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Automorphisms of real rational surfaces and weighted blow-up singularities

Introduction

Let X be a nonsingular compact connected real algebraic surface, i.e. X is a nonsingular compact connected real algebraic subset of some R m of dimension 2. Recall that X is rational if the field of rational functions R(X) of X is a purely transcendent field extension of R of transcendence degree 2. More geometrically, X is rational if there are nonempty Zariski open subsets U and V of R 2 and X, respectively, such that there is an isomorphism of real algebraic varieties-in the sense of [START_REF] Bochnak | Real algebraic geometry[END_REF]-between U and V . Loosely speaking, X is rational if a nonempty Zariski open subset of X admits a rational parametrization by a nonempty Zariski open subset of R 2 (The last condition imposes a priori only that X is unirational but in dimension 2, unirationality implies rationality). A typical example of a rational compact real algebraic surface is the unit sphere S 2 in R 3 . A rational parametrization in that case is the inverse stereographic projection.

It has recently been shown that any rational nonsingular compact real algebraic surface is isomorphic either to the real algebraic torus S 1 × S 1 , or to a real algebraic surface obtained from the real algebraic sphere S 2 by blowing up a finite number of points [START_REF] Biswas | Rational real algebraic models of topological surfaces[END_REF][START_REF] Huisman | The group of automorphisms of a real rational surface is n-transitive[END_REF].

In the sequel, it will be convenient to identify the real algebraic surface X with the affine scheme Spec R(X), where R(X) denotes the R-algebra of all
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algebraic-also called regular-functions on X [START_REF] Bochnak | Real algebraic geometry[END_REF]. A real-valued function f on X is algebraic if there are real polynomials p and q in x 1 , . . . , x m such that q does not vanish on X and such that f = p/q on X. The algebra R(X) is the localization of the coordinate ring R[x 1 , . . . , x m ]/I with respect to the multiplicative system of all polynomials that do not vanish on X, where I denotes the vanishing ideal of X. It is the subring of R(X) of all rational functions on X that do not have any poles on X.

Thanks to the above convention, we can define a curvilinear subscheme of X to be a closed subscheme P of X that is isomorphic to Spec R[x]/(x e ), for some nonzero natural integer e. We call e the length or the order of P . Let P be a curvilinear subscheme of X. The reduced scheme P red is an ordinary point of X.

A curvilinear subscheme of X is also called a curvilinear infinitely near point over P red or an infinitesimal arc based on P red . A curvilinear infinitely near point of length 1 is an ordinary point of X. A curvilinear infinitely near point of length 2 is a pair (P, L), where P is a point of X and L is 1-dimensional subspace of the tangent space T P X of X at P . Equivalently, a curvilinear infinitely near point P of X of length 2 is a point of the exceptional divisor of the real algebraic surface obtained by blowing up X in an ordinary point. By induction, a curvilinear infinitely near point of X of length e is a curvilinear infinitely near point of length e-1 on the exceptional divisor E of a blow-up of X (cf. [START_REF] Mumford | Algebraic geometry I, Complex projective varieties[END_REF]p. 171]).

Let P and Q be curvilinear subschemes of X. We say that P and Q are distant if the points P red and Q red of X are distinct.

Let n be a natural integer and let e = [e 1 , . . . , e ℓ ] be a partition of n, where ℓ is some natural integer. Denote by X e the set of ℓ-tuples (P 1 , . . . , P ℓ ) of mutually distant curvilinear subschemes P 1 , . . . , P ℓ of X of orders e 1 , . . . , e ℓ , respectively.

Recall that an algebraic automorphism of X is a bijective map f from X into itself such that all coordinate functions of f and f -1 are algebraic functions on X [START_REF] Huisman | The group of automorphisms of a real rational surface is n-transitive[END_REF]. Denote by Aut(X) the group of algebraic automorphisms of X into itself. Equivalently, Aut(X) is the group of R-algebra automorphisms of R(X). One has a natural action of Aut(X) on X e . One of the main results of the paper is the following.

Theorem 1.1. Let X be a nonsingular rational compact real algebraic surface. Let n be a natural integer and let e = [e 1 , . . . , e ℓ ] be a partition of n, for some natural integer ℓ. Then the group Aut(X) acts transitively on X e .

Roughly speaking, Theorem 1.1 states that the group Aut(X) acts ℓtransitively on curvilinear infinitely near points of X, for any ℓ. The statement generalizes earlier work where l-transitivity was proved for ordinary points only, i.e., in case of the trivial partition e = [1, . . . , 1] (cf. [START_REF] Huisman | The group of automorphisms of a real rational surface is n-transitive[END_REF]).

The statement of Theorem 1.1 motivates the following question.

Question 1.2. Let X be a nonsingular rational compact real algebraic surface. Is the subset Aut(X) of algebraic automorphisms of X dense in the set Diff(X) of all diffeomorphisms of X? Equivalently, can any diffeomorphism of X be approximated by algebraic automorphisms?

This question is studied in the forthcoming paper [START_REF] Kollár | Cremona transformations and homeomorphisms of surfaces[END_REF].

The problem of approximating smooth maps between real algebraic varieties by algebraic maps has been studied by numerous authors [BK87a, BK87b, BKS97, Ku99, JK03, JM04, Ma06].

It should be noted that Theorem 1.1 does not seem to follow from the known n-transitivity of Aut(X) on ordinary points. The difficulty is that if two n-tuples P and Q of ordinary distinct points of X tend to two ℓ-tuples of mutually distant curvilinear infinitely near points with lengths e 1 , . . . , e ℓ , then the algebraic diffeomorphisms mapping P to Q do not necessarily have a limit in Aut(X).

Our proof of Theorem 1.1 goes as follows. First we show that the statement of Theorem 1.1 is valid for the real algebraic surfaces S 2 and S 1 × S 1 by explicit construction of algebraic automorphisms (see Theorems 3.1 and 2.1). This step does use the earlier work mentioned above. Then, we use the fore-mentioned fact that an arbitrary nonsingular rational compact real algebraic surface is either isomorphic to S 1 × S 1 , or to a real algebraic surface obtained from S 2 by blowing up a finite number of distinct ordinary points [START_REF] Huisman | The group of automorphisms of a real rational surface is n-transitive[END_REF]Theorem 4.3].

In order to give an application of Theorem 1.1, we need to recall the following. Let X be a nonsingular rational compact connected real algebraic surface, and let P be a curvilinear infinitely near point of X. The blow-up of X at P is the blow-up B P (X) of X at the sheaf of ideals defined by the closed subscheme P . Explicitly, if P is defined by the ideal (x e , y) on the real affine plane R 2 , then the blow-up of R 2 at P is the real algebraic subvariety of R 2 × P 1 (R) defined by the equation vx e -uy = 0, where (u : v) are homogeneous coordinates on the real projective line P 1 (R). The blowup B P (X) is also called a weighted blow-up, for obvious reasons. If e = 1, the blow-up B P (X) is the ordinary blow-up of X at P . If e ≥ 2 then the blowup B P (X) has a singular point. A local equation of the singularity is x e = uy in R 3 . This is often called a singularity of type A - e-1 (see e.g. [Ko00, Definition 2.1]).

Note that weighted blow-ups recently turned out to have several applications in real algebraic geometry (see [START_REF] Kollár | Real algebraic threefolds III. Conic bundles[END_REF][START_REF] Kollár | Real algebraic threefolds IV. Del Pezzo fibrations[END_REF][START_REF] Catanese | Real singular Del Pezzo surfaces and threefolds fibred by rational curves[END_REF][START_REF] Catanese | Real singular Del Pezzo surfaces and threefolds fibred by rational curves[END_REF]).

We apply our results, and study singular real rational surfaces that are obtained from nonsingular ones by performing weighted blow-ups. The latter surfaces get horns and appear as rather diabolic to us, and will be referred to, for brevity, by the following term.

Definition 1.3. A singular real compact surface X is Dantesque if it is obtained from a nonsingular real algebraic surface Y by performing a finite number of weighted blow-ups.

The following statement implies that any rational Dantesque surface is obtained from S 1 × S 1 or S 2 by blowing-up a finite number of mutually distant curvilinear subschemes of S 1 × S 1 or S 2 , respectively. Note that in particular, such a surface is connected.

Theorem 1.4. Let X be a rational Dantesque surface. Then

• there are mutually distant curvilinear subschemes P 1 , . . . , P ℓ on S 1 × S 1 such that X is isomorphic to the real algebraic surface obtained from S 1 × S 1 by blowing up P 1 , . . . , P ℓ , or

• there are mutually distant curvilinear subschemes P 1 , . . . , P ℓ on S 2 such that X is isomorphic to the real algebraic surface obtained from S 2 by blowing up P 1 , . . . , P ℓ .

On a singular surface, a curvilinear infinitely near point P is nonsingular if P red is a nonsingular point.

Let X be a rational Dantesque surface. Let n be a natural integer and let e = [e 1 , . . . , e ℓ ] be a partition of n, where ℓ is some natural integer. Denote by X e the set of ℓ-tuples (P 1 , . . . , P ℓ ) of mutually distant nonsingular curvilinear subschemes P 1 , . . . , P ℓ of X of orders e 1 , . . . , e ℓ , respectively.

Denote again by Aut(X) the group of algebraic automorphisms of the possibly singular real algebraic surface X. Note that the definition of algebraic automorphism above makes perfectly sense for singular varieties. Alternatively, one can define an algebraic automorphism of X to be an automorphism of Spec R(X). Anyway, one has a natural action of Aut(X) on X e .

We have the following generalization of Theorem 1.1 above.

Theorem 1.5. Let X be a rational Dantesque surface. Let n be a natural integer and let e = [e 1 , . . . , e ℓ ] be a partition of n, for some natural integer ℓ.

Then the group Aut(X) acts transitively on X e .

As an application of Theorem 1.1 and Theorem 1.4, we prove the following statement.

Theorem 1.6. Let n be a natural integer and let e = [e 1 , . . . , e ℓ ] be a partition of n, for some natural integer ℓ. Let X and Y be two rational Dantesque surfaces. Assume that each of the surfaces X and Y contains exactly one singularity of type A - e i for each i = 1, . . . , ℓ. Then X and Y are isomorphic as real algebraic surfaces if and only if they are homeomorphic as singular topological surfaces.

Theorem 1.6 generalizes to certain singular real rational surfaces an earlier result for nonsingular ones ([BH07, Theorem 1.2] and [HM08, Theorem 1.5]). We will show by an example that the statement of Theorem 1.6 does not hold for the slightly more general class of real rational compact surfaces that contain singularities of type A -(see Example 7.1).
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Infinitely near points on the torus

The object of this section is to prove Theorem 1.1 in the case of the real algebraic torus: Theorem 2.1. Let n be a natural integer and let e = [e 1 , . . . , e ℓ ] be a partition of n, for some natural integer ℓ. The group Aut(S 1 × S 1 ) acts transitively on (S 1 × S 1 ) e .

The above statement is a generalization of the following statement, that we recall for future reference.

Theorem 2.2 ([BH07, Theorem 1.3]).

Let n be a natural integer. The group Aut(S 1 × S 1 ) acts n-transitively on S 1 × S 1 .

For the proof of Theorem 2.1, we need several lemmas. It will turn out to be convenient to replace S 1 by the isomorphic real projective line P 1 (R).

Lemma 2.3. Let p, q ∈ R[x] be real polynomials in x of the same degree. Suppose that q does not have any real roots. Define

ϕ : P 1 (R) × P 1 (R) -→ P 1 (R) × P 1 (R) by ϕ(x, y) = x, y + p q .
Then ϕ is an algebraic automorphism of

P 1 (R) × P 1 (R) into itself.
Proof. It suffices to prove that ϕ is an algebraic map. We write ϕ in bihomogeneous coordinates:

ϕ([x 0 : x 1 ], [y 0 : y 1 ]) = ([x 0 : x 1 ], [q(x 0 , x 1 )y 0 + p(x 0 , x 1 )y 1 : q(x 0 , x 1 )y 1 ]) ,
where p and q are the homogenizations of p and q, respectively. Since q has no real zeros, the homogeneous polynomial q does not vanish on P 1 (R). Therefore, if q(x 0 , x 1 )y 0 + p(x 0 , x 1 )y 1 = 0, and q(x 0 , x 1 )y 1 = 0 then y 1 = 0 and y 0 = 0. It follows that ϕ is a well defined algebraic map from P 1 (R) × P 1 (R) into itself.

Definition 2.4. Let P be a curvilinear infinitely near point of a nonsingular compact real algebraic surface X. If R is an ordinary point of X, then P is said to be infinitely near to R if P red = R.

Definition 2.5. Let P be a curvilinear infinitely near point of S 1 × S 1 . We say that P is vertical if P is tangent to a vertical fiber {x} × S 1 , for some x ∈ S 1 , i.e. if the scheme-theoretic intersection P • ({x} × S 1 ) is not reduced.

Lemma 2.6. Let P 1 , . . . , P ℓ be mutually distant curvilinear subschemes of P 1 (R)× P 1 (R). Then there is an algebraic diffeomorphism ϕ of P 1 (R)

× P 1 (R) such that • ϕ(P i ) is infinitely near to the point (i, 0) of P 1 (R) × P 1 (R), and • ϕ(P i ) is not vertical, for all i.
Proof. By Theorem 2.2, we may assume that P 1 , . . . , P ℓ are infinitely near to the points (1, 0), . . . , (ℓ, 0) of the real algebraic torus P 1 (R) × P 1 (R), respectively.

Let v i = (a i , b i ) be a tangent vector to P 1 (R)× P 1 (R) at P i that is tangent to P i . This means the following. If P i is an ordinary point then v i = 0. If P i is not an ordinary point then v i = 0 and the 0-dimensional subscheme of P 1 (R) × P 1 (R) of length 2 defined by v i is contained in the closed subscheme P of P 1 (R) × P 1 (R).

Let p, q ∈ R[y] be real polynomials in y of the same degree such that • q does not have any real roots,

• p(0) = 0, q(0) = 1, q ′ (0) = 0 and

• a i + b i p ′ (0) = 0 whenever v i = 0. Define ϕ : P 1 (R) × P 1 (R) -→ P 1 (R) × P 1 (R) by ϕ(x, y) = x + p q , y .
According to Lemma 2.3-exchanging x and y-the map ϕ is an algebraic automorphism of P 1 (R) × P 1 (R). Since p(0) = 0, one has ϕ((i, 0)) = (i, 0). It follows that ϕ(P i ) is also infinitely near to (i, 0). The Jacobian of ϕ at (i, 0) is equal to

D (i,0) ϕ = 1 p ′ (0)q(0)-p(0)q ′ (0) q(0) 2 0 1 = 1 p ′ (0) 0 1
By construction, (D (i,0) ϕ)v i has first coordinate non zero whenever v i = 0. Therefore, ϕ(P i ) is not vertical, for all i.

Proof of Theorem 2.1. Let P 1 , . . . , P ℓ be mutually distant curvilinear subschemes of the real algebraic torus P 1 (R) × P 1 (R) of orders e 1 , . . . , e ℓ , respectively. Let Q i be the curvilinear infinitely near point of P 1 (R) × P 1 (R) defined by the ideal ((x-i) e i , y) in R(P 1 (R)×P 1 (R)). It suffices to show that there is an algebraic automorphism

ϕ of P 1 (R)×P 1 (R) such that ϕ(Q i ) = P i for all i.
By Lemma 2.6, we may assume that the curvilinear infinitely near point P i is infinitely near to (i, 0) and that ϕ(P i ) is not vertical. It follows that P i is defined by an ideal of the form

((x -i) e i , y -f i ),
where

f i ∈ R[x].
Let p, q ∈ R[x] be of the same degree such that

• q does not have any real roots,

• p = f i q modulo (x -i) e i for all i.

Such polynomials abound by the Chinese Remainder Theorem. By Lemma 2.3, the polynomials p and q give rise to an algebraic automorphism ϕ of P 1 (R) × P 1 (R) defined by ϕ(x, y) = x, y + p q .

In order to show that ϕ(Q i ) = P i for all i, we compute

(ϕ -1 ) ⋆ ((x -i) e i ) = (x -i) e i and (ϕ -1 ) ⋆ (y) = y - p q = y -f i modulo (x-i) e i .
Indeed, q is invertible modulo (x-i) e i , and p = f i q modulo (x -i) e i , by construction of p and q. It follows that ϕ(Q i ) = P i .

Infinitely near points on the unit sphere

The object of this section is to prove Theorem 1.1 in the case of the real algebraic sphere S 2 : Theorem 3.1. Let n be a natural integer and let e = [e 1 , . . . , e ℓ ] be a partition of n, for some natural integer ℓ. The group Aut(S 2 ) acts transitively on (S 2 ) e .

The above statement is a generalization of the following statement, that we recall for future reference.

Theorem 3.2 ([HM08, Theorem 2.3]). Let n be a natural integer. The group Aut(S 2 ) acts n-transitively on S 2 .

For the proof of Theorem 3.1, we need several lemmas. Lemma 3.3 ([HM08, Lemma 2.1]). Let p, q, r ∈ R[x] be such that

• r does not have any roots in the interval [-1, 1], and

• p 2 + q 2 = r 2 . Define ϕ : S 2 -→ S 2 by ϕ(x, y, z) = x, yp -zq r , yq + zp r .
Then ϕ is an algebraic automorphism of S 2 .

Definition 3.4. Let P be infinitely near to a point of the equator {z = 0} of S 2 . We say that P is vertical if P is tangent to the great circle of S 2 passing through the North pole.

As for the torus above, we need some standard points on S 2 . Let

R i = (x i , y i , z i ) = cos( iπ 2ℓ+1
), sin( iπ 2ℓ+1 ), 0 for i = 1, . . . , ℓ. Note that x i = 0 and y i = 0 for all i.

Lemma 3.5. Let P 1 , . . . , P ℓ be mutually distant curvilinear subschemes of S 2 . Then there is an algebraic automorphism ϕ of S 2 such that

• ϕ(P i ) is infinitely near to R i , and • ϕ(P i ) is not vertical, for all i.

Proof. By Theorem 3.2, we may assume that P i is infinitely near to the point R i , for all i. Let v i = (a i , b i , c i ) be a tangent vector to S 2 at P i that is tangent to P i . Let p, q, r ∈ R[x] be such that

• r does not vanish on [-1, 1],

• p 2 + q 2 = r 2 ,

• p(0) = 1, q(0) = 0, r(0) = 1, p ′ (0) = 0, r ′ (0) = 0, and • a i -c i y i q ′ (0) = 0 or b i + c i x i q ′ (0) = 0, whenever v i = 0. Such polynomials abound. Take, for example,

p(z) = (1 + z 2 ) 2 -(λz) 2 , q(z) = 2(1 + z 2 )λz, r(z) = (1 + z 2 ) 2 + (λz) 2 ,
where λ is any real number such that a i -

2λy i c i = 0 or b i + 2λx i c i = 0 whenever v i = 0. Define ϕ : S 2 -→ S 2 by ϕ(x, y, z) = xp(z) -yq(z) r(z) , xq(z) + yp(z) r(z) , z .
According to Lemma 3.3-permuting the roles of x, y, z-the map ϕ is an algebraic automorphism of S 2 . Since p(0) = 1, q(0) = 0 and r(0) = 1, the curvilinear infinitely near point ϕ(P i ) is again infinitely near to R i , for all i.

The Jacobian of ϕ at R i is equal to

D R i ϕ =    p(0) r (0) 
-q(0) r(0)

x i p ′ (0)r(0)-y i q ′ (0)r(0)-x i p(0)r ′ (0)+y i q(0)r ′ (0) r(0) 2 q(0) r(0) p(0) r(0)

x i q ′ (0)r(0)+y i p ′ (0)r(0)-x i q(0)r ′ (0)-y i p(0)r ′ (0) r(0) 2 0 0 1    =   1 0 -y i q ′ (0) 0 1 x i q ′ (0) 0 0 1  
By construction, (D R i ϕ)v i has first or second coordinate non zero whenever v i = 0. Therefore, ϕ(P i ) is not vertical, for all i.

Lemma 3.6. Let e be a nonzero natural integer, and let i ∈ {1, . . . , ℓ}. Let f, g, h ∈ R[x]/(x -x i ) e be such that

(3.7) x 2 + f 2 = 1, and x 2 + g 2 + h 2 = 1 in R[x]/(x -x i ) e . Assume, moreover, that f (x i ) = g(x i ) = y i . Then there is a ∈ R[x]/(x -x i ) e such that (3.8) (1 -a 2 )f = (1 + a 2 )g, and 2af = (1 + a 2 )h in R[x]/(x -x i ) e
. Moreover, there is such an element a such that 1 + a 2 is invertible in R[x]/(x -x i ) e .

Proof. If h = 0 then f = g, and one can take a = 0. Therefore, we may assume that h = 0. Let d be the valuation of h, i.e., h = (x -x i ) d h ′ , where

h ′ ∈ R[x]/(x -x i ) e is invertible. Since f (x i ) = g(x i
), one has h(x i ) = 0, i.e., h is not invertible in R[x]/(x -x i ) e and d = 0. By Hensel's Lemma, there are lifts f , g, h in R[x]/(x -x i ) e+2d of f, g, h, respectively, satisfying the equations (3.7) in the ring R

[x]/(x-x i ) e+2d . Note that f +g is invertible in R[x]/(x -x i ) e+2d
, and that h has valuation d.

In order to simplify notation, we denote again by f, g, h the elements f , g, h, respectively. Let k ∈ R[x]/(x -x i ) e+2d be the inverse of f + g. Let a = hk. We verify that equations (3.8) hold and that 1

+ a 2 is invertible in R[x]/(x -x i ) e . The element 1 + a 2 is clearly invertible in R[x]/(x -x i ) e+2d since h is not invertible. Since (f -g)(f + g) = f 2 -g 2 = (1 -x 2 ) -(1 -x 2 -h 2 ) = h 2 , one has f -g = h 2 k = h 2 k 2 (f + g) = a 2 (f + g). It follows that (1 -a 2 )f = (1 + a 2 )g in R[x]/(x -x i ) e+2d
, and therefore also in R[x]/(x -x i ) e . In order to prove that the other equation of (3.8) holds as well, observe that

(f -g) 2 h -2f (f -g)h + h 3 = (f -g)h(f -g -2f ) + h 3 = -(f -g)h(f + g) + h 3 = -(f 2 -g 2 )h + h 3 = 0
by what we have seen above. Substituting f -g = ah, one obtains

0 = a 2 h 3 -2af h 2 + h 3 = h 2 (a 2 h -2af + h) in R[x]/(x -x i ) e+2d . Since the valuation of h is equal to d, one deduces that a 2 h -2af + h = 0 in R[x]/(x -x i ) e .
Hence, 2af = (1 + a 2 )h, as was to be proved.

Proof of Theorem 3.1. Let P 1 , . . . , P ℓ be mutually distant curvilinear subschemes of S 2 of orders e 1 , . . . , e ℓ , respectively. Let Q i be the curvilinear infinitely near point of S 2 defined by the ideal

((x -x i ) e i , y -f i , z) in R[x, y, z]
, where f i is the Taylor polynomial in x -x i of √ 1 -x 2 at x i of order e i -1. Note that Q i is infinitely near to R i for all i. We show that there is an algebraic automorphism ϕ of S 2 such that ϕ(Q i ) = P i for all i.

By Lemma 3.5, we may assume that P 1 , . . . , P ℓ are infinitely near to the points R 1 , . . . , R ℓ of S 2 , respectively, and that they are not vertical. It follows that P i is defined by an ideal of the form ((x -x i ) e i , y -g i , z -h i ) where g i , h i ∈ R[x] are of degree < e i . Moreover, since P i is a curvilinear infinitely near point of S 2 , we have

x 2 + g 2 i + h 2 i = 1 (mod (x -x i ) e i ). By Lemma 3.6, there is a i ∈ R[x]/(x -x i ) e i such that (1 -a 2 i )f i = (1 + a 2 i )g i , and 2a i f i = (1 + a 2 i )h i in R[x]/(x -x i ) e i ,
and, moreover, 1 + a 2 i is invertible. By the Chinese Remainder Theorem, there is a polynomial a

∈ R[x] such that a = a i (mod (x -x i ) e i ), for all i. Then (1 -a 2 )f i = (1 + a 2 )g i (mod (x -x i ) e i ) 2af i = (1 + a 2 )h i (mod (x -x i ) e i ),
and 1 + a 2 is invertible in R[x]/(x -x i ) e i , for all i.

Put p = 1 -a 2 , q = 2a, r = 1 + a 2 . Then

pf i = rg i (mod (x -x i ) e i ) qf i = rh i (mod (x -x i ) e i ),
and r is invertible in R[x]/(x -x i ) e i , for all i. Moreover,

• r does not have any roots in the interval [-1, 1], and

• p 2 + q 2 = r 2 . By Lemma 3.3, the polynomials p, q, r give rise to an algebraic automorphism ϕ of S 2 defined by ϕ(x, y, z) = x, yp -zq r , yq + zp r .

In order to show that ϕ(Q i ) = P i for all i, we compute

(ϕ -1 ) ⋆ ((x -x i ) e i ) = (x -x i ) e i u i = (ϕ -1 ) ⋆ (y -f i ) = yp + zq r -f i v i = (ϕ -1 ) ⋆ (z) = -yq + zp r , so that ϕ(Q i ) is the curvilinear infinitely near point of S 2 defined by the ideal ((x -x i ) e i , u i , v i ). We have p r u i - q r v i = y - p r f i = y -g i (mod (x -x i ) e i ) and q r u i + p r v i = z - q r f i = z -h i (mod (x -x i ) e i ).
It follows that ϕ(Q i ) = P i .

algebraic automorphisms of nonsingular rational surfaces

The proof of Theorem 1.1 is now similar to the proof of [HM08, Theorem 1.4]. We include it for convenience of the reader.

Proof of Theorem 1.1. Let X be a nonsingular real rational surface, and let (P 1 , . . . , P ℓ ) and (Q 1 , . . . , Q ℓ ) be two ℓ-tuples in X e . As mentioned before, X is isomorphic to S 1 × S 1 or to the blow-up of S 2 at a finite number of distinct points R 1 , . . . , R m . If X is isomorphic to S 1 × S 1 then Aut(X) acts transitively on X e Theorem 2.1. Therefore, we may assume that X is isomorphic to the blow-up B R 1 ,...,Rm (S 2 ) of S 2 at R 1 , . . . , R m . Moreover, we may assume that the points (P 1 ) red , . . . , (P n ) red , (Q 1 ) red , . . . , (Q n ) red do not belong to any of the exceptional divisors, by [HM08, Theorem 3.1]. Thus we can consider the P j , Q j as curvilinear subschemes of S 2 . It follows that (R 1 , . . . , R m , P 1 , . . . , P ℓ ) and (R 1 , . . . , R m , Q 1 , . . . , Q ℓ ) are two (m+ℓ)-tuples in (S 2 ) f , where f = [1, . . . , 1, e 1 , . . . , e ℓ ].

By Theorem 3.1, there is an automorphism ψ of S 2 such that ψ(R i ) = R i , for all i, and ψ(P j ) = Q j , for all j. The induced automorphism ϕ of X has the property that ϕ(P j ) = Q j , for all j.

Rational surfaces with A -singularities

The object of this section is to prove Theorem 1.4 that asserts that a real rational weighted blow-up surface is isomorphic to a real algebraic surface obtained from S 2 or S 1 × S 1 by blowing up a finite number of mutually distant curvilinear subschemes.

The following is a particular case of [HM08, Theorem 3.1].

Lemma 5.1. Let X be a nonsingular rational real algebraic Klein bottle Let S be a finite subset of X. Then there is an algebraic map f :

X → S 2 such that (1) f is the blow-up of S 2 at 2 distinct real points Q 1 , Q 2 , and (2) 
Q i ∈ f (S), for i = 1, 2.
Lemma 5.2. Let P be a curvilinear infinitely near point of S 1 × S 1 , and let C be a real algebraic curve in S 1 × S 1 such that there is a nonsingular projective complexification X of S 1 × S 1 having the following properties:

(1) the Zariski closure C of C in X is nonsingular and rational,

(2) the self-intersection of C in X is even and non-negative, (3) P red ∈ C, and (4) C is not tangent to P , i.e., the scheme-theoretic intersection P • C is of length 1. Then, there is an algebraic map

f : B P (S 1 × S 1 ) → Z
that is a blow-up at a curvilinear infinitely near point Q whose exceptional curve f -1 (Q red ) is equal to the strict transform of C in B P (S 1 ×S 1 ), where Z is either the real algebraic torus S 1 × S 1 , or the rational real algebraic Klein bottle K.

Proof. Let Y be the blow-up of S 1 × S 1 at P . Let β : Y → X be the blow-up of X at P . It is clear that Y is a nonsingular projective complexification of Y .

Let m+1 be the length of the curvilinear infinitely near point P , where m ≥ 0. Let ρ : Y → Y be the minimal resolution of Y. If P is a point of length 1, then ρ = id, of course. The morphism β •ρ is a repeated blow-up of X . More precisely, there is a sequence of morphisms of algebraic varieties over R

Y = X m+1 fm / / X m f m-1 / / • • • f 0 / / X 0 = X ,
with the following properties. Each morphism f i is an ordinary blow-up of X i at a nonsingular ordinary real point P i of X i , for all i. One has P 0 = P red , i.e., f 0 is the blow-up of X at P red . Moreover, denoting by E i the exceptional curve of f i in X i+1 , the center of blow-up P i+1 belongs to E i but does not belong to the strict transform of any of the curves E j in X i+1 for all j < i.

Denote again by E i and C the strict transforms of E i and C in Y, respectively. The curves E 0 , . . . , E m-1 have self-intersection -2, the curve E m has self-intersection -1. Since C is not tangent to P , the curve C in Y has odd self-intersection ≥ -1. The curves C, E 0 , . . . , E m form a chain of curves over R in Y, intersecting in real points only (See Figure 1). The morphism ρ : Y → Y is the contraction of the curves E 0 , . . . , E m-1 . The morphism β : Y → X is the contraction of ρ(E m ), i.e., β -1 (P red ) = ρ(E m ).

Let k be the self-intersection of C in Y. Since k ≥ -1 and k ≡ -1 (mod 2), the integer k + 1 is even and non-negative. Let R 1 , . . . , R k+1 be pairwise complex conjugate of C. Denote by Y ′ the blow-up of Y in R 1 , . . . , R k+1 . The algebraic variety Y ′ is again defined over R. The strict transform of C in Y ′ is a nonsingular rational curve of self-intersection -1. 

Denote again by

E i the strict transform of E i in Y ′ . The self-intersection of E i is equal to -2, if i = m, the self-intersection of E m is equal to -1.
Let Y ′ be the algebraic surface defined over R obtained from Y ′ by contracting the union of the curves E 0 . . . , E m-1 to a point, and let ρ ′ : Y ′ → Y ′ be the contracting morphism. Let X ′ be the algebraic surface defined over R obtained from Y ′ by contracting ρ ′ (C) to a point, and let β ′ : Y ′ → X ′ be the contracting morphism. Since β ′ • ρ ′ is a repeated blow-down of -1-curves, the algebraic surface X ′ is nonsingular. Moreover, the morphism β ′ is a blow-up of X ′ at a nonsingular curvilinear infinitely near point Q of X ′ . Denote again by C the curve ρ ′ (C) in Y ′ . The curve C in Y ′ is the exceptional curve of β ′ . Now take the associated real algebraic varieties, denoted by the corresponding roman characters. Since the points R 1 , . . . , R k+1 are non real, one has Y ′ (R) = Y(R), i.e., Y ′ = Y , the minimal resolution of Y . It follows that Y ′ = Y , and that the induced algebraic map b : Y ′ → X ′ is the blow-up of the curvilinear infinitely near point Q of the nonsingular compact connected real algebraic surface X ′ . The exceptional curve of b is equal to the strict transform of C in Y .

The only thing that is left to prove is the fact that the real algebraic surface X ′ is isomorphic to S 1 × S 1 or to the rational real algebraic Klein bottle K. In order to establish this, observe that Y , as an (m + 1)-fold blow-up of S 1 × S 1 , is homeomorphic to the connected sum of S 1 × S 1 and m + 1 copies of P 2 (R). Since Y ′ also is homeomorphic to the connected sum of X ′ and m + 1 copies of P 2 (R), it follows that X ′ is homeomorphic to a torus or a Klein bottle. By [Ma06, Theorem 1.3], or [BH07, Theorem 1.2], or [HM08, Theorem 1.5], X ′ is isomorphic to S 1 × S 1 or the rational real algebraic Klein bottle K.

A similar, but easier, argument applies and proves the following lemma.

Lemma 5.3. Let P be a curvilinear infinitely near point of S 2 , and let C be a real algebraic curve in S 2 such that there is a nonsingular projective complexification X of S 2 having the following properties:

(1) the Zariski closure C of C in X is nonsingular and rational, (2) the self-intersection of C in X is even and non-negative, (3) P red ∈ C, and (4) C is not tangent to P , i.e., the scheme-theoretic intersection P • C is of length 1. Then, there is an algebraic map

f : B P (S 2 ) → S 2
that is the blow-up of S 2 at a curvilinear infinitely near point Q. Moreover, the exceptional curve f -1 (Q) is equal to the strict transform of C in B P (S 2 ).

Proof of Theorem 1.4. There is a nonsingular real rational compact surface Y such that X is isomorphic to the real algebraic surface obtained from Y by repeatedly blowing up a nonsingular curvilinear infinitely near point. Since Y is a nonsingular rational compact real algebraic surface, Y is obtained either from S 2 or from S 1 × S 1 , by repeatedly blowing up an ordinary point (cf. [BH07, Theorem 3.1] or [HM08, Theorem 4.1]). Hence, there is a sequence of algebraic maps

X = X n fn / / X n-1 f n-1 / / • • • f 1 / / X 0 = Z ,
where Z = S 2 or Z = S 1 ×S 1 , and each map f i is a blow-up at a nonsingular curvilinear infinitely near point Q i of X i-1 , possibly of length 1, for i = 1, . . . , n. Denote by E i the exceptional divisor f -1 i ((Q i ) red ) of f i in X i . Let F be the set of the curvilinear infinitely near points Q i . Define a partial ordering on F by

Q i ≤ Q j if the composition f i • • • • • f j-1 maps (Q j ) red to (Q i ) red .
It is clear that F is a forest, i.e., a disjoint union of trees.

Let s be the number of edges in the forest F. We show the statement of the theorem by induction on s. The statement is clear for s = 0. Suppose, therefore, that s = 0. We may assume that Q 1 is the root of a tree of F of nonzero height.

Let C be a real algebraic curve in Z satisfying the conditions of Lemma 5.2 if Z = S 1 × S 1 , and of Lemma 5.3 if Z = S 2 , with P = (Q 1 ) red . Such curves abound: one can take a bi-degree (1, 1) in S 1 × S 1 , or a Euclidean circle in S 2 , respectively. Moreover, we may assume that the strict transform of C in X i does not contain (Q i+1 ) red , for all i ≥ 1. Applying Lemma 5.2 and Lemma 5.3, respectively, one obtains a sequence

X = X n fn / / X n-1 f n-1 / / • • • f 2 / / X 1 f ′ 1 / / X ′ 0 = Z ′ ,
where f ′ 1 contracts the strict transform of C in X 1 to a point Q ′ 1 . The real algebraic surface Z ′ is either the real algebraic sphere S 2 , or the real algebraic torus S 1 × S 1 , or the rational real algebraic Klein bottle K. By construction, the number of edges in the forest F ′ associated to the latter sequence of blow-ups is equal to s-1. Therefore, if Z ′ = S 2 or Z ′ = S 1 ×S 1 , we are done. If Z is the real algebraic Klein bottle K, then, according to Lemma 5.1, there is a sequence of blow-ups

Z ′ = X ′ 0 f 0 / / X ′ -1 f -1 / / X -2 = S 2
at ordinary points such that the images of the centers Q ′ 1 , Q 2 , . . . , Q n in X -1 and X -2 are distinct from the centers of the blow-ups f 0 and f -1 . We conclude also in this case by the induction hypothesis.

A close inspection of the above proof reveals that the following slightly more technical statement holds.

Theorem 5.4. Let X be a rational Dantesque surface, and let S ⊆ X be a finite subset of nonsingular points of X. Then there is an algebraic map f : X → S 2 or f : X → S 1 × S 1 with the following properties:

(1) there are mutually distant curvilinear subschemes P 1 , . . . , P ℓ on S 2 or S 1 × S 1 , respectively, such that f is the blow-up at P 1 , . . . , P ℓ , and (2) (P i ) red ∈ f (S), for all i.

Infinitely near points on a singular rational surface

The object of this section is to prove Theorem 1.5.

Proof of Theorem 1.5. Let (P 1 , . . . , P ℓ ) and (Q 1 , . . . , Q ℓ ) be two elements of X e . We prove that there is an algebraic automorphism ϕ of X such that ϕ(P i ) = Q i , as curvilinear infinitely near points.

Let S be the set of ordinary points (P 1 ) red , . . . , (P ℓ ) red , (Q 1 ) red , . . . , (Q ℓ ) red of X. Since S is a finite set of nonsingular points of X, there is, by Theorem 5.4, an algebraic map f : X → S 2 or f : X → S 1 × S 1 with the following properties:

• there are mutually distant curvilinear subschemes R 1 , . . . , R m on S 2 such that f is the blow-up at R 1 , . . . , R m , and • (R i ) red ∈ f (S), for all i. Since f is an isomorphism at a neighborhood of S, the image f (P i ) is a curvilinear infinitely near point of S 2 of length e i , and the same holds for f (Q i ), for all i.

By Theorems 2.1 and 3.1, there is an algebraic automorphism ψ of S 2 or S 1 × S 1 , respectively, such that ψ(P i ) = Q i for i = 1, . . . , ℓ, and ψ(R i ) = R i for i = 1, . . . , m. Then, ψ induces an algebraic automorphism ϕ of X with the required property.

Isomorphic rational real algebraic surfaces

Proof of Theorem 1.6. Let X and Y be rational Dantesque surfaces, such that each of the surfaces X and Y contains exactly one singularity of type A - e i , for each i = 1, . . . , ℓ.

If X and Y are isomorphic, then, of course, the singular topological surfaces X and Y are homeomorphic.

Conversely, suppose that X and Y are homeomorphic. By Theorem 1.4, there are nonsingular real rational surfaces X ′ and Y ′ , and ℓ-tuples (P 1 , . . . , P ℓ ) ∈ (X ′ ) e and (Q 1 , . . . , Q ℓ ) ∈ (Y ′ ) e such that X is the blow-up of X ′ at P 1 , . . . , P ℓ and Y is the blow-up of Y ′ at Q 1 , . . . , Q ℓ . Since X and Y are homeomorphic, X ′ and Y ′ are homeomorphic. It follows that X ′ and Y ′ are isomorphic. By Theorem 1.1, there is an isomorphism ϕ : X ′ → Y ′ such that ϕ(P i ) = Q i for i = 1, . . . , ℓ. The isomorphism ϕ induces an isomorphism between X and Y .

The following example shows that the statement of Theorem 1.6 does not hold for the slightly more general class of rational compact connected real algebraic surfaces that contain singularities of type A -.

Example 7.1. Let X be the real algebraic surface obtained from the real algebraic torus S 1 × S 1 by contracting a fiber S 1 × {⋆} to a point. Then X is a rational compact connected real algebraic surface containing only one singular point. Its singularity is of type A - 1 . Let P be a point of P 2 (R). The real algebraic surface K obtained from P 2 (R) by blowing up P is a real algebraic Klein bottle. Let Y be the real algebraic surface obtained from the real algebraic Klein bottle K by contracting to a point the strict transform of a real projective line in P 2 (R) that passes through P . Then Y is a rational compact connected real algebraic surface containing only one singular point. Its singularity is of type A - 1 . It is clear that X and Y are homeomorphic singular surfaces. Indeed, they are both rational real algebraic models of the once-pinched torus (Figure 2). However, they are non isomorphic as real algebraic surfaces. Indeed, if they were isomorphic, their minimal resolutions S 1 × S 1 and K were isomorphic, which is absurd.

Note that the real rational surface Y is Dantesque, whereas X is not.

Figure 1 .

 1 Figure 1. The chain of exceptional curves in Y.

Figure 2 .

 2 Figure 2. The once-pinched torus.