form in C 1,1 ( Ṽ ) with support of q in V 0 . For λ ∈ C function z → ψ(z, λ), z ∈ V will be called here the Faddeev type function associated with form (potential) q on V (and zero level of energy E) if

-d d c ψ + qψ = 0, z ∈ V (1.1)
and function µ = e -λz 1 ψ satisfies the properties:

µ ∈ C( Ṽ ), lim z→∞ z∈V µ(z, λ) = 1 and | ∂µ| = O 1 1 + |z| , z ∈ V.
From [F1], [F2], [N2] it follows that in the case

V = C = {z ∈ C 2 : z 2 = 0}
, for almost all λ ∈ C the Faddeev type function ψ = e λz 1 µ exists, unique and satisfies the Faddeev type integral equation

µ(z, λ) = 1 + i 2 ξ∈V g(z -ξ, λ)µ(ξ, λ)q(ξ) where g(z, λ) = i 2(2π) 2 w∈C e i(w z+ wz) dw ∧ d w w( w -iλ) is so called the Faddeev-Green function for operator µ → ∂(∂ + λdz 1 )µ on V = C.
Faddeev type functions z → ψ(z, λ) are especially useful for solutions of inverse scattering or inverse boundary problems for equation (1.1) when such functions exist and unique for any λ ∈ C. It was remarked by P.Grinevich and S.Novikov [GN] (see also [T]) that for some continuous q with compact support in C even with arbitrary small norm there exists the subset of exceptional λ * for which the Faddeev type integral equation is not uniquely solvable.

From R.Novikov's works [N1], [N2] it follows that the Faddeev type functions associated with potential q on V = C and non-zero level of energy

E exist ∀λ ∈ C if q ≤ const(|E|). From R.Beals, R.
Coifman works [START_REF] Beals | The spectral problem for the Davey-Stewartson and Ishimori hierarchies[END_REF] develloped by A.Nachman [Na] and R.Brown, G.Uhlmann [BU] it follows that for any potential q of the form q 

= d d c √ σ √ σ , where σ ∈ C 2 (C), σ(z) ≡ const if |z| ≥ const,
= d d c √ σ √ σ , where σ ∈ C 2 (V ), σ = const on V \V X ⊂ V \V 0 .
The proof will be based on the approach going back to [START_REF] Beals | The spectral problem for the Davey-Stewartson and Ishimori hierarchies[END_REF] in the case

V = C. Proposition 1.1 (Uniqueness) Let σ be positive function belonging to C (2) (V ) such that σ ≡ const > 0 on V \V X ⊂ V \V 0 = ∪ d j=1 V j ,
where

{V j } are connected components of V \V 0 . Let µ ∈ L ∞ (V ) such that ∂µ ∂z 1 ∈ L p(V )
for some p > 2 and µ satisfies equation

∂(∂ + λdz 1 )µ = i 2 qµ where q = d d c √ σ √ σ (1.2)
and for some j ∈ {1, 2, . . . , d} µ(z

) → 0, z → ∞, z ∈ V j . Then µ ≡ 0. Remark Proposition 1 is still valid if to replace the condition ∂µ ∂z 1 ∈ L p(V ), p > 2 by the weaker condition ∂µ ∈ L p(V ). Lemma 1.1 Put f = e λz 1 µ, f 1 = √ σ ∂f ∂z 1 , f 2 = √ σ ∂f ∂ z1
, where µ satisfies conditions of Proposition 1.1. Then

d(σd c f ) = 0 on V and (1.3) ∂f 1 ∂ z1 = q 1 f 2 , ∂f 2 ∂z 1 = q1 f 1 , (1.4)
where

q 1 = -∂ log √ σ ∂z 1 . Besides, q 1 ∈ L p (V 0 ) ∀ p < 2, q 1 = 0 on V \V 0 . Proof The property q 1 V \V 0 = 0 follows from the property σ ≡ const on V \V 0 . Put V ± 0 = {z ∈ V 0 : ± ∂P ∂z 2 ≥ ± ∂P ∂z 1 }. Put q1 = ∂ log √ σ ∂z 2 . Then q 1 V + 0 ∈ C (1) (V + 0 ) and q1 V - 0 ∈ C (1) (V - 0 ). The identity q 1 V - 0 = ∂z 1 ∂z 2
-1 q1 and property iii) imply that

q 1 ∈ L p (V 0 ) ∀p < 2. Equation (1.3) for f is equivalent to the equation (1.2) for µ = e -λz 1 f . Equation (1.3) for f means that ∂F 1 + (∂ ln √ σ) ∧ F 2 = 0 and ∂F 2 + (∂ ln √ σ) ∧ F 1 = 0, (1.5)
where

F 1 = √ σ • ∂f and F 2 = √ σ • ∂f .
Using z 1 as a local coordinate on V we obtain from

(1.5) the system (1.4), where

f 1 = dz 1 ⌋F 1 and f 2 = dz 1 ⌋F 2 . Lemma 1.2 Put m 1 = e -λz 1 f 1 and m 2 = e -λz 1 f 2 , where f 1 , f 2 are defined in Lemma 4.1. Then system (1.3) is equivalent to system ∂m 1 ∂ z1 = q 1 m 2 , ∂m 2 ∂z 1 + λm 2 = q1 m 1 . (1.6) Besides, m 1 = √ σ λµ + ∂µ ∂z 1 and m 2 = √ σ ∂µ ∂ z1 . (1.7)

Proof

Putting in (1.4) f 1 = e λz 1 m 1 and f 2 = e λz 1 m 2 , we obtain

∂e λz 1 m 1 ∂ z1 = q 1 e λz 1 m 2 ⇐⇒ ∂m 1 ∂ z1 = q 1 m 2 and ∂e λz 1 m 2 ∂z 1 = q1 e λz 1 m 1 ⇐⇒ ∂m 2 ∂z 1 + λz 2 = q1 m 1 .
Besides,

f 1 = √ σ ∂f ∂z 1 = √ σe λz 1 λµ + ∂µ ∂z 1 = e λz 1 m 1 ,
where m 1 = √ σ λµ + ∂µ ∂z 1 and

f 2 = √ σ ∂f ∂ z1 = √ σe λz 1 ∂µ ∂ z1 = e λz 1 m 2 ,
where

m 2 = √ σ ∂µ ∂ z1 . Lemma 1.3 Put u ± = m 1 ± e -λz 1 + λz 1 m2 . Then system (1.4) is equivalent to the system ∂u ± ∂ z1
= ±q 1 e -λz 1 + λz 1 ū± .

Proof

From definition of u ± , using Lemma 1.2, we obtain

∂u ± ∂ z1 = ∂m 1 ∂ z1 ± e -λz 1 + λz 1 ( λ m2 -λ m2 + q 1 m1 ) = q 1 m 2 ± q 1 e -λz 1 + λz 1 m1 = ±q 1 e -λz 1 + λz 1 ( m1 ± e λz 1 -λz 1 m 2 ) = ± e -λz 1 + λz 1 q 1 ū± .
Proof of Proposition 1.1 Let u ± = m 1 ± e -λz 1 + λz 1 m2 . We will prove that under conditions of Proposition 1.1 ∀λ = 0 u ± ≡ 0 together with m 1 and m 2 .

From equality

q 1 = -∂ log √ σ ∂z 1
and Lemma 1.3 we obtain that

∂u ± = ±q 1 e -λz 1 + λz 1 ū± dz 1 ∈ L p 0,1 (V ) ∩ L 1 0,1 (V ), p > 2. (1.8) From (1.6), (1.7) we obtain that m 1 ∈ L p(V ) ⊕ L ∞ (V ) and ∂m 1 ∂ z1 ∈ L p (V ), ∀p ≥ 1. From (1.6), properties µ ∈ L ∞ (V ), ∂µ ∂ z1 ∈ L p(V ), µ(z) → 0, z ∈ V j
, z → ∞ and from [H2] Corollary 1.1 we deduce that there exists

lim z→∞ z∈V m 1 (z) = lim z→∞ z∈V √ σ λµ + ∂µ ∂z 1 = lim z→∞ z∈V √ σλµ(z) = 0.
(1.9)

From (1.8), (1.9) and generalized Liouville theorem from Rodin [R], Theorem 7.1, it follows that u ± = 0. It means, in particular, that ∂µ ∂ z1 = 0, which together with (1.9) imply µ = 0. Proposition 1.1 is proved.

Proposition 1.2 (Existence) Let conductivity σ on V satisfies conditions of Proposition 1.1. Then ∀λ ∈ C there exists the Faddeev type function ψ = µe λz on V associated with potential q

= dd c √ σ √ σ , i.e. a) ∂(∂ + λdz 1 )µ = i 2 qµ, where q = dd c √ σ √ σ , b) µ -1 ∈ W 1, p(V ) ∩ C( Ṽ ) ∀p > 2, µ -1 ∈ C (∞) (V \V 0 ) and µ -1 = O 1 |z 1 | , z ∈ V \V 0 . Moreover, ∀p > 2 c) µ -1 L p(V ) ≤ const(V, σ, p){min 1 |λ| , 1 |λ| }, ∂µ ∂z 1 L p(V ) ≤ const(V, σ, p){min( |λ|, 1)}, ∀p > 2, d) ∀λ ∃ c ∈ C such that ∂µ ∂ λ -c ∈ W 1, p(V ), e) under additional assumption σ ∈ C (3) (V ) ∂ 2 µ ∂z 2 1 L p (V ) ≤ const(V, σ) • λ 1/(1+1/ p) .

Remark

Proposition 1.2 will be proved by approach going back to L.Faddeev [F1], [F2] and for the case V = C develloped in [N1], [N2], [Na].

Proof Put G λ = R λ • R,
where R is operator, defined by formula (2.4) from Proposition 2 of [H2], and R λ operator, defined by formula (3.1) from Proposition 3 of [H2]. Let function µ(z, λ) be such that ∀λ, µ ∈ W 1, p(V ) ⊕ const with respect to z ∈ V . Then ∀λ = 0 we have properties qµ ∈ C(V ), qµ = 0 on V \V 0 , which imply, in particular, that mapping µ → qµ is compact operator from W 1, p(V ) ⊕ const to L p(V ) ∩ C (V ). By Lemmas 2.1, 2.2 and Proposition 2 from [H2] we have Rqµ ∈ W 1, p(V ). Proposition 3 ii) implies that

R λ • R(qµ) ∈ W 1, p(V ). Hence, mapping µ → µ -R λ • R i 2 qµ is a Fredholm operator on W 1, p(V ) ⊕ const. By Proposition 1.1 the operator I -R λ • R( i 2 q•) is invertible.
Then there is unique function µ such that (µ -1) ∈ W 1, p(V ), ∀p > 2 and

µ = 1 + R λ • R( i 2 qµ).
(1.10)

Let us check now statement a) of Proposition 1.2. From (1.10) and Proposition 3i) from [H2] we obtain

(∂ + λdz 1 )µ = λdz 1 + (∂ + λdz 1 )R λ • R( i 2 qµ) = λdz 1 + H( R( i 2 qµ)) + R( i 2 qµ).
(1.11)

From (1.11) and Proposition 2 of [H2] we obtain

∂(∂ + λdz 1 )µ = i 2 qµ + ∂(λdz 1 + H( R( i 2 qµ)) = i 2 qµ,
where we have used that H( R( i 2 qµ)) ∈ H 1,0 ( Ṽ ). Property a) is proved. For proving of properties b), c) it is sufficient to remark that by Proposition 3ii) and 3iii) from [H2] we have property c) and

(1 + |z 1 |)(µ -1) L ∞ (V ) ≤ const(V, σ) 1 |λ| .
To prove property d) let us differentiate (1.10) with respect to λ. We obtain

∂µ ∂ λ -R λ • R( i 2 q ∂µ ∂ λ ) = z1 R λ • R( i 2 qµ) -R λ ξ1 R( i 2 qµ) = z1 (µ -1) -R λ ξ1 R( i 2 qµ) .
From Proposition 2 of [H2] we deduce that ξ1 R(

i 2 qµ) ∈ W 1, p 1,0 (V ) ⊕ (const)dz 1 .
From Proposition 3ii) of [H2] and Remark 1 to it we obtain

R λ ξ1 R( i 2 qµ) ∈ W 1, p 1,0 (V ) ⊕ const.
From Proposition 1.2 b) we deduce also

z1 (µ -1) ∈ W 1, p(V ) ⊕ const.
Hence,

∂µ ∂ λ = I -R λ • R( i 2 q•) -1 z1 (µ -1) -R λ ( ξ1 R( i 2 qµ) ∈ W 1, p(V ) ⊕ (const).
Property e) follows (under condition σ ∈ C (3) (V )) from Proposition 3iv) of [H2]. §2. Equation ∂µ(z,λ)

∂ λ = b(λ)e λz 1 -λz 1 μ(z, λ), λ ∈ C For further results it is important to obtain asymptotic development of ∂µ ∂ z1 (z, λ) for z 1 → ∞.
Proposition 2.1 Let conductivity function σ on V satisfy the conditions of Proposition 1.1. Let function ψ(z, λ) = µ(z, λ)e λz be the Faddeev type function on V associated with potential

q = dd c √ σ √ σ . Then ∀λ ∈ C function ∂µ(z,λ) ∂ z1
has the following asymptotic for z 1 → ∞:

e λz 1 -λz 1 ∂µ ∂ z1 V j = B 1,j (λ) z1 + ∞ k=2 B k,j (λ) zk 1 , (2.1)
where |B 1,j (λ)| = O(min(1, |λ|)), j = 1, 2, . . . , d and under additional condition σ ∈ C (3) (V ) we have

e λz 1 -λz 1 ∂ 2 µ ∂ z2 1 V j = λ B 1,j z1 + ∞ k=2 λB k,j (λ) -(k -1)B k-1,j (λ) zk 1 , (2.2)
where |B 1,j (λ)| = O(min( |λ|, |λ| -1/(1+p) )), j = 1, 2, . . . , d ∀p > 2.

For proving of Proposition 2.1 we need the following decomposition statement for the Faddeev type function µ = ψe -λz on V \V 0 .

Lemma 2.1 i) Let µ be function on V \V 0 , which satisfies equation

∂(∂ + λdz 1 )µ = 0 on V \V 0 (2.3)
and the property (µ -1)

V \V 0 ∈ W 1, p(V \V 0 ), ∀p > 2.
Then

A def = ∂µ ∂z 1 + λµ ∈ O( Ṽ \V 0 ); A V j = λ + ∞ k=1 A k,j 1 z k 1 , B def = e -λz 1 + λz 1 ∂µ ∂ z1 = O( Ṽ \V 0 ); B V j = ∞ k=1 B k,j 1 zk 1 , (2.4) |z 1 | > r 0 , j = 1, 2, . . . , d.
ii) Let

M V j = 1 + ∞ k=1 a k,j z k 1 and N V j = 1 + ∞ k=1
b k,j zk 1 be formal series with coefficients a k,j and b k,j determined by relations

λa k,j -(k -1)a k-1,j = A k,j ; λb k,j -(k -1)b k-1,j = B k,j ; j = 1, 2 . . . , d; k = 1, 2, . . .
Then function µ has asymptotic decomposition

µ V j = M V j + e λz 1 -λz 1 N V j , z 1 → ∞, i.e.
(2.5)

µ V j = M ν V j + e λz 1 -λz 1 Nν V j + O 1 |z 1 | ν+1 , where M ν V j = 1 + ν k=1 a k,j z k 1 , Nν V j = ν k=1 b k,j zk 1 . iii) Moreover, for any A ∈ O( Ṽ \V 0 ), A(z) → λ, z → ∞, there exist B ∈ O( Ṽ \V 0 ), B(z) → 0, z → ∞
, and µ such that µ satisfies (2.3), (2.4) and (µ -

1) ∈ W 1, p(V \V 0 ). Proof i) From equation (2.3) it follows that ∂ ∂(e λz 1 µ(z, λ)) V \V 0 = 0.
It means that ∂(e λz 1 µ(z, λ)) = e λz 1 ∂µ is antiholomorphic form on V \V 0 and (∂µ + λµdz 1 ) is holomorphic form on V \V 0 . From this, condition ∂µ ∈ L p 0,1 (V \V 0 ) and the Cauchy theorem it follows that

e λz 1 ∂µ V j = e λz 1 Bdz 1 V j = e λz 1 ∞ k=1 B k,j zk 1 dz 1 V j and (∂µ + λµdz 1 ) V j = Adz 1 V j = λ + ∞ k=1 A k,j z k 1 dz 1 V j .
ii) From (2.4), (2.5) we obtain, at first, that ∂µ = e -λz 1 ∂(e

λz 1 Nν ) + O 1 |z 1 | ν+1 and then µ = M ν + e λz 1 -λz 1 Nν + O 1 |z 1 | ν+1 . (2.6) iii) Let A V j = λ + ∞ k=1 A k,j z k 1 ∈ L p(V \V 0 ).
Proposition 3 iii) from [H2], applied to (1,0) forms on the complex plan with coordinate z 1 , gives that ∀λ = 0 there exists µ ∈ W 1, p(V \V 0 ) ⊕ 1 such that A = ∂µ ∂z 1 + λµ. Put B = e λz 1 -λz 1 ∂µ ∂ z1 . Then B ∈ L p(V \V 0 ) and

∂ B ∂z 1 = e λz 1 -λz 1 ∂ ∂ z1 λµ + ∂µ ∂z 1 = e λz 1 -λz 1 ∂A ∂ z1 = 0, i.e. B ∈ O( Ṽ \V 0 )
. By construction µ satisfies (2.3), (2.4) and (µ -1) ∈ W 1, p.

Lemma 2.2 Functions M ν and N ν from decomposition (2.6) have the following properties:

∀ z ∈ Ṽ \V 0 ∃ lim ν→∞ ∂M ν ∂z 1 + λM ν def = ∂M ∂z 1 + λM and ∃ lim ν→∞ ∂N ν ∂z 1 + λN ν def = ∂N ∂z 1 + λN.
Functions ∂M ∂z 1 + λM and ∂N ∂z 1 + λN belongs to to O( Ṽ \V 0 ) and

∂µ ∂ z1 = e λz 1 -λz 1 ( ∂ N ∂ z1 + λ N ), (2.7) ∂µ ∂z 1 + λµ = ∂M ∂z 1 + λM, (2.8) ∂N ∂z 1 + λN → 0, if z 1 → ∞.

Proof

Let us show that (2.4) implies (2.7) and (2.8). Indeed,

∂µ ∂ z1 = lim ν→∞ λe λz 1 -λz 1 Nν + e λz 1 -λz 1 ∂ Nν ∂ z1 = e λz 1 -λz 1 lim ν→∞ ∂ Nν ∂ z1 + λ Nν = e λz 1 -λz 1 ∂ N ∂ z1 + λ N , ∂µ ∂z 1 + λµ = lim ν→∞ ∂M ν ∂z 1 -λe λz 1 -λz 1 Nν + λM ν + λe λz 1 -λz 1 Nν = lim ν→∞ ∂ Mν ∂z 1 + λM ν = ∂M ∂z 1 + λM.
Properties (2.6), (2.7), (2.8), ∂µ ∈ L p 0,1 (V ) and Riemann extension theorem imply that

∂M ∂z 1 + λM and ∂N ∂z 1 + λN belongs to O( Ṽ \V 0 ) and ∂N ∂z 1 + λN → 0, if z 1 → ∞.

Corollary

In conditions of Lemmas 2.1, 2.2 we have convergence M ν → M and N ν → N , ν → ∞, in general, only in the space of formal series, in spite of that convergence

∂M ν ∂z 1 + λM ν → ∂M ∂z 1 + λM and ∂N ν ∂z 1 + λN ν → ∂N ∂z 1 + λN take place in the space O( Ṽ \V 0 ). Simple example Put V 0 = {z ∈ V : |z 1 | < 1}, λ = 1, A = λ + ∞ k=1 A k z k 1 with A k = 1, k = 1, 2, . . .
By Lemma 2.1 there exists µ = M + e λz 1 -λz 1 N , which satisfies (2.3), (2.4), where

M = 1 + ∞ k=1 a k z k 1 with a k determined by relations a k -(k -1)a k-1 = A k = 1; k = 1, 2, . . .. It gives a k = (k -1)! 1 + 1 2! + . . . + 1 (k-1)! . We have |a k | 1/k → ∞, k → ∞, i.e. radius of convergence of serie for M is equal to zero, in spite of that |A k | 1/k = 1, k = 1, 2, . . ..

Proof of Proposition 2.1

Estimate for ∂µ ∂z 1 from Proposition 1.2 c) and the Cauchy theorem applied to antiholomorphic function e λz 1 -λz 1 ∂µ ∂ z1 implies development (2.1) and estimate

|B 1,j (λ)| = O(min(1, |λ|)). (2.9) Estimate for ∂ 2 µ ∂ z2 1
from Proposition 1.2 e) and the Cauchy theorem for antiholomorphic in 

z 1 function e λz 1 -λz 1 ∂ 2 µ ∂ z2 1 V j imply development (2.
= dd c √ σ √ σ . Then ∀z ∈ V the following ∂-equation with respect to λ ∈ C takes place ∂µ ∂ λ = b(λ)e λz 1 -λz 1 μ, (2.11) where b(λ) def = lim z→∞ z∈V z1 λ e λz 1 -λz 1 ∂µ ∂ z1 , |b(λ)| ≤ const(V, σ){min 1 |λ| , 1 |λ| } if σ ∈ C (2) (V ) and |b(λ)| ≤ const(V, σ, p){min 1 |λ| , 1 |λ| 1+1/ p } if σ ∈ C (3) (V ), ∀p > 2.
(2.12)

Remark

The proof below is a generalization of the R.Novikov proof [N2] of the corresponding statement for the case V = C. From Lemmas 2.1, 2.2, Proposition 2.1 and Proposition 1.2 b),c) we obtain

Proof

∂µ ∂ z1 V j = e λz 1 -λz 1 B 1,j (λ) z1 + O 1 |z 1 | 2 and ∂µ ∂z 1 + λµ V j = λ + A 1,j (λ) z 1 + O 1 |z 1 | 2 .
(2.13) From (2.4)-(2.6) and (2.13) we deduce that

µ = 1 + a j (λ) z 1 + e λz 1 -λz 1 b j (λ) z1 + O 1 |z 1 | 2 , (2.14) 
where λb j (λ) = B 1,j , λa j (λ) = A 1,j , j = 1, 2, . . . , d.

(2.15)

From (2.14) with help of Proposition 1.2 d) we obtain

ψ = e λz 1 µ = e λz 1 1 + a j (λ) z 1 + e λz 1 -λz 1 b j (λ) z1 + O 1 |z 1 | 2 , and ψ λ = ∂ψ ∂ λ = e λz 1 b j (λ) + O 1 |z 1 | , z ∈ V j .
Put µ λ = e -λz 1 ψ λ . We obtain ∂(∂ + λdz 1 )µ λ = qµ λ and (2.16)

µ λ = e λz 1 -λz 1 b j + O 1 |z 1 | , z ∈ V j .
We have also equalities

B 1,1 (λ) = . . . = B 1,d (λ). Put B(λ) def = B 1,1 (λ) = . . . = B 1,d (λ).
Estimates (2.12) follow from equalities (2.15), (2.16) and inequalities (2.9), (2.10).

Proposition 2.3 Let, under conditions of Proposition 2.2, conductivity function σ ∈ C (3) (V ). Then ∀ z ∈ V function λ → µ(z, λ), λ ∈ C,is a unique solution of the following integral equation

µ(z, λ) = 1 - 1 2πi ξ∈C b(ξ)e ξz 1 -ξz 1 µ(z, ξ) dξ ∧ d ξ ξ -λ , (2.17)
where function λ → b(λ) from (2.11) belongs to L q (C) ∀ q ∈ (4/3, 4).

Proof

Estimates (2.12) imply that ∀ q ∈ (4/3, 4) function b(λ) from Proposition 2.2 belongs to L q (C). By the classical Vekua result [Ve] with such functions b(λ) the equation (2.17) is the uniquely solvable Fredholm integral equation in the space C( C). §3. Reconstruction of Faddeev type function ψ and of conductivity σ on X through Dirichlet to Neumann data on bX

Let X be domain with smooth (de class

C (2) ) boundary on V such that X ⊇ V0 . Let σ ∈ C (3) (V ), σ > 0 on V and σ ≡ const on V \X. Let q = dd c √ σ √ σ , then q ∈ C (1)
1,1 (X) and supp q ⊆ X. 

ψ(z, λ) bX = e λz 1 - ξ∈bX e λ(z 1 -ξ 1 ) g λ (z, ξ) • ( Φψ(ξ) -Φ0 ψ(ξ)), (3.3) where g λ (z, ξ) -kernel of operator R λ • R, Φψ(ξ) -Φ0 ψ(ξ) = w∈bX (Φ(ξ, w) -Φ 0 (ξ, w))ψ(w),
Φ(ξ, w), Φ 0 (ξ, w) are kernels of operators Φ and Φ0 .

Remark

This proposition for the case V = C coincide with the second part of Theorem 1 from [N1].

Lemma 3.1 (Green-Riemann formula) ∀ f, g ∈ C (1) (X) we have equality X g ∧ ∂ ∂f - X f ∧ ∂ ∂g = bX g ∧ ∂f + bX f ∧ ∂g. Proof X g ∧ ∂ ∂f - X f ∧ ∂ ∂g = X g ∧ ∂ ∂f + X f ∧ ∂∂g = bX g ∧ ∂f - X ∂g ∧ ∂f + bX f ∧ ∂g - X ∂f ∧ ∂g = bX g ∧ ∂f + bX f ∧ ∂g. Lemma 3.2 Let ψ = e λz 1 µ be the Faddeev function associated with q ∈ C 1,1 (V ), supp q ⊆ X. Let G λ (z, ξ) = e λ(z 1 -ξ 1 ) g λ (z, λ), where g λ (z, ξ) -kernel of operator R λ • R. Then ∀ z ∈ V \X we have equality ψ(z, λ) = e λz 1 - ξ∈bX G λ (z, ξ) ∂ψ(ξ) - ξ∈bX ψ(ξ)∂G λ (z, ξ).
(3.4)

Proof

From definition of the Faddeev function ψ = e λz 1 µ we have

ψ(z, λ) = e λz 1 + Ĝλ i 2 qψ on V, (3.5) 
where Ĝλ -operator with kernel G λ (z, ξ) and dd c ψ = qψ. Besides,

X G λ i 2 qψ = - X G λ ∂ ∂ψ.
Using the Green-Riemann formula from Lemma 3.1 we have 

X G λ ∂ ∂ψ = X ψ∂ ∂G λ + bX G λ ∂ψ + bX ψ∂G λ . For z ∈ V \X we have ∂ ∂G λ = 0. Hence, - X G λ i 2 qψ = bX G λ ∂ψ + bX ψ∂G λ . ( 3 
|Φ(ξ, w) -Φ 0 (ξ, w)| | ln |ξ -w|| ≤ (const) dd c √ σ √ σ (w). (3.9)
Because of its local nature, equality (3.9) is valid for our more general case. Existence of the Faddeev function ∀λ = 0, proved in Proposition 1.2, implies existence of solution of equation (3.3). The uniqueness of solution of equation (3.3) we deduce (as in proof of Proposition 2 in [N1]) from the following statement. i.e. ψ satisfies (3.5). From equality (3.5) and Proposition 3 ii) from [H2] we obtain that µ -1 = ψe -λz 1 -1 ∈ W 1, p(V ) and ψ is the Faddeev type function associated with q. Lemma 3.3 is proved. The uniqueness of solution of equation (3.3) in C(bX) follows now from Lemma 3.3 and the uniqueness of the Faddeev type function associated with q proved in Proposition 1.1.

Lemma 3.3 Let q ∈ C 1,1 (V ), supp q ⊆ X.
Proposition 3.1 is proved. 

  Faddeev type function z → ψ(z, λ) exists and unique for any λ ∈ C. Proposition 1.1 below gives the uniqueness of the Faddeev type function on affine algebraic Riemann surface V for potential q

  2) and estimate |B 1,j (λ)| = O(min( |λ|, |λ| -1/(1+p) )). (2.10) Proposition 2.1 is proved. The next proposition gives ∂-equation on Faddeev function µ(z, λ) with respect to parameter λ ∈ C. For the case V = C this proposition goes back to Beals, Coifmann [BC1], Grinevich, S.Novikov [GN] and R.Novikov [N2]. Proposition 2.2 Let conductivity function σ on V satisfy the conditions of Proposition 1.1. Let function ψ(z, λ) = µ(z, λ)e λz be the Faddeev type function on V constructed in Proposition 1.2 and associated with potential q

  Equation dd c ψ = qψ for the Faddeev type function ψ = µ • e λz is equivalent to the equation ∂(∂ + λdz 1 )µ = i 2 qµ. Put ψ λ = ∂ψ/∂ λ and µ λ = ∂µ/∂ λ. By Proposition 1.2 d) ∀λ ∈ C function µ λ belongs to W 1, p(V ) ⊕ const(λ). Besides, from equation dd c ψ = qψ it follows the equation dd c ψ λ = qψ λ on V.

  Proposition 1.1 about uniqueness of the Faddeev type function implies equality (2.11), where b(λ) def = b 1 (λ) = . . . = b d (λ).

  Definition (Dirichlet-Neumann operator) Let u ∈ C (1) (bX) and U ∈ W 1, p(X ), p > 2 be solution of the Dirichlet problemdσd c U X = 0, U bX = u, where d c = i( ∂ -∂). Operator u bX → σd c U bXis called usually by Dirichlet to Neumann operator. Put ψ = √ σU and ψ = √ σu. Thendd c ψ = dd c √ σ √ σ ψ = q ψ on X. (3.1)Operator ψ bX → ∂ ψ bX will be called here by Dirichlet-Neumann operator. The data contained in operator u bX → σd c U bX and in ψ bX → ∂ ψ bX are equivalent, but for our further statements operator ψ bX → ∂ ψ bX is more convenient. Let ψ 0 be solution of Dirichlet problemdd c ψ 0 = 0, ψ 0 bX = ψ bX . Put Φψ = ∂ ψ bX and Φ0 ψ = ∂ ψ0 bX , (3.2)where operator ψ bX → Φ0 ψ is Dirichlet-Neumann operator for equation (3.1) with potential q ≡ 0.Proposition 3.1 (Reconstruction of ψ bX through Dirichlet-Neumann data) Let ψ = µ(z, λ) • e λz 1 be the Faddeev function associated with potential q = dd c √ σ √ σ . Then ∀λ ∈ C\{0} the restriction ψ bX of ψ on bX is a unique solution in C(bX) of the Fredholm integral equation:

  Let ψ 0 : ∂∂ψ = 0 and ψ 0 bX = ψ. Then by Lemma 3.1 ∀ z ∈ V \X we have bX ψ 0 ∂G λ + bX G λ ∂ψ 0 = 0. (3.7) Combining this relation with (3.4) we obtain ψ(z, λ) = e λz 1 -bX G λ (z, ξ)( ∂ψ(ξ) -∂ψ 0 (ξ)). (3.8) Equality (3.8) implies (3.3), where Φψ, Φ0 ψ are defined by (3.2). Integral equation (3.3) is the Fredholm equation in L ∞ (bX), because operator ( Φ -Φ0 ) is a compact operator in L ∞ (bX). For the case V = C Proposition 1 of [N1], contains explicit inequality: lim w→ξ w,ξ∈bX

  Then each solution ψ = ψ(z, λ) of equation dd c ψ = qψ on V which coincides on bX with solution of integral equation (3.3) in space C(bX) is the Faddeev type function associated with q. Proof Let ψ satisfy dd c ψ = qψ on V , ψ bX ∈ C(bX) and ψ bX satisfy integral equation (3.3)=(3.8). From (3.8) with help of (3.7) we obtain formula (3.4) for ψ(z, λ), z ∈ V \X, λ ∈ C. From the Sohotsky-Plemelj jump formula we deduce (see [HM], Lemma 15) that ∀ z * ∈ bX ψ(z * ) = lim z→z * z∈X bX G λ ∂ψ + ψ∂G λ -lim z→z * z∈V \X bX G λ ∂ψ + ψ∂G λ . (3.10) From (3.4) and (3.10) we obtain equality e λz 1 = bX G λ ∂ψ + ψ∂G λ for z ∈ X, λ ∈ C. (3.11) Using the Green-Riemann formula (Lemma 3.1) we obtain further bX G λ ∂ψ + ψ∂G λ = X ψ ∂∂G λ -

Proposition 3. 2 (

 2 Reconstruction of ψ X through ψ bX ) In conditions of Propositions 1.1, 1.2 the following properties for " ∂-scattering data b(λ)" permit to reconstruct ψ X through ψ bX∀ z * ∈ bX ∃ lim z→∞ z∈V z1 λ e -λz 1 ∂ψ ∂ z1 (z, λ) def = b(λ) = ψ(z * , λ) -1 ∂ψ ∂ λ (z * , λ), ∀ z ∈ X function λ → ψ(z, λ), λ ∈ C, is a unique solution of the integral equation ψ(z, λ) = e λz 1 -1 2πi ξ∈C b(ξ)e (λ-ξ)z 1 ψ(ξ, λ) dξ ∧ d ξ ξ -λ .This proposition is a consequence of Propositions 2.1-2.3.Proposition 3.3 (Reconstruction formulas for σ) Conductivity function σ X can be reconstructed through Dirichlet-Neumann data by the R.Novikov's scheme:DN data → ψ bX → ∂ -scattering data → ψ X → dd c √ σ √ σ X .The last step of this scheme one can realize by any of the following formulas:A) dd c √ σ √ σ (z) = (dd c ψ(z, λ))ψ -1 (z, λ), z ∈ X, λ ∈ C, B) dd c √ σ √ σ (z) = 2i lim λ→∞ λe -λz 1 dz 1 ∧ ∂ψ(z, λ), z ∈ X, C) dd c √ σ √ σ (z) = -2i lim λ→0 ∂∂µ(z, λ) µ(z, λ) , z ∈ X.ProofThe first three steps of the scheme above were done in Propositions 3.1, 3.2. The formula A) is an immediate consequense of equation (3.1). The formula B) follows from equation ∂(∂ + λdz 1 )µ = i 2 dd c √ σ √ σ µ (Proposition 1.2a) and estimates µ → 1, λ → ∞ (Proposition 1.2b), ∂ ∂µ(z, λ) → 0, λ → ∞ (Proposition 1.2e). The formula C) follows from the same equation and estimates ∂µ ∂z 1 = O( |λ|), λ → 0, (Proposition 1.2c).