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Abstract

The authors recently discovered some interesting relations between the
Black-Scholes formula and last passage times of the Brownian exponential
martingales, which invites one to seek analogous results for last passage
times up to a �nite horizon. This is achieved in the present paper, where
Yuri�s formula, as originally presented in Akahori, Imamura and Yano
(2008), is also derived.

�We are most grateful to J. Akahori for his stimulating suggestion, and more generally to
the 3 authors Akahori, Imamura and Yano for providing us with an early version of Yuri�s
formula.
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1 Introduction and Notation

a) Basic Notation. We present some basic notation for the Brownian items we
shall deal with throughout the paper, as well as classical results about the laws
of �rst and last passage times for Brownian motion with drift.

For every � 2 R, we denote the Brownian motion with drift �; by
�
B
(�)
u ; u � 0

�
�
B
(�)
t ; t � 0

�
:= (Bt + �t; t � 0) (1)

where (Bt; t � 0) is a standard Brownian motion.
b) Filtrations. We shall consider both the usual �ltration of the past:

Fs = � fBu; u � sg ; s � 0;

as well as the �past-future�, �two parameter �ltration�

Fs;t = � fBu; u � s; Bv; v � tg ; 0 � s � t <1:

c) Exponential martingales and the Cameron-Martin formula.

Let
�
E(�)t ; t � 0

�
be the positive martingale for the past �ltration (Ft)t�0

de�ned by �
E(�)t ; t � 0

�
:=

�
exp

�
�Bt �

�2

2
t

�
; t � 0

�
(2)

For � = 1; we shall simply write (Et) instead of
�
E(1)t

�
. Throughout the paper,

many facts pertaining to
�
E(�)t

�
may be reduced to (Et); since by scaling�

E(�)t ; t � 0
�
law
= (E�2t; t � 0) (3)

The Cameron-Martin formula relates the laws of B(�) and B; as follows:

E
h
F
�
B(�)s ; s � t

�i
= E

h
F (Bs; s � t) E(�)t

i
(4)

for any positive functional F on C ([0; t] ;R) :
Let us de�ne for a 2 R , � 2 R and t > 0

T (�)a = inf
n
u � 0; B(�)u = a

o
(5)

(= +1 if this set is ;)

G(�)a = sup
n
u � 0; B(�)u = a

o
(6)

(= 0 if this set is ;)

G(�)a (t) = sup
n
u � t : B(�)u = a

o
(7)

(= 0 if this set is ;)
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It is obvious by symmetry that

T (�)a

(law)
= T

(��)
�a ; G(�)a (t)

(law)
= G

(��)
�a (t) (8)

and that
G(�)a (t)!t!1 G(�)a a.s. (9)

We recall the classical formulae, for � and a > 0 :

P
�
G(��)a > 0

�
= P

�
T (��)a <1

�
= exp (�2�a) (10)

and

P
�
T (�)a 2 dt

�
=

ap
2�t3

exp

�
� (a� �t)

2

2t

�
dt (11)

P
�
G(�)a 2 dt

�
=

�p
2�t

exp

�
� (a� �t)

2

2t

�
dt (12)

whereas, for a > 0 and � > 0 :

P
�
T (��)a 2 dt

�
=

ap
2�t3

exp

�
� (a+ �t)

2

2t

�
dt (13)

P
�
G(��)a 2 dt

�
=

�p
2�t

exp

�
� (a+ �t)

2

2t

�
dt (14)

In agreement with equation (10) the measures given by formulae (13) and (14)
are subprobabilities on ]0;1[; with total mass : exp (�2�a) : Note that formula
(11) may be reduced to its proof for � = 0; thanks to the Cameron-Martin
formula (4).
d) A reduced form of the celebrated Black-Scholes formula is the following

E
h
(Et �K)+

i
= N

�
� log(K)p

t
+

p
t

2

�
�KN

�
� log(K)p

t
�
p
t

2

�
(15)

where K � 0 and
N(x) =

1p
2�

Z x

�1
e�

y2

2 dy

We shall later use the derivative of N(x); denoted by n(x): The formula (15)
may be split into two parts

E [Et1Et>K ] = N

�
� log(K)p

t
+

p
t

2

�
(16)

KP (Et > K) = KN

�
� log(K)p

t
�
p
t

2

�
(17)

A particular case of these equalities in the case K = 1 is

E [jEt � 1j] = 2P
�
B21 �

t

4

�
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that follows on noting that

E
h
(Et � 1)+

i
� E

h
(Et � 1)�

i
= E (Et � 1) = 0

and
E
h
(Et � 1)+

i
+ E

h
(Et � 1)�

i
= E [jEt � 1j]

while

E
h
(Et � 1)�

i
= P

�
B21 �

t

4

�
: (18)

e) In Madan, Roynette and Yor (2008b), the following representations of (16),(17)
are obtained:
Theorem 0.
For any K� 0 there are the representations
i)

E
h
(Et �K)+

i
= E (Et1Et>K)�KP (Et > K) (19)

= P

�
G
( 12 )
log(K) � t

�
(20)

ii) For K � 1

E (Et1Et>K) +KP (Et > K) = P
�
T
( 12 )
log(K) � t

�
(21)

while for K � 1

E (Et1Et<K) +KP (Et < K) = P
�
T
( 12 )
log(K) � t

�
(22)

There are at least two possible extensions of Theorem 0.

� One may replace the index (1=2) by an arbitrary index �

� One may replace the last passage times that are for an in�nite horizon
by the last passage times up to a �nite horizon, that is, replace G(�)K by

G
(�)
K (t):

These extensions shall be demonstrated respectively in Sections 2 and 3.
f) We now explain the genesis of this paper:
(f.1) It was remarked in Madan, Roynette, Yor (2008a,b,c), that for any

R+ valued continuous local martingale (Mt; t � 0) which converges a.s. to 0;
there is the identity �

1� Mt

K

�+
= P (GK � tjFt) (23)

where GK = sup ft � 0 :Mt = Kg : Thus the put option value E
h
(K �Mt)

+
i

equals KP (GK � t) ; which may be considered as an alternative presentation
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of the Black-Scholes formula, e.g. when Mt = Et = exp
�
Bt � t

2

�
; (and in

this situation, GK = G
(� 1

2 )

log(K)

law
= G

( 12 )

� log(K)), assuming one knows the law of
GK which for Mt = Et; is obtained via formula (12). Conversely if one knows
E
h
(K �Mt)

+
i
for all strikes K, and all maturities t; then one knows the laws

of the GK �s. See theorem 0 for precise statements in the Brownian framework.
(f.2) It was later suggested to us by J. Akahori (private communication)

that, since practically, having access to GK may be hard, due to the fact that
GK is a "far remote variable", it may be of interest to look for a variant of (23),
starting from the computation

P (GK(t) � sjFs) (24)

for s < t; where GK(t) = sup fu � t :Mu = Kg ; and (24) should hopefully be
computed explicitly in terms of M:
For Mt = Et, an answer to this question is given below, in Theorem 3,

formula (45), in the improved form of the computation of

P (GK(t) � sjFs;t) ;

whereas, in Akahori, Imamura, Yano (2008), an interesting formula (see (47)
below) referred to both in Akahori, Imamura, and Yano(2008) and here, as
Yuri�s formula, expresses P (GK(t) � s) in a two parameter "Black-Scholes type
formula". The main aim of the present paper has been to provide a passage
between formulae (45) and (47).

2 Extension of Theorem 0 to arbitrary index �

Theorem 1. (Formulas for an in�nite horizon) For all � and K; s > 0
i)

P
�
G
(�)
log(K) < s

�
= E

�
E(2�)s 1E(2�)s >K2�

�
�K2�P

�
E(2�)s > K2�

�
(25)

= E

��
E(2�)s �K2�

�+�
We also have that

K�2�P
�
G
(�)
log(K) < s

�
= E

��
K�2� � E(�2�)s

�+�
(26)

ii) In particular, equation (26) may be improved to

P
�
G
(�)
log(K) < sjFs

�
=

�
1� exp

�
�2�

�
B(�)s � log(K)

���+
(27)

=
�
1�K2�E(�2�)s

�+
(28)

= K2�
�
K(�2�) � E(�2�)s

�+
5



iii) For every K � 0; if � log(K) > 0 :

P
�
T
(�)
log(K) � s

�
= E

�
E(2�)s 1E(2�)s >K2�

�
+K2�P

�
E(2�)s > K2�

�
(29)

and if � log(K) < 0

P
�
T
(�)
log(K) � s

�
= E

�
E(2�)s 1E(2�)s <K2�

�
+K2�P

�
E(2�)s < K2�

�
(30)

Furthermore for K = 1 and � 6= 0

P
�
T
(�)
0 < s

�
= E

�
E(2�)s 1E(2�)s >1

�
+ P

�
E(2�)s > 1

�
(31)

= E
�
E(2�)s 1E(2�)s <1

�
+ P

�
E(2�)s < 1

�
(32)

= 1 (33)

Proof of theorem 1. For i) and iii) we have by scaling

1

4�2
G
( 12 )
2a�

law
= G(�)a ;

1

4�2
T
( 12 )
2a�

law
= T (�)a (34)

for all � 6= 0 and a :
E(2�)t

law
= E(�2�)t

law
= E4�2t (35)

and therefore we obtain that

P
�
G
(�)
log(K) < s

�
= P

�
1

4�2
G
( 12 )
log(K2�) < s

�
(from (34))

= P

�
G
( 12 )
log(K2�) < 4�

2s

�
= E

h�
E4�2s �K2�

�+i
( from (Theorem 0 (i))

= E

��
E(2�)s �K2�

�+�
(from (35))

and this establishes (25). Similar arguments establish (29) and (30). With
respect to (33), from (4) we have, from Cameron-Martin

E
h
E(2�)s 1E(2�)s <1

i
= P

�
e2�(Bs+2�s)�2�2s < 1

�
= P

�
e�2�Bs�2�2s > 1

�
= P

�
E(2�)s > 1

�
Hence

E
�
E(2�)s 1E(2�)s >1

�
= P

�
E(2�)s < 1

�
Consequently we obtain:

E
�
E(2�)s 1E(2�)s >1

�
+ P

�
E(2�)s > 1

�
= E

h
E(2�)s 1E(2�)s <1

i
+ P

�
E(2�)s < 1

�
6



and so

E
�
E(2�)s 1E(2�)s >1

�
+P

�
E(2�)s > 1

�
+E

h
E(2�)s 1E(2�)s <1

i
+P

�
E(2�)s < 1

�
= 1+1 = 2

which establishes (31),(32), and (33).
For (26) we note that

E

��
K�2� � E(�2�)s

�+�
= E

"
E(�2�)s

�
K�2�

E(�2�)s

� 1
�+#

= E

��
K�2�E(2�)s � 1

�+�
(from (4))

= K�2�E

��
E(2�)s �K2�

�+�
= K�2�P

�
G
(�)
log(K) < s

�
(from (25))

We shall demonstrate (ii) of theorem 1 in section 3.�
Remark. 1) Taking limits as s tends to 0 and s tends to 1 in (29) and (30)

we obtain

� if � log(K) > 0 :

P
�
G
(�)
log(K) = 0

�
= 0 = P

�
T
(�)
log(K) =1

�
� if � log(K) < 0 :

P
�
G
(�)
log(K) > 0

�
= P

�
T
(�)
log(K) <1

�
= K2�

These results coincide with (10).
Remark 2) The relations (29) and (30) for the case � = 0 (i.e. E(�)t =

E(0)t � 1) are obtained in the limit as � tends to 0 in (29), for example. For
� > 0 and K � 1 we have from (29) that

P
�
T
(�)
log(K) < s

�
= E

�
e2�(Bs��s)1e2�(Bs��s)>K2�

�
+ P

�
e2�(Bs��s) > K2�

�
= E

�
e2�(Bs��s)1Bs��s>log(K)

�
+ P (Bs � �s > log(K))

!
�#0

2P (Bs > log(K))

On the other hand by (11)

P
�
T
(0)
log(K) < s

�
=

Z s

0

j log(K)jp
2�u3

e�
j log(K)j2

2u du

= 2

Z 1

j log(K)jp
s

1p
2�
e�

v2

2 dv (change variables by
(log(K))2

u
= v2)

= 2P (Bs > log(K)) :
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A similar analysis holds for (30) as we let � tend to 0:
We now obtain a generalization of (18) for all � and K � 0:
Theorem 2.
For all K � 0 and all real �

E

��
E(2�)t �K

���
= (1�K)� +

p
KE

�
1B2

1��2t exp

�
� (log(K))

2

8B21

��
(36)

Proof. We provide two proofs of theorem 2.

First Proof From relation (3) we need only prove (36) for � = 1
2 :

Let
�
LKt ; t � 0

�
denote the local time at levelK for the martingale (Et; t � 0) :

From the occupation density formula, we have 1Z t

0

f (Es) dhEis =
Z 1

0

f(K)LKt dK (37)

for any positive Borel function f ; since dhEis = (Es)2 ds; we have thatZ 1

0

f(K)E
�
LKt
�
dK =

Z t

0

E
h
f (Es) (Es)2

i
ds (38)

As (38) holds for all functions f it follows that

E
�
LKt
�
= K

Z t

0

dsp
2�s

exp

 
� (log(K) + s)

2

2s

!
(39)

where we have used for the density of Es

fEs(z) =
1

z

1p
2�s

e�
1
2s (log(z)+

s
2 )

2

1z�0 (40)

On developing the square in the exponential in equation (39) we get

E
�
LKt
�
=

p
Kp
2�

Z t

0

dsp
s
exp

�
� (log(K))

2

2s
� s

8

�
(41)

On the other hand, the Ito-Tanaka formula yields

E
�
(Et �K)�

�
= (1�K)� + 1

2
E
�
LKt
�

= (1�K)� +
p
K

2
p
2�

Z t

0

dsp
s
exp

�
� log

2(K)

2s
� s

8

�
(from (41))

= (1�K)� +
p
K

2
p
2�
4

r
�

2
E

�
14B2

1�t exp

�
� log

2(K)

8B21

��
(42)

1Changing variables: K = exp(x) easily yields that LKt = KL
log(K)
t (B(�

1
2
)):
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where we have employed the density of B21 ;

fB2
1
(z) =

1p
2�z

e�
z
2 1z�0:

Formula (36) has thus been proven.�
Second Proof
The result (36) is evidently true for � = 0; and as both sides depend only on

the absolute value of � it su¢ ces to consider just the case � > 0: The derivative
with respect to �; of the right hand side of (36) is

@

@�

�p
KE

�
1B2

1��2t exp

�
� (log(K))

2

8B21

���
= 2

p
K
@

@�

Z �
p
t

0

exp

�
� (log(K))

2

8x2
� x

2

2

�
dxp
2�

=
2
p
Ktp
2�

exp

�
� (log(K))

2

8�2t
� �

2t

2

�
(43)

On the other hand we may directly evaluate the left hand side of (36) using the
Black-Merton-Scholes formula as

E

��
E(2�)t �K

�+�
= N

�
� log(K)
2�
p
t
+ �

p
t

�
�KN

�
� log(K)
2�
p
t
� �

p
t

�
Now we take partials with respect to � to get

@

@�
E

��
E(2�)t �K

�+�
= n

�
� log(K)
2�
p
t
+ �

p
t

��
log(K)

2�2
p
t
+
p
t

�
(44)

�Kn
�
� log(K)
2�
p
t
� �

p
t

��
log(K)

2�2
p
t
�
p
t

�
We now recognize that

n

�
� log(K)
2�
p
t
+ �

p
t

�
= exp

�
� (log(K))

2

8�2t
� �

2t

2

� p
Kp
2�

n

�
� log(K)
2�
p
t
� �

p
t

�
= exp

�
� (log(K))

2

8�2t
� �

2t

2

�
1p

K
p
2�

Substituting back into (44) we get that

@

@�
E

��
E(2�)t �K

�+�
= exp

�
� (log(K))

2

8�2t
� �

2t

2

�
2
p
Ktp
2�

which matches (43), the derivative of the right hand side of (36) with respect
to �: �

9



3 Study of Passage times up to a �nite horizon

In the next theorem, we present jointly an expression (45) for the Azéma sub-

martingale P
�
G
(�)
log(K)(t) < sjFs;t

�
; where t may be considered as �xed, and

the �ltration of reference is (Fs;t) ; s � t; together with Yuri�s formula (47)
Theorem 3.
For every K � 0; � 2 R; s � t :
i)

P
�
G
(�)
log(K)(t) < sjFs;t

�
=

�
1� exp

�
� 2

t� s

�
B(�)s � log(K)

��
B
(�)
t � log(K)

���+
(45)

ii)

K�2�P
�
G
(�)
log(K)(t) < sjB

(�)
s = log(x)

�
(46)

= 1x<K

h
K�2�E

�
E(�2�)u 1

B
(�)
u >log( xK )

�
� x�2�P

�
B(�)u < log

� x
K

��i
+1x>K

h
K�2�E

�
E(�2�)u 1

B
(�)
u <log( xK )

�
� x�2�P

�
B(�)u > log

� x
K

��i
(s � t; u = t� s; x � 0)

iii) (Yuri�s formula)

P
�
G
(�)
log(K)(t) < s

�
= E

��
1�K2�E(2�)s

�+�
(47)

+E
h
sgn

�
1�K2�E(2�)s

�
sgn

�
1�K2�E(2�)t

��
1 ^K2�E(2�)t

�i
Remark 3 a. Equation (45) is from Bentata and Yor (2008).
b. Yuri�s equation (47) is lifted from Akahori, Imamura, and Yano (2008) in

the particular case � = �1=2:
c. Theorem 1, result (ii), is a consequence of equation (45) on letting t tend

to in�nity and observing that

G
(�)
log(K)(t)!t!1 G

(�)
log(K)

and
B
(�)
t

t
!
t!1

� a:s

and then we obtain (27) and (28).
d. An alternative form of equation (46) that we shall use is as follows. For

� > 0

K�2�P
�
G
(�)
log(K)(t) < sjB

(�)
s = log(x)

�
=

�
K�2� � x�2�

�+
+

(1x<K � 1x>K)�h
K�2�E

�
E(�2�)u 1

B
(�)
u >log( xK )

�
� x�2�P

�
B(�)u < log

� x
K

��i
(48)
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while for � < 0

K�2�P
�
G
(�)
log(K)(t) < sjB

(�)
s = log(x)

�
=

�
K�2� � x�2�

�+
+

(1x<K � 1x>K)�h
x�2�P

�
B(�)u > log

� x
K

��
�K�2�E

�
E(�2�)u 1

B
(�)
u <log( xK )

�i
(49)

One goes from (46) to equations (48), (49) on observing that

P
�
B(�)u > log

� x
K

��
= 1� P

�
B(�)u < log

� x
K

��
and

E
�
E(�2�)u 1

B
(�)
u <log( xK )

�
= 1� E

�
E(�2�)u 1

B
(�)
u >log( xK )

�
:

Proof of theorem 3.
a. Proof of equation (45) (See also Bentata and Yor (2008)) We have from

the de�nition of G(�)l (t); for l 2 R :�
G
(�)
l (t) < s

�
= A+s;t [A�s;t

where

A+s;t =
n
8u 2]s; t[; B(�)u > l

o
A�s;t =

n
8u 2]s; t[; B(�)u < l

o
Therefore

P
�
G
(�)
l (t) < sjFs;t

�
= P

�
A+s;tjFs;t

�
+ P

�
A�s;tjFs;t

�
(50)

= 1
B
(�)
s >l

P

�
inf

s�u�t

�
B(�)u �B(�)s

�
> l �B(�)s jB(�)t �B(�)s

�
+1

B
(�)
s <l

P

�
sup
s�u�t

�
B(�)u �B(�)s

�
< l �B(�)s jB(�)t �B(�)s

�
(51)

Thus we need to compute for l; and � = l �B(�)s whereby, for �(��m) > 0

1
B
(�)
s >l

P

�
inf

s�u�t

�
B(�)u �B(�)s

�
> l �B(�)s jB(�)t �B(�)s = m

�
= 1

B
(�)
s >l

P
�
T
(0)
� > t� sjBt�s = m

�
(52)

and

1
B
(�)
s <l

P

�
sup
s�u�t

�
B(�)u �B(�)s

�
< l �B(�)s jB(�)t �B(�)s = m

�
= 1

B
(�)
s <l

P
�
T
(0)
� > t� sjBt�s = m

�
(53)
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We note that the quantities in equations (52) and (53) depend only on t � s
and not the pair (s; t). Furthermore, the law of the bridge from a to b over the
time [0; u] of a Brownian motion with drift � is independent of �: We see that
we need to compute

P
�
T
(0)
� > t� sjBt�s = m

�
= 1� P

�
T
(0)
� < t� sjBt�s = m

�
and it seems to be a well known fact that:

P
(u)
0!m(T� < u) = exp

�
�2(�(��m))

+

u

�
(54)

where P (u)0!m denotes the law of a Brownian bridge of length u starting at 0 and
ending at m: Putting together (51),(52),(53) and (54) with � = l � B(�)s and
m = B

(�)
t �B(�)s we obtain (45).�

We comment upon (54): it is a simple application of the symmetry principle
whereby

P
(u)
0!m (T� > u) = 1� P (u)0!m (T� < u)

=

1p
2�u

exp
�
�m2

2u

�
� 1p

2�u
exp

�
� (2��m)2

2u

�
1p
2�u

exp
�
�m2

2u

�
= 1� exp

 
� (2��m)

2

2u
+
m2

2u

!

= 1� exp
 
�2 (�(��m))

+

u

!
:

In fact, since formula (54) plays a key role in our proof of formula (45), we
feel it is relevant to give some references where it also appears: Guasoni (2004),
formulae (10)-(11), p.85, Pagès ((2008), Proposition 7.3) in his discussion of the
Brownian bridge method for simulating the continuous Euler scheme, Pitman
(1999) while deriving the law of the local time at 0 for a Brownian bridge, Yor
(1997) while discussing Seshadri�s (1988) identities, page 11.
b. Proof of equation (46). We begin by writing

B
(�)
t

law
= eB(�)s +B

(�)
t�s = log(x) +B

(�)
u with u = t� s:

12



We may then write with C = log
�
x
K

�
P
�
G
(�)
log(K)(t) < sjFs

�
= E

�
1� exp

�
2

u

�
log

x

K

��
log

x

K
+B(�)u

���
from(45)

= 1x<KP

�
B(�)u < log

K

x

�
+ 1x>KP

�
B(�)u > log

K

x

�
�1x<KE

�
1
B
(�)
u <log K

x

exp

�
�2C
u

�
C +B(�)u

���
�1x>KE

�
1
B
(�)
u >log K

x

exp

�
�2C
u

�
C +B(�)u

���
:= �+ � � 
 � � (55)

We now make the computations for �; �; 
 and �:

� = 1x<KP

�
B(�)u < log

�
K

x

��
= 1x<KE

 
1
B
(�)
u <log K

x

� E
(�2�)
u

E(�2�)u

!
= 1x<KE

�
1Bu��u<log(Kx )

e2�Bu�2�2u
�
(from (4))

= 1x<KE
�
1�Bu��u<log(Kx )

e�2�Bu�2�2u
� �

since Bu
law
= �Bu

�
= 1x<KE

�
1Bu+�u>log

x
K
E(�2�)u

�
= 1x<KE

�
1
B
(�)
u >log x

K

E(�2�)u

�
(56)

Similarly one shows that

� = 1x>KP

�
B(�)u > log

�
K

x

��
= 1x>KE

�
1
B
(�)
u <log( xK )

E(�2�)u

�
(57)
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For 
 we have that


 = 1x<KE

�
1
B
(�)
u <log(Kx )

exp

�
�2C
u

�
C +B(�)u

���
= 1x<KE

 
1
B
(�)
u <log(Kx )

exp

�
�2C
u

�
C +B(�)u

�� E(�2�)u

E(�2�)u

!

= 1x<KE

�
1
B
(��)
u <log(Kx )

exp

�
�2C
u

�
C +B(��)u

�
+ 2�Bu � 2�2u

��
(from (4))

= 1x<K exp

�
�2C

2

u
+ 2C� � 2�2u

�
E

�
1Bu<�C+�u exp

�
�Bu
u
(2C � 2�u)

��
= 1x<K exp

�
�2C

2

u
+ 2C� � 2�2u

�Z �C+�u

�1

dyp
2�u

e�
y2

2u�
y
u (2C�2�u)

= 1x<K exp

�
�2C

2

u
+ 2C� � 2�2u+ 1

2u
(2C � 2�u)2

�Z �C+�u

�1

dyp
2�u

e�
1
2u (y+2C�2�u)

2

= 1x<K exp (�2C�)
Z C��u

�1

dzp
2�u

e�
z2

2

(after the change of variable y + 2C � 2�u = z)

= 1x<KK
2�x�2�P

�
B(�)u < C

�
(58)

A similar computation yields that

� = 1x>KE

�
1
B
(�)
u >log(Kx )

exp

�
�2C
u

�
C +B(�)u

���
= 1x>KK

2�x�2�P
�
B(�)u > C

�
(59)

Employing the results (56) to (59) back in equation (55) yields (ii) of Theo-
rem 3.�
c. Deriving Yuri�s formula (47)
We work with the case � < 0: The result for � > 0 may be deduced on

utilizing

G
(�)
log(K)(t)

law
= G

(��)
� log(K)(t):

We shall begin with the equivalent form (49). In the following log(x) denotes
the random variable eBs + �s and x�2� denotes the random variable E(�2�)s =

exp
�
�2� eBs � 2�2s� : Furthermore the random variable Bu; for u = t � s; is

14



independent of these random variables. We are given that

K�2�P
�
G
(�)
log(K)(t) < s

�
= eE ��K�2� � x�2�

�+�
�K�2� eE �1x<KE �E(�2�)u 1

B
(�)
u <log( xK )

��
+ eE �1x<Kx�2�P �B(�)u > log

� x
K

���
+K�2� eE �1x>KE �E(�2�)u 1

B
(�)
u <log( xK )

��
� eE �1x>Kx�2�P �B(�)u > log

� x
K

���
: = a� b+ c+ d� e

On the other hand, Yuri�s formula asserts that

K�2�P
�
G
(�)
log(K)(t) < s

�
= E

��
K�2� � E(�2�)s

�+�
�K�2�P

�
E(�2�)s < K�2� ; E(�2�)t > K�2�

�
+E

�
1E(�2�)s <K�2�1E(�2�)t <K�2�E

(�2�)
t

�
+K�2�P

�
E(�2�)s > K�2� ; E(�2�)t > K�2�

�
�E

�
1E(�2�)s >K�2�1E(�2�)t <K�2�E

(�2�)
t

�
(60)

: = a0 � b0 + c0 + d0 � e0

The equality of a and a0 is clear. We now examine the other terms.

� Analysis of the term b.

b = K�2� eE �1x<KE �E(�2�)u 1
B
(�)
u <log( xK )

��
= K�2� eE �1eE(�2�)s <K�2�E

�
E(�2�)u 1exp(�2�Bu�2�2u)<K2� exp(�2� eBs�2�2s)

��
= K�2� eE �1eE(�2�)s <K�2�P

�
exp

�
�2�Bu + 2�2u

�
< K2� exp

�
�2� eBs � 2�2s��� by (4)

= K�2� eE �1eE(�2�)s <K�2�P
�
exp

�
2�(Bu � eBs�� 2�2t� > K�2�

�
= K�2�P

�
E(�2�)s < K�2� ; E(�2�)t > K�2�

�
(since Bu

law
= B�u and replacing eBs by Bs)

= b0

� The equality of d and d0 follows a similar analysis.
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� Analysis of the term c.

c = eE �1x<Kx�2�P �B(�)u > log
� x
K

���
= eE 1eE(�2�)s <K�2�

eE(�2�)s E

"
E(�2�)u

E(�2�)u

1E(�2�)u >K�2� eE(�2�)s

#!
= eE �1eE(�2�)s <K�2�

eE(�2�)s exp
�
2�Bu � 2�2u

�
1
exp(�2�Bu+2�2u)>K�2� eE(�2�)s

�
= eE �1eE(�2�)s <K�2� exp

�
�2�( eBs �Bu)� 2�2t�1exp(�2�( eBs�Bu)�2�2t)�K�2�

�
= E

�
1E(�2�)s <K�2� exp

�
�2�Bt � 2�2t

�
1E(�2�)t <K�2�

�
(from (4))

and replacing eBs by Bs and Bu by (�Bu)
= E

�
1E(�2�)s <K�2�1E(�2�)t <K�2�E

(�2�)
t

�
= c0

The equality of e and e0 is established similarly. This completes the demon-
stration of theorem 3.�

4 Comparing Approaches

In the preceeding we have chosen to prove theorem 1 by using the result of
theorem 0, together with the scaling properties of T (�)a ; G

(�)
a and E(�)t : In fact,

it is also possible to ignore theorem 0 completely, and to prove theorem 1 as
a corollary of Theorem 3. Indeed points i) and ii) of theorem 1 follow from
Theorem 3 by letting t tend to +1 in (45),(46) and (47), and taking expecta-
tions. In completing this agenda we show that theorem 3 also implies point iii)
of theorem 1. We shall only give the proof for � > 0 and K � 1 since the other
cases may be obtained in the same manner. Since it is clear that

P
�
G
(�)
log(K)(t) < sjBs + �s = log(x)

�
= P

�
T
(�)

log(Kx )
� t� s

�
(61)

we get from (46) and (61) with K = 1 and 0 < x < 1 and t� s = u :

P

�
T
(�)

log( 1x )
� u

�
= 1� P

�
T
(�)

log( 1x )
> u

�
= 1� E

�
E(�2�)u 1

B
(�)
u >log(x)

�
+ x�2�P

�
B(�)u < log(x)

�
= 1�

�
1� E

�
E(�2�)u 1

B
(�)
u <log(x)

��
+ x�2�P

�
B(�)u < log(x)

�
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Hence

P

�
T
(�)

log( 1x )
� u

�
= E

�
E(�2�)u 1

B
(�)
u <log(x)

�
+ x�2�P

�
B(�)u < log(x)

�
= E

�
e�2�Bu�2�2u1Bu+�u<log(x)

�
+ x�2�P

�
B(�)u < log(x)

�
= E

�
e2�Bu�2�2u1�Bu+�u<log(x)

�
+ x�2�P

�
B(�)u < log(x)

�
after changing Bu to �Bu:
We then get that

P

�
T
(�)

log( 1x )
� u

�
= E

�
e2�Bu�2�2u1Bu��u>� log(x)

�
+ x�2�P

�
B(�)u < log(x)

�
(62)

We now replace in (62), ( 1x ) by K; with K � 1 to obtain

P
�
T
(�)
log(K) � u

�
= E

�
E(2�)u 1

B
(��)
u >log(K)

�
+K2�P

�
B(��)u > log(K)

�
(63)

or equivalently

P
�
T
(�)
log(K) � u

�
= E

�
E(2�)u 1E(2�)u >K2�

�
+K2�P

�
E(2�)u > K2�

�
(64)

We remark that we have proven (63) for K � 1 and for all �: If instead of
assuming � > 0 we have assumed � < 0 then (63) becomes :

P
�
T
(�)
log(K) � u

�
= E

�
E(2�)u 1E(2�)u <K2�

�
+K2�P

�
E(2�)u < K2�

�
(65)

5 Conclusion

It has been a natural question after looking at Yuri�s formula (47) to give an
explicit expression for

P
�
G
(�)
K (t) � sjFs;t

�
; 8s < t:

This has been achieved in Bentata and Yor (2008) with formula (45):

P
�
G
(�)
K (t) � sjFs;t

�
= 1�exp

�
� 2

t� s

h�
B(�)s � log(K)

��
B
(�)
t � log(K)

�i+�
In fact, this formula turned out to be the key point of the whole story, since as
we showed above in the proof of theorem 3 all the results found in this paper
(except Theorem 2) may be derived from formula (45).
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