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Asymptoti
 derivation of the se
tion-averaged shallowwater equations for natural river hydrauli
sAstrid De
oene∗, Lu
a Bonaventura†, Edie Miglio‡, Fausto SaleriMOX � Modelling and S
ienti�
 ComputingDipartimento di Matemati
a �F. Brios
hi�, Polite
ni
o di MilanoVia Bonardi 9, 20133 Milano, ItalyAbstra
tThe se
tion-averaged shallow water model usually applied in river and open 
hannelhydrauli
s is derived asymptoti
ally up to se
ond order in the verti
al/longitudinal lengthratio, starting from the three-dimensional Reynolds-averaged Navier-Stokes equations forin
ompressible free surfa
e �ows. The derivation is 
arried out under quite general as-sumptions on the geometry of the 
hannel, thus allowing for the appli
ation of the result-ing equations to natural rivers with arbitrarily shaped 
ross se
tions. As a result of thederivation, a generalized fri
tion term is obtained, that does not rely on lo
al uniformityassumptions and that 
an be 
omputed dire
tly from three-dimensional turbulen
e models,without need for lo
al uniformity assumptions. The modi�ed equations in
luding the novelfri
tion term are 
ompared to the 
lassi
al Saint Venant equations in the 
ase of steadystate open 
hannel �ows, where analyti
 solutions are available, showing that the solutionsresulting from the modi�ed equation set are mu
h 
loser to the three-dimensional solutionsthan those of the 
lassi
al equation set. Furthermore, it is shown that the proposed formu-lation yields results that are very similar to those obtained with empiri
al fri
tion 
losureswidely applied in 
omputational hydrauli
s. The generalized fri
tion term derived thereforejusti�es a posteriori these empiri
al 
losures, while allowing to avoid the assumptions onlo
al �ow uniformity on whi
h these 
losures rely.Keywords: Computational hydrauli
s; shallow water equations;Saint Venant equations.1 Introdu
tionIn environmental modelling of free surfa
e �ows, whenever the ratio between the verti
al andlongitudinal s
ales is small enough, the so-
alled Shallow Water approximation is usually intro-du
ed, in order to redu
e the 
omputational 
ost implied by the numeri
al solution of three-dimensional free surfa
e �ow equations. Models based on this approximation are extensivelyused to simulate various geophysi
al phenomena, su
h as rivers and 
oastal �ows,[6, 8℄ o
eansand even avalan
hes,[1℄ and they have been used in hydrauli
s for a very long time. Whenthe vis
osity is negle
ted and a re
tangular 
hannel se
tion is assumed, the derivation of the
∗astrid.de
oene�mate.polimi.it
†lu
a.bonaventura�polimi.it
‡edie.miglio�mate.polimi.it 1



2. A. De
oene, L. Bonaventura, E. Miglio,F. Salerione-dimensional Shallow Water system is 
lassi
al, see e.g.[13℄. However, this derivation is un-satisfa
tory, sin
e vis
osity e�e
ts are added a posteriori and the three-dimensional geometryis not arbitrary.In Ref.[7℄, Gerbeau and Perthame derive rigourously, by asymptoti
 analysis, a one -dimensional vis
ous Saint-Venant system from the two-dimensional Navier-Stokes equationswith mole
ular vis
osity, linear fri
tion boundary 
onditions and �at bathymetry. The e�e
t ofthe vis
osity is re
overed in a one-dimensional fri
tion term and in a one-dimensional di�usionterm, both resulting from the derivation. The �nal system is a se
ond order approximation� with respe
t to the ratio between the verti
al and longitudinal s
ales � of the original two-dimensional model. Other systems have been derived in the same spirit. In Ref.[12℄, the asymp-toti
 analysis is made through a variable 
hange in a referen
e domain, independent of the ratioparameter and time. Mar
he proposes in Ref.[10℄ the derivation of a two-dimensional vis
ousshallow water system taking into a

ount 
apillary e�e
ts, varying bathymetry and a mole
ularvis
osity. However, in order to simulate realisti
 river �ows, three-dimensional geometries andturbulen
e phenomena must be taken into a

ount. Thus, the Reynolds-averaged Navier-Stokesequations (RANS) on an arbitrary three-dimensional domain are a more appropriate startingpoint for the derivation of simpli�ed systems. In Ref.[5℄, Saleri et al. derived a two-dimensionalvis
ous shallow water system from the three-dimensional RANS equations, taking into a

ounta non-�at bathymetry, atmospheri
 pressure e�e
ts and 
onsidering a 
onstant verti
al eddyvis
osity and linear fri
tion boundary 
onditions.In this paper, we have 
hosen to pro
eed as in Ref.[7℄, extending the analysis to the three-dimensional RANS equations with anisotropi
 Reynolds tensor for free surfa
e �ows in arbitrarygeometry, with nonlinear fri
tion boundary 
onditions entirely analogous to those a
tually usedin pra
ti
e in hydrauli
s appli
ations. We present a rigourous derivation of the se
tion-averagedsystem, in
luding the e�e
ts of eddy vis
osity and fri
tion. This derivation is also aimed atproviding an adequate framework for the rigorous derivation of 
oupling between three- andone-dimensional free surfa
e models. The equation system obtained allows to 
ompute the freesurfa
e level of the �ow as well as a se
tion-averaged velo
ity. If applied to 
hannels withre
tangular 
ross-se
tion, this system is similar to the 
lassi
al se
tion-averaged shallow waterequations [11℄, ex
ept for the fri
tion term. Indeed, our derivation shows that, in order to takeinto a

ount e�e
ts up to the se
ond order in the asymptoti
 parameter, the 
lassi
al fri
tionterm should be 
orre
ted by a term whi
h depends on the turbulent verti
al vis
osity. This
on
lusion is in agreement with the one of Gerbeau et al. in Ref.[7℄ for two-dimensional �owswith 
onstant vis
osity over a �at bathymetry. Indeed, if the verti
al vis
osity and fri
tion
oe�
ients are taken to be 
onstant and the �ow is homogeneous in the transversal dire
tion,we retrieve the same fri
tion 
orre
tion as in Ref.[7℄. However, our derivation provides theexpression of the fri
tion 
orre
tion term in a more general 
ase, whi
h in
ludes turbulent�ows, nonlinear fri
tion boundary 
onditions and three-dimensional arbitrary geometry.In parti
ular, we 
ompute the 
orre
tion term asso
iated to a spe
i�
 model for the verti-
al pro�le of turbulent velo
ity. Furthermore, for steady state open 
hannel �ows admittinganalyti
 solutions of the three-dimensional as well as the simpli�ed models, we show that thesolutions 
omputed in
luding our 
orre
tion term are mu
h 
loser to those of the three dimen-sional model than those of the standard shallow water model. If empiri
al fri
tion 
losuresare introdu
ed, as 
ommonly done in 
omputational hydrauli
s (see e.g.[2℄), one obtains resultsvery similar to those of our generalized fri
tion term for steady state open 
hannel solutions.Thus, the generalized fri
tion term resulting from the present derivation justi�es a posteriorithese empiri
al 
losures, while allowing to avoid the assumptions on lo
al �ow uniformity onwhi
h these 
losures rely. The fri
tion 
orre
tion term 
an be easily in
luded in se
tion aver-



3. Asymptoti
 derivation of the se
tion-averaged shallow water equationsaged models su
h as the one proposed by Deponti et al. in Ref.[3℄, [4℄. Its use is also expe
tedto ease the 
oupling of three- and one-dimensional free surfa
e models in the framework of anintegrated hydrologi
al basin model.In se
tion 2 of this paper we review the three-dimensional RANS equations and their bound-ary 
onditions. Then, we derive the se
tion-averaged shallow water model in se
tion 3 and inse
tion 4 we give the expression of the fri
tion 
orre
tion term in the laminar and turbulent
ases. Finally, in se
tion 5, we 
ompare the analyti
al solutions of the three-dimensional andthe se
tion-averaged models in the parti
ular 
ase of steady state open 
hannel �ows withre
tangular 
ross-se
tion, in order to show the a

ura
y gain a
hieved by adding the fri
tion
orre
tion.2 The Reynolds-averaged Navier-Stokes equations2.1 The three-dimensional equations with boundary 
onditionsWe 
onsider the motion of an in
ompressible �uid with 
onstant density ρ > 0, in a three-dimensional domain Ωt = Ω(t) whi
h is normal with respe
t to the verti
al dire
tion z. Wedenote by ω the proje
tion of Ωt on the xy-plane, de�ned as follows:
ω(t) =

{

(x, y) ∈ R
2 / 0 ≤ x ≤ L, l1(x, t) ≤ y ≤ l2(x, t)

}

,where l1 and l2 are the time and spa
e dependent transversal limits of the �ow, and L itslength. We assume the bottom of the domain to be �xed and impervious. We 
all η and b thefun
tions des
ribing the free surfa
e and the bottom, whi
h is assumed to be �xed in time. Thethree-dimensional domain is de�ned by
Ωt =

{

(x, y, z) ∈ R
3 / (x, y) ∈ ω(t), b (x, y) ≤ z ≤ η (x, y, t)

}

,as illustrated in Figure 1. The boundary of the domain Ωt is denoted by ∂Ωt and 
an bede
omposed into four separate parts: the free surfa
e Γs(t), the bottom surfa
e Γb, the in�owboundary Γin(t) and the out�ow boundary Γout(t).

Figure 1: Three-dimensional domainThe governing equations for the motion of the �uid are the in
ompressible Reynolds-Averaged Navier-Stokes (RANS) equations in Ωt, valid for any t ∈ (0, T ], whi
h 
an be written



4. A. De
oene, L. Bonaventura, E. Miglio,F. Salerias follows:






dU

dt
− ∇ ·

(

1

ρ
σT

)

= f + g,

∇ · U = 0,
(1)where U = (u, v,w)T is the velo
ity of the �uid, σT is the stress tensor, f = (fx, fy, fz)

Tthe sum of the external for
es applied on the �uid, d

dt
denotes the total time derivative and

g = (0, 0,−g)T the gravity a

eleration. We only 
onsider Newtonian �uids, for whi
h thetensor σT is written in the following way:
σT = −pI + σ, (2)where p is the pressure and σ the vis
ous stress tensor. Sin
e we are 
onsidering �ows inpresen
e of gravity, that is aligned with the verti
al dire
tion, we 
onsider a turbulen
e modelgiven through an anisotropi
 relationship between the stress tensor σ and the strain-rate tensor

D = ∇U + (∇U)T .Following Levermore and Sammartino in Ref. [9℄, we take:
σ =













σ11 µhD12 µvD13

µhD21 σ22 µvD23

µvD31 µvD32 µeD33













, (3)where
σ11 = µh(D11 −

1

2
(D11 + D22)) + µe

1

2
(D11 + D22),and

σ22 = µh(D22 −
1

2
(D11 + D22)) + µe

1

2
(D11 + D22).The positive 
oe�
ients µh, µv and µe are the eddy vis
osities. They 
an be interpreted as theeddy vis
osity relative to the horizontal shear motion, the eddy vis
osity relative to the verti
alshear motion, and the bulk vis
osity relative to the expansion rate in the horizontal dire
tion,respe
tively.The system is 
losed by suitable initial and boundary 
onditions. We denote by ns theoutward normal to the free surfa
e, whi
h depends on time:

ns =
1

√

1 + |∇η|2
(−∂η
∂x
,−∂η

∂y
, 1)T ,and by nb the outward normal to the bottom:

nb =
1

√

1 + |∇b|2
(
∂b

∂x
,
∂b

∂y
,−1)T ,while ve
tors tb,1 and tb,2 form a basis for the tangent plane to the bottom surfa
e:

tb,1 =
1

√

1 +

∣

∣

∣

∣

∂b

∂x

∣

∣

∣

∣

2

(1, 0,
∂b

∂x
)T ,



5. Asymptoti
 derivation of the se
tion-averaged shallow water equationsand
tb,2 =

1
√

1 +

∣

∣

∣

∣

∂b

∂y

∣

∣

∣

∣

2

(0, 1,
∂b

∂y
)T .In a vis
ous �ow, the velo
ity is zero on a solid wall, so that the so-
alled �no-slip� 
onditionshould be applied on the bottom:

U = 0 on Γb. (4)However, the boundary layer at the bottom is hardly ever resolved at typi
al resolutions ofenvironmental models. Furthermore, it is ne
essary to des
ribe in some approximate fashion thesubgrid s
ale surfa
e roughness. Thus, 
ondition (4) is generally substituted by two boundary
onditions assigned at a small distan
e ∆zr from the wall, whi
h represents the typi
al lengths
ale of the bottom boundary layer. In addition, the velo
ity is 
onsidered zero at a distan
e
∆z0 of the wall, whi
h represents the typi
al length s
ale of the bottom surfa
e roughness, andshould be mu
h smaller than ∆zr:

∆z0 << ∆zr . (5)The �rst boundary 
ondition is a kinemati
 
ondition:
U · nb = 0 at z = b(x, y) + ∆zr, (6)and the se
ond one is a dynami
 
ondition whi
h a

ounts for fri
tion e�e
ts:

(
1

ρ
σT · nb)

T · tb = −α||U ||U · tb at z = b(x, y) + ∆zr , (7)where α > 0 is a dimensionless fri
tion 
oe�
ient. Note that nb and tb are, respe
tively, theoutward normal and a tangent ve
tor to the bottom surfa
e, so that 
ondition (7) is indeed anassumption on the pro�le of the tangential velo
ity 
omponent along the dire
tion normal tothe bottom surfa
e. A logarithmi
 wall law is usually assumed for tangential velo
ity near thebottom, see e.g. [11℄, so that a paraboli
 model is 
hosen for the verti
al eddy vis
osity, as wellas a parti
ular value of the fri
tion 
oe�
ient α, depending on the value of ∆zr, that will bedes
ribed in greater detail later. In the following we will denote zr(x, y) = b(x, y) + ∆zr.At the free surfa
e, the velo
ity of the �uid is equal to the velo
ity of the free surfa
e itself.This is expressed by the following kinemati
 
ondition:
∂η

∂t
− U · ns = 0 on Γs(t). (8)The dynami
al 
ondition at the free surfa
e takes into a

ount the atmospheri
 stress,

1

ρ
σT · ns = −1

ρ
pans on Γs(t), (9)where pa is the atmospheri
 pressure.



6. A. De
oene, L. Bonaventura, E. Miglio,F. Saleri2.2 Adimensionalization of the systemLet us 
onsider the following absolute s
ales: L for the total length, H for the depth and Ufor the x-
omponent of the velo
ity. We denote by ǫ the ratio between the verti
al and thelongitudinal s
ales:
ǫ =

H

L
.In addition we introdu
e the following dimensionless quantities:

νh =
µh

ρU L
, νv =

µv

ρU L
, νe =

µe

ρU L
, G =

H

U2
g, pa =

pa

ρU2
.The s
ale for time is L/U , for the verti
al velo
ity it isW = ǫ U , and for the pressure P = ρU2.For the sake of simpli
ity we indi
ate again by u, v, w, p, η and b, respe
tively, velo
ity
omponents, pressure, free surfa
e and bottom elevation, after res
aling. Using these notationsin (1) we obtain the following adimensionalized system, written as a fun
tion of the primitiveunknowns u, v, w and p:



































































































































































∂u

∂t
+
∂u2

∂x
+
∂uv

∂y
+
∂uw

∂z
+
∂p

∂x
=

∂

∂x

(

(νh + νe)
∂u

∂x
− (νh − νe)

∂v

∂y

)

+
∂

∂y

(

νh(
∂u

∂y
+
∂v

∂x
)

)

+
1

ǫ2
∂

∂z

(

νv
∂u

∂z

)

+
∂

∂z

(

νv
∂w

∂x

)

,

∂v

∂t
+
∂uv

∂x
+
∂v2

∂y
+
∂vw

∂z
+
∂p

∂y
=

∂

∂x

(

νh(
∂u

∂y
+
∂v

∂x
)

)

+
∂

∂y

(

(νh + νe)
∂v

∂y
− (νh − νe)

∂u

∂x

)

+
1

ǫ2
∂

∂z

(

νv
∂v

∂z

)

+
∂

∂z

(

νv
∂w

∂y

)

,

ǫ2
(

∂w

∂t
+
∂uw

∂x
+
∂vw

∂y
+
∂w2

∂z

)

+
∂p

∂z
= −G+

∂

∂x

(

νv
∂u

∂z
+ ǫ2νv

∂w

∂x

)

+
∂

∂y

(

νv
∂v

∂z

)

+ ǫ2
∂

∂y

(

νv
∂w

∂y

)

+
∂

∂z

(

2νe
∂w

∂z

)

,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0.

(10)



7. Asymptoti
 derivation of the se
tion-averaged shallow water equationsCoherently, the res
aled boundary 
onditions are, on the free surfa
e Γs(t),


































































































































∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
= w,

∂η

∂x

(

p− (νh + νe)
∂u

∂x
+ (νh − νe)

∂v

∂y

)

− ∂η

∂y

(

νh(
∂v

∂x
+
∂u

∂y

)

+νv

(

1

ǫ2
∂u

∂z
+
∂w

∂x

)

= pa
∂η

∂x
,

−∂η
∂x

(

νh

(

∂v

∂x
+
∂u

∂y

))

+
∂η

∂y

(

p− (νh + νe)
∂v

∂y
+ (νh − νe)

∂u

∂x

)

+νv

(

1

ǫ2
∂v

∂z
+
∂w

∂y

)

= pa
∂η

∂y
,

−∂η
∂x

(

νv

(

∂u

∂z
+ ǫ2

∂w

∂x

))

− ∂η

∂y

(

νv

(

∂v

∂z
+ ǫ2

∂w

∂y

))

− p

+ 2νe
∂w

∂z
= −pa,

(11)
and near the bottom at z = zr,



















































































































































































u
∂b

∂x
+ v

∂b

∂y
= w,

∂b

∂x

(

(νh + νe)
∂u

∂x
− (νh − νe)

∂v

∂y
− 2νe

∂w

∂z

)

+
∂b

∂y

(

νh

(

∂v

∂x
+
∂u

∂y

))

+

(

(

∂b

∂x

)2

− 1

ǫ2

)

(

νv

(

∂u

∂z
+ ǫ2

∂w

∂x

))

+
∂b

∂x

∂b

∂y

(

νv

(

∂v

∂z
+ ǫ2

∂w

∂y

))

= −α
√
u2 + v2 + ǫ2w2

(

1

ǫ
u+ ǫ

∂b

∂x
w

)

N(b, ǫ),

∂b

∂x

(

νh

(

∂v

∂x
+
∂u

∂y

))

+
∂b

∂y

(

(νh + νe)
∂v

∂y
− (νh − νe)

∂u

∂x
− 2νe

∂w

∂z

)

+

(

(

∂b

∂y

)2

− 1

ǫ2

)

(

νv

(

∂v

∂z
+ ǫ2

∂w

∂y

))

+
∂b

∂x

∂b

∂y

(

νv

(

∂u

∂z
+ ǫ2

∂w

∂x

))

= −α
√
u2 + v2 + ǫ2w2

(

1

ǫ
v + ǫ

∂b

∂y
w

)

N(b, ǫ).

(12)

where
N(b, ǫ) =

√

1 + ǫ2(
∂b

∂x
)2 + ǫ2(

∂b

∂y
)2.
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3 Derivation of the se
tion-averaged shallow water model3.1 Se
ond order approximation in ǫIn order to derive our se
tion-averaged shallow water model, a number of approximations haveto be performed. Firstly, we assume that the verti
al eddy vis
osity is �rst order with respe
tto the ratio between the verti
al and longitudinal s
ales, that is,

νv = ǫ νv,0, (13)where νv,0 is a given positive quantity. This assumption 
an be justi�ed by a simple dimensionalanalysis. Indeed, following the Prandtl hypothesis, the eddy vis
osity is homogeneous to a lengthtimes a velo
ity, and more pre
isely
µ

ρ
∼ l2m ||D||, (14)where lm is the mixing length of the turbulent �ow and ||D|| is the norm of the strain-ratetensor. When 
onsidering the verti
al eddy vis
osity, lm is homogeneous to a depth and thestrain-rate tensor redu
es to the verti
al a

eleration, therefore we 
on
lude that

µ

ρ
∼ l2m

∣

∣

∣

∣

∣

∣

∣

∣

∂U

∂z

∣

∣

∣

∣

∣

∣

∣

∣

. (15)Note that Prandtl's mixing length model � see for instan
e Ref. [11℄ � is based on this assump-tion. Adimensionalizing this expression of µv gives:
U L µ̂v ∼ H2 ˆlm

2

√

U2

H2

(

(
∂û

∂z
)2 + (

∂v̂

∂z
)2 + (ǫ

∂ŵ

∂z
)2
)

∼ UH ˆlm
2

∣

∣

∣

∣

∂û

∂z

∣

∣

∣

∣

, (16)where the �hat� denotes here the adimensional variables. Thus
νv =

µ̂v

ρUL
∼ ǫ

ˆlm
2

ρ

∣

∣

∣

∣

∂û

∂z

∣

∣

∣

∣

= O(ǫ). (17)Moreover, the horizontal and bulk vis
osities are of same order as the verti
al eddy vis
osity,and therefore we 
an write:
νh = ǫ νh,0, νe = ǫ νe,0, (18)where νh,0 and νe,0 are two given positive quantities. Finally, we assume a slow varyingbathymetry in the longitudinal dire
tion, as it has been done often in these derivations � seefor instan
e Ref. [5℄ �, and we 
onsider a 
onstant atmospheri
 pressure, that is
∂b

∂x
= O(ǫ) and ∇pa = 0. (19)Sin
e our aim is to obtain a se
ond order approximation with respe
t to ǫ of the three-dimensional system, we negle
t quantities of order O(ǫ2). In this way, under the previous
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tion-averaged shallow water equationsassumptions, (10) be
omes:


























































































































































∂u

∂t
+
∂u2

∂x
+
∂uv

∂y
+
∂uw

∂z
+
∂p

∂x
= ǫ

∂

∂x

(

(νh,0 + νe,0)
∂u

∂x
− (νh,0 − νe,0)

∂v

∂y

)

+ ǫ
∂

∂y

(

νh,0(
∂u

∂y
+
∂v

∂x
)

)

+
1

ǫ

∂

∂z

(

νv,0
∂u

∂z

)

+ ǫ
∂

∂z

(

νv,0
∂w

∂x

)

,

∂v

∂t
+
∂uv

∂x
+
∂v2

∂y
+
∂vw

∂z
+
∂p

∂y
= ǫ

∂

∂x

(

νh,0(
∂u

∂y
+
∂v

∂x
)

)

+ ǫ
∂

∂y

(

(νh,0 + νe,0)
∂v

∂y
− (νh,0 − νe,0)

∂u

∂x

)

+
1

ǫ

∂

∂z

(

νv,0
∂v

∂z

)

+ ǫ
∂

∂z

(

νv,0
∂w

∂y

)

,

∂p

∂z
= −G+ ǫ

∂

∂x

(

νv,0
∂u

∂z

)

+ ǫ
∂

∂y

(

νv,0
∂v

∂z

)

+ ǫ
∂

∂z

(

2νe,0
∂w

∂z

)

,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0.

(20)

together with boundary 
onditions on the free surfa
e Γs(t),














































































































∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
= w,

∂η

∂x

(

p− ǫ (νh,0 + νe,0)
∂u

∂x
+ ǫ (νh,0 − νe,0)

∂v

∂y

)

− ∂η

∂y

(

ǫ νh,0(
∂v

∂x
+
∂u

∂y
)

)

+
1

ǫ
νv,0

∂u

∂z
+ ǫ νv,0

∂w

∂x
= pa

∂η

∂x
,

−∂η
∂x

(

ǫ νh,0

(

∂v

∂x
+
∂u

∂y

))

+
∂η

∂y

(

p− ǫ (νh,0 + νe,0)
∂v

∂y
+ ǫ (νh,0 − νe,0)

∂u

∂x

)

+
1

ǫ
νv,0

∂v

∂z
+ ǫ νv,0

∂w

∂y
= pa

∂η

∂y
,

−∂η
∂x

(ǫ νv,0
∂u

∂z
) − ∂η

∂y
(ǫ νv,0

∂v

∂z
) − p+ 2ǫνe,0

∂w

∂z
= −pa,

(21)
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oene, L. Bonaventura, E. Miglio,F. Saleriand near the bottom at z = zr,






























































































































u
∂b

∂x
+ v

∂b

∂y
= w,

∂b

∂x

(

ǫ (νh,0 + νe,0)
∂u

∂x
− ǫ (νh,0 − νe,0)

∂v

∂y
− 2ǫ νe,0

∂w

∂z

)

+
∂b

∂y

(

ǫ νh,0

(

∂v

∂x
+
∂u

∂y

))

− 1

ǫ
νv,0

∂u

∂z
+ ǫ νv,0

∂w

∂x

= −α
ǫ
||u||u,

∂b

∂x

(

ǫνh,0

(

∂v

∂x
+
∂u

∂y

))

+
∂b

∂y

(

ǫ (νh,0 + νe,0)
∂v

∂y
− ǫ (νh,0 − νe,0)

∂u

∂x

− 2ǫ νe,0
∂w

∂z

)

+

(

(
∂b

∂y
)2 − 1

ǫ2

)(

ǫ νv,0
∂v

∂z

)

= −α||u||
(

1

ǫ
v + ǫ

∂b

∂y
w

)

,

(22)
where u = (u, v) is the horizontal velo
ity. Noti
e that, negle
ting terms in O(ǫ) in (22)2 and(22)3, we obtain the 
lassi
al boundary 
ondition on the bottom (see e.g. Ref. [2℄) :

νv,0
∂u

∂z
= −α||u||u .3.2 Verti
al integration of the equationsWe will now verti
ally-integrate system (20) between the free surfa
e and the referen
e level zrat whi
h the bottom 
onditions are given. We will denote by h the 
orre
ted water depth, thatis the real water depth 
orre
ted by the distan
e ∆zr:

h(x, y, t) = η(x, y, t) − zr(x, y)

= η(x, y, t) − b(x, y) − ∆zr. (23)Then, for any three-dimensional variable f , we denote with f̄ the average along the verti
aldire
tion,
f̄(x, y, t) =

1

h(x, y, t)

∫ η

zr

f(x, y, z, t)dz.Let us �rst verti
ally-integrate the momentum equation (20)1 for u between the referen
e bot-tom level zr and the free surfa
e. Making use of the Leibnitz rule yields:
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∂hū

∂t
+
∂hū2

∂x
+
∂hūv

∂y
+
∂hp̄

∂x
+ uw(η) − uw(zr) −

∂η

∂t
u(η) − ∂η

∂x
u2(η)

+
∂b

∂x
u2(zr) −

∂η

∂y
uv(η) +

∂b

∂y
uv(zr) −

∂η

∂x
p(η) +

∂b

∂x
p(zr)

=
∂

∂x

∫ η

zr

(

ǫ (νh,0 + νe,0)
∂u

∂x
− ǫ (νh,0 − νe,0)

∂v

∂y

)

dz

+
∂

∂y

∫ η

zr

(

ǫ νh,0(
∂u

∂y
+
∂v

∂x
)

)

dz

− ∂η

∂x

(

ǫ (νh,0 + νe,0)
∂u

∂x
− ǫ (νh,0 − νe,0)

∂v

∂y

)

∣

∣

∣

z=η

− ∂η

∂y

(

ǫ νh,0(
∂u

∂y
+
∂v

∂x
)

)

∣

∣

∣

z=η

+
∂b

∂x

(

ǫ (νh,0 + νe,0)
∂u

∂x
− ǫ (νh,0 − νe,0)

∂v

∂y

)

∣

∣

∣

z=zr

+
∂b

∂y

(

ǫ νh,0(
∂u

∂y
+
∂v

∂x
)

)

∣

∣

∣

z=zr

+
1

ǫ
νv,0

∂u

∂z

∣

∣

∣

η−zr

+ ǫ νv,0
∂w

∂x

∣

∣

∣

η−zr

.

Using the kinemati
 boundary 
onditions (21)1 and (22)1, as well as (21)2 and (22)2, theequation redu
es to:
∂hū

∂t
+
∂hū2

∂x
+
∂hūv

∂y
+
∂hp̄

∂x
= pa

∂η

∂x
− α||u(zr)||

ǫ
u(zr) − ∂b

∂x
p(zr)

+ 2 ǫ
∂b

∂x
(νe,0

∂w

∂z
)
∣

∣

∣

z=zr

+ ǫ
∂

∂x

∫ η

zr

(

(νh,0 + νe,0)
∂u

∂x
− (νh,0 − νe,0)

∂v

∂y

)

dz

+ ǫ
∂

∂y

∫ η

zr

(

νh,0(
∂u

∂y
+
∂v

∂x
)

)

dz .

(24)
On the other hand, by verti
ally-integrating equation (20)3 between z and the free surfa
e, weobtain:
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p = p(η) + G(η − z) − ǫ

∫ η

z

(

∂

∂x
(νv,0

∂u

∂δ
) +

∂

∂y
(νv,0

∂v

∂δ
)

)

dδ

− 2 ǫ (νe,0
∂w

∂z
)
∣

∣

∣

z=η
+ 2 ǫ νe,0

∂w

∂z

= p(η) + G(η − z) − ǫ
∂

∂x

∫ η

z

(

νv,0
∂u

∂δ

)

dδ + ǫ
∂η

∂x

(

νv,0
∂u

∂z

)

∣

∣

∣

z=η

− ǫ
∂

∂y

∫ η

z

(

νv,0
∂v

∂δ

)

dδ + ǫ
∂η

∂y

(

νv,0
∂v

∂z

)

∣

∣

∣

z=η

− 2 ǫ (νe,0
∂w

∂z
)
∣

∣

∣

z=η
+ 2 ǫ νe,0

∂w

∂z
.

Applying now the dynami
 
ondition (21)4 at the free surfa
e, we dedu
e the following expres-sion for the pressure:
p = pa + G(η − z) + 2 ǫ νe,0

∂w

∂z
− ǫ

∂

∂x

∫ η

z

(

νv,0
∂u

∂δ

)

dδ

− ǫ
∂

∂y

∫ η

z

(

νv,0
∂v

∂δ

)

dδ + O(ǫ2).

(25)
Note that the pressure near the bottom at z = zr is given by

p(zr) = pa + Gh + 2 ǫ (νe,0
∂w

∂z
)
∣

∣

∣

z=zr

− ǫ
∂

∂x

∫ η

zr

(

νv,0
∂u

∂z

)

dz

− ǫ
∂

∂y

∫ η

z

(

νv,0
∂v

∂δ

)

dδ + O(ǫ2),

(26)
and therefore, re
alling that ∂b

∂x
= 0(ǫ), we 
an 
on
lude

∂b

∂x
p(zr) = pa

∂b

∂x
+ Gh

∂b

∂x
+O(ǫ2). (27)
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tion-averaged shallow water equationsLet us now verti
ally integrate this expression of the pressure from the bottom referen
e depth
z = zr to the surfa
e:

hp̄ = hpa + G
h2

2
+ 2 ǫ

∫ η

zr

(νe,0
∂w

∂z
)dz

− ǫ

∫ η

zr

(

∂

∂x

∫ η

z
(νv,0

∂u

∂δ
)dδ +

∂

∂y

∫ η

z
(νv,0

∂v

∂δ
)dδ

)

dz

= hpa + G
h2

2
+ 2 ǫ

∫ η

zr

(νe,0
∂w

∂z
)dz

− ǫ

(

∂

∂x

∫ η

zr

∫ η

z
(νv,0

∂u

∂δ
)dδdz +

∂

∂y

∫ η

zr

∫ η

z
(νv,0

∂v

∂δ
)dδdz

)

+ ǫ

(

∂b

∂x

∫ η

zr

(νv,0
∂u

∂z
)dz +

∂b

∂y

∫ η

zr

(νv,0
∂v

∂z
)dz

)

= hpa + G
h2

2
+ 2 ǫ

∫ η

zr

(νe,0
∂w

∂z
)dz

− ǫ

(

∂

∂x

∫ η

zr

∫ η

z
(νv,0

∂u

∂δ
)dδdz +

∂

∂y

∫ η

zr

∫ η

z
(νv,0

∂v

∂δ
)dδdz

)

.

(28)
The momentum equation (24) therefore writes:

∂hū

∂t
+

∂hū2

∂x
+

∂hūv

∂y
+ G

∂

∂x

h2

2
= − α||u(zr)||

ǫ
u(zr) − Gh

∂b

∂x

− 2 ǫ
∂

∂x

(
∫ η

zr

(νe,0
∂w

∂z
)dz

)

+ ǫ
∂

∂y

∫ η

zr

(

νh,0(
∂u

∂y
+
∂v

∂x
)

)

dz

+ ǫ
∂

∂x

∫ η

zr

(

(νh,0 + νe,0)
∂u

∂x
− (νh,0 − νe,0)

∂v

∂y

)

dz

+ ǫ
∂

∂x

(

∂

∂x

∫ η

zr

∫ η

z
(νv,0

∂u

∂δ
)dδdz +

∂

∂y

∫ η

zr

∫ η

z
(νv,0

∂v

∂δ
)dδdz

)

.

(29)
An analogous equation 
an be obtained by verti
ally integrating the 
ontinuity equation (20)4:

∂h

∂t
+
∂hū

∂x
+
∂hv̄

∂y
= 0. (30)

3.3 Se
tion averaged equationsSin
e the equations are now verti
ally-integrated, they are de�ned on ω(x, t) × I, where were
all that ω(t) =
{

(x, y) ∈ R
2 / 0 ≤ x ≤ L, l1(x, t) ≤ y ≤ l2(x, t)

}. We 
an therefore integrate
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oene, L. Bonaventura, E. Miglio,F. Salerithem along the y-axis between l1(x, t) and l2(x, t). In addition we point out that, for any s
alarquantity f ,
(
∫ η

zr

fdz

)

∣

∣

∣

y=l1
=

(
∫ η

zr

fdz

)

∣

∣

∣

y=l2
= 0. (31)This assumption is justi�ed in the 
ase of a natural river, whose depth tends to zero as thebanks are approa
hed. Note however that we 
an retrieve the same se
tion averaged modelunder the hypothesis that

∂l1
∂x

≡ O(ǫ2) and ∂l2
∂x

≡ O(ǫ2), (32)as happens for instan
e in straight or mildly 
urved 
hannels. For the sake of 
larity we do onlyreport the derivation in the �rst 
ase, that is with hypothesis (31).We denote
A(x, t) =

∫ l2

l1

h(x, y, t)dy,

¯̄f(x, y, t) =
1

A(x, t)

∫ l2

l1

∫ η

zr

f(x, y, z, t) dzdy,

Q(x, t) =

∫ l2

l1

∫ η

zr

u(x, y, z, t) dzdy = A(x, t)¯̄u(x, y, t).From now on we make the further assumption that the transversal velo
ity v is small withrespe
t to the longitudinal velo
ity 
omponent u. This hypothesis is 
onsistent with regimesthat allow to use a se
tion averaged model on u. We therefore assume that:
|v|
|u| = O(ǫ) . (33)We integrate the momentum equation (24) on u. Using the Leibnitz rule and (31), we obtain:

∂(A¯̄u)

∂t
+

∂(Au2)

∂x
+ G

∫ l2

l1

∂

∂x

(

h2

2

)

dy = − 1

ǫ

∫ l2

l1

α||u(zr)||u(zr)dy

− G

∫ l2

l1

h
∂b

∂x
dy − 2 ǫ

∂

∂x

(
∫ l2

l1

∫ η

zr

(νe,0
∂w

∂z
)dzdy

)

+ ǫ
∂

∂x

∫ l2

l1

∫ η

zr

(

(νh,0 + νe,0)
∂u

∂x
− (νh,0 − νe,0)

∂v

∂y

)

dzdy

+ ǫ
∂2

∂x2

(
∫ l2

l1

∫ η

zr

∫ η

z
(νv,0

∂u

∂δ
)dδ dz dy

)

.

(34)
Note that

G

∫ l2

l1

∂

∂x

(

h2

2

)

dy = G

∫ l2

l1

∂h

∂x
hdy = G

∫ l2

l1

(

∂η

∂x
h− ∂b

∂x
h

)

dy .



15. Asymptoti
 derivation of the se
tion-averaged shallow water equationsNote also that, from the 
ontinuity equation,
− 2 ǫ

∂

∂x

(
∫ l2

l1

∫ η

zr

(νe,0
∂w

∂z
)dzdy

)

= 2 ǫ
∂

∂x

(
∫ l2

l1

∫ η

zr

νe,0(
∂u

∂x
+
∂v

∂y
) dzdy

)

,and then, using this last expression in the right-hand side of (34), we obtain the followingse
tion averaged momentum equation:
∂Q

∂t
+

∂Q̃2

∂x
+ G

∫ l2

l1

h
∂η

∂x
dy = − 1

ǫ

∫ l2

l1

α||u(zr)||u(zr)dy

+ ǫ
∂

∂x

∫ l2

l1

∫ η

zr

(

νh,0(
∂u

∂x
− ∂v

∂y
)

)

dzdy

+ 3 ǫ
∂

∂x

∫ l2

l1

∫ η

zr

(

νe,0(
∂u

∂x
+
∂v

∂y
)

)

dzdy

+ ǫ
∂2

∂x2
(

∫ l2

l1

∫ η

zr

∫ η

z
(νv,0

∂u

∂δ
) dδ dz dy) ,

(35)
where

Q̃ =

(
∫ l2

l1

∫ η

zr

u2(x, y, z, t) dzdy

)1/2

.Denoting by β the momentum 
orre
tion (or Boussinesq) 
oe�
ient
β =

1

A

∫ l2

l1

∫ η

zr

u2

¯̄u2
dz dy,we have that

∂Q̃2

∂x
=

∂

∂x

(

β
Q2

A

)

.The integration of the 
ontinuity equation (30)4 gives
∂A

∂t
+

∂Q

∂x
= 0, (36)that is the 
lassi
al 
ontinuity equation of the one-dimensional open 
hannel equations.3.4 Asymptoti
 analysis of the se
tion-averaged equationsWe now go ba
k to the three-dimensional equations in order to model th e fri
tion term and showthat we 
an negle
t the last vis
ous term in the right-hand side of the momentum equation (35).From the three-dimensional momentum equation (20)1 we dedu
e that

∂

∂z

(

νv,0
∂u

∂z

)

= O(ǫ). (37)



16. A. De
oene, L. Bonaventura, E. Miglio,F. SaleriIn addition, boundary 
ondition (21)2 indi
ates that νv,0
∂u

∂z
= O(ǫ) at the free surfa
e. Fun
-tion z → νv,0

∂u

∂z
is of the order O(ǫ) at the surfa
e boundary z = η, and so is its derivativewith respe
t to z. The fun
tion is therefore of the order O(ǫ) along the whole depth, that is :

νv,0
∂u

∂z
= O(ǫ) on Ωt . (38)Sin
e νv,0 is independent of the ration ǫ, we 
an 
on
lude that ∂u

∂z
= O(ǫ) and therefore :

u(x, y, z, t) = ū(x, y, t) +O(ǫ). (39)Equation (38) has two important 
onsequen
es. First, it shows that the fri
tion 
oe�
ient αis ne
essarily also of the �rst order in ǫ. Indeed, from boundary 
ondition (22)2, we have that
νv,0

∂u

∂z
= α||u||u + O(ǫ2) at z = zr. Thus, sin
e νv,0

∂u

∂z
= O(ǫ) on Ωt, we have that α = O(ǫ).In the following we will assume that

α = ǫα0. (40)On the other hand equation (38) shows that the third vis
ous term in the momentum equation(35) is se
ond order in ǫ.Furthermore, from (25) we know that
p(x, y, z, t) = pa +G(η − z) +O(ǫ). (41)Using (39) and (41) in the three-dimensional momentum equation (20)1 we 
an write:

1

ǫ

∂

∂z

(

νv,0
∂u

∂z

)

=
∂u

∂t
+
∂u2

∂x
+
∂uv

∂y
+
∂uw

∂z
+
∂p

∂x
+O(ǫ)

=
∂ū

∂t
+
∂ū2

∂x
+
∂ūv̄

∂y
+
∂ūw

∂z
+G

∂η

∂x
+O(ǫ)

=
∂ū

∂t
+ ū

∂ū

∂x
+ v̄

∂ū

∂y
+G

∂η

∂x
+O(ǫ).

(42)
Note that for the last step we use the fa
t that, from 
ontinuity,

ū
∂w

∂z
= −ū (

∂u

∂x
+
∂v

∂y
) = −ū (

∂ū

∂x
+
∂v̄

∂y
) +O(ǫ).On the other hand the verti
ally-integrated momentum equation (24) gives

h

{

∂ū

∂t
+ ū

∂ū

∂x
+ v̄

∂ū

∂y
+G

∂h

∂x

}

+ ū

{

∂h

∂t
+
∂hū

∂x
+
∂hv̄

∂y

}

= − α0||u(zr)||u(zr) + O(ǫ),
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tion-averaged shallow water equationsand using the verti
ally-averaged 
ontinuity equation (30),
∂ū

∂t
+ ū

∂ū

∂x
+ v̄

∂ū

∂y
+G

∂h

∂x
= − α0||u(zr)||u(zr)

h
+ O(ǫ).Repla
ing this expression in (42) we have that

1

ǫ

∂

∂z

(

νv,0
∂u

∂z

)

= − α0||u(zr)||u(zr)
h

+ O(ǫ).Let us now integrate this expression from the bottom referen
e depth z = zr to z:
1

ǫ
νv,0

∂u

∂z
=

1

ǫ
(νv,0

∂u

∂z
)|z=zr

− α0||u(zr)||u(zr) (z − b)

h
+ O(ǫ).Using boundary 
ondition (22)2 we get:

1

ǫ
νv,0

∂u

∂z
= α0||u(zr)||u(zr)

(

1 − z − b

h

)

+ O(ǫ),so that
∂u

∂z
= ǫα0||u(zr)||u(zr)

(

η − z

h νv,0

)

+ O(ǫ2).We verti
ally-integrate again this expression from the bottom referen
e depth z = zr to z,yielding
u = u(zr) + ǫα0||u(zr)||u(zr)

∫ z

zr

η − δ

h νv,0
dδ + O(ǫ2)

= u(zr)

(

1 +
ǫα0||u(zr)||

h

∫ z

zr

η − δ

νv,0
dδ

)

+ O(ǫ2).

(43)Integrating on the verti
al and dividing by the water depth h we obtain:
ū =

1

h

∫ η

zr

u dz = u(zr) (1 + ǫ α0||u(zr)||m(νv,0)) + O(ǫ2) , (44)where for the sake of simpli
ity we have denoted
m(νv,0) =

1

h2

∫ η

zr

∫ z

zr

η − δ

νv,0
dδ dz.Equation (44) leads us to two important results. On one hand, it gives us some informationabout the Boussinesq 
oe�
ient β. Indeed, from (43) we dedu
e that

u2 = u2(zr)

(

1 +
2ǫα0||u(zr)||

h

∫ z

zr

η − δ

νv,0
dδ

)

+ O(ǫ2),and therefore:
1

h

∫ η

zr

u2dz = u2(zr) (1 + 2ǫα0||u(zr)||m(νv,0)) + O(ǫ2)

= ū2 (1 − 2ǫα0||u(zr)||m(νv,0))(1 + 2ǫα0||u(zr)||m(νv,0)) + O(ǫ2)

= ū2 + O(ǫ2).
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oene, L. Bonaventura, E. Miglio,F. SaleriThus
ū2 = ū2 + O(ǫ2), (45)whi
h means that, up to the se
ond order in ǫ, the Boussinesq 
oe�
ient β only depends onthe transversal variations of the velo
ity u (and not on its verti
al variations). Indeed:

β =
1

A

∫ l2

l1

∫ η

zr

u2

¯̄u2
dzdy = A

∫ l2

l1

hū2dy

(
∫ l2

l1

hū dy

)2
+O(ǫ2).On the other hand equation (44) allows to model the fri
tion term, that is:

∫ l2

l1

α0||u(zr)||u(zr)dy . (46)For this purpose we need to express the velo
ity at z = zr with respe
t to the verti
ally-averagedvelo
ity ū. From (44) we have that
|u(zr)| =

|ū|
1 + ǫα0||u(zr)||m(νv,0)

+O(ǫ2). (47)In addition, assumption (33) gives:
||u(zr)|| =

√

u(zr)2 + v(zr)2 = |u(zr)| +O(ǫ2) . (48)Using this expression of ||u(zr)|| in (47) yields:
|u(zr)| =

|ū|
1 + ǫα0|u(zr)|m(νv,0)

+O(ǫ2) , (49)and the fri
tion term writes:
α0||u(zr)||u(zr) = α0|u(zr)|u(zr) + O(ǫ2)

=
α0 |ū| ū

(1 + ǫα0 |u(zr)|m(νv,0))2
+ O(ǫ2)

=
α0 |ū| ū

1 + 2ǫα0 |u(zr)|m(νv,0)
+ O(ǫ2) .Furthermore, using (49) we 
an write that:

1 + 2ǫα0 |u(zr)|m(νv,0) = 1 +
2ǫα0 |ub|m(νv,0)

1 + ǫα0 |u(zr)|m(νv,0)

= 1 + 2ǫα0 |ub|m(νv,0)(1 − ǫα0 |u(zr)|m(νv,0)) +O(ǫ2)

= 1 + 2ǫα0 |ub|m(νv,0) +O(ǫ2) .Negle
ting the O(ǫ2) term, we �nally obtain an approximation of the fri
tion term (46) whi
his independent of the velo
ity at z = zr, that is:
− 1

ǫ

∫ l2

l1

α |u(zr)|u(zr)dy = − 1

ǫ

∫ l2

l1

α |ū| ū
1 + 2αm(νv,0) |ū|

dy . (50)In this way we have over
ome the initial di�
ulty and we use expression (50) to model thefri
tion term in the momentum equation (35).
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tion-averaged shallow water equations3.5 The se
tion averaged shallow water modelWe have derived a se
tion-averaged shallow water model whi
h is an approximation of these
ond order in ǫ of the initial three-dimensional free surfa
e �ow problem (1) with boundary
onditions (6)-(9). Swit
hing to the dimensional variables, this model writes:






































































∂Q

∂t
+

∂

∂x

(

β
Q2

A

)

+ g

∫ l2

l1

h
∂η

∂x
dy = −

∫ l2

l1

α |ū| ū
1 + cα

dy

+ 3
∂

∂x

(
∫ l2

l1

∫ η

zr

µe

ρ

(

∂u

∂x
+
∂v

∂y

)

dzdy

)

+
∂

∂x

(
∫ l2

l1

∫ η

zr

µh

ρ

(

∂u

∂x
− ∂v

∂y

)

dzdy

)

∂A

∂t
+

∂Q

∂x
= 0,

(51)
where

cα =
2α |ū|
h2

∫ η

zr

∫ z

b

ρ (η − δ)

µv
dδ dz (52)a
ts as a 
orre
tion to the 
lassi
al one-dimensional fri
tion term, and β is the momentum
orre
tion 
oe�
ient

β = A

∫ l2

l1

hū2dy

(

∫ l2

l1

hū dy
)2

. (53)This model results of a dire
t asymptoti
 derivation from the three-dimensional free surfa
e�ow equations. In addition, this derivation is very general sin
e it is valid for �ows with arbitrary
ross-se
tion, non-
onstant, turbulent vis
osity and non-linear boundary 
onditions. Thus, weexpe
t the 
oupling of su
h a redu
ed model to a three-dimensional model to be easier and yieldbetter results.4 Computation of the 
orre
ted fri
tion termIn this se
tion we give an expli
it expression of the fri
tion 
orre
tion to use in the laminar 
aseand with a paraboli
 turbulen
e model for the verti
al eddy vis
osity.4.1 The laminar 
aseWe �rst 
onsider the 
ase where a 
onstant verti
al vis
osity µv is used. Note that in order tobe 
onsistent with our analysis, its adimensional value νv =
µv

ρUL
must be O(ǫ). In that 
asewe have that

∫ η

b

∫ z

b

ρ (η − δ)

µv
dδ dz =

ρ

µv

h3

3
,and therefore the 
orre
tion (52) of the fri
tion term writes:

cα =
2

3

ρ

µv
αh |ū|. (54)



20. A. De
oene, L. Bonaventura, E. Miglio,F. SaleriNote that in this 
ase we retrieve a fri
tion 
orre
tion term whi
h is very similar to the onepresented by Gerbeau et al. in Ref. [7℄. Indeed, starting from a linear fri
tion boundary
ondition, Gerbeau et al. obtain the 
orre
tion:
cf =

1

3

ρ

µv
f h, (55)where f is the 
onstant fri
tion 
oe�
ient 
onsidered in their model. In our analysis, we havestarted from nonlinear boundary 
onditions, whi
h explains the di�eren
e in the fri
tion 
or-re
tion for this spe
ial 
ase. If repeating our derivation under the hypothesis of [7℄, exa
tly thesame 
orre
tion is obtained.If the �ow is homogeneous in the y-dire
tion and has a re
tangular-
ross-se
tion, ū =

Q

A
andthe fri
tion term in (51) writes

− α |Q|

h2 l

(

1 +
2

3

ρ

µv
α
|Q|
l

) Q . (56)
4.2 Paraboli
 model for the verti
al eddy vis
osityLet us now 
onsider a turbulen
e model, see e.g. [11℄, whi
h assumes a paraboli
 distributionof the verti
al eddy vis
osity over the water depth, vanishing on the bottom:

µv

ρ
= κu∗(z − b)

(

1 − (z − b)

h+ ∆zr

)

, (57)where κ is the von Karman 
onstant and u∗ the fri
tion velo
ity, de�ned by u∗ =
√

||τb||/ρ,
τb being the bottom stress. Note that h+ ∆zr is the real water height. A simple dimensionalanalysis shows that we have νv =

µv

ρUL
= O(ǫ) as expe
ted.In the 
ase of a uniform �ow in an open 
hannel, this turbulen
e model allows to retrievea logarithmi
 pro�le of the tangential velo
ity 
omponent of the form:

ut

u∗ =
1

κ
ln(

z − b

∆z0
) , (58)where ut is the tangential velo
ity 
omponent and ∆z0 is the distan
e to the wall at whi
h thevelo
ity is zero. Note that in this 
ase, from boundary 
ondition (7) at z = zr, we 
an retrievethe value of the fri
tion 
oe�
ient α for whi
h the pro�le of the tangential velo
ity is a
tually(58), that is:

α = κ2

(

1 − ∆zr
h+ ∆zr

)

(ln(
∆zr
∆z0

)

)2
. (59)In the general 
ase, for strongly three-dimensional and non-uniform �ows, it 
an be assumedthat the tangential velo
ity has a logarithmi
 pro�le of the form (58) inside a boundary layernear the wall. The paraboli
 vis
osity model (57) 
an therefore also be applied to general �ows,
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 derivation of the se
tion-averaged shallow water equationstogether with de�nition (59) of the fri
tion 
oe�
ient.The asymptoti
 analysis in se
tion 3.4 has shown that the fri
tion 
oe�
ient α is of the �rstorder in ǫ. Following de�nition (59), this gives a 
ondition on the ratio between the distan
eto the wall ∆zr at whi
h the fri
tion 
ondition is imposed, and the distan
e to the wall ∆z0at whi
h the tangential velo
ity is zero. It will be 
he
ked in the following that the values we
onsider for this 
oe�
ient in se
tion 5 are indeed 
ompatible with a reasonable 
hoi
e of ǫ.Let us give an expression of the fri
tion 
orre
tion term with this turbulen
e model. Byanalyti
al 
omputation we have that
∫ η

b

∫ z

b

ρ (η − δ)

µv
dδ dz =

∆zr (h+ ∆zr)

κu∗

((

h+ ∆zr
∆zr

) ln(h+ ∆zr
∆zr

)

− h

)

.The fri
tion 
orre
tion (52) then writes:
cα =

2α |ū|
κu∗

(

(h+ ∆zr)
2

h2
ln(1 +

h

∆zr
) − ∆zr(h+ ∆zr)

h

)

.Coming ba
k to the adimensional variables and using (44), we have that:
α |ˆ̄u|
û∗

=
ǫα0 |ˆ̄u|
û∗

=
ǫα0 | ˆu(zr)|

û∗
+ O(ǫ2) ,where the �hat� denotes here the adimensional variables. Therefore, up to the se
ond order in

ǫ,
α |ū|
u∗

=
α |u(zr)|

u∗
.Now, 
onsidering that zr is near enough to the wall to be inside the logarithmi
 layer, we 
anuse equations (58) and (59) to obtain:

α|u(zr)|
u∗ =

α

κ
ln(

∆zr
∆z0

) =

√

α(1 − ∆zr
∆z0

) .We �nally retrieve the following expression of the fri
tion 
orre
tion:
cα =

2
√
α

κ

√

(1 − ∆zr
∆z0

)

(

(h+ ∆zr)
2

h2
ln(1 +

h

∆zr
) − ∆zr(h+ ∆zr)

h

)

. (60)If the �ow is homogeneous in the y-dire
tion and has a re
tangular-
ross-se
tion, ū =
Q

A
andthe fri
tion term in (51) writes

− α |Q| Q

h2 l

(

1 +
2
√
α

κ

√

(1 − ∆zr
∆z0

)

(

(h+ ∆zr)
2

h2
ln(1 +

h

∆zr
) − ∆zr(h+ ∆zr)

h

)

) . (61)
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oene, L. Bonaventura, E. Miglio,F. Saleri5 Comparison of the three-dimensional and the se
tion-averagedsolutions in the 
ase of �ows with re
tangular 
ross-se
tionOur aim is now to illustrate the a

ura
y gain a
hieved by taking into a

ount the 
orre
tion ofthe fri
tion term in the se
tion-averaged model. In addition, we want to 
ompare the fri
tionterm derived here to one of the empiri
al 
losures widely used in 
omputational hydrauli
s (seee.g. [2℄). For this purpose, we restri
t ourselves to the 
ase of re
tangular 
ross-se
tion open
hannels, for whi
h steady state solutions 
an be 
omputed analyti
ally. Note that these �owsare representative of the main physi
al features of river �ows and are 
ommonly used as a �rstben
hmark in many hydrauli
s appli
ations.In this 
ase the water depth h is 
onstant along the y-dire
tion and, denoting by l the widthof the river, the se
tion area is A = lh. In addition we suppose µe = µh = 0. The se
tionaveraged shallow water model then writes in the more 
lassi
al form:


















∂Q

∂t
+

∂

∂x

(

β
Q2

A

)

+ gA
∂η

∂x
= −

∫ l2

l1

α |ū|
1 + cα

ū dy

∂A

∂t
+

∂Q

∂x
= 0.

(62)
Note that the Boussinesq term (53) then redu
es to β = l

∫ l2

l1

ū2dy

(

∫ l2

l1

ū dy )2
.We emphasize the fa
t that in this parti
ular 
ase we obtain the 
lassi
al se
tion-averagedequations,[3℄ with a 
orre
tion of the fri
tion term.Remark 5.1 If the �ow is homogeneous in the y-dire
tion, we have that ū =

Q

A
and thereforethe fri
tion term writes

− α |Q| l
A2 (1 + cα)

Q .Without 
orre
tion the fri
tion term redu
es to
− α |Q| l

A2
Q,whi
h is the expression of the fri
tion in the 
lassi
al se
tion-averaged shallow water equations.We 
hoose a three-dimensional test 
ase with an analyti
 solution, to be 
ompared to theanalyti
 solution of the se
tion-averaged model with and without fri
tion 
orre
tion. The test
ase 
onsists of a steady state turbulent �ow in a 
hannel with a slight slope iF , as illustratedin �gure 2.We take the 
hannel as the referen
e 
on�guration � (x, y, z) in �gure 2 � and we suppose that

µh = µe = 0. The �ow is steady and uniform in the x-dire
tion, and the free surfa
e is perfe
tlyparallel to the bottom, that is:
∇η = (

∂b

∂x
, 0)T , U = (u, 0, 0)T . (63)
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tion-averaged shallow water equations
z

x

U(x)

x’

z’

θ

Figure 2: Uniform �ow in a 
hanel with slopeRewriting the three-dimensional RANS equations (1) in the new referen
e 
on�guration, and
onsidering (63), we retrieve the following system:
1

ρ

∂p

∂x
= g sin θ + (cos2 θ − sin2 θ)2

∂

∂z
(
µv

ρ

∂u

∂z
) (64)

1

ρ

∂p

∂z
= −g cos θ + 2cos θ sin θ(cos2 θ − sin2 θ)

∂

∂z
(
µv

ρ

∂u

∂z
), (65)where θ is the angle of the slope. The boundary 
onditions on the free surfa
e are:

p = pa and µv

ρ

∂u

∂z
= 0, (66)and near the bottom at z = zr:

µv

ρ

∂u

∂z
= αψ(θ) |u|u, (67)where ψ(θ) =

1

(cos2 θ − sin2 θ)2
.Sin
e u does not depend on x, we dedu
e from (65) that ∂p

∂z
is independent of x, and thereforealso the pressure p. Thus ∂p

∂x
= 0 and equation (64) redu
es to:

∂

∂z
(
µv

ρ

∂u

∂z
) = −gφ(θ), (68)where φ(θ) =

sin θ

(cos2 θ − sin2 θ)2
. Integrating (68) from an arbitrary elevation z to the freesurfa
e η, and using boundary 
ondition (66) we obtain:

∂u

∂z
= gφ(θ)

ρ(η − z)

µv
. (69)
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oene, L. Bonaventura, E. Miglio,F. SaleriIntegrating now (69) from z to the referen
e depth zr near the bottom we obtain the followingexpression of the velo
ity:
u = u(zr) + gφ(θ)

∫ z

zr

ρ(η − δ)

µv
dδ. (70)This expression 
an be verti
ally-integrated on the entire water 
olumn in order to retrieve anexpression of the �ow. Indeed,

Q =

∫ l2

l1

∫ η

zr

u dzdy =

∫ l2

l1

(

hu(zr) + gφ(θ)

∫ η

zr

∫ z

zr

ρ(η − δ)

µv
dδdz

)

dy,and sin
e the �ow is homogeneous in the y-dire
tion:
Q = Au(zr) + g l φ(θ)

∫ η

zr

∫ z

zr

ρ(η − δ)

µv
dδdz .Let us now retrieve an expression of the velo
ity near the bottom at z = zr. From (69) with

z = zr we have that
µv

ρ

∂u

∂z |z=zr

= gφ(θ)h .Using boundary 
ondition (67) we obtain:
α|u(zr)|u(zr)ψ(θ) = ghφ(θ),and sin
e in the parti
ular 
ase we are 
onsidering the velo
ity is always positive, we have that:

u(zr) =

√

g h sin θ

α
. (71)Finally we have derived the following expression of the �ow:

q =
Q

l
= h

√

g h sin θ

α
+ g φ(θ)

∫ η

zr

∫ z

zr

ρ(η − δ)

µv
dδdz , (72)whi
h is an analyti
 solution of the three-dimensional problem 
onsidered in this se
tion.This three-dimensional solution is to be 
ompared with the analyti
 solution of the se
tion-averaged model (62) with and without fri
tion 
orre
tion. In the parti
ular 
ase 
onsideredhere we 
an easily derive the following analyti
 solution to the se
tion-averaged equations:

q = h

√

g h iF
α

(1 + cα) . (73)Note that if the 
orre
tion of the fri
tion term is not taken into a

ount in the se
tion-averagedmodel, the analyti
 solution is:
q = h

√

g h iF
α

. (74)Sin
e cα and µv 
an depend on the �ow rate q, equations (72), (73) and (74) yield an impli
itrelation between q and h. We have solved this relation for di�erent values of the water depth
h, in order to 
ompare the analyti
 solutions of the di�erent models. We have made several
omparisons that we des
ribe next, and for whi
h we have used a density ρ = 1kg/m3 and a
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 derivation of the se
tion-averaged shallow water equationsvalue of the slope iF = 10−4.First, we have 
ompared the solutions in the laminar 
ase, with a 
onstant verti
al vis
osity
µ = 0.01. In this 
ase, 
onsistently with the dis
ussion in se
tion 4.1, we have used a 
onstantfri
tion 
oe�
ient α given by the Chézy law

α = g/χ2 , (75)where g is the gravity and χ is the Chézy 
oe�
ient. Figures 3 and 4 show the pro�le of theanalyti
al water depth h as a fun
tion of the �ow q for χ = 66.5 m1/2/s and χ = 30m1/2/s,respe
tively. The solid line 
orresponds to the three-dimensional solution given by (72), thestarred line 
orresponds to the solution to the se
tion-averaged model with fri
tion 
orre
tiongiven by (73), wheareas the dotted line 
orresponds to the solution without fri
tion 
orre
tion(74).
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Figure 3: Analyti
 solutions for the three-dimensional problem (solid line), the se
tion-averagedproblem with fri
tion 
orre
tion (starred line) and without 
orre
tion (dashed line). Laminar
ase with ν = 0.01 and with χ = 66.5.We have then 
ompared the solution of the di�erent models in the turbulent 
ase, using theparaboli
 model (57) for the turbulent verti
al vis
osity, and the fri
tion 
oe�
ient α given byde�nition (59). For this 
ase we have 
hosen ∆z0 = 10−5 m and ∆zr = 0.03h m, but similarresults 
an be obtained with a wide range of values for these layer amplitudes. Figure 5 showsthe pro�le of the analyti
 water depth h as a fun
tion of the �ow q for the di�erent models.As we 
an see, the analyti
 solution of the se
tion-averaged model is mu
h 
loser to thethree-dimensional solution when the fri
tion 
orre
tion is taken into a

ount. This is true when
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Figure 4: Analyti
 solutions for the three-dimensional problem (solid line), the se
tion-averagedproblem with fri
tion 
orre
tion (starred line) and without 
orre
tion (dashed line). Laminar
ase with ν = 0.01 and with χ = 30.taking a 
onstant verti
al vis
osity, as well as when using the paraboli
 turbulen
e model. Theresults obtained in this test 
ase, whi
h is a relevant regime for river hydrauli
s, 
on�rm thatthe 
lassi
al fri
tion term in the se
tion-averaged shallow water equations should be 
orre
tedas de�ned in (51).However, in hydrauli
 engineering, the 
lassi
al se
tion-averaged model is often used withempiri
al 
losures that yield a fri
tion 
oe�
ient α depending on the �uid depth. For instan
e,in the 
ase of uniform �ows, the fri
tion 
oe�
ient α used in the se
tion-averaged equations 
anbe derived from the Chézy law (75) by some assumption on the turbulent velo
ity pro�le. Inthe 
ase of a logarithmi
 velo
ity pro�le and assuming the standard values for the von Karman
onstant, one 
an derive the following formula for the Chézy 
oe�
ient:
χ = 7.83 ln (

h+ ∆zr
e∆z0

) , (76)where we re
all that ∆z0 is the distan
e at whi
h the velo
ity is supposed to be zero, and ∆zris the referen
e distan
e to the wall at whi
h the wall law 
ondition is imposed. Carrying outthe same derivation for the three-dimensional equations yields instead the following formula forthe Chézy 
oe�
ient:
χ = 7.83 ln (

2∆zr
e∆z0

) . (77)Our aim is now to 
ompare, in the 
ase of uniform steady state �ows, the solutions of thedi�erent models: 1) the three-dimensional model, 2) the se
tion averaged model with and 3)
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Figure 5: Analyti
 solutions for the three-dimensional problem (solid line), the se
tion-averagedproblem with fri
tion 
orre
tion (starred line) and without 
orre
tion (dashed line ). Case witha paraboli
 turbulent and α given by (59).without fri
tion 
orre
tion, all using the analyti
 value of the fri
tion 
oe�
ient α given by(59), and 4) the solution of the se
tion averaged model using the empiri
al fri
tion 
losure (76).Of 
ourse we 
onsider the paraboli
 model (57) for the verti
al vis
osity.Let us �rst 
ompare the values of the fri
tion 
oe�
ient α using the di�erent formulas. Fig-ure 6 shows the pro�le as a fun
tion of the water depth of, respe
tively, the three-dimensionalanalyti
 fri
tion 
oe�
ient α de�ned by (59) (solid line), the fri
tion 
oe�
ient resulting fromthe empiri
al 
losure for the three-dimensional model (starred line), given by (75) with a Chézy
oe�
ient 
omputed using formula (77), and the 
oe�
ient used for the se
tion-averaged model(dashed line), with a Chézy 
oe�
ient 
omputed using formula (76). As we 
an see, the fri
tion
oe�
ient resulting from the empiri
al 
losure for the three-dimensional model is quasi-identi
alto the three-dimensional analyti
 value, whereas the 
oe�
ient used for the se
tion-averagedmodel is signi�
antly di�erent.Let us now 
ompare the solutions for the di�erent models using the di�erent values of thefri
tion 
oe�
ient α. Figure 7 shows the pro�le of the analyti
al water depth h as a fun
tion ofthe �ow q. As in �gure 5, the solid line 
orresponds to the solution (72) of the three-dimensionalmodel, the starred line to the se
tion-averaged solution (73) with fri
tion 
orre
tion, and thedashed line 
orresponds to the solution without fri
tion 
orre
tion (74). These three solutionshave been 
omputed using the analyti
 fri
tion 
oe�
ient α de�ned by (59). The additionalpro�le is the dotted line, whi
h 
orresponds to the se
tion-averaged solution without fri
tion
orre
tion (74), but with the empiri
al fri
tion 
oe�
ient α given by formula (76). We see
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Figure 6: Values of the fri
tion 
oe�
ient α with respe
t to the water depth. Analyti
 valuegiven by (59) (solid line), value for the three-dimensional model (starred line) given by (75) and(77), and value for the se
tion-averaged model (dashed line), given by (75) and (76).that this pro�le is identi
al to the solution (73) of the se
tion-averaged model with fri
tion
orre
tion using the fri
tion 
oe�
ient α de�ned by (59). We 
an therefore 
on
lude that, inthis 
ase, the 
orre
tion cα de�ned by (52) and derived in this work for the fri
tion term of these
tion-averaged model, has the same e�e
t on the solution of the model as the introdu
tion ofan empiri
al 
losure formula for the fri
tion 
oe�
ient. However, our 
orre
tion is independentof the uniformity assumptions that are instead ne
essary to derive formula (76). Thus, our
orre
tion 
an be applied in a mu
h wider range of �ows, with a rigorous justi�
ation based onthe asymptoti
 derivation we have presented.6 Con
lusionsIn this paper, we have extended the analysis of Ref. [7℄ to the three-dimensional RANS equa-tions with anisotropi
 Reynolds tensor for free surfa
e �ows in arbitrary geometry. A rigourousderivation of a se
tion-averaged system has been presented, in
luding the e�e
ts of eddy vis
os-ity and fri
tion. When applied to �ows with re
tangular 
ross-se
tion, this system is similar tothe 
lassi
al se
tion-averaged shallow water equations,[11℄ ex
ept for the fri
tion term. Indeed,our derivation shows that, in order to take into a

ount e�e
ts up to the se
ond order in theasymptoti
 parameter, the 
lassi
al fri
tion term should be 
orre
ted by a term whi
h dependson the turbulent verti
al vis
osity. The generalized fri
tion term obtained does not rely onlo
al uniformity assumptions and 
an be 
omputed dire
tly from three-dimensional turbulen
emodels, without need for lo
al uniformity assumptions. This 
on
lusion is in good agreementwith the one a
hieved by Gerbeau et al. in Ref. [7℄ for two-dimensional �ows with 
onstant vis-
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Figure 7: Analyti
 solutions for the three-dimensional problem (solid line), the se
tion-averagedproblem with fri
tion 
orre
tion (starred line) and without 
orre
tion (dashed line ). Case witha paraboli
 turbulent and α given by (59).

osity over a �at bottom. Indeed, if the verti
al vis
osity is taken 
onstant and linear boundary
onditions are 
onsidered, and when the �ow is homogeneous in the transversal dire
tion, weretrieve the same fri
tion 
orre
tion as in Ref. [7℄. Our derivation provides the expression ofthe fri
tion 
orre
tion term in a more general 
ase than those treated by Ref. [7℄, in
ludingturbulent �ows, non-linear boundary 
onditions and three-dimensional arbitrary geometries. Inparti
ular, we 
ompute the 
orre
tion term asso
iated to a spe
i�
 model for the verti
al pro�leof turbulent velo
ity. For steady state open 
hannel �ows admitting analyti
 solutions of thethree-dimensional as well as the simpli�ed models, we have shown that the solutions 
omputedin
luding our 
orre
tion term are mu
h 
loser to those of the three dimensional model than thoseof the standard shallow water model. Furthermore, we show that our formulation yields resultsthat are very similar to those obtained in
luding in the 
lassi
al equations empiri
al fri
tion
losures derived in 
omputational hydrauli
s. The generalized fri
tion term resulting from thepresent derivation 
an also be interpreted as a generalization and an a posteriori justi�
ationof these empiri
al 
losures, that allows to avoid the assumptions on lo
al �ow uniformity onwhi
h these 
losures rely.In a forth
oming work, we plan to take advantage of the present results by in
luding thefri
tion 
orre
tion term in se
tion averaged models su
h as the one proposed by Deponti ea inRef. [3℄. Its use is also expe
ted to ease the 
oupling of three- and one-dimensional free surfa
emodels in the framework of an integrated hydrologi
al basin model.
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