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ALGEBRAIC DIFFEOMORPHISMS OF REAL RATIONAL

SURFACES AND WEIGHTED BLOW-UP SINGULARITIES

JOHANNES HUISMAN AND FRÉDÉRIC MANGOLTE

Abstract. Let X be a real rational surface having only weighted blow-
up singularities. Denote by Diffalg(X) the group of algebraic automor-
phisms or algebraic diffeomorphisms of X into itself. Let n be a natural
integer and let e = [e1, . . . , eℓ] be a partition of n. Denote by Xe the set
of ℓ-tuples (P1, . . . , Pℓ) of distinct nonsingular infinitely near points of X

of orders (e1, . . . , eℓ). We show that the group Diffalg(X) acts transi-
tively on Xe. This statement generalizes earlier work where the case of
the trivial partition e = [1, . . . , 1] was treated under the supplementary
condition that X is nonsingular.

As an application we classify rational real surfaces having only weight-
ed blow-up singularities.

MSC 2000: 14P25, 14E07

Keywords: real algebraic surface, rational surface, geometrically
rational surface, weighted blow-up singularity, algebraic diffeomor-
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1. Introduction

Let X be a nonsingular compact connected real algebraic surface, i.e. X
is a nonsingular compact connected real algebraic subset of some R

m of
dimension 2. Recall that X is rational if the field of rational functions R(X)
of X is a purely transcendent field extension of R of transcendence degree 2.
More geometrically, X is rational if there are nonempty Zariski open subsets
U and V of R

2 and X, respectively, such that there is an isomorphism of real
algebraic varieties—in the sense of [BCR98]—between U and V . Loosely
speaking, X is rational if a nonempty Zariski open subset of X admits
a rational parametrization by a nonempty Zariski open subset of R

2. A
typical example of a rational compact connected real algebraic surface is
the unit sphere S2 in R

3. A rational parametrization in that case is the
inverse stereographic projection.

It has recently been shown that any rational nonsingular compact con-
nected real algebraic surface is isomorphic either to the real algebraic torus
S1 × S1, or to a real algebraic surface obtained from the real algebraic
sphere S2 by blowing up a finite number of points [BH07, HM08].

In the sequel, it will be convenient to identify the real algebraic surface X
with the affine scheme SpecR(X), where R(X) denotes the R-algebra of all
algebraic—also called regular—functions onX [BCR98]. A real-valued func-
tion f on X is algebraic if there are real polynomials p and q in x1, . . . , xm

The research of the second named author was partially supported by the ANR grant
”JCLAMA” of the french ”Agence Nationale de la Recherche”. He benefitted also from the
hospitality of the University of Princeton when preparing the final version of the article.
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such that q does not vanish on X and such that f = p/q on X. The algebra
R(X) is the localization of the coordinate ring R[x1, . . . , xm]/I with respect
to the multiplicative system of all polynomials that do not vanish on X,
where I denotes the vanishing ideal of X. It is the subring of R(X) of all
rational functions on X that do not have any poles on X.

Thanks to the above convention, we can define an infinitely near point

of X to be a closed subscheme P of X that is isomorphic to SpecR[x]/(xe),
for some nonzero natural integer e. We call e the length or the order of P .
An infinitely near point of X is also called an infinitesimal arc on X. An
infinitely near point of length 1 is an ordinary point of X. An infinitely
near point of length 2 is a pair (P,L), where P is a point of X and L is 1-
dimensional subspace of the tangent space TPX of X at P . Equivalently, an
infinitely near point P of X of length 2 is a point of the exceptional divisor
of the real algebraic surface obtained by blowing up X in an ordinary point.
By induction, an infinitely near point of X of length e is an infinitely near
point of length e−1 on the exceptional divisor E of a blow-up of X (cf. [Mu,
p. 171]).

Let P be an infinitely near point of X. The reduced scheme Pred is an
ordinary point of X. Let P and Q be infinitely near points of X. We say
that P and Q are distinct if the points Pred and Qred of X are different.

Let n be a natural integer and let e = [e1, . . . , eℓ] be a partition of n,
where ℓ is some natural integer. Denote byXe the set of ℓ-tuples (P1, . . . , Pℓ)
of distinct infinitely near points P1, . . . , Pℓ of X of orders e1, . . . , eℓ, respec-
tively.

Recall that an algebraic diffeomorphism or algebraic automorphism of X
is a bijective map f from X into itself such that all coordinate functions of
f and f−1 are algebraic functions on X [HM08]. Denote by Diffalg(X) the
group of algebraic diffeomorphisms of X into itself. Equivalently, Diffalg(X)
is the group of R-algebra automorphisms of R(X). One has a natural action
of Diffalg(X) on Xe. One of the main results of the paper is the following.

Theorem 1.1. Let X be a nonsingular rational compact connected real alge-

braic surface. Let n be a natural integer and let e = [e1, . . . , eℓ] be a partition

of n, for some natural integer ℓ. Then the group Diffalg(X) acts transitively

on Xe.

Roughly speaking, Theorem 1.1 states that the group Diffalg(X) acts
ℓ-transitively on infinitely near points of X, for any ℓ. The statement gener-
alizes earlier work where n-transitivity was proved for ordinary points only,
i.e., in case of the trivial partition e = [1, . . . , 1] (cf. [HM08]).

The statement of Theorem 1.1 motivates the following question.

Question 1.2. Let X be a nonsingular rational compact connected real al-

gebraic surface. Is the subset Diffalg(X) of algebraic diffeomorphisms of X
dense in the set Diff(X) of all diffeomorphisms of X? Equivalently, can any

diffeomorphism of X be approximated by algebraic diffeomorphisms?

The problem of approximating smooth maps between real algebraic va-
rieties by algebraic maps has been studied by numerous authors [BK87a,
BK87b, BKS97, Ku99, JK03, JM04, Ma06].
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It should be noted that Theorem 1.1 does not seem to follow from the
known n-transitivity of Diffalg(X) on ordinary points. The difficulty is that
if two n-tuples P and Q of ordinary distinct points of X tend to two ℓ-
tuples of distinct infinitely near points with lengths e1, . . . , eℓ, then the al-
gebraic diffeomorphisms mapping P to Q do not necessarily have a limit
in Diffalg(X).

Our proof of Theorem 1.1 goes as follows. First we show that the state-
ment of Theorem 1.1 is valid for the real algebraic surfaces S2 and S1 × S1

by explicit construction of algebraic diffeomorphisms (see Theorems 3.1 and
2.1). This step does use the earlier work mentioned above. Then, we use the
fore-mmentioned fact that an arbitrary nonsingular rational compact con-
nected real algebraic surface is either algebraically diffeomorphic to S1×S1,
or to a real algebraic surface obtained from S2 by blowing up a finite number
of distinct ordinary points [HM08, Theorem 4.3], and conclude by induction.

In order to give an application of Theorem 1.1, we need to recall the
following. Let X be a nonsingular rational compact connected real algebraic
surface, and let P be an infinitely near point of X. The blow-up of X at P
is the blow-up BP (X) of X at the sheaf of ideals defined by the closed
subscheme P . Explicitly, if P is defined by the ideal (xe, y) on the real
affine plane R

2, then the blow-up of R
2 at P is the real algebraic sub-

variety of R
2 × P

1(R) defined by the equation vxe − uy = 0, where (u : v)
are homogeneous coordinates on the real projective line P

1(R). The blow-
up BP (X) is also called a weighted blow-up, for obvious reasons. If e = 1, the
blow-up BP (X) is the ordinary blow-up of X at P . If e ≥ 2 then the blow-
up BP (X) has a singular point. A local equation of the singularity is xe =
uy in R

3. This is often called a singularity of type A−

e−1 (see e.g. [Ko00,
Definition 2.1]).

We note that weighted blow-ups recently turned out to have interesting
applications in real algebraic geometry (see [Ko99, Ko00, CM08a, CM08b]).

We will say that a real surface X has weighted blow-up singularities if X is
obtained from a nonsingular real algebraic surface Y by blowing up a finite
number of nonsingular infinitely near points. Here, we say that an infinitely
near point P of a surface is nonsingular if Pred is a nonsingular point.

The following statement implies that any rational compact connected real
algebraic surface having weighted blow-up singularities, is obtained from
S1×S1 or S2 by blowing-up a finite number of distinct infinitely near points
of S1 × S1 or S2, respectively.

Theorem 1.3. Let X be a rational compact connected real algebraic surface

having weighted blow-up singularities. Then

• there are distinct infinitely near points P1, . . . , Pℓ on S1 × S1 such

that X is isomorphic to the real algebraic surface obtained from S1×
S1 by blowing up P1, . . . , Pℓ, or

• there are distinct infinitely near points P1, . . . , Pℓ on S2 such that X
is isomorphic to the real algebraic surface obtained from S2 by blow-

ing up P1, . . . , Pℓ.

Let X be a rational compact connected real algebraic surface having
weighted blow-up singularities. Let n be a natural integer and let e =
[e1, . . . , eℓ] be a partition of n, where ℓ is some natural integer. Denote
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by Xe the set of ℓ-tuples (P1, . . . , Pℓ) of distinct nonsingular infinitely near
points P1, . . . , Pℓ of X of orders e1, . . . , eℓ, respectively.

Denote again by Diffalg(X) the group of algebraic diffeomorphisms of
the possibly singular real algebraic surface X. Note that the definition of
algebraic diffeomorphism above makes perfectly sense for singular varieties.
Alternatively, one can define an algebraic diffeomorphism of X to be an
automorphism of SpecR(X). Anyway, one has a natural action of Diffalg(X)
on Xe.

We have the following generalization of Theorem 1.1 above.

Theorem 1.4. Let X be a rational compact connected real algebraic sur-

face having weighted blow-up singularities. Let n be a natural integer and

let e = [e1, . . . , eℓ] be a partition of n, for some natural integer ℓ. Then the

group Diffalg(X) acts transitively on Xe.

As an application of Theorem 1.1 and Theorem 1.3, we prove the following
statement.

Theorem 1.5. Let n be a natural integer and let e = [e1, . . . , eℓ] be a parti-

tion of n, for some natural integer ℓ. Let X and Y be two rational compact

connected real algebraic surfaces having weighted blow-up singularities. As-

sume that each of the surfaces X and Y has exactly one singularity of type

A−

ei
for each i = 1, . . . , ℓ. Then X and Y are isomorphic as real algebraic

surfaces if and only if they are homeomorphic as singular topological sur-

faces.

Theorem 1.5 generalizes to certain singular rational real algebraic sur-
faces an earlier result for nonsingular ones ([BH07, Theorem 1.2] and [HM08,
Theorem 1.5]). We will show by an example that the statement of Theo-
rem 1.5 does not hold for the slightly more general class of rational compact
connected real algebraic surfaces that have singularities of type A− (see
Example 7.1).

2. Infinitely near points on the torus

The object of this section is to prove Theorem 1.1 in the case of the real
algebraic torus:

Theorem 2.1. Let n be a natural integer and let e = [e1, . . . , eℓ] be a par-

tition of n, for some natural integer ℓ. The group Diffalg(S
1 × S1) acts

transitively on (S1 × S1)e.

The above statement is a generalization of the following statement, that
we recall for future reference.

Theorem 2.2 ([BH07, Theorem 1.3]). Let n be a natural integer. The group

Diffalg(S
1 × S1) acts n-transitively on S1 × S1. �

For the proof of Theorem 2.1, we need several lemmas. It will turn out
to be convenient to replace S1 by the isomorphic real projective line P

1(R).

Lemma 2.3. Let p, q ∈ R[x] be real polynomials in x of the same degree.

Suppose that q does not have any real roots. Define

ϕ : P
1(R) × P

1(R) −→ P
1(R) × P

1(R)
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by

ϕ(x, y) =

(
x, y +

p

q

)
.

Then ϕ is an algebraic diffeomorphism of P
1(R) × P

1(R) into itself.

Proof. It suffices to prove that ϕ is an algebraic map. We write ϕ in bi-
homogeneous coordinates:

ϕ([x0 : x1], [y0 : y1]) = ([x0 : x1], [q(x0, x1)y0 + p(x0, x1)y1 : q(x0, x1)y1]) ,

where p and q are the homogenizations of p and q, respectively. Since q
has no real zeros, the homogeneous polynomial q does not vanish on P

1(R).
Therefore, if

q(x0, x1)y0 + p(x0, x1)y1 = 0, and

q(x0, x1)y1 = 0

then y1 = 0 and y0 = 0. It follows that ϕ is a well defined algebraic map
from P

1(R) × P
1(R) into itself. �

Definition 2.4. Let P be an infinitely near point of a nonsingular rational

compact connected real algebraic surface X. If R is an ordinary point of X,

then P is said to be infinitely near to R if Pred = R.

Definition 2.5. Let P be an infinitely near point of S1×S1. We say that P
is vertical if P is tangent to a vertical fiber {x} × S1, for some x ∈ S1, i.e.

if the scheme-theoretic intersection P · ({x} × S1) is not reduced.

Lemma 2.6. Let P1, . . . , Pℓ be distinct infinitely near points of P
1(R) ×

P
1(R). Then there is an algebraic diffeomorphism ϕ of P

1(R) × P
1(R) such

that

• ϕ(Pi) is infinitely near to the point (i, 0) of P
1(R) × P

1(R), and

• ϕ(Pi) is not vertical,

for all i.

Proof. By Theorem 2.2, we may assume that P1, . . . , Pℓ are infinitely near
to the points (1, 0), . . . , (ℓ, 0) of the real algebraic torus P

1(R) × P
1(R), re-

spectively.
Let vi = (ai, bi) be a tangent vector to P

1(R)×P
1(R) at Pi that is tangent

to Pi. This means the following. If Pi is an ordinary point then vi = 0. If
Pi is not an ordinary point then vi 6= 0 and the 0-dimensional subscheme
of P

1(R) × P
1(R) of length 2 defined by vi is contained in the closed sub-

scheme P of P
1(R) × P

1(R).
Let p, q ∈ R[y] be real polynomials in y of the same degree such that

• q does not have any real roots,
• p(0) = 0, q(0) = 1, q′(0) = 0 and
• ai + bip

′(0) 6= 0 whenever vi 6= 0.

Define ϕ : P
1(R) × P

1(R) −→ P
1(R) × P

1(R) by

ϕ(x, y) =

(
x+

p

q
, y

)
.
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According to Lemma 2.3—exchanging x and y—the map ϕ is an algebraic
diffeomorphism of P

1(R) × P
1(R). Since p(0) = 0, one has ϕ((i, 0)) = (i, 0).

It follows that ϕ(Pi) is also infinitely near to (i, 0).
The Jacobian of ϕ at (i, 0) is equal to

D(i,0)ϕ =

(
1 p′(0)q(0)−p(0)q′(0)

q(0)2

0 1

)
=

(
1 p′(0)
0 1

)

By construction, (D(i,0)ϕ)vi has first coordinate non zero whenever vi 6= 0.
Therefore, ϕ(Pi) is not vertical, for all i. �

Proof of Theorem 2.1. Let P1, . . . , Pℓ be distinct infinitely near points of the
real algebraic torus P

1(R) × P
1(R) of orders e1, . . . , eℓ, respectively. Let Qi

be the infinitely near point of P
1(R) × P

1(R) defined by the ideal ((x −
i)ei , y) in R(P1(R) × P

1(R)). It suffices to show that there is an algebraic
diffeomorphism ϕ of P

1(R) × P
1(R) such that ϕ(Qi) = Pi for all i.

By Lemma 2.6, we may assume that the infinitely near point Pi is infinitely
near to (i, 0) and that ϕ(Pi) is not vertical. It follows that Pi is defined by
an ideal of the form

((x− i)ei , y − fi),

where fi ∈ R[x].
Let p, q ∈ R[x] be of the same degree such that

• q does not have any real roots,
• p = fiq modulo (x− i)ei for all i.

Such polynomials abound by the Chinese Remainder Theorem.
By Lemma 2.3, the polynomials p and q give rise to an algebraic diffeo-

morphism ϕ of P
1(R) × P

1(R) defined by

ϕ(x, y) =

(
x, y +

p

q

)
.

In order to show that ϕ(Qi) = Pi for all i, we compute

(ϕ−1)⋆((x− i)ei) = (x− i)ei

and
(ϕ−1)⋆(y) = y − p

q
= y − fi

modulo (x−i)ei . Indeed, q is invertible modulo (x−i)ei , and p = fiq modulo
(x− i)ei , by construction of p and q. It follows that ϕ(Qi) = Pi. �

3. Infinitely near points on the unit sphere

The object of this section is to prove Theorem 1.1 in the case of the real
algebraic sphere S2:

Theorem 3.1. Let n be a natural integer and let e = [e1, . . . , eℓ] be a parti-

tion of n, for some natural integer ℓ. The group Diffalg(S
2) acts transitively

on (S2)e.

The above statement is a generalization of the following statement, that
we recall for future reference.

Theorem 3.2 ([HM08, Theorem 2.3]). Let n be a natural integer. The

group Diffalg(S
2) acts n-transitively on S2. �
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For the proof of Theorem 3.1, we need several lemmas.

Lemma 3.3 ([HM08, Lemma 2.1]). Let p, q, r ∈ R[x] be such that

• r does not have any roots in the interval [−1, 1], and

• p2 + q2 = r2.

Define ϕ : S2 −→ S2 by

ϕ(x, y, z) =

(
x,
yp− zq

r
,
yq + zp

r

)
.

Then ϕ is an algebraic diffeomorphism of S2. �

Definition 3.4. Let P be infinitely near to a point of the equator {z = 0}
of S2. We say that P is vertical if P is tangent to the great circle of S2

passing through the North pole.

As for the torus above, we need some standard points on S2. Let

Ri = (xi, yi, zi) =
(
cos( iπ

2ℓ+1), sin( iπ
2ℓ+1 ), 0

)

for i = 1, . . . , ℓ. Note that xi 6= 0 and yi 6= 0 for all i.

Lemma 3.5. Let P1, . . . , Pℓ be distinct infinitely near points of S2. Then

there is an algebraic diffeomorphism ϕ of S2 such that

• ϕ(Pi) is infinitely near to Ri, and

• ϕ(Pi) is not vertical,

for all i.

Proof. By Theorem 3.2, we may assume that Pi is infinitely near to the
point Ri, for all i. Let vi = (ai, bi, ci) be a tangent vector to S2 at Pi that
is tangent to Pi. Let p, q, r ∈ R[x] be such that

• r does not vanish on [−1, 1],
• p2 + q2 = r2,
• p(0) = 1, q(0) = 0, r(0) = 1, p′(0) = 0, r′(0) = 0, and
• ai − ciyiq

′(0) 6= 0 or bi + cixiq
′(0) 6= 0, whenever vi 6= 0.

Such polynomials abound. Take, for example,

p(z) = (1 + z2)2 − (λz)2, q(z) = 2(1 + z2)λz, r(z) = (1 + z2)2 + (λz)2,

where λ is any real number such that ai − 2λyici 6= 0 or bi + 2λxici 6= 0
whenever vi 6= 0.

Define ϕ : S2 −→ S2 by

ϕ(x, y, z) =

(
xp(z) − yq(z)

r(z)
,
xq(z) + yp(z)

r(z)
, z

)
.

According to Lemma 3.3—permuting the roles of x, y, z—the map ϕ is an
algebraic diffeomorphism of S2. Since p(0) = 1, q(0) = 0 and r(0) = 1, the
infinitely near point ϕ(Pi) is again infinitely near to Ri, for all i.
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The Jacobian of ϕ at Ri is equal to

DRi
ϕ =




p(0)
r(0)

−q(0)
r(0)

xip
′(0)r(0)−yiq

′(0)r(0)−xip(0)r′(0)+yiq(0)r′(0)
r(0)2

q(0)
r(0)

p(0)
r(0)

xiq
′(0)r(0)+yip

′(0)r(0)−xiq(0)r′(0)−yip(0)r′(0)
r(0)2

0 0 1


 =




1 0 −yiq
′(0)

0 1 xiq
′(0)

0 0 1




By construction, (DRi
ϕ)vi has first or second coordinate non zero when-

ever vi 6= 0. Therefore, ϕ(Pi) is not vertical, for all i. �

Lemma 3.6. Let e be a nonzero natural integer, and let i ∈ {1, . . . , ℓ}.
Let f, g, h ∈ R[x]/(x− xi)

e be such that

(3.7) x2 + f2 = 1, and x2 + g2 + h2 = 1

in R[x]/(x − xi)
e. Assume, moreover, that f(xi) = g(xi) = yi. Then there

is a ∈ R[x]/(x− xi)
e such that

(3.8) (1 − a2)f = (1 + a2)g, and 2af = (1 + a2)h

in R[x]/(x− xi)
e. Moreover, there is such an element a such that 1 + a2 is

invertible in R[x]/(x− xi)
e.

Proof. If h = 0 then f = g, and one can take a = 0. Therefore, we may
assume that h 6= 0. Let d be the valuation of h, i.e., h = (x− xi)

dh′, where
h′ ∈ R[x]/(x − xi)

e is invertible. Since f(xi) = g(xi), one has h(xi) = 0,
i.e., h is not invertible in R[x]/(x − xi)

e and d 6= 0. By Hensel’s Lemma,
there are lifts f, g, h in R[x]/(x − xi)

e+2d of f, g, h, respectively, satisfying
the equations (3.7) in the ring R[x]/(x−xi)

e+2d. Note that f+g is invertible
in R[x]/(x− xi)

e+2d, and that h has valuation d.
In order to simplify notation, we denote again by f, g, h the elements

f, g, h, respectively. Let k ∈ R[x]/(x − xi)
e+2d be the inverse of f + g.

Let a = hk. We verify that equations (3.8) hold and that 1+a2 is invertible
in R[x]/(x− xi)

e.
The element 1 + a2 is clearly invertible in R[x]/(x−xi)

e+2d since h is not
invertible.

Since

(f − g)(f + g) = f2 − g2 = (1 − x2) − (1 − x2 − h2) = h2,

one has

f − g = h2k = h2k2(f + g) = a2(f + g).

It follows that

(1 − a2)f = (1 + a2)g

in R[x]/(x− xi)
e+2d, and therefore also in R[x]/(x− xi)

e.
In order to prove that the other equation of (3.8) holds as well, observe

that

(f − g)2h− 2f(f − g)h + h3 = (f − g)h(f − g − 2f) + h3 =

− (f − g)h(f + g) + h3 = −(f2 − g2)h+ h3 = 0
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by what we have seen above. Substituting f − g = ah, one obtains

0 = a2h3 − 2afh2 + h3 = h2(a2h− 2af + h)

in R[x]/(x−xi)
e+2d. Since the valuation of h is equal to d, one deduces that

a2h− 2af + h = 0 in R[x]/(x− xi)
e. Hence, 2af = (1 + a2)h, as was to be

proved. �

Proof of Theorem 3.1. Let P1, . . . , Pℓ be distinct infinitely near points of
of S2 of orders e1, . . . , eℓ, respectively. Let Qi be the infinitely near point
of S2 defined by the ideal

((x− xi)
ei , y − fi, z)

in R[x, y, z], where fi is the Taylor polynomial in x− xi of
√

1 − x2 at xi of
order ei − 1. Note that Qi is infinitely near to Ri for all i. We show that
there is an algebraic diffeomorphism ϕ of S2 such that ϕ(Qi) = Pi for all i.

By Lemma 3.5, we may assume that P1, . . . , Pℓ are infinitely near to the
points R1, . . . , Rℓ of S2, respectively, and that they are not vertical. It
follows that Pi is defined by an ideal of the form

((x− xi)
ei , y − gi, z − hi)

where gi, hi ∈ R[x] are of degree < ei. Moreover, since Pi is an infinitely
near point of S2, we have

x2 + g2
i + h2

i = 1 (mod (x− xi)
ei).

By Lemma 3.6, there is ai ∈ R[x]/(x− xi)
ei such that

(1 − a2
i )fi = (1 + a2

i )gi, and

2aifi = (1 + a2
i )hi

in R[x]/(x− xi)
ei , and, moreover, 1 + a2

i is invertible.
By the Chinese Remainder Theorem, there is a polynomial a ∈ R[x] such

that a = ai (mod (x− xi)
ei), for all i. Then

(1 − a2)fi = (1 + a2)gi (mod (x− xi)
ei)

2afi = (1 + a2)hi (mod (x− xi)
ei),

and 1 + a2 is invertible in R[x]/(x− xi)
ei , for all i.

Put

p = 1 − a2, q = 2a, r = 1 + a2.

Then

pfi = rgi (mod (x− xi)
ei)

qfi = rhi (mod (x− xi)
ei),

and r is invertible in R[x]/(x− xi)
ei , for all i. Moreover,

• r does not have any roots in the interval [−1, 1], and
• p2 + q2 = r2.

By Lemma 3.3, the polynomials p, q, r give rise to an algebraic diffeomor-
phism ϕ of S2 defined by

ϕ(x, y, z) =

(
x,
yp− zq

r
,
yq + zp

r

)
.
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In order to show that ϕ(Qi) = Pi for all i, we compute

(ϕ−1)⋆((x− xi)
ei) = (x− xi)

ei

ui = (ϕ−1)⋆(y − fi) =
yp+ zq

r
− fi

vi = (ϕ−1)⋆(z) =
−yq + zp

r
,

so that ϕ(Qi) is the infinitely near point of S2 defined by the ideal ((x −
xi)

ei , ui, vi). We have

p

r
ui −

q

r
vi = y − p

r
fi = y − gi (mod (x− xi)

ei)

and

q

r
ui +

p

r
vi = z − q

r
fi = z − hi (mod (x− xi)

ei).

It follows that ϕ(Qi) = Pi. �

4. Algebraic diffeomorphisms of nonsingular rational surfaces

The proof of Theorem 1.1 is now similar to the proof of [HM08, Theo-
rem 1.4]. We include it for convenience of the reader.

Proof of Theorem 1.1. Let X be a nonsingular real rational surface. As
mentioned before, X is algebraically diffeomorphic to S1 × S1 or to the
blow-up of S2 at a finite number of distinct points R1, . . . , Rm. If X is alge-
braically diffeomorphic to S1 × S1 then Diffalg(X) acts transitively on Xe

by Theorem 2.1. Therefore, we may assume that X is algebraically diffeo-
morphic to the blow-up BR1,...,Rm

(S2) of S2 at R1, . . . , Rm. We will show
that Diffalg(X) acts transitively on Xe for all partitions e of any natural
integer n, by induction on m.

If m = 0, then X is algebraically diffeomorphic to S2 and Diffalg(X) acts
transitively on Xe, for all e, by Theorem 3.1. Let m > 0, and let X be
BR1,...,Rm

(S2). Let (P1, . . . , Pn) and (Q1, . . . , Qn) be two n-tuples in Xe.
We want to show that there is an algebraic diffeomorphism ϕ of X such
that ϕ(Pj) = Qj for all j.

We identify P
2(R) with BRm

(S2) via an algebraic diffeomorphism. We
may consider R1, . . . Rm−1 as points of P

2(R) and the surface X is the
surface BR1,...,Rm−1

(P2(R)). Let π : X → P
2(R) be the blowing-up mor-

phism. Let L be a line in P
2(R) that does not contain any of the points

Rk, π(Pj)red, π(Qj)red. The inverse image L̃ of L in X is a contractible real
algebraic curve in X, see [HM08, Theorem 3.2].

Let Y be the nonsingular rational compact connected real algebraic sur-

face obtained from X by contracting L̃ to a point. Let ρ : X → Y be the

morphism that contracts L̃ to a point P . Let σ : P
2(R) → S2 be the mor-

phism that contracts the line L of P
2(R) to a point. Then π induces a
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morphism τ : Y → S2, i.e., one has the following diagram:

X

π

��

ρ

##G

G

G

G

G

G

G

G

G

Y

τ

��

P
2(R)

σ

""E

E

E

E

E

E

E

E

S2

The morphism τ is the blow-up of S2 at the points R1, . . . , Rm−1. Since the

real algebraic curve L̃ does not contain any of the points (Pj)red or (Qj)red
of X, the infinitely near points ρ(P1), . . . , ρ(Pn) are distinct, and the same
holds for the points ρ(Q1), . . . , ρ(Qn). Moreover, P 6= σ(Pj)red and P 6=
σ(Qj)red for all j. By the induction hypothesis, the group Diffalg(Y ) acts

transitively on Y d, where d is the partition [e1, . . . , eℓ, 1] of n+1. Therefore,
there is an algebraic diffeomorphism ψ of Y such that ψ(ρ(Pj)) = ρ(Qj) and
ψ(P ) = P . SinceX is the blow-up of Y at P , the map ψ induces an algebraic
diffeomorphism ϕ of X with the required property. �

5. Rational surfaces with A− singularities

The object of this section is to prove Theorem 1.3 that asserts that a real
rational surface with weighted blow-up singularities is isomorphic to a real
algebraic surface obtained from S2 or S1×S1 by blowing up a finite number
of distinct infinitely near points. We need the following lemmas.

Lemma 5.1. Let X be a nonsingular rational real algebraic Klein bottle

Let S be a finite subset of X. Then there is an algebraic map f : X → S2

such that

(1) f is the blow-up of S2 at 2 distinct real points Q1, Q2, and

(2) Qi 6∈ f(S), for i = 1, 2. �

Proof. Since all nonsingular rational compact connected real algebraic Klein
bottles are algebraically diffeomorphic (see [Ma06, Theorem 1.3], [BH07,
Theorem 1.2] or [HM08, Theorem 1.5]), we may assume that K is obtained
from S2 by blowing up the points (0, 0,±1). Let β : K → S2 be the blow-up
map. There are disjoint euclidean circles C1 and C2 on S2 with the following
properties:

• (0, 0, 1) ∈ C1, (0, 0,−1) 6∈ C1,
• (0, 0, 1) 6∈ C2, (0, 0,−1) ∈ C2, and

• the strict transforms C̃1 and C̃2 of C1 and C2 in K do not contain
any of the points belonging to S.

The real algebraic curves C̃1 and C̃2 are contractible inK, according to [HM08,
Theorem 3.2]. The nonsingular real algebraic surface obtained from K by
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contracting C̃1 and C̃2 is homeomorphic to S2, hence algebraically diffeo-

morphic to S2. The algebraic map f : K → S2 contracting C̃1 and C̃2 has
the required properties. �

Lemma 5.2. Let P be an infinitely near point of S1 × S1, and let C be a

real algebraic curve in S1 × S1 such that there is a nonsingular projective

complexification X of S1 × S1 having the following properties:

(1) the Zariski closure C of C in X is nonsingular and rational,

(2) the self-intersection of C in X is even and non-negative,

(3) Pred ∈ C, and

(4) C is not tangent to P , i.e., the scheme-theoretic intersection P · C is

of length 1.

Then, there is an algebraic map

f : BP (S1 × S1) → Z

that is a blow-up at an infinitely near point Q whose exceptional curve

f−1(Qred) is equal to the strict transform of C in BP (S1 × S1), where Z
is either the real algebraic torus S1 ×S1, or the rational real algebraic Klein

bottle K.

Proof. Let Y be the blow-up of S1×S1 at P . Let β : Y → X be the blow-up
of X at P . It is clear that Y is a nonsingular projective complexification
of Y .

Let m + 1 be the length of the infinitely near point P , where m ≥ 0.

Let ρ : Ỹ → Y be the minimal resolution of Y. If P is a point of length 1,
then ρ = id, of course. The morphism β◦ρ is a repeated blow-up of X . More
precisely, there is a sequence of morphisms of algebraic varieties over R

Ỹ = Xm+1

fm
// Xm

fm−1
// · · · f0

// X0 = X ,

with the following properties. Each morphism fi is an ordinary blow-up of Xi

at a nonsingular ordinary real point Pi of Xi, for all i. One has P0 = Pred,
i.e., f0 is the blow-up of X at Pred. Moreover, denoting by Ei the exceptional
curve of fi in Xi+1, the center of blow-up Pi+1 belongs to Ei but does not
belong to the strict transform of any of the curves Ej in Xi+1 for all j < i.

Denote again by Ei and C the strict transforms of Ei and C in Ỹ, re-
spectively. The curves E0, . . . , Em−1 have self-intersection −2, the curve Em

has self-intersection −1. Since C is not tangent to P , the curve C in Ỹ
has odd self-intersection ≥ −1. The curves C, E0, . . . , Em form a chain of
curves over R in Y, intersecting in real points only (See Figure 1). The

morphism ρ : Ỹ → Y is the contraction of the curves E0, . . . , Em−1. The
morphism β : Y → X is the contraction of ρ(Em), i.e., β−1(Pred) = ρ(Em).

Let k be the self-intersection of C in Ỹ. Since k ≥ −1 and k ≡ −1
(mod 2), the integer k + 1 is even and non-negative. Let R1, . . . , Rk+1

be pairwise complex conjugate of C. Denote by Ỹ ′ the blow-up of Ỹ in

R1, . . . , Rk+1. The algebraic variety Ỹ ′ is again defined over R. The strict

transform of C in Ỹ ′ is a nonsingular rational curve of self-intersection −1.

Denote again by Ei the strict transform of Ei in Ỹ ′. The self-intersection
of Ei is equal to −2, if i 6= m, the self-intersection of Em is equal to −1.
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E

CE

E

E

0

1

m−1 m

Figure 1. The chain of exceptional curves in Ỹ.

Let Y ′ be the algebraic surface defined over R obtained from Ỹ ′ by con-

tracting the union of the curves E0 . . . , Em−1 to a point, and let ρ′ : Ỹ ′ → Y ′

be the contracting morphism. Let X ′ be the algebraic surface defined over R

obtained from Y ′ by contracting ρ′(C) to a point, and let β′ : Y ′ → X ′ be the
contracting morphism. Since β′ ◦ ρ′ is a repeated blow-down of −1-curves,
the algebraic surface X ′ is nonsingular. Moreover, the morphism β′ is a
blow-up of X ′ at a nonsingular infinitely near point Q of X ′. Denote again
by C the curve ρ′(C) in Y ′. The curve C in Y ′ is the exceptional curve of β′.

Now take the associated real algebraic varieties, denoted by the corre-
sponding roman characters. Since the points R1, . . . , Rk+1 are non real, one

has Ỹ ′(R) = Ỹ(R), i.e., Ỹ ′ = Ỹ , the minimal resolution of Y . It follows
that Y ′ = Y , and that the induced algebraic map b : Y ′ → X ′ is the blow-up
of the infinitely near point Q of the nonsingular compact connected real alge-
braic surface X ′. The exceptional curve of b is equal to the strict transform
of C in Y .

The only thing that is left to prove is the fact that the real algebraic
surface X ′ is isomorphic to S1 × S1 or to the rational real algebraic Klein

bottle K. In order to establish this, observe that Ỹ , as an (m + 1)-fold
blow-up of S1 × S1, is homeomorphic to the connected sum of S1 × S1 and
m+1 copies of P

2(R). Since Y ′ also is homeomorphic to the connected sum
of X ′ and m + 1 copies of P

2(R), it follows that X ′ is homeomorphic to a
torus or a Klein bottle. By [Ma06, Theorem 1.3], or [BH07, Theorem 1.2],
or [HM08, Theorem 1.5], X ′ is algebraically diffeomorphic to S1 ×S1 or the
rational real algebraic Klein bottle K. �

A similar, but easier, argument applies and proves the following lemma.

Lemma 5.3. Let P be an infinitely near point of S2, and let C be a real

algebraic curve in S2 such that there is a nonsingular projective complexifi-

cation X of S2 having the following properties:
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(1) the Zariski closure C of C in X is nonsingular and rational,

(2) the self-intersection of C in X is even and non-negative,

(3) Pred ∈ C, and

(4) C is not tangent to P , i.e., the scheme-theoretic intersection P · C is

of length 1.

Then, there is an algebraic map

f : BP (S2) → S2

that is the blow-up of S2 at an infinitely near point Q. Moreover, the excep-

tional curve f−1(Q) is equal to the strict transform of C in BP (S2). �

Proof of Theorem 1.3. There is a nonsingular rational compact connected
real algebraic surface Y such that X is isomorphic to the real algebraic sur-
face obtained from Y by repeatedly blowing up a nonsingular infinitely near
point. Since Y is a nonsingular rational compact connected real algebraic
surface, Y is obtained either from S2 or from S1×S1, by repeatedly blowing
up an ordinary point (cf. [BH07, Theorem 3.1] or [HM08, Theorem 4.1]).
Hence, there is a sequence of algebraic maps

X = Xn

fn
// Xn−1

fn−1
// · · · f1

// X0 = Z ,

where Z = S2 or Z = S1×S1, and each map fi is a blow-up at a nonsingular
infinitely near point Qi of Xi−1, possibly of length 1, for i = 1, . . . , n. Denote
by Ei the exceptional divisor f−1

i ((Qi)red) of fi in Xi.
Let F be the set of the infinitely near points Qi. Define a partial ordering

on F by Qi ≤ Qj if the composition fi ◦ · · · ◦ fj−1 maps (Qj)red to (Qi)red.
It is clear that F is a forest, i.e., a disjoint union of trees.

Let s be the number of edges in the forest F . We show the statement of
the theorem by induction on s. The statement is clear for s = 0. Suppose,
therefore, that s 6= 0. We may assume that Q1 is the root of a tree of F of
nonzero height.

Let C be a real algebraic curve in Z satisfying the conditions of Lemma 5.2
if Z = S1 ×S1, and of Lemma 5.3 if Z = S2, with P = (Q1)red. Such curves
abound: one can take a bi-degree (1, 1) in S1 × S1, or a Euclidean circle
in S2, respectively. Moreover, we may assume that the strict transform of C
in Xi does not contain (Qi+1)red, for all i ≥ 1. Applying Lemma 5.2 and
Lemma 5.3, respectively, one obtains a sequence

X = Xn

fn
// Xn−1

fn−1
// · · · f2

// X1

f ′

1
// X ′

0 = Z ′ ,

where f ′1 contracts the strict transform of C in X1 to a point Q′

1. The
real algebraic surface Z ′ is either the real algebraic sphere S2, or the real
algebraic torus S1 × S1, or the rational real algebraic Klein bottle K. By
construction, the number of edges in the forest F ′ associated to the latter
sequence of blow-ups is equal to s−1. Therefore, if Z ′ = S2 or Z ′ = S1×S1,
we are done. If Z is the real algebraic Klein bottle K, then, according to
Lemma 5.1, there is a sequence of blow-ups

Z ′ = X ′

0

f0
// X ′

−1

f−1
// X−2 = S2
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at ordinary points such that the images of the centers Q′

1, Q2, . . . , Qn in X−1

and X−2 are distinct from the centers of the blow-ups f0 and f−1. We
conclude also in this case by the induction hypothesis. �

A close inspection of the above proof reveals that the following slightly
more technical statement holds.

Theorem 5.4. Let X be a rational compact connected real algebraic surface

whose singularities are weighted blow-ups, and let S ⊆ X be a finite subset

of nonsingular points of X . Then there is an algebraic map f : X → S2 or

f : X → S1 × S1 with the following properties:

(1) there are distinct infinitely near points P1, . . . , Pℓ on S2 or S1 × S1,

respectively, such that f is the blow-up at P1, . . . , Pℓ, and

(2) (Pi)red 6∈ f(S), for all i. �

6. Infinitely near points on a singular rational surface

The object of this section is to prove Theorem 1.4.

Proof of Theorem 1.4. Let (P1, . . . , Pℓ) and (Q1, . . . , Qℓ) be two elements
of Xe. We prove that there is an algebraic automorphism ϕ of X such
that ϕ(Pi) = Qi, as infinitely near points.

Let S be the set of ordinary points (P1)red, . . . , (Pℓ)red, (Q1)red, . . . , (Qℓ)red
of X. Since S is a finite set of nonsingular points of X, there is, by Theo-
rem 5.4, an algebraic map f : X → S2 or f : X → S1×S1 with the following
properties:

• there are distinct infinitely near points R1, . . . , Rn on S2 such that f
is the blow-up at R1, . . . , Rn, and

• (Ri)red 6∈ f(S), for all i.

Since f is an isomorphism at a neighborhood of S, the image f(Pi) is an
infinitely near point of S2 of length ei, and the same holds for f(Qi), for
all i.

By Theorems 2.1 and 3.1, there is an algebraic diffeomorphism ψ of S2

or S1 × S1, respectively, such that ψ(Pi) = Qi for i = 1, . . . , ℓ, and ψ(Ri) =
Ri for i = 1, . . . , n. Then, ψ induces an algebraic diffeomorphism ϕ of X
with the required property. �

7. Isomorphic rational real algebraic surfaces

Proof of Theorem 1.5. Let X and Y be rational compact connected real
algebraic surfaces having weighted blow-up singularities, such that each of
the surfaces X and Y has exactly one singularity of type A−

ei
, for each

i = 1, . . . , ℓ.
If X and Y are isomorphic, then, of course, the singular topological sur-

faces X and Y are homeomorphic.
Conversely, suppose that X and Y are homeomorphic. By Theorem 1.3,

there are nonsingular real rational surfaces X ′ and Y ′, and ℓ-tuples
(P1, . . . , Pℓ) ∈ (X ′)e and (Q1, . . . , Qℓ) ∈ (Y ′)e such that X is the blow-
up of X ′ at P1, . . . , Pℓ and Y is the blow-up of Y ′ at Q1, . . . , Qℓ. Since X
and Y are homeomorphic, X ′ and Y ′ are homeomorphic. It follows that
X ′ and Y ′ are algebraically diffeomorphic. By Theorem 1.1, there is an
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Figure 2. The once-pinched torus.

algebraic diffeomorphism ϕ : X → Y such that ϕ(Pi) = Qi for i = 1, . . . , ℓ.
The diffeomorphism ϕ induces an algebraic isomorphism between X and
Y . �

The following example shows that the statement of Theorem 1.5 does not
hold for the slightly more general class of rational compact connected real
algebraic surfaces that have singularities of type A−.

Example 7.1. Let X be the real algebraic surface obtained from the real
algebraic torus S1×S1 by contracting a fiber S1×{⋆} to a point. Then X is
a rational compact connected real algebraic surface having only one singular
point. Its singularity is of type A−

1 .
Let P be a point of P

2(R). The real algebraic surface K obtained from
P

2(R) by blowing up P is a real algebraic Klein bottle. Let Y be the real
algebraic surface obtained from the real algebraic Klein bottle K by con-
tracting to a point the strict transform of a real projective line in P

2(R) that
passes through P . Then Y is a rational compact connected real algebraic
surface having only one singular point. Its singularity is of type A−

1 .
It is clear that X and Y are homeomorphic singular surfaces. Indeed, they

are both rational real algebraic models of the once-pinched torus (Figure 2).
However, they are non isomorphic as real algebraic surfaces. Indeed, if they
were isomorphic, their minimal resolutions S1 ×S1 and K were isomorphic,
which is absurd.

Note that Y is a rational real algebraic surface having weighted blow-up
singularities, whereas X is not.
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