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Asymptoti derivation of the setion-averaged shallowwater equations for natural river hydraulisAstrid Deoene∗, Lua Bonaventura†, Edie Miglio‡, Fausto SaleriMOX � Modelling and Sienti� ComputingDipartimento di Matematia �F. Brioshi�, Politenio di MilanoVia Bonardi 9, 20133 Milano, ItalyAbstratThe setion-averaged shallow water model usually applied in river and open hannelhydraulis is derived asymptotially up to seond order in the vertial/longitudinal lengthratio, starting from the three-dimensional Reynolds-averaged Navier-Stokes equations forinompressible free surfae �ows. The derivation is arried out under quite general as-sumptions on the geometry of the hannel, thus allowing for the appliation of the result-ing equations to natural rivers with arbitrarily shaped ross setions. As a result of thederivation, a generalized frition term is obtained, that does not rely on loal uniformityassumptions and that an be omputed diretly from three-dimensional turbulene models,without need for loal uniformity assumptions. The modi�ed equations inluding the novelfrition term are ompared to the lassial Saint Venant equations in the ase of steadystate open hannel �ows, where analyti solutions are available, showing that the solutionsresulting from the modi�ed equation set are muh loser to the three-dimensional solutionsthan those of the lassial equation set. Furthermore, it is shown that the proposed formu-lation yields results that are very similar to those obtained with empirial frition losureswidely applied in omputational hydraulis. The generalized frition term derived thereforejusti�es a posteriori these empirial losures, while allowing to avoid the assumptions onloal �ow uniformity on whih these losures rely.Keywords: Computational hydraulis; shallow water equations;Saint Venant equations.1 IntrodutionIn environmental modelling of free surfae �ows, whenever the ratio between the vertial andlongitudinal sales is small enough, the so-alled Shallow Water approximation is usually intro-dued, in order to redue the omputational ost implied by the numerial solution of three-dimensional free surfae �ow equations. Models based on this approximation are extensivelyused to simulate various geophysial phenomena, suh as rivers and oastal �ows,[6, 8℄ oeansand even avalanhes,[1℄ and they have been used in hydraulis for a very long time. Whenthe visosity is negleted and a retangular hannel setion is assumed, the derivation of the
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2. A. Deoene, L. Bonaventura, E. Miglio,F. Salerione-dimensional Shallow Water system is lassial, see e.g.[13℄. However, this derivation is un-satisfatory, sine visosity e�ets are added a posteriori and the three-dimensional geometryis not arbitrary.In Ref.[7℄, Gerbeau and Perthame derive rigourously, by asymptoti analysis, a one -dimensional visous Saint-Venant system from the two-dimensional Navier-Stokes equationswith moleular visosity, linear frition boundary onditions and �at bathymetry. The e�et ofthe visosity is reovered in a one-dimensional frition term and in a one-dimensional di�usionterm, both resulting from the derivation. The �nal system is a seond order approximation� with respet to the ratio between the vertial and longitudinal sales � of the original two-dimensional model. Other systems have been derived in the same spirit. In Ref.[12℄, the asymp-toti analysis is made through a variable hange in a referene domain, independent of the ratioparameter and time. Marhe proposes in Ref.[10℄ the derivation of a two-dimensional visousshallow water system taking into aount apillary e�ets, varying bathymetry and a moleularvisosity. However, in order to simulate realisti river �ows, three-dimensional geometries andturbulene phenomena must be taken into aount. Thus, the Reynolds-averaged Navier-Stokesequations (RANS) on an arbitrary three-dimensional domain are a more appropriate startingpoint for the derivation of simpli�ed systems. In Ref.[5℄, Saleri et al. derived a two-dimensionalvisous shallow water system from the three-dimensional RANS equations, taking into aounta non-�at bathymetry, atmospheri pressure e�ets and onsidering a onstant vertial eddyvisosity and linear frition boundary onditions.In this paper, we have hosen to proeed as in Ref.[7℄, extending the analysis to the three-dimensional RANS equations with anisotropi Reynolds tensor for free surfae �ows in arbitrarygeometry, with nonlinear frition boundary onditions entirely analogous to those atually usedin pratie in hydraulis appliations. We present a rigourous derivation of the setion-averagedsystem, inluding the e�ets of eddy visosity and frition. This derivation is also aimed atproviding an adequate framework for the rigorous derivation of oupling between three- andone-dimensional free surfae models. The equation system obtained allows to ompute the freesurfae level of the �ow as well as a setion-averaged veloity. If applied to hannels withretangular ross-setion, this system is similar to the lassial setion-averaged shallow waterequations [11℄, exept for the frition term. Indeed, our derivation shows that, in order to takeinto aount e�ets up to the seond order in the asymptoti parameter, the lassial fritionterm should be orreted by a term whih depends on the turbulent vertial visosity. Thisonlusion is in agreement with the one of Gerbeau et al. in Ref.[7℄ for two-dimensional �owswith onstant visosity over a �at bathymetry. Indeed, if the vertial visosity and fritionoe�ients are taken to be onstant and the �ow is homogeneous in the transversal diretion,we retrieve the same frition orretion as in Ref.[7℄. However, our derivation provides theexpression of the frition orretion term in a more general ase, whih inludes turbulent�ows, nonlinear frition boundary onditions and three-dimensional arbitrary geometry.In partiular, we ompute the orretion term assoiated to a spei� model for the verti-al pro�le of turbulent veloity. Furthermore, for steady state open hannel �ows admittinganalyti solutions of the three-dimensional as well as the simpli�ed models, we show that thesolutions omputed inluding our orretion term are muh loser to those of the three dimen-sional model than those of the standard shallow water model. If empirial frition losuresare introdued, as ommonly done in omputational hydraulis (see e.g.[2℄), one obtains resultsvery similar to those of our generalized frition term for steady state open hannel solutions.Thus, the generalized frition term resulting from the present derivation justi�es a posteriorithese empirial losures, while allowing to avoid the assumptions on loal �ow uniformity onwhih these losures rely. The frition orretion term an be easily inluded in setion aver-



3. Asymptoti derivation of the setion-averaged shallow water equationsaged models suh as the one proposed by Deponti et al. in Ref.[3℄, [4℄. Its use is also expetedto ease the oupling of three- and one-dimensional free surfae models in the framework of anintegrated hydrologial basin model.In setion 2 of this paper we review the three-dimensional RANS equations and their bound-ary onditions. Then, we derive the setion-averaged shallow water model in setion 3 and insetion 4 we give the expression of the frition orretion term in the laminar and turbulentases. Finally, in setion 5, we ompare the analytial solutions of the three-dimensional andthe setion-averaged models in the partiular ase of steady state open hannel �ows withretangular ross-setion, in order to show the auray gain ahieved by adding the fritionorretion.2 The Reynolds-averaged Navier-Stokes equations2.1 The three-dimensional equations with boundary onditionsWe onsider the motion of an inompressible �uid with onstant density ρ > 0, in a three-dimensional domain Ωt = Ω(t) whih is normal with respet to the vertial diretion z. Wedenote by ω the projetion of Ωt on the xy-plane, de�ned as follows:
ω(t) =

{

(x, y) ∈ R
2 / 0 ≤ x ≤ L, l1(x, t) ≤ y ≤ l2(x, t)

}

,where l1 and l2 are the time and spae dependent transversal limits of the �ow, and L itslength. We assume the bottom of the domain to be �xed and impervious. We all η and b thefuntions desribing the free surfae and the bottom, whih is assumed to be �xed in time. Thethree-dimensional domain is de�ned by
Ωt =

{

(x, y, z) ∈ R
3 / (x, y) ∈ ω(t), b (x, y) ≤ z ≤ η (x, y, t)

}

,as illustrated in Figure 1. The boundary of the domain Ωt is denoted by ∂Ωt and an bedeomposed into four separate parts: the free surfae Γs(t), the bottom surfae Γb, the in�owboundary Γin(t) and the out�ow boundary Γout(t).

Figure 1: Three-dimensional domainThe governing equations for the motion of the �uid are the inompressible Reynolds-Averaged Navier-Stokes (RANS) equations in Ωt, valid for any t ∈ (0, T ], whih an be written



4. A. Deoene, L. Bonaventura, E. Miglio,F. Salerias follows:






dU

dt
− ∇ ·

(

1

ρ
σT

)

= f + g,

∇ · U = 0,
(1)where U = (u, v,w)T is the veloity of the �uid, σT is the stress tensor, f = (fx, fy, fz)

Tthe sum of the external fores applied on the �uid, d

dt
denotes the total time derivative and

g = (0, 0,−g)T the gravity aeleration. We only onsider Newtonian �uids, for whih thetensor σT is written in the following way:
σT = −pI + σ, (2)where p is the pressure and σ the visous stress tensor. Sine we are onsidering �ows inpresene of gravity, that is aligned with the vertial diretion, we onsider a turbulene modelgiven through an anisotropi relationship between the stress tensor σ and the strain-rate tensor

D = ∇U + (∇U)T .Following Levermore and Sammartino in Ref. [9℄, we take:
σ =













σ11 µhD12 µvD13

µhD21 σ22 µvD23

µvD31 µvD32 µeD33













, (3)where
σ11 = µh(D11 −

1

2
(D11 + D22)) + µe

1

2
(D11 + D22),and

σ22 = µh(D22 −
1

2
(D11 + D22)) + µe

1

2
(D11 + D22).The positive oe�ients µh, µv and µe are the eddy visosities. They an be interpreted as theeddy visosity relative to the horizontal shear motion, the eddy visosity relative to the vertialshear motion, and the bulk visosity relative to the expansion rate in the horizontal diretion,respetively.The system is losed by suitable initial and boundary onditions. We denote by ns theoutward normal to the free surfae, whih depends on time:

ns =
1

√

1 + |∇η|2
(−∂η
∂x
,−∂η

∂y
, 1)T ,and by nb the outward normal to the bottom:

nb =
1

√

1 + |∇b|2
(
∂b

∂x
,
∂b

∂y
,−1)T ,while vetors tb,1 and tb,2 form a basis for the tangent plane to the bottom surfae:

tb,1 =
1

√

1 +

∣

∣

∣

∣

∂b

∂x

∣

∣

∣

∣

2

(1, 0,
∂b

∂x
)T ,



5. Asymptoti derivation of the setion-averaged shallow water equationsand
tb,2 =

1
√

1 +

∣

∣

∣

∣

∂b

∂y

∣

∣

∣

∣

2

(0, 1,
∂b

∂y
)T .In a visous �ow, the veloity is zero on a solid wall, so that the so-alled �no-slip� onditionshould be applied on the bottom:

U = 0 on Γb. (4)However, the boundary layer at the bottom is hardly ever resolved at typial resolutions ofenvironmental models. Furthermore, it is neessary to desribe in some approximate fashion thesubgrid sale surfae roughness. Thus, ondition (4) is generally substituted by two boundaryonditions assigned at a small distane ∆zr from the wall, whih represents the typial lengthsale of the bottom boundary layer. In addition, the veloity is onsidered zero at a distane
∆z0 of the wall, whih represents the typial length sale of the bottom surfae roughness, andshould be muh smaller than ∆zr:

∆z0 << ∆zr . (5)The �rst boundary ondition is a kinemati ondition:
U · nb = 0 at z = b(x, y) + ∆zr, (6)and the seond one is a dynami ondition whih aounts for frition e�ets:

(
1

ρ
σT · nb)

T · tb = −α||U ||U · tb at z = b(x, y) + ∆zr , (7)where α > 0 is a dimensionless frition oe�ient. Note that nb and tb are, respetively, theoutward normal and a tangent vetor to the bottom surfae, so that ondition (7) is indeed anassumption on the pro�le of the tangential veloity omponent along the diretion normal tothe bottom surfae. A logarithmi wall law is usually assumed for tangential veloity near thebottom, see e.g. [11℄, so that a paraboli model is hosen for the vertial eddy visosity, as wellas a partiular value of the frition oe�ient α, depending on the value of ∆zr, that will bedesribed in greater detail later. In the following we will denote zr(x, y) = b(x, y) + ∆zr.At the free surfae, the veloity of the �uid is equal to the veloity of the free surfae itself.This is expressed by the following kinemati ondition:
∂η

∂t
− U · ns = 0 on Γs(t). (8)The dynamial ondition at the free surfae takes into aount the atmospheri stress,

1

ρ
σT · ns = −1

ρ
pans on Γs(t), (9)where pa is the atmospheri pressure.



6. A. Deoene, L. Bonaventura, E. Miglio,F. Saleri2.2 Adimensionalization of the systemLet us onsider the following absolute sales: L for the total length, H for the depth and Ufor the x-omponent of the veloity. We denote by ǫ the ratio between the vertial and thelongitudinal sales:
ǫ =

H

L
.In addition we introdue the following dimensionless quantities:

νh =
µh

ρU L
, νv =

µv

ρU L
, νe =

µe

ρU L
, G =

H

U2
g, pa =

pa

ρU2
.The sale for time is L/U , for the vertial veloity it isW = ǫ U , and for the pressure P = ρU2.For the sake of simpliity we indiate again by u, v, w, p, η and b, respetively, veloityomponents, pressure, free surfae and bottom elevation, after resaling. Using these notationsin (1) we obtain the following adimensionalized system, written as a funtion of the primitiveunknowns u, v, w and p:



































































































































































∂u

∂t
+
∂u2

∂x
+
∂uv

∂y
+
∂uw

∂z
+
∂p

∂x
=

∂

∂x

(

(νh + νe)
∂u

∂x
− (νh − νe)

∂v

∂y

)

+
∂

∂y

(

νh(
∂u

∂y
+
∂v

∂x
)

)

+
1

ǫ2
∂

∂z

(

νv
∂u

∂z

)

+
∂

∂z

(

νv
∂w

∂x

)

,

∂v

∂t
+
∂uv

∂x
+
∂v2

∂y
+
∂vw

∂z
+
∂p

∂y
=

∂

∂x

(

νh(
∂u

∂y
+
∂v

∂x
)

)

+
∂

∂y

(

(νh + νe)
∂v

∂y
− (νh − νe)

∂u

∂x

)

+
1

ǫ2
∂

∂z

(

νv
∂v

∂z

)

+
∂

∂z

(

νv
∂w

∂y

)

,

ǫ2
(

∂w

∂t
+
∂uw

∂x
+
∂vw

∂y
+
∂w2

∂z

)

+
∂p

∂z
= −G+

∂

∂x

(

νv
∂u

∂z
+ ǫ2νv

∂w

∂x

)

+
∂

∂y

(

νv
∂v

∂z

)

+ ǫ2
∂

∂y

(

νv
∂w

∂y

)

+
∂

∂z

(

2νe
∂w

∂z

)

,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0.

(10)



7. Asymptoti derivation of the setion-averaged shallow water equationsCoherently, the resaled boundary onditions are, on the free surfae Γs(t),


































































































































∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
= w,

∂η

∂x

(

p− (νh + νe)
∂u

∂x
+ (νh − νe)

∂v

∂y

)

− ∂η

∂y

(

νh(
∂v

∂x
+
∂u

∂y

)

+νv

(

1

ǫ2
∂u

∂z
+
∂w

∂x

)

= pa
∂η

∂x
,

−∂η
∂x

(

νh

(

∂v

∂x
+
∂u

∂y

))

+
∂η

∂y

(

p− (νh + νe)
∂v

∂y
+ (νh − νe)

∂u

∂x

)

+νv

(

1

ǫ2
∂v

∂z
+
∂w

∂y

)

= pa
∂η

∂y
,

−∂η
∂x

(

νv

(

∂u

∂z
+ ǫ2

∂w

∂x

))

− ∂η

∂y

(

νv

(

∂v

∂z
+ ǫ2

∂w

∂y

))

− p

+ 2νe
∂w

∂z
= −pa,

(11)
and near the bottom at z = zr,



















































































































































































u
∂b

∂x
+ v

∂b

∂y
= w,

∂b

∂x

(

(νh + νe)
∂u

∂x
− (νh − νe)

∂v

∂y
− 2νe

∂w

∂z

)

+
∂b

∂y

(

νh

(

∂v

∂x
+
∂u

∂y

))

+

(

(

∂b

∂x

)2

− 1

ǫ2

)

(

νv

(

∂u

∂z
+ ǫ2

∂w

∂x

))

+
∂b

∂x

∂b

∂y

(

νv

(

∂v

∂z
+ ǫ2

∂w

∂y

))

= −α
√
u2 + v2 + ǫ2w2

(

1

ǫ
u+ ǫ

∂b

∂x
w

)

N(b, ǫ),

∂b

∂x

(

νh

(

∂v

∂x
+
∂u

∂y

))

+
∂b

∂y

(

(νh + νe)
∂v

∂y
− (νh − νe)

∂u

∂x
− 2νe

∂w

∂z

)

+

(

(

∂b

∂y

)2

− 1

ǫ2

)

(

νv

(

∂v

∂z
+ ǫ2

∂w

∂y

))

+
∂b

∂x

∂b

∂y

(

νv

(

∂u

∂z
+ ǫ2

∂w

∂x

))

= −α
√
u2 + v2 + ǫ2w2

(

1

ǫ
v + ǫ

∂b

∂y
w

)

N(b, ǫ).

(12)

where
N(b, ǫ) =

√

1 + ǫ2(
∂b

∂x
)2 + ǫ2(

∂b

∂y
)2.



8. A. Deoene, L. Bonaventura, E. Miglio,F. Saleri
3 Derivation of the setion-averaged shallow water model3.1 Seond order approximation in ǫIn order to derive our setion-averaged shallow water model, a number of approximations haveto be performed. Firstly, we assume that the vertial eddy visosity is �rst order with respetto the ratio between the vertial and longitudinal sales, that is,

νv = ǫ νv,0, (13)where νv,0 is a given positive quantity. This assumption an be justi�ed by a simple dimensionalanalysis. Indeed, following the Prandtl hypothesis, the eddy visosity is homogeneous to a lengthtimes a veloity, and more preisely
µ

ρ
∼ l2m ||D||, (14)where lm is the mixing length of the turbulent �ow and ||D|| is the norm of the strain-ratetensor. When onsidering the vertial eddy visosity, lm is homogeneous to a depth and thestrain-rate tensor redues to the vertial aeleration, therefore we onlude that

µ

ρ
∼ l2m

∣

∣

∣

∣

∣

∣

∣

∣

∂U

∂z

∣

∣

∣

∣

∣

∣

∣

∣

. (15)Note that Prandtl's mixing length model � see for instane Ref. [11℄ � is based on this assump-tion. Adimensionalizing this expression of µv gives:
U L µ̂v ∼ H2 ˆlm

2

√

U2

H2

(

(
∂û

∂z
)2 + (

∂v̂

∂z
)2 + (ǫ

∂ŵ

∂z
)2
)

∼ UH ˆlm
2

∣

∣

∣

∣

∂û

∂z

∣

∣

∣

∣

, (16)where the �hat� denotes here the adimensional variables. Thus
νv =

µ̂v

ρUL
∼ ǫ

ˆlm
2

ρ

∣

∣

∣

∣

∂û

∂z

∣

∣

∣

∣

= O(ǫ). (17)Moreover, the horizontal and bulk visosities are of same order as the vertial eddy visosity,and therefore we an write:
νh = ǫ νh,0, νe = ǫ νe,0, (18)where νh,0 and νe,0 are two given positive quantities. Finally, we assume a slow varyingbathymetry in the longitudinal diretion, as it has been done often in these derivations � seefor instane Ref. [5℄ �, and we onsider a onstant atmospheri pressure, that is
∂b

∂x
= O(ǫ) and ∇pa = 0. (19)Sine our aim is to obtain a seond order approximation with respet to ǫ of the three-dimensional system, we neglet quantities of order O(ǫ2). In this way, under the previous



9. Asymptoti derivation of the setion-averaged shallow water equationsassumptions, (10) beomes:


























































































































































∂u

∂t
+
∂u2

∂x
+
∂uv

∂y
+
∂uw

∂z
+
∂p

∂x
= ǫ

∂

∂x

(

(νh,0 + νe,0)
∂u

∂x
− (νh,0 − νe,0)

∂v

∂y

)

+ ǫ
∂

∂y

(

νh,0(
∂u

∂y
+
∂v

∂x
)

)

+
1

ǫ

∂

∂z

(

νv,0
∂u

∂z

)

+ ǫ
∂

∂z

(

νv,0
∂w

∂x

)

,

∂v

∂t
+
∂uv

∂x
+
∂v2

∂y
+
∂vw

∂z
+
∂p

∂y
= ǫ

∂

∂x

(

νh,0(
∂u

∂y
+
∂v

∂x
)

)

+ ǫ
∂

∂y

(

(νh,0 + νe,0)
∂v

∂y
− (νh,0 − νe,0)

∂u

∂x

)

+
1

ǫ

∂

∂z

(

νv,0
∂v

∂z

)

+ ǫ
∂

∂z

(

νv,0
∂w

∂y

)

,

∂p

∂z
= −G+ ǫ

∂

∂x

(

νv,0
∂u

∂z

)

+ ǫ
∂

∂y

(

νv,0
∂v

∂z

)

+ ǫ
∂

∂z

(

2νe,0
∂w

∂z

)

,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0.

(20)

together with boundary onditions on the free surfae Γs(t),














































































































∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
= w,

∂η

∂x

(

p− ǫ (νh,0 + νe,0)
∂u

∂x
+ ǫ (νh,0 − νe,0)

∂v

∂y

)

− ∂η

∂y

(

ǫ νh,0(
∂v

∂x
+
∂u

∂y
)

)

+
1

ǫ
νv,0

∂u

∂z
+ ǫ νv,0

∂w

∂x
= pa

∂η

∂x
,

−∂η
∂x

(

ǫ νh,0

(

∂v

∂x
+
∂u

∂y

))

+
∂η

∂y

(

p− ǫ (νh,0 + νe,0)
∂v

∂y
+ ǫ (νh,0 − νe,0)

∂u

∂x

)

+
1

ǫ
νv,0

∂v

∂z
+ ǫ νv,0

∂w

∂y
= pa

∂η

∂y
,

−∂η
∂x

(ǫ νv,0
∂u

∂z
) − ∂η

∂y
(ǫ νv,0

∂v

∂z
) − p+ 2ǫνe,0

∂w

∂z
= −pa,

(21)
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u
∂b

∂x
+ v

∂b

∂y
= w,

∂b

∂x

(

ǫ (νh,0 + νe,0)
∂u

∂x
− ǫ (νh,0 − νe,0)

∂v

∂y
− 2ǫ νe,0

∂w

∂z

)

+
∂b

∂y

(

ǫ νh,0

(

∂v

∂x
+
∂u

∂y

))

− 1

ǫ
νv,0

∂u

∂z
+ ǫ νv,0

∂w

∂x

= −α
ǫ
||u||u,

∂b

∂x

(

ǫνh,0

(

∂v

∂x
+
∂u

∂y

))

+
∂b

∂y

(

ǫ (νh,0 + νe,0)
∂v

∂y
− ǫ (νh,0 − νe,0)

∂u

∂x

− 2ǫ νe,0
∂w

∂z

)

+

(

(
∂b

∂y
)2 − 1

ǫ2

)(

ǫ νv,0
∂v

∂z

)

= −α||u||
(

1

ǫ
v + ǫ

∂b

∂y
w

)

,

(22)
where u = (u, v) is the horizontal veloity. Notie that, negleting terms in O(ǫ) in (22)2 and(22)3, we obtain the lassial boundary ondition on the bottom (see e.g. Ref. [2℄) :

νv,0
∂u

∂z
= −α||u||u .3.2 Vertial integration of the equationsWe will now vertially-integrate system (20) between the free surfae and the referene level zrat whih the bottom onditions are given. We will denote by h the orreted water depth, thatis the real water depth orreted by the distane ∆zr:

h(x, y, t) = η(x, y, t) − zr(x, y)

= η(x, y, t) − b(x, y) − ∆zr. (23)Then, for any three-dimensional variable f , we denote with f̄ the average along the vertialdiretion,
f̄(x, y, t) =

1

h(x, y, t)

∫ η

zr

f(x, y, z, t)dz.Let us �rst vertially-integrate the momentum equation (20)1 for u between the referene bot-tom level zr and the free surfae. Making use of the Leibnitz rule yields:
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∂hū

∂t
+
∂hū2

∂x
+
∂hūv

∂y
+
∂hp̄

∂x
+ uw(η) − uw(zr) −

∂η

∂t
u(η) − ∂η

∂x
u2(η)

+
∂b

∂x
u2(zr) −

∂η

∂y
uv(η) +

∂b

∂y
uv(zr) −

∂η

∂x
p(η) +

∂b

∂x
p(zr)

=
∂

∂x

∫ η

zr

(

ǫ (νh,0 + νe,0)
∂u

∂x
− ǫ (νh,0 − νe,0)

∂v

∂y

)

dz

+
∂

∂y

∫ η

zr

(

ǫ νh,0(
∂u

∂y
+
∂v

∂x
)

)

dz

− ∂η

∂x

(

ǫ (νh,0 + νe,0)
∂u

∂x
− ǫ (νh,0 − νe,0)

∂v

∂y

)

∣

∣

∣

z=η

− ∂η

∂y

(

ǫ νh,0(
∂u

∂y
+
∂v

∂x
)

)

∣

∣

∣

z=η

+
∂b

∂x

(

ǫ (νh,0 + νe,0)
∂u

∂x
− ǫ (νh,0 − νe,0)

∂v

∂y

)

∣

∣

∣

z=zr

+
∂b

∂y

(

ǫ νh,0(
∂u

∂y
+
∂v

∂x
)

)

∣

∣

∣

z=zr

+
1

ǫ
νv,0

∂u

∂z

∣

∣

∣

η−zr

+ ǫ νv,0
∂w

∂x

∣

∣

∣

η−zr

.

Using the kinemati boundary onditions (21)1 and (22)1, as well as (21)2 and (22)2, theequation redues to:
∂hū

∂t
+
∂hū2

∂x
+
∂hūv

∂y
+
∂hp̄

∂x
= pa

∂η

∂x
− α||u(zr)||

ǫ
u(zr) − ∂b

∂x
p(zr)

+ 2 ǫ
∂b

∂x
(νe,0

∂w

∂z
)
∣

∣

∣

z=zr

+ ǫ
∂

∂x

∫ η

zr

(

(νh,0 + νe,0)
∂u

∂x
− (νh,0 − νe,0)

∂v

∂y

)

dz

+ ǫ
∂

∂y

∫ η

zr

(

νh,0(
∂u

∂y
+
∂v

∂x
)

)

dz .

(24)
On the other hand, by vertially-integrating equation (20)3 between z and the free surfae, weobtain:
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p = p(η) + G(η − z) − ǫ

∫ η

z

(

∂

∂x
(νv,0

∂u

∂δ
) +

∂

∂y
(νv,0

∂v

∂δ
)

)

dδ

− 2 ǫ (νe,0
∂w

∂z
)
∣

∣

∣

z=η
+ 2 ǫ νe,0

∂w

∂z

= p(η) + G(η − z) − ǫ
∂

∂x

∫ η

z

(

νv,0
∂u

∂δ

)

dδ + ǫ
∂η

∂x

(

νv,0
∂u

∂z

)

∣

∣

∣

z=η

− ǫ
∂

∂y

∫ η

z

(

νv,0
∂v

∂δ

)

dδ + ǫ
∂η

∂y

(

νv,0
∂v

∂z

)

∣

∣

∣

z=η

− 2 ǫ (νe,0
∂w

∂z
)
∣

∣

∣

z=η
+ 2 ǫ νe,0

∂w

∂z
.

Applying now the dynami ondition (21)4 at the free surfae, we dedue the following expres-sion for the pressure:
p = pa + G(η − z) + 2 ǫ νe,0

∂w

∂z
− ǫ

∂

∂x

∫ η

z

(

νv,0
∂u

∂δ

)

dδ

− ǫ
∂

∂y

∫ η

z

(

νv,0
∂v

∂δ

)

dδ + O(ǫ2).

(25)
Note that the pressure near the bottom at z = zr is given by

p(zr) = pa + Gh + 2 ǫ (νe,0
∂w

∂z
)
∣

∣

∣

z=zr

− ǫ
∂

∂x

∫ η

zr

(

νv,0
∂u

∂z

)

dz

− ǫ
∂

∂y

∫ η

z

(

νv,0
∂v

∂δ

)

dδ + O(ǫ2),

(26)
and therefore, realling that ∂b

∂x
= 0(ǫ), we an onlude

∂b

∂x
p(zr) = pa

∂b

∂x
+ Gh

∂b

∂x
+O(ǫ2). (27)



13. Asymptoti derivation of the setion-averaged shallow water equationsLet us now vertially integrate this expression of the pressure from the bottom referene depth
z = zr to the surfae:

hp̄ = hpa + G
h2

2
+ 2 ǫ

∫ η

zr

(νe,0
∂w

∂z
)dz

− ǫ

∫ η

zr

(

∂

∂x

∫ η

z
(νv,0

∂u

∂δ
)dδ +

∂

∂y

∫ η

z
(νv,0

∂v

∂δ
)dδ

)

dz

= hpa + G
h2

2
+ 2 ǫ

∫ η

zr

(νe,0
∂w

∂z
)dz

− ǫ

(

∂

∂x

∫ η

zr

∫ η

z
(νv,0

∂u

∂δ
)dδdz +

∂

∂y

∫ η

zr

∫ η

z
(νv,0

∂v

∂δ
)dδdz

)

+ ǫ

(

∂b

∂x

∫ η

zr

(νv,0
∂u

∂z
)dz +

∂b

∂y

∫ η

zr

(νv,0
∂v

∂z
)dz

)

= hpa + G
h2

2
+ 2 ǫ

∫ η

zr

(νe,0
∂w

∂z
)dz

− ǫ

(

∂

∂x

∫ η

zr

∫ η

z
(νv,0

∂u

∂δ
)dδdz +

∂

∂y

∫ η

zr

∫ η

z
(νv,0

∂v

∂δ
)dδdz

)

.

(28)
The momentum equation (24) therefore writes:

∂hū

∂t
+

∂hū2

∂x
+

∂hūv

∂y
+ G

∂

∂x

h2

2
= − α||u(zr)||

ǫ
u(zr) − Gh

∂b

∂x

− 2 ǫ
∂

∂x

(
∫ η

zr

(νe,0
∂w

∂z
)dz

)

+ ǫ
∂

∂y

∫ η

zr

(

νh,0(
∂u

∂y
+
∂v

∂x
)

)

dz

+ ǫ
∂

∂x

∫ η

zr

(

(νh,0 + νe,0)
∂u

∂x
− (νh,0 − νe,0)

∂v

∂y

)

dz

+ ǫ
∂

∂x

(

∂

∂x

∫ η

zr

∫ η

z
(νv,0

∂u

∂δ
)dδdz +

∂

∂y

∫ η

zr

∫ η

z
(νv,0

∂v

∂δ
)dδdz

)

.

(29)
An analogous equation an be obtained by vertially integrating the ontinuity equation (20)4:

∂h

∂t
+
∂hū

∂x
+
∂hv̄

∂y
= 0. (30)

3.3 Setion averaged equationsSine the equations are now vertially-integrated, they are de�ned on ω(x, t) × I, where wereall that ω(t) =
{

(x, y) ∈ R
2 / 0 ≤ x ≤ L, l1(x, t) ≤ y ≤ l2(x, t)

}. We an therefore integrate



14. A. Deoene, L. Bonaventura, E. Miglio,F. Salerithem along the y-axis between l1(x, t) and l2(x, t). In addition we point out that, for any salarquantity f ,
(
∫ η

zr

fdz

)

∣

∣

∣

y=l1
=

(
∫ η

zr

fdz

)

∣

∣

∣

y=l2
= 0. (31)This assumption is justi�ed in the ase of a natural river, whose depth tends to zero as thebanks are approahed. Note however that we an retrieve the same setion averaged modelunder the hypothesis that

∂l1
∂x

≡ O(ǫ2) and ∂l2
∂x

≡ O(ǫ2), (32)as happens for instane in straight or mildly urved hannels. For the sake of larity we do onlyreport the derivation in the �rst ase, that is with hypothesis (31).We denote
A(x, t) =

∫ l2

l1

h(x, y, t)dy,

¯̄f(x, y, t) =
1

A(x, t)

∫ l2

l1

∫ η

zr

f(x, y, z, t) dzdy,

Q(x, t) =

∫ l2

l1

∫ η

zr

u(x, y, z, t) dzdy = A(x, t)¯̄u(x, y, t).From now on we make the further assumption that the transversal veloity v is small withrespet to the longitudinal veloity omponent u. This hypothesis is onsistent with regimesthat allow to use a setion averaged model on u. We therefore assume that:
|v|
|u| = O(ǫ) . (33)We integrate the momentum equation (24) on u. Using the Leibnitz rule and (31), we obtain:

∂(A¯̄u)

∂t
+

∂(Au2)

∂x
+ G

∫ l2

l1

∂

∂x

(

h2

2

)

dy = − 1

ǫ

∫ l2

l1

α||u(zr)||u(zr)dy

− G

∫ l2

l1

h
∂b

∂x
dy − 2 ǫ

∂

∂x

(
∫ l2

l1

∫ η

zr

(νe,0
∂w

∂z
)dzdy

)

+ ǫ
∂

∂x

∫ l2

l1

∫ η

zr

(

(νh,0 + νe,0)
∂u

∂x
− (νh,0 − νe,0)

∂v

∂y

)

dzdy

+ ǫ
∂2

∂x2

(
∫ l2

l1

∫ η

zr

∫ η

z
(νv,0

∂u

∂δ
)dδ dz dy

)

.

(34)
Note that

G

∫ l2

l1

∂

∂x

(

h2

2

)

dy = G

∫ l2

l1

∂h

∂x
hdy = G

∫ l2

l1

(

∂η

∂x
h− ∂b

∂x
h

)

dy .



15. Asymptoti derivation of the setion-averaged shallow water equationsNote also that, from the ontinuity equation,
− 2 ǫ

∂

∂x

(
∫ l2

l1

∫ η

zr

(νe,0
∂w

∂z
)dzdy

)

= 2 ǫ
∂

∂x

(
∫ l2

l1

∫ η

zr

νe,0(
∂u

∂x
+
∂v

∂y
) dzdy

)

,and then, using this last expression in the right-hand side of (34), we obtain the followingsetion averaged momentum equation:
∂Q

∂t
+

∂Q̃2

∂x
+ G

∫ l2

l1

h
∂η

∂x
dy = − 1

ǫ

∫ l2

l1

α||u(zr)||u(zr)dy

+ ǫ
∂

∂x

∫ l2

l1

∫ η

zr

(

νh,0(
∂u

∂x
− ∂v

∂y
)

)

dzdy

+ 3 ǫ
∂

∂x

∫ l2

l1

∫ η

zr

(

νe,0(
∂u

∂x
+
∂v

∂y
)

)

dzdy

+ ǫ
∂2

∂x2
(

∫ l2

l1

∫ η

zr

∫ η

z
(νv,0

∂u

∂δ
) dδ dz dy) ,

(35)
where

Q̃ =

(
∫ l2

l1

∫ η

zr

u2(x, y, z, t) dzdy

)1/2

.Denoting by β the momentum orretion (or Boussinesq) oe�ient
β =

1

A

∫ l2

l1

∫ η

zr

u2

¯̄u2
dz dy,we have that

∂Q̃2

∂x
=

∂

∂x

(

β
Q2

A

)

.The integration of the ontinuity equation (30)4 gives
∂A

∂t
+

∂Q

∂x
= 0, (36)that is the lassial ontinuity equation of the one-dimensional open hannel equations.3.4 Asymptoti analysis of the setion-averaged equationsWe now go bak to the three-dimensional equations in order to model th e frition term and showthat we an neglet the last visous term in the right-hand side of the momentum equation (35).From the three-dimensional momentum equation (20)1 we dedue that

∂

∂z

(

νv,0
∂u

∂z

)

= O(ǫ). (37)



16. A. Deoene, L. Bonaventura, E. Miglio,F. SaleriIn addition, boundary ondition (21)2 indiates that νv,0
∂u

∂z
= O(ǫ) at the free surfae. Fun-tion z → νv,0

∂u

∂z
is of the order O(ǫ) at the surfae boundary z = η, and so is its derivativewith respet to z. The funtion is therefore of the order O(ǫ) along the whole depth, that is :

νv,0
∂u

∂z
= O(ǫ) on Ωt . (38)Sine νv,0 is independent of the ration ǫ, we an onlude that ∂u

∂z
= O(ǫ) and therefore :

u(x, y, z, t) = ū(x, y, t) +O(ǫ). (39)Equation (38) has two important onsequenes. First, it shows that the frition oe�ient αis neessarily also of the �rst order in ǫ. Indeed, from boundary ondition (22)2, we have that
νv,0

∂u

∂z
= α||u||u + O(ǫ2) at z = zr. Thus, sine νv,0

∂u

∂z
= O(ǫ) on Ωt, we have that α = O(ǫ).In the following we will assume that

α = ǫα0. (40)On the other hand equation (38) shows that the third visous term in the momentum equation(35) is seond order in ǫ.Furthermore, from (25) we know that
p(x, y, z, t) = pa +G(η − z) +O(ǫ). (41)Using (39) and (41) in the three-dimensional momentum equation (20)1 we an write:

1

ǫ

∂

∂z

(

νv,0
∂u

∂z

)

=
∂u

∂t
+
∂u2

∂x
+
∂uv

∂y
+
∂uw

∂z
+
∂p

∂x
+O(ǫ)

=
∂ū

∂t
+
∂ū2

∂x
+
∂ūv̄

∂y
+
∂ūw

∂z
+G

∂η

∂x
+O(ǫ)

=
∂ū

∂t
+ ū

∂ū

∂x
+ v̄

∂ū

∂y
+G

∂η

∂x
+O(ǫ).

(42)
Note that for the last step we use the fat that, from ontinuity,

ū
∂w

∂z
= −ū (

∂u

∂x
+
∂v

∂y
) = −ū (

∂ū

∂x
+
∂v̄

∂y
) +O(ǫ).On the other hand the vertially-integrated momentum equation (24) gives

h

{

∂ū

∂t
+ ū

∂ū

∂x
+ v̄

∂ū

∂y
+G

∂h

∂x

}

+ ū

{

∂h

∂t
+
∂hū

∂x
+
∂hv̄

∂y

}

= − α0||u(zr)||u(zr) + O(ǫ),



17. Asymptoti derivation of the setion-averaged shallow water equationsand using the vertially-averaged ontinuity equation (30),
∂ū

∂t
+ ū

∂ū

∂x
+ v̄

∂ū

∂y
+G

∂h

∂x
= − α0||u(zr)||u(zr)

h
+ O(ǫ).Replaing this expression in (42) we have that

1

ǫ

∂

∂z

(

νv,0
∂u

∂z

)

= − α0||u(zr)||u(zr)
h

+ O(ǫ).Let us now integrate this expression from the bottom referene depth z = zr to z:
1

ǫ
νv,0

∂u

∂z
=

1

ǫ
(νv,0

∂u

∂z
)|z=zr

− α0||u(zr)||u(zr) (z − b)

h
+ O(ǫ).Using boundary ondition (22)2 we get:

1

ǫ
νv,0

∂u

∂z
= α0||u(zr)||u(zr)

(

1 − z − b

h

)

+ O(ǫ),so that
∂u

∂z
= ǫα0||u(zr)||u(zr)

(

η − z

h νv,0

)

+ O(ǫ2).We vertially-integrate again this expression from the bottom referene depth z = zr to z,yielding
u = u(zr) + ǫα0||u(zr)||u(zr)

∫ z

zr

η − δ

h νv,0
dδ + O(ǫ2)

= u(zr)

(

1 +
ǫα0||u(zr)||

h

∫ z

zr

η − δ

νv,0
dδ

)

+ O(ǫ2).

(43)Integrating on the vertial and dividing by the water depth h we obtain:
ū =

1

h

∫ η

zr

u dz = u(zr) (1 + ǫ α0||u(zr)||m(νv,0)) + O(ǫ2) , (44)where for the sake of simpliity we have denoted
m(νv,0) =

1

h2

∫ η

zr

∫ z

zr

η − δ

νv,0
dδ dz.Equation (44) leads us to two important results. On one hand, it gives us some informationabout the Boussinesq oe�ient β. Indeed, from (43) we dedue that

u2 = u2(zr)

(

1 +
2ǫα0||u(zr)||

h

∫ z

zr

η − δ

νv,0
dδ

)

+ O(ǫ2),and therefore:
1

h

∫ η

zr

u2dz = u2(zr) (1 + 2ǫα0||u(zr)||m(νv,0)) + O(ǫ2)

= ū2 (1 − 2ǫα0||u(zr)||m(νv,0))(1 + 2ǫα0||u(zr)||m(νv,0)) + O(ǫ2)

= ū2 + O(ǫ2).
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ū2 = ū2 + O(ǫ2), (45)whih means that, up to the seond order in ǫ, the Boussinesq oe�ient β only depends onthe transversal variations of the veloity u (and not on its vertial variations). Indeed:

β =
1

A

∫ l2

l1

∫ η

zr

u2

¯̄u2
dzdy = A

∫ l2

l1

hū2dy

(
∫ l2

l1

hū dy

)2
+O(ǫ2).On the other hand equation (44) allows to model the frition term, that is:

∫ l2

l1

α0||u(zr)||u(zr)dy . (46)For this purpose we need to express the veloity at z = zr with respet to the vertially-averagedveloity ū. From (44) we have that
|u(zr)| =

|ū|
1 + ǫα0||u(zr)||m(νv,0)

+O(ǫ2). (47)In addition, assumption (33) gives:
||u(zr)|| =

√

u(zr)2 + v(zr)2 = |u(zr)| +O(ǫ2) . (48)Using this expression of ||u(zr)|| in (47) yields:
|u(zr)| =

|ū|
1 + ǫα0|u(zr)|m(νv,0)

+O(ǫ2) , (49)and the frition term writes:
α0||u(zr)||u(zr) = α0|u(zr)|u(zr) + O(ǫ2)

=
α0 |ū| ū

(1 + ǫα0 |u(zr)|m(νv,0))2
+ O(ǫ2)

=
α0 |ū| ū

1 + 2ǫα0 |u(zr)|m(νv,0)
+ O(ǫ2) .Furthermore, using (49) we an write that:

1 + 2ǫα0 |u(zr)|m(νv,0) = 1 +
2ǫα0 |ub|m(νv,0)

1 + ǫα0 |u(zr)|m(νv,0)

= 1 + 2ǫα0 |ub|m(νv,0)(1 − ǫα0 |u(zr)|m(νv,0)) +O(ǫ2)

= 1 + 2ǫα0 |ub|m(νv,0) +O(ǫ2) .Negleting the O(ǫ2) term, we �nally obtain an approximation of the frition term (46) whihis independent of the veloity at z = zr, that is:
− 1

ǫ

∫ l2

l1

α |u(zr)|u(zr)dy = − 1

ǫ

∫ l2

l1

α |ū| ū
1 + 2αm(νv,0) |ū|

dy . (50)In this way we have overome the initial di�ulty and we use expression (50) to model thefrition term in the momentum equation (35).



19. Asymptoti derivation of the setion-averaged shallow water equations3.5 The setion averaged shallow water modelWe have derived a setion-averaged shallow water model whih is an approximation of theseond order in ǫ of the initial three-dimensional free surfae �ow problem (1) with boundaryonditions (6)-(9). Swithing to the dimensional variables, this model writes:






































































∂Q

∂t
+

∂

∂x

(

β
Q2

A

)

+ g

∫ l2

l1

h
∂η

∂x
dy = −

∫ l2

l1

α |ū| ū
1 + cα

dy

+ 3
∂

∂x

(
∫ l2

l1

∫ η

zr

µe

ρ

(

∂u

∂x
+
∂v

∂y

)

dzdy

)

+
∂

∂x

(
∫ l2

l1

∫ η

zr

µh

ρ

(

∂u

∂x
− ∂v

∂y

)

dzdy

)

∂A

∂t
+

∂Q

∂x
= 0,

(51)
where

cα =
2α |ū|
h2

∫ η

zr

∫ z

b

ρ (η − δ)

µv
dδ dz (52)ats as a orretion to the lassial one-dimensional frition term, and β is the momentumorretion oe�ient

β = A

∫ l2

l1

hū2dy

(

∫ l2

l1

hū dy
)2

. (53)This model results of a diret asymptoti derivation from the three-dimensional free surfae�ow equations. In addition, this derivation is very general sine it is valid for �ows with arbitraryross-setion, non-onstant, turbulent visosity and non-linear boundary onditions. Thus, weexpet the oupling of suh a redued model to a three-dimensional model to be easier and yieldbetter results.4 Computation of the orreted frition termIn this setion we give an expliit expression of the frition orretion to use in the laminar aseand with a paraboli turbulene model for the vertial eddy visosity.4.1 The laminar aseWe �rst onsider the ase where a onstant vertial visosity µv is used. Note that in order tobe onsistent with our analysis, its adimensional value νv =
µv

ρUL
must be O(ǫ). In that asewe have that

∫ η

b

∫ z

b

ρ (η − δ)

µv
dδ dz =

ρ

µv

h3

3
,and therefore the orretion (52) of the frition term writes:

cα =
2

3

ρ

µv
αh |ū|. (54)



20. A. Deoene, L. Bonaventura, E. Miglio,F. SaleriNote that in this ase we retrieve a frition orretion term whih is very similar to the onepresented by Gerbeau et al. in Ref. [7℄. Indeed, starting from a linear frition boundaryondition, Gerbeau et al. obtain the orretion:
cf =

1

3

ρ

µv
f h, (55)where f is the onstant frition oe�ient onsidered in their model. In our analysis, we havestarted from nonlinear boundary onditions, whih explains the di�erene in the frition or-retion for this speial ase. If repeating our derivation under the hypothesis of [7℄, exatly thesame orretion is obtained.If the �ow is homogeneous in the y-diretion and has a retangular-ross-setion, ū =

Q

A
andthe frition term in (51) writes

− α |Q|

h2 l

(

1 +
2

3

ρ

µv
α
|Q|
l

) Q . (56)
4.2 Paraboli model for the vertial eddy visosityLet us now onsider a turbulene model, see e.g. [11℄, whih assumes a paraboli distributionof the vertial eddy visosity over the water depth, vanishing on the bottom:

µv

ρ
= κu∗(z − b)

(

1 − (z − b)

h+ ∆zr

)

, (57)where κ is the von Karman onstant and u∗ the frition veloity, de�ned by u∗ =
√

||τb||/ρ,
τb being the bottom stress. Note that h+ ∆zr is the real water height. A simple dimensionalanalysis shows that we have νv =

µv

ρUL
= O(ǫ) as expeted.In the ase of a uniform �ow in an open hannel, this turbulene model allows to retrievea logarithmi pro�le of the tangential veloity omponent of the form:

ut

u∗ =
1

κ
ln(

z − b

∆z0
) , (58)where ut is the tangential veloity omponent and ∆z0 is the distane to the wall at whih theveloity is zero. Note that in this ase, from boundary ondition (7) at z = zr, we an retrievethe value of the frition oe�ient α for whih the pro�le of the tangential veloity is atually(58), that is:

α = κ2

(

1 − ∆zr
h+ ∆zr

)

(ln(
∆zr
∆z0

)

)2
. (59)In the general ase, for strongly three-dimensional and non-uniform �ows, it an be assumedthat the tangential veloity has a logarithmi pro�le of the form (58) inside a boundary layernear the wall. The paraboli visosity model (57) an therefore also be applied to general �ows,



21. Asymptoti derivation of the setion-averaged shallow water equationstogether with de�nition (59) of the frition oe�ient.The asymptoti analysis in setion 3.4 has shown that the frition oe�ient α is of the �rstorder in ǫ. Following de�nition (59), this gives a ondition on the ratio between the distaneto the wall ∆zr at whih the frition ondition is imposed, and the distane to the wall ∆z0at whih the tangential veloity is zero. It will be heked in the following that the values weonsider for this oe�ient in setion 5 are indeed ompatible with a reasonable hoie of ǫ.Let us give an expression of the frition orretion term with this turbulene model. Byanalytial omputation we have that
∫ η

b

∫ z

b

ρ (η − δ)

µv
dδ dz =

∆zr (h+ ∆zr)

κu∗

((

h+ ∆zr
∆zr

) ln(h+ ∆zr
∆zr

)

− h

)

.The frition orretion (52) then writes:
cα =

2α |ū|
κu∗

(

(h+ ∆zr)
2

h2
ln(1 +

h

∆zr
) − ∆zr(h+ ∆zr)

h

)

.Coming bak to the adimensional variables and using (44), we have that:
α |ˆ̄u|
û∗

=
ǫα0 |ˆ̄u|
û∗

=
ǫα0 | ˆu(zr)|

û∗
+ O(ǫ2) ,where the �hat� denotes here the adimensional variables. Therefore, up to the seond order in

ǫ,
α |ū|
u∗

=
α |u(zr)|

u∗
.Now, onsidering that zr is near enough to the wall to be inside the logarithmi layer, we anuse equations (58) and (59) to obtain:

α|u(zr)|
u∗ =

α

κ
ln(

∆zr
∆z0

) =

√

α(1 − ∆zr
∆z0

) .We �nally retrieve the following expression of the frition orretion:
cα =

2
√
α

κ

√

(1 − ∆zr
∆z0

)

(

(h+ ∆zr)
2

h2
ln(1 +

h

∆zr
) − ∆zr(h+ ∆zr)

h

)

. (60)If the �ow is homogeneous in the y-diretion and has a retangular-ross-setion, ū =
Q

A
andthe frition term in (51) writes

− α |Q| Q

h2 l

(

1 +
2
√
α

κ

√

(1 − ∆zr
∆z0

)

(

(h+ ∆zr)
2

h2
ln(1 +

h

∆zr
) − ∆zr(h+ ∆zr)

h

)

) . (61)



22. A. Deoene, L. Bonaventura, E. Miglio,F. Saleri5 Comparison of the three-dimensional and the setion-averagedsolutions in the ase of �ows with retangular ross-setionOur aim is now to illustrate the auray gain ahieved by taking into aount the orretion ofthe frition term in the setion-averaged model. In addition, we want to ompare the fritionterm derived here to one of the empirial losures widely used in omputational hydraulis (seee.g. [2℄). For this purpose, we restrit ourselves to the ase of retangular ross-setion openhannels, for whih steady state solutions an be omputed analytially. Note that these �owsare representative of the main physial features of river �ows and are ommonly used as a �rstbenhmark in many hydraulis appliations.In this ase the water depth h is onstant along the y-diretion and, denoting by l the widthof the river, the setion area is A = lh. In addition we suppose µe = µh = 0. The setionaveraged shallow water model then writes in the more lassial form:


















∂Q

∂t
+

∂

∂x

(

β
Q2

A

)

+ gA
∂η

∂x
= −

∫ l2

l1

α |ū|
1 + cα

ū dy

∂A

∂t
+

∂Q

∂x
= 0.

(62)
Note that the Boussinesq term (53) then redues to β = l

∫ l2

l1

ū2dy

(

∫ l2

l1

ū dy )2
.We emphasize the fat that in this partiular ase we obtain the lassial setion-averagedequations,[3℄ with a orretion of the frition term.Remark 5.1 If the �ow is homogeneous in the y-diretion, we have that ū =

Q

A
and thereforethe frition term writes

− α |Q| l
A2 (1 + cα)

Q .Without orretion the frition term redues to
− α |Q| l

A2
Q,whih is the expression of the frition in the lassial setion-averaged shallow water equations.We hoose a three-dimensional test ase with an analyti solution, to be ompared to theanalyti solution of the setion-averaged model with and without frition orretion. The testase onsists of a steady state turbulent �ow in a hannel with a slight slope iF , as illustratedin �gure 2.We take the hannel as the referene on�guration � (x, y, z) in �gure 2 � and we suppose that

µh = µe = 0. The �ow is steady and uniform in the x-diretion, and the free surfae is perfetlyparallel to the bottom, that is:
∇η = (

∂b

∂x
, 0)T , U = (u, 0, 0)T . (63)
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Figure 2: Uniform �ow in a hanel with slopeRewriting the three-dimensional RANS equations (1) in the new referene on�guration, andonsidering (63), we retrieve the following system:
1

ρ

∂p

∂x
= g sin θ + (cos2 θ − sin2 θ)2

∂

∂z
(
µv

ρ

∂u

∂z
) (64)

1

ρ

∂p

∂z
= −g cos θ + 2cos θ sin θ(cos2 θ − sin2 θ)

∂

∂z
(
µv

ρ

∂u

∂z
), (65)where θ is the angle of the slope. The boundary onditions on the free surfae are:

p = pa and µv

ρ

∂u

∂z
= 0, (66)and near the bottom at z = zr:

µv

ρ

∂u

∂z
= αψ(θ) |u|u, (67)where ψ(θ) =

1

(cos2 θ − sin2 θ)2
.Sine u does not depend on x, we dedue from (65) that ∂p

∂z
is independent of x, and thereforealso the pressure p. Thus ∂p

∂x
= 0 and equation (64) redues to:

∂

∂z
(
µv

ρ

∂u

∂z
) = −gφ(θ), (68)where φ(θ) =

sin θ

(cos2 θ − sin2 θ)2
. Integrating (68) from an arbitrary elevation z to the freesurfae η, and using boundary ondition (66) we obtain:

∂u

∂z
= gφ(θ)

ρ(η − z)

µv
. (69)



24. A. Deoene, L. Bonaventura, E. Miglio,F. SaleriIntegrating now (69) from z to the referene depth zr near the bottom we obtain the followingexpression of the veloity:
u = u(zr) + gφ(θ)

∫ z

zr

ρ(η − δ)

µv
dδ. (70)This expression an be vertially-integrated on the entire water olumn in order to retrieve anexpression of the �ow. Indeed,

Q =

∫ l2

l1

∫ η

zr

u dzdy =

∫ l2

l1

(

hu(zr) + gφ(θ)

∫ η

zr

∫ z

zr

ρ(η − δ)

µv
dδdz

)

dy,and sine the �ow is homogeneous in the y-diretion:
Q = Au(zr) + g l φ(θ)

∫ η

zr

∫ z

zr

ρ(η − δ)

µv
dδdz .Let us now retrieve an expression of the veloity near the bottom at z = zr. From (69) with

z = zr we have that
µv

ρ

∂u

∂z |z=zr

= gφ(θ)h .Using boundary ondition (67) we obtain:
α|u(zr)|u(zr)ψ(θ) = ghφ(θ),and sine in the partiular ase we are onsidering the veloity is always positive, we have that:

u(zr) =

√

g h sin θ

α
. (71)Finally we have derived the following expression of the �ow:

q =
Q

l
= h

√

g h sin θ

α
+ g φ(θ)

∫ η

zr

∫ z

zr

ρ(η − δ)

µv
dδdz , (72)whih is an analyti solution of the three-dimensional problem onsidered in this setion.This three-dimensional solution is to be ompared with the analyti solution of the setion-averaged model (62) with and without frition orretion. In the partiular ase onsideredhere we an easily derive the following analyti solution to the setion-averaged equations:

q = h

√

g h iF
α

(1 + cα) . (73)Note that if the orretion of the frition term is not taken into aount in the setion-averagedmodel, the analyti solution is:
q = h

√

g h iF
α

. (74)Sine cα and µv an depend on the �ow rate q, equations (72), (73) and (74) yield an impliitrelation between q and h. We have solved this relation for di�erent values of the water depth
h, in order to ompare the analyti solutions of the di�erent models. We have made severalomparisons that we desribe next, and for whih we have used a density ρ = 1kg/m3 and a



25. Asymptoti derivation of the setion-averaged shallow water equationsvalue of the slope iF = 10−4.First, we have ompared the solutions in the laminar ase, with a onstant vertial visosity
µ = 0.01. In this ase, onsistently with the disussion in setion 4.1, we have used a onstantfrition oe�ient α given by the Chézy law

α = g/χ2 , (75)where g is the gravity and χ is the Chézy oe�ient. Figures 3 and 4 show the pro�le of theanalytial water depth h as a funtion of the �ow q for χ = 66.5 m1/2/s and χ = 30m1/2/s,respetively. The solid line orresponds to the three-dimensional solution given by (72), thestarred line orresponds to the solution to the setion-averaged model with frition orretiongiven by (73), wheareas the dotted line orresponds to the solution without frition orretion(74).
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Figure 3: Analyti solutions for the three-dimensional problem (solid line), the setion-averagedproblem with frition orretion (starred line) and without orretion (dashed line). Laminarase with ν = 0.01 and with χ = 66.5.We have then ompared the solution of the di�erent models in the turbulent ase, using theparaboli model (57) for the turbulent vertial visosity, and the frition oe�ient α given byde�nition (59). For this ase we have hosen ∆z0 = 10−5 m and ∆zr = 0.03h m, but similarresults an be obtained with a wide range of values for these layer amplitudes. Figure 5 showsthe pro�le of the analyti water depth h as a funtion of the �ow q for the di�erent models.As we an see, the analyti solution of the setion-averaged model is muh loser to thethree-dimensional solution when the frition orretion is taken into aount. This is true when
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Figure 4: Analyti solutions for the three-dimensional problem (solid line), the setion-averagedproblem with frition orretion (starred line) and without orretion (dashed line). Laminarase with ν = 0.01 and with χ = 30.taking a onstant vertial visosity, as well as when using the paraboli turbulene model. Theresults obtained in this test ase, whih is a relevant regime for river hydraulis, on�rm thatthe lassial frition term in the setion-averaged shallow water equations should be orretedas de�ned in (51).However, in hydrauli engineering, the lassial setion-averaged model is often used withempirial losures that yield a frition oe�ient α depending on the �uid depth. For instane,in the ase of uniform �ows, the frition oe�ient α used in the setion-averaged equations anbe derived from the Chézy law (75) by some assumption on the turbulent veloity pro�le. Inthe ase of a logarithmi veloity pro�le and assuming the standard values for the von Karmanonstant, one an derive the following formula for the Chézy oe�ient:
χ = 7.83 ln (

h+ ∆zr
e∆z0

) , (76)where we reall that ∆z0 is the distane at whih the veloity is supposed to be zero, and ∆zris the referene distane to the wall at whih the wall law ondition is imposed. Carrying outthe same derivation for the three-dimensional equations yields instead the following formula forthe Chézy oe�ient:
χ = 7.83 ln (

2∆zr
e∆z0

) . (77)Our aim is now to ompare, in the ase of uniform steady state �ows, the solutions of thedi�erent models: 1) the three-dimensional model, 2) the setion averaged model with and 3)
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Figure 5: Analyti solutions for the three-dimensional problem (solid line), the setion-averagedproblem with frition orretion (starred line) and without orretion (dashed line ). Case witha paraboli turbulent and α given by (59).without frition orretion, all using the analyti value of the frition oe�ient α given by(59), and 4) the solution of the setion averaged model using the empirial frition losure (76).Of ourse we onsider the paraboli model (57) for the vertial visosity.Let us �rst ompare the values of the frition oe�ient α using the di�erent formulas. Fig-ure 6 shows the pro�le as a funtion of the water depth of, respetively, the three-dimensionalanalyti frition oe�ient α de�ned by (59) (solid line), the frition oe�ient resulting fromthe empirial losure for the three-dimensional model (starred line), given by (75) with a Chézyoe�ient omputed using formula (77), and the oe�ient used for the setion-averaged model(dashed line), with a Chézy oe�ient omputed using formula (76). As we an see, the fritionoe�ient resulting from the empirial losure for the three-dimensional model is quasi-identialto the three-dimensional analyti value, whereas the oe�ient used for the setion-averagedmodel is signi�antly di�erent.Let us now ompare the solutions for the di�erent models using the di�erent values of thefrition oe�ient α. Figure 7 shows the pro�le of the analytial water depth h as a funtion ofthe �ow q. As in �gure 5, the solid line orresponds to the solution (72) of the three-dimensionalmodel, the starred line to the setion-averaged solution (73) with frition orretion, and thedashed line orresponds to the solution without frition orretion (74). These three solutionshave been omputed using the analyti frition oe�ient α de�ned by (59). The additionalpro�le is the dotted line, whih orresponds to the setion-averaged solution without fritionorretion (74), but with the empirial frition oe�ient α given by formula (76). We see
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Figure 6: Values of the frition oe�ient α with respet to the water depth. Analyti valuegiven by (59) (solid line), value for the three-dimensional model (starred line) given by (75) and(77), and value for the setion-averaged model (dashed line), given by (75) and (76).that this pro�le is idential to the solution (73) of the setion-averaged model with fritionorretion using the frition oe�ient α de�ned by (59). We an therefore onlude that, inthis ase, the orretion cα de�ned by (52) and derived in this work for the frition term of thesetion-averaged model, has the same e�et on the solution of the model as the introdution ofan empirial losure formula for the frition oe�ient. However, our orretion is independentof the uniformity assumptions that are instead neessary to derive formula (76). Thus, ourorretion an be applied in a muh wider range of �ows, with a rigorous justi�ation based onthe asymptoti derivation we have presented.6 ConlusionsIn this paper, we have extended the analysis of Ref. [7℄ to the three-dimensional RANS equa-tions with anisotropi Reynolds tensor for free surfae �ows in arbitrary geometry. A rigourousderivation of a setion-averaged system has been presented, inluding the e�ets of eddy visos-ity and frition. When applied to �ows with retangular ross-setion, this system is similar tothe lassial setion-averaged shallow water equations,[11℄ exept for the frition term. Indeed,our derivation shows that, in order to take into aount e�ets up to the seond order in theasymptoti parameter, the lassial frition term should be orreted by a term whih dependson the turbulent vertial visosity. The generalized frition term obtained does not rely onloal uniformity assumptions and an be omputed diretly from three-dimensional turbulenemodels, without need for loal uniformity assumptions. This onlusion is in good agreementwith the one ahieved by Gerbeau et al. in Ref. [7℄ for two-dimensional �ows with onstant vis-
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Figure 7: Analyti solutions for the three-dimensional problem (solid line), the setion-averagedproblem with frition orretion (starred line) and without orretion (dashed line ). Case witha paraboli turbulent and α given by (59).
osity over a �at bottom. Indeed, if the vertial visosity is taken onstant and linear boundaryonditions are onsidered, and when the �ow is homogeneous in the transversal diretion, weretrieve the same frition orretion as in Ref. [7℄. Our derivation provides the expression ofthe frition orretion term in a more general ase than those treated by Ref. [7℄, inludingturbulent �ows, non-linear boundary onditions and three-dimensional arbitrary geometries. Inpartiular, we ompute the orretion term assoiated to a spei� model for the vertial pro�leof turbulent veloity. For steady state open hannel �ows admitting analyti solutions of thethree-dimensional as well as the simpli�ed models, we have shown that the solutions omputedinluding our orretion term are muh loser to those of the three dimensional model than thoseof the standard shallow water model. Furthermore, we show that our formulation yields resultsthat are very similar to those obtained inluding in the lassial equations empirial fritionlosures derived in omputational hydraulis. The generalized frition term resulting from thepresent derivation an also be interpreted as a generalization and an a posteriori justi�ationof these empirial losures, that allows to avoid the assumptions on loal �ow uniformity onwhih these losures rely.In a forthoming work, we plan to take advantage of the present results by inluding thefrition orretion term in setion averaged models suh as the one proposed by Deponti ea inRef. [3℄. Its use is also expeted to ease the oupling of three- and one-dimensional free surfaemodels in the framework of an integrated hydrologial basin model.
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