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Inverse conductivity problem on Riemann surfaces

By Gennadi Henkin and Vincent Michel

Abstract

An electrical potential U on a bordered Riemann surface X with conductivity function
σ > 0 satisfies equation d(σdcU) = 0. The problem of effective reconstruction of σ from
electrical currents measurements (Dirichlet-to-Neumann mapping) on the boundary:
U

∣

∣

bX
7→ σdcU

∣

∣

bX
is studied. We extend to the case of Riemann surfaces the reconstruction

scheme given, firstly, by R.Novikov [N1] for simply connected X . We apply for this new
kernels for ∂̄ on the affine algebraic Riemann surfaces constructed in [H2].

0. Introduction

0.1. Inverse conductivity problem.
Let X be bordered oriented real two-dimensional manifold in R

3 equiped with a
smooth symmetric and positive tensor σ̂ : T ∗X → T ∗X on cotangent bundle T ∗X , called
anisotropic conductivity tensor on X , σ̂ is called symmetric and positive if σ̂a∧ b = σ̂b∧ a
and σ̂a ∧ a > 0 for any a, b ∈ T ∗X .

Let u (correspondingly U) be a smooth function on bX (correspondingly on X) such
that U

∣

∣

bX
= u, called electric potential on bX and correspondingly on X . 1-form σ̂dU on

X is called electrical current on X . By Maxwell equation

d(σ̂dU) = 0 on X.

Inverse conductivity problem consists in this case in the following: what kind of information
about X and σ̂ can be efficiently extracted from the knowledge of Dirichlet-to-Neumann
mapping

u
∣

∣

bX
7→ σ̂dU

∣

∣

bX
∀ u ∈ C(1)(bX).

This important problem in the mathematical setting goes back to the inverse boundary
values problems posed by I.M.Gelfand [G] and by A.P.Calderon [C].

This real problem is deeply related with complex analysis on Riemann surfaces. The
first indication to this relation gives the following statement, obtaind at first by J.Sylvester
[S] for simply connected X .

Under conditions above ∀ couple (X, σ̂) there exist a unique complex structure c
on X and smooth scalar valued, positive conductivity function σ such that the equation
d(σ̂dU) = 0 takes the form d(σdcU) = 0, where dc = i(∂̄ − ∂), σ2(x) = det σ̂(x), x ∈ X .

This statement permits to reduce the inverse conductivity problem to the questions
about reconstruction from Dirichlet-to-Neumann mapping of the genus of X , of the com-
plex structure of X and of the scalar conductivity function σ on X .

These questions are well answered for the important case when X is a domain in R
2,

due to the sequence of works: [F1], [F2], [BC1], [SU], [N3], [N1], [GN], [BC2], [N2], [Na].
The exact reconstruction scheme for this case was discovered by R.Novikov [N1].
Formulated questions are well answered also for the case when conductivity function

σ is known to be constant on X , i.e. when only Riemann surface X must be reconstructed
from Dirichlet-to-Neumann data [LU], [Be], [HM].
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In this paper we study another important case of this problem, when bordered two-
dimensional manifold X and complex structure on X are known, but conductivity function
σ on X must be reconstructed from Dirichlet-to-Neumann data.

0.2. Main results.
We extend here the R.Novikov’s reconstruction scheme for the case of bordered Rie-

mann surfaces. Our method (announced firstly in [H1]) is based on the appropriate new
kernels for ∂̄ on the affine algebraic Riemann surfaces constructed in [H2].

By this reason we use some special embedding of X into C
2.

Let X̂ be compactification ofX such that X̂ = X ∪X0 be compact Riemann surface of
genus g. Let A = {A1, . . . , Ad} be divisor, generic, effective with support in X0, consisting
of d = g + 2 points.

By Riemann-Roch formula there exist three independent functions f0, f1, f2 ∈ M(X̂)∩
O(X̂\A) having at most simple poles in the points of A. Without restriction of generality
one can put f0 = const. Let V be algebraic curve in C

2 of the form

V = {(z1, z2) ∈ C
2 : z1 = f1(x), z2 = f2(x), x ∈ X̂\A}.

Let Ṽ be compactification of V in CP 2 of the form Ṽ = {w ∈ CP 2 : P̃ (w) = 0}, where P̃
is homogeneous holomorphic polynomial of homogeneous coordinates w = (w0 : w1 : w2).
Without loss of generality one can suppose: functions f1, f2 are such that

i) Ṽ intersects CP 1
∞ = {w ∈ CP 2 : w0 = 0} transversally Ṽ ∩ CP 1

∞ = {a1, . . . , ad},
where points aj =

(

0, 1, lim
x→Aj

f2(x)
f1(x)

)

, j = 1, 2, . . . , d are different points of CP 1
∞.

ii) V = Ṽ \CP 1
∞ is connected curve in C

2 with equation V = {z ∈ C
2 : P (z) = 0}, where

P (z) = P̃ (1, z1, z2) such that | ∂P
∂z1

| ≤ const(V )| ∂P
∂z2

|, if |z1| ≥ r0 = const(V ).

iii) For any z∗ ∈ V , where ∂P
∂z2

(z∗) = 0 we have ∂2P
∂z2

2

(z∗) 6= 0.

With certain restriction of generality we suppose, in addition, that
iv) curve V is a regular curve, i.e. gradP (z) 6= 0 ∀ z ∈ V . This restriction must be

eliminated in other publication.

Let us equip V by euclidean volume form ddc|z|2
∣

∣

V
.

Let ϕ 7→ f = R̂ϕ be operator for solution of ∂̄f = ϕ on V
from [H2], Proposition 2, f 7→ u = Rλf be operator for solution of (∂ + λdz1)u = f −Hf
on V , where Hf is projection of f on subspace of holomorphic (1,0)-forms on Ṽ from [H2],

Proposition 3, ϕ ∈ L∞
1,1 ∩ L1

1,1(V ), f ∈W 1,p̃
1,0 (V ), u ∈W 2,p̃(V ), p̃ > 2.

Let gλ(z, ξ), z, ξ ∈ V , λ ∈ C be kernel of operator Rλ ◦ R̂ from [H2].
Let VX = {(z1, z2) ∈ V : z1 = f1(x), z2 = f2(x), x ∈ X}.
Let σ be conductivity function on V with conditions σ ∈ C(3)(V ), σ > 0 on V ,

σ(z(x)) = σ(x), x ∈ X , σ = const on V \VX .
Function ψ(z, λ), z ∈ V , λ ∈ C will be called Faddeev type function on V × C if

ddcψ = ddc√σ√
σ
ψ on V and ∀λ ∈ C e−λzψ(z, λ)

def
= µ(z, λ) → 1, z → ∞, |∂̄µ| = O( 1

|z|+1
),

z ∈ V .

Theorem Under formulated conditions
I. There exists unique Faddeev type function ψ(z, λ), z ∈ V , λ ∈ C.
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II. Function ψ and as a conseqence conductivity function σ can be reconstructed through
Dirichlet-to-Neumann data by the following procedure.
IIa. From Dirichlet-to-Neumann data on bX by Proposition 3.1 (section 3) one can

find restriction ψ
∣

∣

bVX
of the Faddeev type function ψ(z, λ), z ∈ V , λ ∈ C as a unique

solution of the Fredholm integral equation

ψ(z, λ)
∣

∣

bVX
= eλz1 +

∫

ξ∈bVX

eλ(z1−ξ1)gλ(z, ξ) · (Φ̂ψ(ξ)− Φ̂0ψ(ξ)),

where Φ̂ψ = ∂̄ψ
∣

∣

bVX
, Φ̂0ψ = ∂̄ψ0

∣

∣

bVX
, ddcψ0

∣

∣

VX
= 0, ψ0

∣

∣

bVX
= ψ

∣

∣

bVX
.

IIb. Using values of ψ(z, λ) in arbitrary point z∗ ∈ bVX by Proposition 2.2 (section
2) one can find ”∂̄ scattering data”:

b(λ)
def
= lim

z→∞
z∈V

z̄1
λ̄
e−λ̄z̄1

∂ψ

∂z̄1
(z, λ) = (ψ̄(z∗, λ))−1 ∂ψ

∂λ̄
(z∗, λ), z∗ ∈ bVX

with estimate (2.12).
IIc. Using b(λ), λ ∈ C by Proposition 2.3 (section 2) one can find values of

µ(z, λ)
∣

∣

VX
= ψ(z, λ)e−λz1

∣

∣

VX
, λ ∈ C

as a unique solution of Fredholm integral equation

µ(z, λ) = 1 − 1

2πi

∫

ξ∈C

b(ξ)eξ̄z̄1−ξz1µ(z, ξ)
dξ ∧ dξ̄
ξ − λ

.

From equality ddcψ = ddc√σ√
σ
ψ on X we find finally ddc√σ√

σ
on X .

Remarks

For the case V = C the reconstraction scheme I-II for potential q in the Schrödinger
equation −∆U + qU = EU on X ⊂ V through the Dirichlet-to-Neumann data on bX was
given for the first time by R.Novikov [N1]. However, in [N1] this scheme was rigorously
justified only for the case when estimates of the type (2.12) are available, for example, if
for E 6= 0 ‖q‖ ≤ const(E). By the additional result of A.Nachman [Na] the estimates of

the type (2.12) are valid also if E = 0 and q = ∆
√

σ√
σ

, σ > 0, σ ∈ C(2)(X).

Part IIa in the present paper is completely similar to the related result of [N1] for
V = C.

Part IIb of this scheme for V = C is a consequence of works R.Beals, R.Coifman
[BC1], P.Grinevich, S.Novikov [GN] and R.Novikov [N2].

Part IIc of this scheme follows from part IIb and the classical result of I.Vekua [V].

§1. Faddeev type function on affine algebraic Riemann surface.

Uniqueness and existence
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Let V be smooth algebraic curve in C
2 defined in introduction, equiped by euclidean

volume form d dc|z|2
∣

∣

V
.

Let V0 = {z ∈ V : |z1| ≤ r0}, where r0 satisfies condition ii) of introduction.

Definition

Let q be (1,1)-form in C1,1(Ṽ ) with support of q in V0. For λ ∈ C function z 7→ ψ(z, λ),
z ∈ V will be called here the Faddeev type function associated with form (potential) q on
V (and zero level of energy E) if

−d dcψ + qψ = 0, z ∈ V (1.1)

and function µ = e−λz1ψ satisfies the properties:

µ ∈ C(Ṽ ), lim
z→∞
z∈V

µ(z, λ) = 1 and |∂̄µ| = O
( 1

1 + |z|
)

, z ∈ V.

From [F1], [F2], [N2] it follows that in the case V = C = {z ∈ C
2 : z2 = 0}, for almost all

λ ∈ C the Faddeev type function ψ = eλz1µ exists, unique and satisfies the Faddeev type
integral equation

µ(z, λ) = 1 +
i

2

∫

ξ∈V

g(z − ξ, λ)µ(ξ, λ)q(ξ) where

g(z, λ) =
i

2(2π)2

∫

w∈C

ei(wz̄+w̄z)dw ∧ dw̄
w(w̄ − iλ)

is so called the Faddeev-Green function for operator µ 7→ ∂̄(∂ + λdz1)µ on V = C.
Faddeev type functions z 7→ ψ(z, λ) are especially useful for solutions of inverse scat-

tering or inverse boundary problems for equation (1.1) when such functions exist and
unique for any λ ∈ C. It was remarked by P.Grinevich and S.Novikov [GN] (see also [T])
that for some continuous q with compact support in C even with arbitrary small norm
there exists the subset of exceptional λ∗ for which the Faddeev type integral equation is
not uniquely solvable.

From R.Novikov’s works [N1], [N2] it follows that the Faddeev type functions as-
sociated with potential q on V = C and non-zero level of energy E exist ∀λ ∈ C if
‖q‖ ≤ const(|E|).

From R.Beals, R.Coifman works [BC2] develloped by A.Nachman [Na] and R.Brown,

G.Uhlmann [BU] it follows that for any potential q of the form q = d dc√σ√
σ

, where σ ∈
C2(C), σ(z) ≡ const if |z| ≥ const, Faddeev type function z 7→ ψ(z, λ) exists and unique
for any λ ∈ C.

Proposition 1.1 below gives the uniqueness of the Faddeev type function on affine

algebraic Riemann surface V for potential q = d dc√σ√
σ

, where σ ∈ C2(V ), σ = const on

V \VX ⊂ V \V0. The proof will be based on the approach going back to [BC2] in the case
V = C.
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Proposition 1.1 (Uniqueness)
Let σ be positive function belonging to C(2)(V ) such that σ ≡ const > 0 on

V \VX ⊂ V \V0 = ∪d
j=1Vj ,

where {Vj} are connected components of V \V0.

Let µ ∈ L∞(V ) such that ∂µ
∂z1

∈ Lp̃(V ) for some p̃ > 2 and µ satisfies equation

∂̄(∂ + λdz1)µ =
i

2
qµ where q =

d dc
√
σ√

σ
(1.2)

and for some j ∈ {1, 2, . . . , d} µ(z) → 0, z → ∞, z ∈ Vj .
Then µ ≡ 0.

Remark

Proposition 1 is still valid if to replace the condition ∂µ
∂z1

∈ Lp̃(V ), p̃ > 2 by the weaker

condition ∂µ ∈ Lp̃(V ).

Lemma 1.1

Put f = eλz1µ, f1 =
√
σ ∂f

∂z1
, f2 =

√
σ ∂f

∂z̄1
, where µ satisfies conditions of

Proposition 1.1. Then

d(σdcf) = 0 on V and (1.3)

∂f1
∂z̄1

= q1f2,
∂f2
∂z1

= q̄1f1, (1.4)

where q1 = −∂ log
√

σ
∂z1

. Besides, q1 ∈ Lp(V0) ∀ p < 2, q1 = 0 on V \V0.

Proof

The property q1
∣

∣

V \V0
= 0 follows from the property σ ≡ const on V \V0. Put

V ±
0 = {z ∈ V0 : ±

∣

∣

∂P
∂z2

∣

∣ ≥ ±
∣

∣

∂P
∂z1

∣

∣}. Put q̃1 = ∂ log
√

σ
∂z2

. Then q1
∣

∣

V +

0

∈ C(1)(V +
0 ) and

q̃1
∣

∣

V −

0

∈ C(1)(V −
0 ). The identity q1

∣

∣

V −

0

=
(

∂z1

∂z2

)−1
q̃1 and property iii) imply that

q1 ∈ Lp(V0) ∀p < 2. Equation (1.3) for f is equivalent to the equation (1.2) for µ = e−λz1f .
Equation (1.3) for f means that

∂̄F1 + (∂ ln
√
σ) ∧ F2 = 0 and ∂F2 + (∂ ln

√
σ) ∧ F1 = 0, (1.5)

where F1 =
√
σ ·∂f and F2 =

√
σ · ∂̄f . Using z1 as a local coordinate on V we obtain from

(1.5) the system (1.4), where f1 = dz1⌋F1 and f2 = dz̄1⌋F2.

Lemma 1.2

Put m1 = e−λz1f1 and m2 = e−λz1f2, where f1, f2 are defined in Lemma 4.1. Then
system (1.3) is equivalent to system

∂m1

∂z̄1
= q1m2,

∂m2

∂z1
+ λm2 = q̄1m1. (1.6)
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Besides,

m1 =
√
σ
(

λµ+
∂µ

∂z1

)

and m2 =
√
σ
∂µ

∂z̄1
. (1.7)

Proof

Putting in (1.4) f1 = eλz1m1 and f2 = eλz1m2, we obtain

∂eλz1m1

∂z̄1
= q1e

λz1m2 ⇐⇒ ∂m1

∂z̄1
= q1m2 and

∂eλz1m2

∂z1
= q̄1e

λz1m1 ⇐⇒ ∂m2

∂z1
+ λz2 = q̄1m1.

Besides,

f1 =
√
σ
∂f

∂z1
=

√
σeλz1

(

λµ+
∂µ

∂z1

)

= eλz1m1,

where m1 =
√
σ
(

λµ+ ∂µ
∂z1

)

and

f2 =
√
σ
∂f

∂z̄1
=

√
σeλz1

( ∂µ

∂z̄1

)

= eλz1m2,

where m2 =
√
σ ∂µ

∂z̄1
.

Lemma 1.3

Put u± = m1 ± e−λz1+λ̄z̄1m̄2. Then system (1.4) is equivalent to the system

∂u±
∂z̄1

= ±q1e−λz1+λ̄z̄1 ū±.

Proof

From definition of u±, using Lemma 1.2, we obtain

∂u±
∂z̄1

=
∂m1

∂z̄1
± e−λz1+λ̄z̄1(λ̄m̄2 − λ̄m̄2 + q1m̄1) =

q1m2 ± q1e
−λz1+λ̄z̄1m̄1 = ±q1e−λz1+λ̄z̄1(m̄1 ± eλz1−λ̄z̄1m2) =

± e−λz1+λ̄z̄1q1ū±.

Proof of Proposition 1.1

Let u± = m1 ± e−λz1+λ̄z̄1m̄2. We will prove that under conditions of Proposition 1.1
∀λ 6= 0 u± ≡ 0 together with m1 and m2.

From equality q1 = −∂ log
√

σ
∂z1

and Lemma 1.3 we obtain that

∂̄u± = ±q1e−λz1+λ̄z̄1 ū±dz̄1 ∈ Lp̃
0,1(V ) ∩ L1

0,1(V ), p̃ > 2. (1.8)

From (1.6), (1.7) we obtain that m1 ∈ Lp̃(V ) ⊕ L∞(V ) and ∂m1

∂z̄1
∈ Lp(V ), ∀p ≥ 1.
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From (1.6), properties µ ∈ L∞(V ), ∂µ
∂z̄1

∈ Lp̃(V ), µ(z) → 0, z ∈ Vj , z → ∞ and
from [H2] Corollary 1.1 we deduce that there exists

lim
z→∞
z∈V

m1(z) = lim
z→∞
z∈V

√
σ
(

λµ+
∂µ

∂z1

)

= lim
z→∞
z∈V

√
σλµ(z) = 0. (1.9)

From (1.8), (1.9) and generalized Liouville theorem from Rodin [R], Theorem 7.1, it follows
that u± = 0.

It means, in particular, that ∂µ
∂z̄1

= 0, which together with (1.9) imply µ = 0. Propo-
sition 1.1 is proved.

Proposition 1.2 (Existence)
Let conductivity σ on V satisfies conditions of Proposition 1.1. Then ∀λ ∈ C there

exists the Faddeev type function ψ = µeλz on V associated with potential q = ddc√σ√
σ

, i.e.

a) ∂̄(∂ + λdz1)µ =
i

2
qµ, where q =

ddc
√
σ√

σ
,

b) µ− 1 ∈W 1,p̃(V ) ∩ C(Ṽ ) ∀p̃ > 2,

µ− 1 ∈ C(∞)(V \V0) and µ− 1 = O
( 1

|z1|
)

, z ∈ V \V0.

Moreover, ∀p̃ > 2

c) ‖µ− 1‖Lp̃(V ) ≤ const(V, σ, p̃){min
( 1
√

|λ|
,

1

|λ|
)

},

‖ ∂µ
∂z1

‖Lp̃(V ) ≤ const(V, σ, p̃){min(
√

|λ|, 1)}, ∀p̃ > 2,

d) ∀λ ∃ c ∈ C such that
(∂µ

∂λ̄
− c

)

∈W 1,p̃(V ),

e) under additional assumption σ ∈ C(3)(V )

‖∂
2µ

∂z2
1

‖Lp̃(V ) ≤ const(V, σ) · λ1/(1+1/p̃).

Remark

Proposition 1.2 will be proved by approach going back to L.Faddeev [F1], [F2] and for
the case V = C develloped in [N1], [N2], [Na].

Proof

Put Gλ = Rλ ◦ R̂, where R̂ is operator, defined by formula (2.4) from Proposition 2 of
[H2], and Rλ operator, defined by formula (3.1) from Proposition 3 of [H2]. Let function
µ(z, λ) be such that ∀λ, µ ∈ W 1,p̃(V ) ⊕ const with respect to z ∈ V . Then ∀λ 6= 0 we
have properties qµ ∈ C(V ), qµ = 0 on V \V0, which imply, in particular, that mapping
µ 7→ qµ is compact operator from W 1,p̃(V ) ⊕ const to Lp̃(V ) ∩ C(V ). By Lemmas 2.1,
2.2 and Proposition 2 from [H2] we have R̂qµ ∈ W 1,p̃(V ). Proposition 3 ii) implies that

7



Rλ ◦ R̂(qµ) ∈ W 1,p̃(V ). Hence, mapping µ 7→ µ − Rλ ◦ R̂ i
2qµ is a Fredholm operator on

W 1,p̃(V )⊕const. By Proposition 1.1 the operator I−Rλ ◦R̂( i
2q·) is invertible. Then there

is unique function µ such that (µ− 1) ∈W 1,p̃(V ), ∀p̃ > 2 and

µ = 1 +Rλ ◦ R̂(
i

2
qµ). (1.10)

Let us check now statement a) of Proposition 1.2. From (1.10) and Proposition 3i) from
[H2] we obtain

(∂ + λdz1)µ = λdz1 + (∂ + λdz1)Rλ ◦ R̂(
i

2
qµ) =

λdz1 + H(R̂(
i

2
qµ)) + R̂(

i

2
qµ).

(1.11)

From (1.11) and Proposition 2 of [H2] we obtain

∂̄(∂ + λdz1)µ =
i

2
qµ+ ∂̄(λdz1 + H(R̂(

i

2
qµ)) =

i

2
qµ,

where we have used that H(R̂( i
2
qµ)) ∈ H1,0(Ṽ ).

Property a) is proved.
For proving of properties b), c) it is sufficient to remark that by Proposition 3ii) and

3iii) from [H2] we have property c) and

‖(1 + |z1|)(µ− 1)‖L∞(V ) ≤ const(V, σ)
1

√

|λ|
.

To prove property d) let us differentiate (1.10) with respect to λ̄. We obtain

∂µ

∂λ̄
−Rλ ◦

(

R̂(
i

2
q
∂µ

∂λ̄
)
)

= z̄1
(

Rλ ◦
(

R̂(
i

2
qµ)

))

−Rλ

(

ξ̄1R̂(
i

2
qµ)

)

=

z̄1(µ− 1) −Rλ

(

ξ̄1R̂(
i

2
qµ)

)

.

From Proposition 2 of [H2] we deduce that

ξ̄1R̂(
i

2
qµ) ∈W 1,p̃

1,0 (V ) ⊕ (const)dz1.

From Proposition 3ii) of [H2] and Remark 1 to it we obtain

Rλ

(

ξ̄1R̂(
i

2
qµ)

)

∈W 1,p̃
1,0 (V ) ⊕ const.

From Proposition 1.2 b) we deduce also

z̄1(µ− 1) ∈W 1,p̃(V ) ⊕ const.

8



Hence,

∂µ

∂λ̄
=

(

I −Rλ ◦ R̂(
i

2
q·)

)−1(
z̄1(µ− 1) −Rλ(ξ̄1R̂(

i

2
qµ)

)

∈W 1,p̃(V ) ⊕ (const).

Property e) follows (under condition σ ∈ C(3)(V )) from Proposition 3iv) of [H2].

§2. Equation
∂µ(z,λ)

∂λ̄
= b(λ)eλ̄z̄1−λz1 µ̄(z, λ), λ ∈ C

For further results it is important to obtain asymptotic development of ∂µ
∂z̄1

(z, λ) for
z1 → ∞.

Proposition 2.1

Let conductivity function σ on V satisfy the conditions of Proposition 1.1. Let function
ψ(z, λ) = µ(z, λ)eλz be the Faddeev type function on V associated with potential

q = ddc√σ√
σ

. Then ∀λ ∈ C function ∂µ(z,λ)
∂z̄1

has the following asymptotic for z1 → ∞:

eλz1−λ̄z̄1
∂µ

∂z̄1

∣

∣

Vj
=
B1,j(λ)

z̄1
+

∞
∑

k=2

Bk,j(λ)

z̄k
1

, (2.1)

where |B1,j(λ)| = O(min(1,
√

|λ|)), j = 1, 2, . . . , d and
under additional condition σ ∈ C(3)(V ) we have

eλz1−λ̄z̄1
∂2µ

∂z̄2
1

∣

∣

Vj
= λ̄

B1,j

z̄1
+

∞
∑

k=2

λ̄Bk,j(λ) − (k − 1)Bk−1,j(λ)

z̄k
1

, (2.2)

where |B1,j(λ)| = O(min(
√

|λ|, |λ|−1/(1+p̃))), j = 1, 2, . . . , d ∀p̃ > 2.
For proving of Proposition 2.1 we need the following decomposition statement for the

Faddeev type function µ = ψe−λz on V \V0.

Lemma 2.1

i) Let µ be function on V \V0, which satisfies equation

∂̄(∂ + λdz1)µ = 0 on V \V0 (2.3)

and the property
(µ− 1)

∣

∣

V \V0
∈W 1,p̃(V \V0), ∀p̃ > 2.

Then

A
def
=

∂µ

∂z1
+ λµ ∈ O(Ṽ \V0); A

∣

∣

Vj
= λ+

∞
∑

k=1

Ak,j
1

zk
1

,

B
def
= e−λz1+λ̄z̄1

∂µ

∂z̄1
= O(Ṽ \V0); B̄

∣

∣

Vj
=

∞
∑

k=1

Bk,j
1

z̄k
1

,

(2.4)

|z1| > r0, j = 1, 2, . . . , d.
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ii) Let

M
∣

∣

Vj
= 1 +

∞
∑

k=1

ak,j

zk
1

and N̄
∣

∣

Vj
= 1 +

∞
∑

k=1

bk,j

z̄k
1

be formal series with coefficients ak,j and bk,j determined by relations

λak,j − (k − 1)ak−1,j = Ak,j ;

λ̄bk,j − (k − 1)bk−1,j = Bk,j; j = 1, 2 . . . , d; k = 1, 2, . . .

Then function µ has asymptotic decomposition

µ
∣

∣

Vj
= M

∣

∣

Vj
+ eλ̄z̄1−λz1N̄

∣

∣

Vj
, z1 → ∞, i.e. (2.5)

µ
∣

∣

Vj
= Mν

∣

∣

Vj
+ eλ̄z̄1−λz1N̄ν

∣

∣

Vj
+O

( 1

|z1|ν+1

)

, where

Mν

∣

∣

Vj
= 1 +

ν
∑

k=1

ak,j

zk
1

, N̄ν

∣

∣

Vj
=

ν
∑

k=1

bk,j

z̄k
1

.

iii) Moreover, for any A ∈ O(Ṽ \V0), A(z) → λ, z → ∞, there exist B ∈ O(Ṽ \V0),
B(z) → 0, z → ∞, and µ such that µ satisfies (2.3), (2.4) and (µ− 1) ∈W 1,p̃(V \V0).

Proof

i) From equation (2.3) it follows that

∂∂̄(eλz1µ(z, λ))
∣

∣

V \V0
= 0.

It means that ∂̄(eλz1µ(z, λ)) = eλz1 ∂̄µ is antiholomorphic form on V \V0 and

(∂µ + λµdz1) is holomorphic form on V \V0. From this, condition ∂̄µ ∈ Lp̃
0,1(V \V0) and

the Cauchy theorem it follows that

eλz1 ∂̄µ
∣

∣

Vj
= eλ̄z̄1B̄dz̄1

∣

∣

Vj
= eλ̄z̄1

∞
∑

k=1

Bk,j

z̄k
1

dz̄1
∣

∣

Vj

and (∂µ+ λµdz1)
∣

∣

Vj
= Adz1

∣

∣

Vj
=

(

λ+
∞
∑

k=1

Ak,j

zk
1

)

dz1
∣

∣

Vj
.

ii) From (2.4), (2.5) we obtain, at first, that

∂̄µ = e−λz1 ∂̄(eλ̄z̄1N̄ν) +O
( 1

|z̄1|ν+1

)

and then

µ = Mν + eλ̄z̄1−λz1N̄ν +O
( 1

|z1|ν+1

)

. (2.6)
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iii) Let

A
∣

∣

Vj
= λ+

∞
∑

k=1

Ak,j

zk
1

∈ Lp̃(V \V0).

Proposition 3 iii) from [H2], applied to (1,0) forms on the complex plan with coordinate
z1, gives that ∀λ 6= 0 there exists µ ∈ W 1,p̃(V \V0) ⊕ 1 such that A = ∂µ

∂z1
+ λµ. Put

B̄ = eλz1−λ̄z̄1 ∂µ
∂z̄1

. Then B̄ ∈ Lp̃(V \V0) and

∂B̄

∂z1
= eλz1−λ̄z̄1

( ∂

∂z̄1

(

λµ+
∂µ

∂z1

))

= eλz1−λ̄z̄1
( ∂A

∂z̄1

)

= 0,

i.e. B ∈ O(Ṽ \V0). By construction µ satisfies (2.3), (2.4) and (µ− 1) ∈W 1,p̃.

Lemma 2.2

Functions Mν and Nν from decomposition (2.6) have the following properties:

∀ z ∈ Ṽ \V0 ∃ lim
ν→∞

(∂Mν

∂z1
+ λMν

) def
=

∂M

∂z1
+ λM and

∃ lim
ν→∞

(∂Nν

∂z1
+ λNν

) def
=

∂N

∂z1
+ λN.

Functions ∂M
∂z1

+ λM and ∂N
∂z1

+ λN belongs to to O(Ṽ \V0) and

∂µ

∂z̄1
= eλ̄z̄1−λz1(

∂N̄

∂z̄1
+ λ̄N̄), (2.7)

∂µ

∂z1
+ λµ =

∂M

∂z1
+ λM, (2.8)

∂N

∂z1
+ λN → 0, if z1 → ∞.

Proof

Let us show that (2.4) implies (2.7) and (2.8). Indeed,

∂µ

∂z̄1
= lim

ν→∞

(

λ̄eλ̄z̄1−λz1N̄ν + eλ̄z̄1−λz1
∂N̄ν

∂z̄1

)

= eλ̄z̄1−λz1 lim
ν→∞

(∂N̄ν

∂z̄1
+ λ̄N̄ν

)

=

eλ̄z̄1−λz1
(∂N̄

∂z̄1
+ λ̄N̄

)

,

∂µ

∂z1
+ λµ = lim

ν→∞

(

∂Mν

∂z1
− λeλ̄z̄1−λz1N̄ν + λMν + λeλ̄z̄1−λz1N̄ν

)

=

lim
ν→∞

(∂M̄ν

∂z1
+ λMν

)

=
∂M

∂z1
+ λM.

Properties (2.6), (2.7), (2.8), ∂̄µ ∈ Lp̃
0,1(V ) and Riemann extension theorem imply that

∂M
∂z1

+ λM and ∂N
∂z1

+ λN belongs to O(Ṽ \V0) and ∂N
∂z1

+ λN → 0, if z1 → ∞.
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Corollary

In conditions of Lemmas 2.1, 2.2 we have convergence Mν →M and Nν → N , ν → ∞,
in general, only in the space of formal series, in spite of that convergence
∂Mν

∂z1
+ λMν → ∂M

∂z1
+ λM and ∂Nν

∂z1
+ λNν → ∂N

∂z1
+ λN take place in the space O(Ṽ \V0).

Simple example

Put V0 = {z ∈ V : |z1| < 1}, λ = 1, A = λ+
∞
∑

k=1

Ak

zk
1

with Ak = 1, k = 1, 2, . . .

By Lemma 2.1 there exists µ = M + eλ̄z̄1−λz1N̄ , which satisfies (2.3), (2.4), where

M = 1 +
∞
∑

k=1

ak

zk
1

with ak determined by relations ak − (k − 1)ak−1 = Ak = 1; k = 1, 2, . . ..

It gives ak = (k − 1)!
(

1 + 1
2!

+ . . .+ 1
(k−1)!

)

. We have |ak|1/k → ∞, k → ∞, i.e. radius of

convergence of serie for M is equal to zero, in spite of that |Ak|1/k = 1, k = 1, 2, . . ..

Proof of Proposition 2.1

Estimate for ∂µ
∂z1

from Proposition 1.2 c) and the Cauchy theorem applied to antiholo-

morphic function eλz1−λ̄z̄1 ∂µ
∂z̄1

implies development (2.1) and estimate

|B1,j(λ)| = O(min(1,
√

|λ|)). (2.9)

Estimate for ∂2µ
∂z̄2

1

from Proposition 1.2 e) and the Cauchy theorem for antiholomorphic in

z1 function eλz1−λ̄z̄1 ∂2µ
∂z̄2

1

∣

∣

Vj
imply development (2.2) and estimate

|B1,j(λ)| = O(min(
√

|λ|, |λ|−1/(1+p̃))). (2.10)

Proposition 2.1 is proved.
The next proposition gives ∂̄-equation on Faddeev function µ(z, λ) with respect to

parameter λ ∈ C. For the case V = C this proposition goes back to Beals, Coifmann
[BC1], Grinevich, S.Novikov [GN] and R.Novikov [N2].

Proposition 2.2

Let conductivity function σ on V satisfy the conditions of Proposition 1.1. Let function
ψ(z, λ) = µ(z, λ)eλz be the Faddeev type function on V constructed in Proposition 1.2 and

associated with potential q = ddc√σ√
σ

. Then ∀z ∈ V the following ∂̄-equation with respect

to λ ∈ C takes place
∂µ

∂λ̄
= b(λ)eλ̄z̄1−λz1 µ̄, (2.11)

where

b(λ)
def
= lim

z→∞
z∈V

z̄1

λ̄
eλz1−λ̄z̄1

∂µ

∂z̄1
,

|b(λ)| ≤ const(V, σ){min
( 1
√

|λ|
,

1

|λ|
)

} if σ ∈ C(2)(V ) and

|b(λ)| ≤ const(V, σ, p̃){min
( 1
√

|λ|
,
( 1

|λ|
)1+1/p̃)} if σ ∈ C(3)(V ), ∀p̃ > 2.

(2.12)
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Remark

The proof below is a generalization of the R.Novikov proof [N2] of the corresponding
statement for the case V = C.

Proof

Equation ddcψ = qψ for the Faddeev type function ψ = µ · eλz is equivalent to the
equation ∂̄(∂ + λdz1)µ = i

2qµ. Put ψλ = ∂ψ/∂λ̄ and µλ = ∂µ/∂λ̄. By Proposition 1.2 d)
∀λ ∈ C function µλ belongs to W 1,p̃(V ) ⊕ const(λ). Besides, from equation ddcψ = qψ it
follows the equation

ddcψλ = qψλ on V.

From Lemmas 2.1, 2.2, Proposition 2.1 and Proposition 1.2 b),c) we obtain

∂µ

∂z̄1

∣

∣

Vj
= eλ̄z̄1−λz1

B1,j(λ)

z̄1
+O

( 1

|z1|2
)

and

(

∂µ

∂z1
+ λµ

)
∣

∣

∣

∣

Vj

= λ+
A1,j(λ)

z1
+O

( 1

|z1|2
)

.

(2.13)

From (2.4)-(2.6) and (2.13) we deduce that

µ = 1 +
aj(λ)

z1
+ eλ̄z̄1−λz1

bj(λ)

z̄1
+O

( 1

|z1|2
)

, (2.14)

where λ̄bj(λ) = B1,j, λaj(λ) = A1,j, j = 1, 2, . . . , d. (2.15)

From (2.14) with help of Proposition 1.2 d) we obtain

ψ = eλz1µ = eλz1
(

1 +
aj(λ)

z1
+ eλ̄z̄1−λz1

bj(λ)

z̄1
+O

( 1

|z1|2
))

,

and ψλ =
∂ψ

∂λ̄
= eλ̄z̄1

(

bj(λ) +O
( 1

|z1|
))

, z ∈ Vj .

Put µλ = e−λz1ψλ. We obtain ∂̄(∂ + λdz1)µλ = qµλ and

µλ = eλ̄z̄1−λz1
(

bj +O
( 1

|z1|
))

, z ∈ Vj .

Proposition 1.1 about uniqueness of the Faddeev type function implies equality (2.11),
where

b(λ)
def
= b1(λ) = . . . = bd(λ). (2.16)

We have also equalities
B1,1(λ) = . . . = B1,d(λ).

Put
B(λ)

def
= B1,1(λ) = . . . = B1,d(λ).

Estimates (2.12) follow from equalities (2.15), (2.16) and inequalities (2.9), (2.10).
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Proposition 2.3

Let, under conditions of Proposition 2.2, conductivity function σ ∈ C(3)(V ). Then
∀ z ∈ V function λ 7→ µ(z, λ), λ ∈ C,is a unique solution of the following integral equation

µ(z, λ) = 1 − 1

2πi

∫

ξ∈C

b(ξ)eξ̄z̄1−ξz1µ(z, ξ)
dξ ∧ dξ̄
ξ − λ

, (2.17)

where function λ 7→ b(λ) from (2.11) belongs to Lq(C) ∀ q ∈ (4/3, 4).

Proof

Estimates (2.12) imply that ∀ q ∈ (4/3, 4) function b(λ) from Proposition 2.2 belongs
to Lq(C). By the classical Vekua result [Ve] with such functions b(λ) the equation (2.17)
is the uniquely solvable Fredholm integral equation in the space C(C̄).

§3. Reconstruction of Faddeev type function ψ and of conductivity σ on X
through Dirichlet to Neumann data on bX

Let X be domain with smooth (de class C(2)) boundary on V such that X ⊇ V̄0. Let

σ ∈ C(3)(V ), σ > 0 on V and σ ≡ const on V \X . Let q = ddc√σ√
σ

, then q ∈ C
(1)
1,1(X) and

supp q ⊆ X .

Definition (Dirichlet-Neumann operator)
Let u ∈ C(1)(bX) and U ∈ W 1,p̃(X), p̃ > 2 be solution of the Dirichlet problem

dσdcU
∣

∣

X
= 0, U

∣

∣

bX
= u, where dc = i(∂̄− ∂). Operator u

∣

∣

bX
→ σdcU

∣

∣

bX
is called usually

by Dirichlet to Neumann operator. Put ψ̃ =
√
σU and ψ =

√
σu. Then

ddcψ̃ =
ddc

√
σ√

σ
ψ̃ = qψ̃ on X. (3.1)

Operator ψ
∣

∣

bX
7→ ∂̄ψ̃

∣

∣

bX
will be called here by Dirichlet-Neumann operator. The data

contained in operator u
∣

∣

bX
→ σdcU

∣

∣

bX
and in ψ

∣

∣

bX
→ ∂̄ψ̃

∣

∣

bX
are equivalent, but for our

further statements operator ψ
∣

∣

bX
→ ∂̄ψ̃

∣

∣

bX
is more convenient.

Let ψ0 be solution of Dirichlet problem

ddcψ0 = 0, ψ0

∣

∣

bX
= ψ

∣

∣

bX
.

Put
Φ̂ψ = ∂̄ψ̃

∣

∣

bX
and Φ̂0ψ = ∂̄ψ̃0

∣

∣

bX
, (3.2)

where operator ψ
∣

∣

bX
→ Φ̂0ψ is Dirichlet-Neumann operator for equation (3.1) with poten-

tial q ≡ 0.

Proposition 3.1 (Reconstruction of ψ
∣

∣

bX
through Dirichlet-Neumann data)

Let ψ = µ(z, λ) · eλz1 be the Faddeev function associated with potential q = ddc√σ√
σ

.

Then ∀λ ∈ C\{0} the restriction ψ
∣

∣

bX
of ψ on bX is a unique solution in C(bX) of the

Fredholm integral equation:

ψ(z, λ)
∣

∣

bX
= eλz1 −

∫

ξ∈bX

eλ(z1−ξ1)gλ(z, ξ) · (Φ̂ψ(ξ)− Φ̂0ψ(ξ)), (3.3)
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where gλ(z, ξ) - kernel of operator Rλ ◦ R̂,

Φ̂ψ(ξ)− Φ̂0ψ(ξ) =

∫

w∈bX

(Φ(ξ, w)− Φ0(ξ, w))ψ(w),

Φ(ξ, w), Φ0(ξ, w) are kernels of operators Φ̂ and Φ̂0.

Remark

This proposition for the case V = C coincide with the second part of Theorem 1 from
[N1].

Lemma 3.1 (Green-Riemann formula)
∀ f, g ∈ C(1)(X) we have equality

∫

X

g ∧ ∂∂̄f −
∫

X

f ∧ ∂∂̄g =

∫

bX

g ∧ ∂̄f +

∫

bX

f ∧ ∂g.

Proof
∫

X

g ∧ ∂∂̄f −
∫

X

f ∧ ∂∂̄g =

∫

X

g ∧ ∂∂̄f +

∫

X

f ∧ ∂̄∂g =

∫

bX

g ∧ ∂̄f −
∫

X

∂g ∧ ∂̄f +

∫

bX

f ∧ ∂g −
∫

X

∂̄f ∧ ∂g =

∫

bX

g ∧ ∂̄f +

∫

bX

f ∧ ∂g.

Lemma 3.2

Let ψ = eλz1µ be the Faddeev function associated with q ∈ C1,1(V ), supp q ⊆ X . Let

Gλ(z, ξ) = eλ(z1−ξ1)gλ(z, λ), where gλ(z, ξ) - kernel of operator Rλ ◦ R̂. Then
∀ z ∈ V \X we have equality

ψ(z, λ) = eλz1 −
∫

ξ∈bX

Gλ(z, ξ)∂̄ψ(ξ)−
∫

ξ∈bX

ψ(ξ)∂Gλ(z, ξ). (3.4)

Proof

From definition of the Faddeev function ψ = eλz1µ we have

ψ(z, λ) = eλz1 + Ĝλ

( i

2
qψ

)

on V, (3.5)

where Ĝλ - operator with kernel Gλ(z, ξ) and ddcψ = qψ. Besides,

∫

X

Gλ

( i

2
qψ

)

= −
∫

X

Gλ∂∂̄ψ.
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Using the Green-Riemann formula from Lemma 3.1 we have

∫

X

Gλ∂∂̄ψ =

∫

X

ψ∂∂̄Gλ +

∫

bX

Gλ∂̄ψ +

∫

bX

ψ∂Gλ.

For z ∈ V \X we have ∂∂̄Gλ = 0. Hence,

−
∫

X

Gλ

( i

2
qψ

)

=

∫

bX

Gλ∂̄ψ +

∫

bX

ψ∂Gλ. (3.6)

From (3.5) and (3.6) we obtain (3.4).

Proof of Proposition 3.1

Let ψ0 : ∂̄∂ψ = 0 and ψ0

∣

∣

bX
= ψ. Then by Lemma 3.1 ∀ z ∈ V \X we have

∫

bX

ψ0∂Gλ +

∫

bX

Gλ∂̄ψ0 = 0. (3.7)

Combining this relation with (3.4) we obtain

ψ(z, λ) = eλz1 −
∫

bX

Gλ(z, ξ)(∂̄ψ(ξ)− ∂̄ψ0(ξ)). (3.8)

Equality (3.8) implies (3.3), where Φ̂ψ, Φ̂0ψ are defined by (3.2). Integral equation (3.3)
is the Fredholm equation in L∞(bX), because operator (Φ̂− Φ̂0) is a compact operator in
L∞(bX). For the case V = C Proposition 1 of [N1], contains explicit inequality:

lim
w→ξ

w,ξ∈bX

|Φ(ξ, w)− Φ0(ξ, w)|
| ln |ξ − w|| ≤ (const)

∣

∣

ddc
√
σ√

σ

∣

∣(w). (3.9)

Because of its local nature, equality (3.9) is valid for our more general case.
Existence of the Faddeev function ∀λ 6= 0, proved in Proposition 1.2, implies existence

of solution of equation (3.3). The uniqueness of solution of equation (3.3) we deduce (as
in proof of Proposition 2 in [N1]) from the following statement.

Lemma 3.3

Let q ∈ C1,1(V ), supp q ⊆ X . Then each solution ψ = ψ(z, λ) of equation ddcψ = qψ
on V which coincides on bX with solution of integral equation (3.3) in space C(bX) is the
Faddeev type function associated with q.

Proof

Let ψ satisfy ddcψ = qψ on V , ψ
∣

∣

bX
∈ C(bX) and ψ

∣

∣

bX
satisfy integral equation

(3.3)=(3.8). From (3.8) with help of (3.7) we obtain formula (3.4) for ψ(z, λ), z ∈ V \X ,
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λ ∈ C. From the Sohotsky-Plemelj jump formula we deduce (see [HM], Lemma 15) that
∀ z∗ ∈ bX

ψ(z∗) = lim
z→z∗

z∈X

(

∫

bX

Gλ∂̄ψ + ψ∂Gλ

)

− lim
z→z∗

z∈V \X

(

∫

bX

Gλ∂̄ψ + ψ∂Gλ

)

. (3.10)

From (3.4) and (3.10) we obtain equality

eλz1 =

∫

bX

Gλ∂̄ψ + ψ∂Gλ for z ∈ X, λ ∈ C. (3.11)

Using the Green-Riemann formula (Lemma 3.1) we obtain further

∫

bX

Gλ∂̄ψ + ψ∂Gλ =

∫

X

ψ∂̄∂Gλ −
∫

X

Gλ∂̄∂ψ =







ψ(z) −
∫

X

Gλ∂̄∂ψ, if z ∈ X, λ ∈ C

−
∫

X

Gλ∂̄∂ψ, if z ∈ V \X, λ ∈ C

(3.12)

Equalities (3.4), (3.11) and (3.12) imply

ψ(z) = eλz1 +

∫

V

Gλ∂̄∂ψ = eλz1 + Ĝλ(
i

2
qψ),

i.e. ψ satisfies (3.5). From equality (3.5) and Proposition 3 ii) from [H2] we obtain that
µ− 1 = ψe−λz1 − 1 ∈W 1,p̃(V ) and ψ is the Faddeev type function associated with q.

Lemma 3.3 is proved.
The uniqueness of solution of equation (3.3) in C(bX) follows now from Lemma 3.3

and the uniqueness of the Faddeev type function associated with q proved in
Proposition 1.1.

Proposition 3.1 is proved.

Proposition 3.2 (Reconstruction of ψ
∣

∣

X
through ψ

∣

∣

bX
)

In conditions of Propositions 1.1, 1.2 the following properties for ”∂̄-scattering data
b(λ)” permit to reconstruct ψ

∣

∣

X
through ψ

∣

∣

bX

∀ z∗ ∈ bX ∃ lim
z→∞
z∈V

z̄1
λ̄
e−λ̄z̄1

∂ψ

∂z̄1
(z, λ)

def
= b(λ) = ψ̄(z∗, λ)−1 ∂ψ

∂λ̄
(z∗, λ),

∀ z ∈ X function λ 7→ ψ(z, λ), λ ∈ C, is a unique solution of the integral equation

ψ(z, λ) = eλz1 − 1

2πi

∫

ξ∈C

b(ξ)e(λ−ξ)z1 ψ̄(ξ, λ)
dξ ∧ dξ̄
ξ − λ

.
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This proposition is a consequence of Propositions 2.1-2.3.

Proposition 3.3 (Reconstruction formulas for σ)
Conductivity function σ

∣

∣

X
can be reconstructed through Dirichlet-Neumann data by

the R.Novikov’s scheme:

DN data → ψ
∣

∣

bX
→ ∂̄ − scattering data → ψ

∣

∣

X
→ ddc

√
σ√

σ

∣

∣

X
.

The last step of this scheme one can realize by any of the following formulas:

A)
ddc

√
σ√

σ
(z) = (ddcψ(z, λ))ψ−1(z, λ), z ∈ X, λ ∈ C,

B)
ddc

√
σ√

σ
(z) = 2i lim

λ→∞
λe−λz1dz1 ∧ ∂̄ψ(z, λ), z ∈ X,

C)
ddc

√
σ√

σ
(z) = −2i lim

λ→0

∂̄∂µ(z, λ)

µ(z, λ)
, z ∈ X.

Proof

The first three steps of the scheme above were done in Propositions 3.1, 3.2. The
formula A) is an immediate consequense of equation (3.1). The formula B) follows from

equation ∂̄(∂ + λdz1)µ = i
2

ddc√σ√
σ
µ (Proposition 1.2a) and estimates µ→ 1, λ→ ∞

(Proposition 1.2b), ∂∂̄µ(z, λ) → 0, λ → ∞ (Proposition 1.2e). The formula C) follows
from the same equation and estimates ‖ ∂µ

∂z1
‖ = O(

√

|λ|), λ→ 0, (Proposition 1.2c).
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