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This manuscript aims at characterizing energy densities and constitutive laws of transversely isotropic materials, orthotropic elastic materials and materials with non orthogonal families of fibers. It makes explicit references to results that are scattered over the literature and, although said to be well-known, are not always easy to locate. Direct proofs that are thought to be new and simplified expressions of constitutive laws for materials with two preferred directions are given.

1 Material symmetry group. Axiom of material indifference. Isotropy.

Let a reference configuration Ω of an elastic body be given and let us denote by M + 3 the set of 3 × 3 matrices with positive determinant. Let T : Ω × M + 3 be the constitutive law of the Cauchy stress tensor. The symmetry group of the material at point x ∈ Ω is defined by

G x = {H ∈ M + 3 ; ∀F ∈ M + 3 , T (x, F H) = T (x, F )}. (1) 
Let SL(3) be the set of matrices with determinant 1, also known as the proper unimodular group. It can be shown [START_REF] Gurtin | An Introduction to Continuum Mechanics[END_REF] that for physical reasons G x is necessarily a subset of SL [START_REF] Holzapfel | Nonlinear Solid Mechanics[END_REF]. The following classification is classical:

• If for any x ∈ Ω, G x = SL(3), the material is said to be an elastic fluid. Any deformation that does not change the volume preserves the stresses.

• If for any x ∈ Ω, G x ⊂ SO(3), the material is said to be an elastic solid. In such a case, any non rigid deformation changes the stresses.

• If G x = SO(3), the elastic body is isotropic at point x, otherwise it is anisotropic.

A necessary requirement for a stored energy density is to satisfy the axiom of material indifference and we will suppose from now on that this requirement is fulfilled. From all classical books on nonlinear elasticity, we know that this means that the stored energy density is a function of its argument F only through F T F . In other words, there exists a mapping W : Ω × S + 3 such that ∀x ∈ Ω, ∀F ∈ M + 3 , W (x, F ) = W (x, F T F )

where S + 3 denotes the set of 3 × 3 symmetric matrices with positive determinant. Proving the following proposition is straightforward.

Proposition 2 -The symmetry group at point x is given by

G x = {Q ∈ SO(3); ∀C ∈ S + 3 , W (x, Q T CQ) = W (x, C)}. (6) 
By the local inversion theorem, the mapping C ∈ S + 3 → C 1/2 ∈ S + 3 can be shown to be differentiable and, since W (C) = W (C 1/2 ), the mapping W is differentiable. It is then classical that the second Piola-Kirchhoff stress tensor is given by

Σ(x, C) = 2 ∂ W ∂C (x, C).
1.1 Isotropic densities.

We are now interested in determining restrictions that material symmetry properties impose on the form of the stored energy densities. For isotropic materials, the result is given by the following representation theorem which can be found in [START_REF] Ciarlet | Three-Dimensional Elasticity[END_REF], [START_REF] Gurtin | An Introduction to Continuum Mechanics[END_REF], [START_REF] Dret | Modèles mathématiques en élasticité[END_REF], [START_REF] Truesdell | The Non-Linear Field Theories of Mechanics[END_REF] and other books. Its more intricate version for tensor-valued functions was first published in [START_REF] Rivlin | Stress-deformation relations for isotropic materials[END_REF]. We denote by ι 3 the R 3 -valued function ι 3 = (ι 1 , ι 2 , ι 3 ) and by ι 3 (S + 3 ) ⊂ (R + * ) 3 its range set.

Proposition 3 -The material is isotropic at point x in Ω if and only if there exists a mapping w(x, •) :

ι 3 (S + 3 ) → R such that ∀C ∈ S + 3 , W (x, C) = w(x, ι 3 (C)). ( 7 
)
For the sake of completeness let us recall the proof of this well-known result.

Proof -We can omit the variable x. Obviously, if [START_REF] Rivlin | Stress-deformation relations for isotropic materials[END_REF] is satisfied, then W is isotropic. Let us now prove the converse assertion. Let W be isotropic. Then,

∀Q ∈ SO(3), ∀C ∈ S + 3 , W (Q T CQ) = W (C), (8) 
from which we want to derive that if C and C ′ in S + 3 are such that ι(C) = ι(C ′ ), then W (C) = W (C ′ ). Two symmetric matrices C and C ′ such that ι(C) = ι(C ′ ) can be diagonalized under the form

C = R∆R T , C ′ = R ′ ∆ ′ R ′T , R ∈ O(3), R ′ ∈ O(3)
where ∆ and ∆ ′ are two diagonal matrices that are equal up to a permutation of their diagonal entries. Therefore, there exists O ∈ O(3) such that ∆ ′ = O∆O T which implies that

C ′ = R ′ ∆ ′ R ′T = R ′ O∆O T R ′T = (R ′ OR T )C(RO T R ′T )
. This reads C ′ = Q T CQ with Q = RO T R ′T an orhogonal matrix. Either Q belongs to SO [START_REF] Holzapfel | Nonlinear Solid Mechanics[END_REF], and from [START_REF] Spencer | Constitutive theory for strongly anisotropic solids[END_REF] we have that W (C) = W (C ′ ). Or -Q belongs to SO(3) and from C ′ = (-Q) T C(-Q) we derive the same result. As a consequence the mapping W can be factorized through the mapping ι 3 , which ends the proof.

Remark 1 -The above proposition states that an isotropic energy does not depend of six real numbers (the entries of the symmetric matrix C), but of three real numbers only. The result is optimal in the sense that the number of invariants cannot be further reduced.

Proof -Indeed, if the number of invariants could be reduced, then any of the three principal invariants could be expressed in terms of the two other ones. This would mean that from the knowledge of the values of two elementary symmetric functions of three numbers, one would derive these three numbers, which is untrue.

Remark 2 -The range set ι 3 (S + 3 ) is a strict subset of (R + * ) 3 and it is not an open subset.

Proof -Choose λ 1 ∈ R + * and choose k ∈ R * . Let  = (λ 1 , k 2 , λ 1 k 2 ).
Obviously  belongs to (R + * ) 3 . But it does not belong to ι 3 (S + 3 ); otherwise, the roots of the polynomial λ 3λ 1 λ 2 + k 2 λ -λ 1 k 2 which are λ 1 and ±ik, would be positive real numbers. This proves that ι 3 (S + 3 ) is not equal to (R + * ) 3 . The fact that it is not an open set is mentioned in [START_REF] Ciarlet | Three-Dimensional Elasticity[END_REF]. Let us anyway give a proof of this result. Let λ 1 , a ∈ R + * and define  = (λ 1 + 2a, 2aλ 1 + a 2 , λ 1 a 2 ). Obviously,  belongs to ι 3 (S + 3 ), actually ( 1 ,  2 ,  3 ) are the symmetric functions associated with the roots of the polynomial (λ

-λ 1 )(λ -a) 2 . For ε > 0, let (ε) = (λ 1 + 2a, 2aλ 1 + a 2 + ε 2 , λ 1 (a 2 + ε 2 )). Its entries  1 (ε),  2 (ε),  3 (ε) are the symmetric functions of the roots of the polynomial (λ -λ 1 )(λ -(a + iε))(λ -(a -iε)).
Since (ε) goes to  when ε goes to 0, we see that any neighbourhood of j contains points that do not belong to ι 3 (S + 3 ).

Isotropic constitutive laws.

We recall that for any hyperelastic material the constitutive law Σ of the second Piola-Kirchhoff stress tensor is given in terms of the elastic energy density by

Σ(x, F ) = Σ(x, F T F ) = 2 ∂ W ∂C (x, F T F ), (9) 
where, as already mentioned, the differentiability of W is a consequence of the differentiability of W . Our aim is to derive from [START_REF] Rivlin | Stress-deformation relations for isotropic materials[END_REF] the form of isotropic constitutive laws. We have seen in Remark 2 that the set ι 3 (S + 3 ) is not open, and for the sake of simplicity, we assume that w can be extended in a function still denoted by w defined on Ω × (R + * ) 3 and differentiable with respect to its second variable ι 3 . Then, from formula [START_REF] Rivlin | Stress-deformation relations for isotropic materials[END_REF], we have

∀F ∈ M + 3 , Σ(x, F ) = 2 3 i=1 ∂w ∂ι i (x, ι(F T F ))ι ′ i (F T F ) ( 10 
)
where ι ′ i , i = 1, 2, 3 denotes the derivative of ι i :

S + 3 → R. As ι 1 (C) = tr(C) and ι 3 (C) = det(C), obviously ι ′ 1 (C) = Id, ι ′ 3 (C) = Cof C. From ι 2 (C) = tr(Cof(C)) = 1 2 ((trC) 2 -tr(C 2 )), we derive that ι ′ 2 (C)(D) = ι 1 (C)trD -tr(CD) = (ι 1 (C)Id -C T ) : D.
Using the symmetry of C, those formulas read

ι ′ 1 (C) = Id, ι ′ 2 (C) = ι 1 (C)Id -C, ι ′ 3 (C) = ι 3 (C)C -1 . (11) 
It follows that Σ(x, F ) can be decomposed along Id, C = F T F and C -1 with the following coefficients

Σ(x, F ) = 2[ ∂w ∂ι 1 + ι 1 (C) ∂w ∂ι 2 ]Id -2 ∂w ∂ι 2 C + 2ι 3 (C) ∂w ∂ι 3 C -1 , (12) 
where ∂w ∂ι k stands for ∂w ∂ι k (x, ι(C)). By using the Cayley-Hamilton theorem, an analogous formula can be written with C -1 replaced by C 2 . It is classically written under the form

Σ(x, F ) = γ 0 (x, ι(C))Id + γ 1 (x, ι(C))C + γ 2 (x, ι(C))C 2 . ( 13 
)
As for the Cauchy stress tensor T , it is related to Σ by T (x, F ) = (detF ) -1 F Σ(x, F )F T and it can be expressed as

T (x, F ) = 2ι 3 (B) -1/2 ι 3 (B) ∂w ∂ι 3 Id + [ ∂w ∂ι 1 + ι 1 (B) ∂w ∂ι 2 ]B - ∂w ∂ι 2 B 2 (14) 
where B = F F T and where ∂w ∂ι k stands for ∂w ∂ι k (x, ι(B)). This formula is classically written under the form

T (x, F ) = β 0 (x, ι(B))Id + β 1 (x, ι(B))B + β 2 (x, ι(B))B 2 . ( 15 
)
From a practical point of view, the above results show that the matrices Σ(x, F ) and T (x, F ) that belong to the six-dimensional vector space S 3 can actually be decomposed along a set of three matrices that vary with F . Coefficients in the decomposition depend on F by means of the three principal invariants.

Transverse isotropy.

For the sake of formula conciseness, we drop from now on, unless necessary, the variable x in energy densities and constitutive laws.

Transverse isotropy is introduced in the engineering literature in the following way: transversely isotropic materials are materials that have the same properties in one plane and different properties in the direction normal to this plane. This usually corresponds to the description of materials reinforced by one family of fibers. As said in [START_REF] Holzapfel | Nonlinear Solid Mechanics[END_REF], their stiffness is greater in the fiber direction τ and the material response along directions orthogonal to this preferred directions is isotropic. For a fiber-reinforced material described in this way, performing a rotation around the preferred direction before applying a homogeneous deformation should not change the energy. Moreover, performing a rotation with axis orthogonal to the preferred direction and with angle π before applying a homogeneous deformation should not change the energy either. Indeed, all these rotations are exactly those which leave the plane orthogonal to the preferred direction invariant.

Definition 1 -A material is said to be transversely isotropic at point x ∈ Ω with respect to a unit vector τ if and only if {Q ∈ SO(3);

Qτ = ±τ } ⊂ G x .
This definition coincides with one of the choices proposed in [START_REF] Liu | On representations of anisotropic invariants[END_REF], namely choice g 4 . In terms of the stored energy density, transverse isotropy with respect to τ reads

∀Q ∈ SO(3) such that Qτ = ±τ, ∀C ∈ S + 3 , W (Q T CQ) = W (C). ( 16 
)
Choose R in O(3) \ SO(3) such that Rτ = ±τ . Then Q = -R belongs to SO(3) and satisfies Qτ = ±τ . Therefore property (16) can be extended to all orthogonal matrices and the energy of a transversely isotropic material satisfies

∀Q ∈ O(3) such that Qτ = ±τ, ∀C ∈ S + 3 , W (Q T CQ) = W (C). ( 17 
)
This is called choice g 5 in [START_REF] Liu | On representations of anisotropic invariants[END_REF].

Tranversely isotropic densities

We are now in a position to prove a representation theorem. As transverse isotropy is less restrictive than isotropy, more freedom is left to the stored energy density which is shown to be a function of five scalar variables. As customary, we set

ι 4 (C) = τ • Cτ, ι 5 (C) = τ • C 2 τ,
although a rigorous notation should be ι 4 (C, τ ), ι 5 (C, τ ). In addition, we define ι 5 : S + 3 → (R + * ) 5 by ι 5 = (ι 1 , ι 2 , ι 3 , ι 4 , ι 5 ). Clearly,

∀Q ∈ O(3) such that Qτ = ±τ, ∀C ∈ S + 3 , ι 5 (Q T CQ) = ι 5 (C). ( 18 
)
Note that the range of ι 5 is a strict subset of (R + * ) 5 . Indeed,

ι 5 (C) = Cτ • Cτ = Cτ 2 ≥ ι 4 (C),
which suffices to prove that ι 5 (S + 3 ) = (R + * ) 5 .

It is shown in [START_REF] Liu | On representations of anisotropic invariants[END_REF] that, from a transverse isotropic density, one can construct a function Z : S + 3 × {p ∈ R 3 ; p = 1} → R that is isotropic in terms of the pair (C, p). Then one can make use of the so-called functional bases given in [START_REF] Wang | A new representation theorem for isotropic functions I[END_REF], [START_REF] Wang | A new representation theorem for isotropic functions II[END_REF]. We give here a proof that does not call to this clever trick. Although more complicate, this proof is in the spirit of the proof of Rivlin-Ericksen theorem given in [START_REF] Ciarlet | Three-Dimensional Elasticity[END_REF]. Proposition 4 -A material is transversely isotropic at point x in Ω with respect to τ if and only if there exists a mapping w(x, •) :

ι 5 (S + 3 ) → R such that ∀C ∈ S + 3 , W (x, C) = w(x, ι 5 (C)). (19) 
Proof -Obviously, if (19) is satisfied, then W is transversely isotropic with respect to τ . Let us now prove the converse assertion. Let W be transversely isotropic with respect to τ . Let C and C ′ in S + 3 such that ι 5 (C) = ι 5 (C ′ ). We need to prove that there exists Q in O(3) satisfying Qτ = ±τ and such that C ′ = Q T CQ. We will actually prove that this obtained with a Q such that Qτ = τ . From the identity of the three principal invariants, we know that there exists P in O(3) such that C ′ = P T CP . The other two identities read

τ • Cτ = P τ • CP τ and τ • C 2 τ = P τ • C 2 P τ. (20) 
Let (u i ), i = 1, 2, 3, be an orthonormal basis of eigenvectors of C with associated eigenvalues λ i , i = 1, 2, 3. Then,

C = λ 1 u 1 ⊗ u 1 + λ 2 u 2 ⊗ u 2 + λ 3 u 3 ⊗ u 3 and C 2 = λ 2 1 u 1 ⊗ u 1 + λ 2 2 u 2 ⊗ u 2 + λ 2 3 u 3 ⊗ u 3 from which we derive that τ • Cτ = i λ i (u i • τ ) 2 , P τ • CP τ = i λ i (u i • P τ ) 2 , and τ • C 2 τ = i λ 2 i (u i • τ ) 2 , P τ • C 2 P τ = i λ 2 i (u i • P τ ) 2 .
Equations (20) prove that

i λ i [(u i • τ ) 2 -(u i • P τ ) 2 ] = 0 and i λ 2 i [(u i • τ ) 2 -(u i • P τ ) 2 ] = 0. ( 21 
)
From τ 2 = P τ 2 , we also have

i [(u i • τ ) 2 -(u i • P τ ) 2 ] = 0. ( 22 
)
The above three equations make a van der Monde linear system.

Point 1. Let us first concentrate on the case when the three eigenvalues are distinct. Then the van der Monde matrix is invertible and for any i = 1, 2, 3, one has

u i • τ = ε i (u i • P τ ) with ε i = ±1, or equivalently, τ • u i = ε i (τ • P T u i ).
Let us split the reasoning into several cases.

(i) suppose that for any i, u i • τ = u i • P τ . Then P τ = τ . We can choose Q = P .

(ii) suppose that for two indices, say α = 1, 2, ε α = 1 and that ε 3 = -1. In other words,

τ • u α = τ • P T u α , α = 1, 2, τ • u 3 = -τ • P T u 3 . ( 23 
) Define Q by Q T u α = P T u α , α = 1, 2, Q T u 3 = -P T u 3 .
As P T maps an orthonormal basis onto an orthonormal basis, Q is an orthogonal matrix.

Let us check that Qτ = τ . It suffices to show that for any i = 1, 2, 3, τ • u i = τ • Q T u i which follows immediately from (23). Moreover

C ′ = P T CP = i λ i P T u i ⊗ P T u i = i λ i Q T u i ⊗ Q T u i = Q T CQ.
Therefore we have identified an orthogonal matrix Q such that Qτ = τ and C ′ = Q T CQ. An example of this situation is given by τ the unit vector along u 2 + u 3 , P T the rotation around u 1 with angle π/2 and Q T the symmetry with respect to the plane generated by u 1 and u 2 + u 3 .

(iii) suppose that for two indices, say α = 1, 2, ε α = -1 and that ε 3 = 1. By letting P ′ = -P , we are back to the previous case.

(iv) finally, if for any i, u i • τ = -u i • P τ . Then P τ = -τ . We can choose Q = -P .
Point 2. We now turn to the case when two eigenvalues of C are equal, say λ 1 = λ 2 . Equations ( 21)-( 22) no longer define an invertible system. They are equivalent to

(τ • u 1 ) 2 + (τ • u 2 ) 2 = (τ • P T u 1 ) 2 + (τ • P T u 2 ) 2 , (τ • u 3 ) 2 = (τ • P T u 3 ) 2 . ( 24 
)
We are looking again for

Q ∈ O(3) satisfying Qτ = τ and such that C ′ Q T = Q T C, which means that for all i = 1, 2, 3, C ′ Q T u i = λ i Q T u i .
In other words, we search for Q ∈ O(3) such that on the one hand Qτ = τ and that on the other hand Q T u α , α = 1, 2, is an eigenvector of C ′ associated with λ 1 and Q T u 3 is an eigenvector of C ′ associated with λ 3 . We recall that

C ′ = λ 1 (P T u 1 ⊗ P T u 1 + P T u 2 ⊗ P T u 2 ) + λ 3 P T u 3 ⊗ P T u 3 . ( 25 
)
Let us split the reasoning into several cases.

(i) suppose that τ • u 3 = τ • P T u 3 . We define Q T along u 3 by Q T u 3 = P T u 3 .
As for the action of Q T on u 1 and u 2 , we require that Q T maps the plane generated by u 1 and u 2 onto the plane generated by P T u 1 and P T u 2 , is an orthogonal transformation and finally satisfies τ

• u α = τ • Q T u α , α = 1, 2.
The first two conditions are satisfied as soon that Q T u 1 and Q T u 2 are given by

Q T u 1 = cos θ(P T u 1 ) + sin θ(P T u 2 ), Q T u 2 = -sin θ(P T u 1 ) + cos θ(P T u 2 ),
where θ is arbitrary. At this time, we know that Q is orthogonal and that

C ′ Q T = Q T C. The third condition is fulfilled if τ • u 1 = cos θ(τ • P T u 1 ) + sin θ(τ • P T u 2 ), and τ • u 2 = -sin θ(τ • P T u 1 ) + cos θ(τ • P T u 2 ).
Such a θ exists as a consequence of the first assertion in (24). Then, for any i = 1, 2, 3,

τ • u i = τ • Q T u i and Qτ = τ . (i) suppose that τ • u 3 = -τ • P T u 3 . Let P ′ = -P .
The first equation in (24) and equation ( 25) hold with P ′ in place of P . It suffices to make the same reasoning as before with P replaced by P ′ to obtain the result.

Point 3. When all three eigenvalues are equal to λ, then

C ′ = C = λd. We can choose Q = Id.
From points 1, 2 and 3, we derive that W can be factorized through the mapping ι 5 . This means that there exists a function w : ι 5 (S + 3 ) → R such that W = w • ι 5 . The function w can be extended to (R + * ) 5 if needed. 

(C) = Cτ 2 : Complete τ in an orthonormal basis (τ, τ ′ , τ ∧ τ ′ ), then ι 5 (C) = Cτ 2 = (Cτ •τ ) 2 +(Cτ •τ ′ ) 2 +(Cτ •τ ∧τ ′ ) 2 = (F τ •F τ ) 2 +(F τ •F τ ′ ) 2 +(F τ •F (τ ∧τ ′ )) 2 .
This quantity can be measured by experiments. It measures how an orthonormal basis with one vector equal to τ deforms under the action of F . It mixes changes of lengths and changes of angles.

We can now give a statement analogous to Remark 1.

Remark 4 -The above proposition states that a transversely isotropic energy does not depend of six real numbers (the entries of the symmetric matrix C), but of five real numbers only. The result is optimal in the sense that none of the five invariants ι k , k = 1, 2, 3, 4, 5 is a function of the other four ones.

Proof -In all cases to be examined, we introduce two matrices C and C ′ . We leave it to the reader to check that they are symmetric definite positive, which can be done by computing their principal minors.

• ι 5 is not a function of (ι 1 , ι 2 , ι 3 , ι 4 ): Consider the two matrices C and C ′ defined by

C =   2 1 1 1 2 0 1 0 1   , C ′ =   2 1 0 1 2 1 0 1 1   . Easy computations give ι 1 (C) = ι 1 (C ′ ) = 5, ι 2 (C) = ι 2 (C ′ ) = 6, ι 3 (C) = ι 3 (C ′ ) = 1, and ι 4 (C) = ι 4 (C ′ ) = 2, But, ι 5 (C) = 6, ι 5 (C ′ ) = 5. • ι 4 is not a function of (ι 1 , ι 2 , ι 3 , ι 5 ): Choose C =   1 1 √ 3 1 2 0 √ 3 0 20   , C ′ =   2 1 0 1 1 √ 3 0 √ 3 20   .
One easily checks that ι

1 (C) = ι 1 (C ′ ) = 23, ι 2 (C) = ι 2 (C ′ ) = 58, ι 3 (C) = ι 3 (C ′ ) = 14, ι 5 (C) = ι 5 (C ′ ) = 5, although ι 4 (C) = 1 and ι 4 (C ′ ) = 2. • ι 3 is not a function of (ι 1 , ι 2 , ι 4 , ι 5 ): Choose C =   2 0 1 0 2 0 1 0 1   , C ′ =   2 0 1 0 1 0 1 0 2   .
The third minors are given by ι One easily checks that ι

3 (C) = 2, ι 3 (C ′ ) = 3, hence ι 3 (C) = ι 3 (C ′ ). On the contrary, ι 1 (C) = ι 1 (C ′ ) = 5, ι 2 (C) = ι 2 (C ′ ) = 7, ι 4 (C) = ι 4 (C ′ ) = 2, ι 5 (C) = ι 5 (C ′ ) = 5. • ι 2 is not a function of (ι 1 , ι 3 , ι 4 , ι 5 ): Choose C =     2 0 1 0 1 2 5 1 2 5 1     , C ′ =    
1 (C) = ι 1 (C ′ ) = 4, ι 3 (C) = ι 3 (C ′ ) = 1 5 , ι 4 (C) = ι 4 (C ′ ) = 2, ι 5 (C) = ι 5 (C ′ ) = 5. On the contrary, ι 2 (C) = 3 + 3 5 = ι 2 (C ′ ) = 3 + 29 40 .
• finally, ι 1 is not a function of (ι 2 , ι 3 , ι 4 , ι 5 ): Choose

C =   1 0 1 √ 3 0 1 2 0 1 √ 3 0 5 3   , C ′ =   1 1 √ 3 0 1 √ 3 1 0 0 0 1   .
Obviously, their traces are not equal. Nevertheless,

ι 2 (C) = ι 2 (C ′ ) = 8 3 , ι 3 (C) = ι 3 (C ′ ) = 2 3 , ι 4 (C) = ι 4 (C ′ ) = 1, ι 5 (C) = ι 5 (C ′ ) = 4 3 .

Tranversely isotropic constitutive laws

As in Section 1.2, we assume that w can be extended in a function still denoted by w defined on (R + * ) 5 and differentiable with respect to ι 5 . Then, from formula (19), we have

∀F ∈ M + 3 , Σ(F ) = 2 5 i=1 ∂w ∂ι i (ι 5 (F T F ))ι ′ i (F T F ). ( 26 
)
As ι 4 is linear, we have for any symmetric matrices C and

D, ι ′ 4 (C)(D) = τ • Dτ = τ ⊗ τ : D. We obtain ι ′
5 by writing that for any C and D

ι ′ 5 (C)(D) = τ • CDτ + τ • DCτ = (Cτ ⊗ τ + τ ⊗ Cτ ) : D.
Therefore, writing for short ι 5 in place of ι 5 (C), we have

Σ(F ) = 2[ ∂w ∂ι 1 (ι 5 ) + ι 1 (C) ∂w ∂ι 2 (ι 5 )]Id -2 ∂w ∂ι 2 (ι 5 )C + 2ι 3 (C) ∂w ∂ι 3 (ι 5 )C -1 + 2 ∂w ∂ι 4 (ι 5 )τ ⊗ τ + 2 ∂w ∂ι 5 (ι 5 )(τ ⊗ Cτ + Cτ ⊗ τ ). (27) 
Formula (27) coincides with formula (71) in [START_REF] Ogden | Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue[END_REF]. When dealing with the Cauchy stress tensor, and writing for short ι 5 in place of ι 5 (B), we obtain

T (F ) = 2ι 3 (B) -1/2 ι 3 (B) ∂w ∂ι 3 (ι 5 )Id + [ ∂w ∂ι 1 (ι 5 ) + ι 1 (B) ∂w ∂ι 2 (ι 5 ]B - ∂w ∂ι 2 (ι 5 )B 2 + ∂w ∂ι 4 (ι 5 )F τ ⊗ F τ + ∂w ∂ι 5 (ι 5 )(F τ ⊗ BF τ + BF τ ⊗ F τ ) (28) that we write T (F ) = T1 (F ) + T2 (F ) (29) 
where T1 (F ) and T2 (F ) assume the forms

T1 (F ) = β 0 (ι 5 (B))Id + β 1 (ι 5 (B))B + β 2 (ι 5 (B))B 2 , (30) T2 (F ) = δ 0 (ι 5 (B))F τ ⊗ F τ + δ 1 (ι 5 (B))(F τ ⊗ BF τ + BF τ ⊗ F τ ).
(31) Formula (28) coincides with formula (73) in [START_REF] Ogden | Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue[END_REF]. Let us investigate the contribution of the anisotropic part T2 (F ). If it were reduced to its first term, then its action on any unit vector ν would result on a vector colinear to F τ and would be zero on vectors orthogonal to F τ . But, the fact that the second term is present destroys this nice property. Indeed, stress vectors T2 (F )ν belong to the two-dimensional vector space generated by F τ and by BF τ , and only vectors ν that are both orthogonal to F τ and to BF τ give a zero value to T2 (F )ν. In all constitutive laws that we are aware of δ 1 is actually taken to be 0.

Equations ( 27) and (28) show that the symmetric matrices Σ(F ) and T (F ) decompose along a set of five matrices that vary with F . Coefficients in the decomposition depend on the five invariants defined till now.

3 Materials with two preferred directions. Orthotropy.

We recall that the variable x is dropped in most formulas.

In this section, we deal with materials which in a given point x of the reference configuration admit two fibers with unit tangent vectors τ and τ ′ , τ ′ = ±τ . Examples in engineeering are materials reinforced by two family of fibers and examples in physiology are artery walls. It is mechanically meaningful to separate the case when τ and τ ′ are orthogonal and the case when they are non orthogonal. In the particular case when the fibers are orthogonal, we will say that the materials are orthotropic with respect to τ and τ ′ at point x, see [Spencer] and [Holzapfel]. It is natural to require that performing a rotation with angle π around τ or τ ′ prior to applying a deformation does not change the energy. Indeed these deformations do not modify the fibers. For any vector ν, let R ν denote the rotation with axis ν and angle π.

Mathematically speaking, orthotropy reads as follows.

Definition 2 -A material is said to be orthotropic at point x in Ω with respect to the orthogonal vectors τ and τ ′ if and only if

{R τ , R τ ′ } ⊂ G x . ( 32 
) As R τ ∧τ ′ = R τ • R τ ′ , orthotropy implies that R τ ∧ R τ ′ belongs to G x .
If a material is isotropic transversely to τ , then it is orthotropic with respect to τ and to any τ ′ orthogonal to τ .

When τ and τ ′ are non orthogonal, R τ ∧τ ′ is the only rotation Q, besides the identity, that preserves both directions τ and τ ′ (Qτ = ±τ, Qτ ′ = ±τ ′ ). Therefore we state the following definition.

Definition 3 -A material is said to admit at point x in Ω two non orthogonal preferred directions τ and τ ′ if and only if

R τ ∧τ ′ ∈ G x . (33) 
It follows that, although they have no mechanical existence, any two non orthogonal unit vectors τ and τ ′ that generate the plane < τ, τ ′ > are preferred directions as well.

3.1 Orthotropy.

In this subsection, we assume that τ and τ ′ are orthogonal. The endomorphism C whose matrix in the standard basis is C is represented in the basis (τ, τ ′ , τ ∧ τ ′ ) by

  ι 4 (C) ι 8 (C) ι 9 (C) ι 8 (C) ι 6 (C) ι 10 (C) ι 9 (C) ι 10 (C) ι 1 (C) -(ι 4 (C) + ι 6 (C))   ( 34 
)
where

ι 4 (C) = τ • Cτ, ι 6 (C) = τ ′ • Cτ ′ , ι 8 (C) = τ • Cτ ′ , ( 35 
) ι 9 (C) = τ • C(τ ∧ τ ′ ), ι 10 (C) = τ ′ • C(τ ∧ τ ′ ). ( 36 
)
As a consequence, for any energy W , W (C) can be written under the form 

W (C) = z(ι 1 (C), ι 4 (C), ι 6 (C), ι 8 (C), ι 9 (C), ι 10 (C)), (37) 
O = {ι O = (ι 1 , ι 4 , ι 6 , ι 8 , ι 9 , ι 10 ) ∈ R 6 ; ι 4 > 0, ι 4 ι 6 -ι 2 8 > 0, (ι 4 ι 6 -ι 2 8 )(ι 1 -(ι 4 + ι 6 )) -ι 4 ι 2 10 -ι 6 ι 2 9 + 2ι 8 ι 9 ι 10 > 0}.
For any ι O ∈ O, the assertions ι 1 > 0 and ι 6 > 0 hold true. On the contrary, ι 8 , ι 9 , ι 10 need not be positive and O is a strict open subset of (R + * ) 3 × R 3 . From now on, we will use the notation ι O for (ι 1 , ι 4 , ι 6 , ι 8 , ι 9 , ι 10 ).

Proposition 5 -A material is orthotropic at point x with respect to the orthogonal vectors τ and τ ′ if and only if the function z satisfies the following symmetry conditions

∀ι O ∈ O, z(ι 1 , ι 4 , ι 6 , ι 8 , ι 9 , ι 10 ) = z(ι 1 , ι 4 , ι 6 , -ι 8 , -ι 9 , ι 10 ), ( 38 
) ∀ι O ∈ O, z(ι 1 , ι 4 , ι 6 , ι 8 , ι 9 , ι 10 ) = z(ι 1 , ι 4 , ι 6 , -ι 8 , ι 9 , -ι 10 ). ( 39 
)
Proof -First of all, if (ι 1 , ι 4 , ι 6 , ι 8 , ι 9 , ι 10 ) belongs to O, then (ι 1 , ι 4 , ι 6 , -ι 8 , -ι 9 , ι 10 ) and (ι 1 , ι 4 , ι 6 , -ι 8 , ι 9 , -ι 10 ) belong to O as well. Let r τ (resp. r τ ′ ) be the rotation with axis τ (resp. τ ′ ) and angle π. The material is orthotropic if and only if for any symmetric positive definite endomorphism C, one has

z(ι 1 (r T τ Cr τ ), ι 4 (r T τ Cr τ ), ι 6 (r T τ Cr τ ), ι 8 (r T τ Cr τ ), ι 9 (r T τ Cr τ ), ι 10 (r T τ Cr τ )) = z(ι 1 (C), ι 4 (C), ι 6 (C), ι 8 (C), ι 9 (C), ι 10 (C)), z(ι 1 (r T τ ′ Cr τ ′ ), ι 4 (r T τ ′ Cr τ ′ ), ι 6 (r T τ ′ Cr τ ′ ), ι 8 (r T τ ′ Cr τ ′ ), ι 9 (r T τ ′ Cr τ ′ ), ι 10 (r T τ ′ Cr τ ′ )) = z(ι 1 (C), ι 4 (C), ι 6 (C), ι 8 (C), ι 9 (C), ι 10 (C)).
The result follows from the facts that for k

= 1, 4, 6, ι k (r T τ Cr τ ) = ι k (r T τ ′ Cr τ ′ ) = ι k (C) and that ι 8 (r T τ Cr τ ) = ι 8 (r T τ ′ Cr τ ′ ) = -ι 8 (C), ( 40 
) ι 9 (r T τ Cr τ ) = -ι 9 (C) = -ι 9 (r T τ ′ Cr τ ′ ), ι 10 (r T τ Cr τ ) = ι 10 (C) = -ι 10 (r T τ ′ Cr τ ′ ). ( 41 
)
Remark 5 -It is easily derived from the above proposition that the identity

∀ι O = (ι 1 , ι 4 , ι 6 , ι 8 , ι 9 , ι 10 ) ∈ O, z(ι 1 , ι 4 , ι 6 , ι 8 , ι 9 , ι 10 ) = z(ι 1 , ι 4 , ι 6 , ι 8 , -ι 9 , -ι 10 ) (42) 
is valid as well. This identity corresponds to the r τ ∧τ ′ invariance.

The example of z(ι 1 , ι 4 , ι 6 , ι 8 , ι 9 , ι 10 ) = ι 8 ι 9 ι 10 shows that orthotropy does not mean that z can be written as A correct formulation close to this one is given in the following proposition where sgn

(t) = 1 if t ≥ 0, sgn(t) = -1 if t < 0. Proposition 6 -Let Ō = {(ι 1 , ι 4 , ι 6 , j 8 , j 9 , j 10 , t) ∈ (R + * ) 6 × {-1, 1}; ι 4 > 0, ι 4 ι 6 -j 2 8 > 0, (ι 4 ι 6 -j 2 8 )(ι 1 -(ι 4 + ι 6
)) -ι 4 j 2 10 -ι 6 j 2 9 + 2t j 8 j 9 j 10 > 0} ∪ {(ι 1 , ι 4 , ι 6 , j 8 , j 9 , j 10 , t) ∈ (R + ) 6 × {1}; j 8 j 9 j 10 = 0,

ι 4 > 0, ι 4 ι 6 -j 2 8 > 0, (ι 4 ι 6 -j 2 8 )(ι 1 -(ι 4 + ι 6 )) -ι 4 j 2 10 -ι 6 j 2 9 > 0}. ( 43 
)
A material is orthotropic at point x with respect to the orthogonal vectors τ and τ ′ if and only there exists a function z defined on Ō such that, for any ι O = (ι 1 , ι Indeed, the following cases may arise:

• ι 8 = ι ′ 8 , ι 9 = ι ′ 9 , ι 10 = ι ′
10 and the result is obvious.

• ι 8 = ι ′ 8 , ι 9 = ι ′ 9 , ι 10 = -ι ′ 10 .
In this case, either all values are non zero and the hypothesis on the signs is not fulfilled. Or one value is equal to 0: if ι 10 = 0, we are back to the previous case, if ι 9 = 0, then ι 9 = -ι ′ 9 and we use (38), if ι 8 = 0, then ι 8 = -ι ′ 8 and we use (42).

• ι 8 = ι ′ 8 , ι 9 = -ι ′ 9 , ι 10 = ι ′ 10 .
This item is treated is the same way as the previous item.

• ι 8 = ι ′ 8 , ι 9 = -ι ′ 9 , ι 10 = -ι ′ 10 .
We use (42). • Cases when ι 8 = -ι ′ 8 are treated analogously to the previous four ones.

Remark 6 -Formulations (38)-( 39) and (44) underline the fact that W can be expressed as a function z of six scalar variables that has some symmetry properties. Orthotropy is a weak restriction, since it requires the invariance of W under the product by two matrices only. As can be expected, this results in a weak restriction on z: none of the variables in z disappears, the only restriction is that some parity has to be enforced.

Comparison with classical results.

Equation ( 44) is a nice and simple formulation. In the sequel we try to link it to formulations that can be found in the literature.

Going back to existing works, we see that the set of pseudo-invariants that is commonly used is not the set ι O = (ι k ) k=1,4,6,8,9,10 , but the set of seven elements ι 7 = (ι k ) 7 k=1 where ι 7 (C) = τ ′ • C 2 τ ′ . For instance, [START_REF] Holzapfel | Nonlinear Solid Mechanics[END_REF], [START_REF] Spencer | Constitutive theory for strongly anisotropic solids[END_REF] state that a material is orthotropic at point x in Ω with respect to τ and τ ′ if and only if there exists a mapping w(x, •) such that

∀C ∈ S + 3 , W (x, C) = w(x, ι 7 (C)). (46) 
Therefore, two questions arise: What is the relationship of results of Section 3.1 with these usual statements? Second, are seven variables necessary to express a function of six variables?

But, there is no way of expressing sgn(ι 8 ι 9 ι 10 ) in terms of the first six invariants ι 1 , ι 2 , ι 4 , ι 5 , ι 6 , ι 7 appearing in (59). Indeed, equations ( 49)-( 50)-(51) show that for unchanged ι 1 , ι 4 , ι 6 , any element ι 8 , ι 9 or ι 10 can be changed in its opposite without modifying ι 2 , ι 5 , ι 7 . We can nevertheless make the product ι 8 ι 9 ι 10 disappear, but at the cost of introducing ι 3 . Indeed,

ι 3 = (ι 4 ι 6 -ι 2 8 )(ι 1 -(ι 4 + ι 6 )) + 2 ι 8 ι 9 ι 10 -ι 6 ι 2 9 -ι 4 ι 2 10 , (60) 
which, by use of ( 52)-( 53)-( 54), can be rewritten as

2 ι 8 ι 9 ι 10 = ι 3 -d(ι 1 , ι 2 , ι 4 , ι 5 , ι 6 , ι 7 ) (61) 
where

d = (ι 4 + ι 6 )(ι 2 1 -2ι 1 (ι 4 + ι 6 ) + 2ι 4 ι 6 + 2ι 2 + ι 5 + ι 7 ) + ι 4 ι 5 + ι 6 ι 7 -ι 1 (ι 2 + ι 5 + ι 7 ). ( 62 
)
Therefore, we have proved the following proposition.

Proposition 7 -A material is orthotropic at point x with respect to the orthogonal vectors τ and τ ′ if and only if its energy can be written under the form

W (C) = w ι 1 , ι 2 , ι 4 , ι 5 , ι 6 , ι 7 , sgn ι 3 -d(ι 1 , ι 2 , ι 4 , ι 5 , ι 6 , ι 7 ) (C) ( 63 
)
where w is defined on ι 1 , ι 2 , ι 4 , ι 5 , ι 6 , ι 7 , sgn ι 3 -d(ι 1 , ι 2 , ι 4 , ι 5 , ι 6 , ι 7 ) (S + 3 ).

An alternative proof.

In the previous section, we examined the following question: Are the values (ι 1 , ι 2 , ι 4 , ι 5 , ι 6 , ι 7 ) evaluated in C sufficient to determine W (C) when W is orthotropic? Another way of solving this problem consists in identifying symmetric matrices that share the same invariants (ι 1 , ι 2 , ι 4 , ι 5 , ι 6 , ι 7 ).

Proposition 8 -There exists a symmetric matrix

C such that ι k (C) = ι k for any k = 1, 2, 4, 5, 6, 7 if and only if a(ι 1 , ι 2 , ι 4 , ι 5 , ι 6 , ι 7 ) ≥ 0, b(ι 1 , ι 2 , ι 4 , ι 6 , ι 7 ) ≥ 0, c(ι 1 , ι 2 , ι 4 , ι 5 , ι 7 ) ≥ 0. When a(ι 1 , ι 2 , ι 4 , ι 5 , ι 6 , ι 7 ), b(ι 1 , ι 2 , ι 4 , ι 6 , ι 7
) and c(ι 1 , ι 2 , ι 4 , ι 5 , ι 7 ) are strictly positive, there are eight such matrices. They separate into two subsets: a subset of four matrices that can be written under the form

{C 1 , R T τ C 1 R τ , R T τ ′ C 1 R τ ′ , R T τ ∧τ ′ C 1 R τ ∧τ ′ }
, and another subset that can be written under the form

{C 2 , R T τ C 2 R τ , R T τ ′ C 2 R τ ′ , R T τ ∧τ ′ C 2 R τ ∧τ ′ }.
Proof -Computations are similar to what as already been written. Actually, we are looking for C that reads

C =   ι 4 α β α ι 6 γ β γ ι 1 -(ι 4 + ι 6 )   ,
where α, β, γ must be such that

ι 2 = ι 4 ι 6 + (ι 4 + ι 6 )(ι 1 -(ι 4 + ι 6 ) -α 2 -β 2 -γ 2 , (64) ι 5 = ι 2 4 + α 2 + β 2 , (65) ι 7 = ι 2 6 + α 2 + γ 2 . ( 66 
)
This is inverted into

α 2 = ι 4 ι 6 -ι 1 (ι 4 + ι 6 ) + ι 2 + ι 5 + ι 7 , (67) 
β 2 = (ι 1 -ι 4 )(ι 4 + ι 6 ) -ι 2 -ι 7 , ( 68 
) γ 2 = (ι 1 -ι 6 )(ι 4 + ι 6 ) -ι 2 -ι 5 . ( 69 
)
As soon as a, b and c are nonnegative, the set of solutions of the above system is non empty and is given by α = ηa

1 2 , β = εb 1 2 , γ = ε ′ c 1 2 where η, ε, ε ′ = ±1. Let C 1 =   ι 4 a 1 2 b 1 2 a 1 2 ι 6 c 1 2 b 1 2 c 1 2 ι 1 -(ι 4 + ι 6 )   , C 2 =   ι 4 -a 1 2 b 1 2 -a 1 2 ι 6 c 1 2 b 1 2 c 1 2 ι 1 -(ι 4 + ι 6 )   .
Suppose a > 0, b > 0, c > 0. Then the four matrices such that ηεε

′ = 1 are C 1 , R T τ C 1 R τ , R T τ ′ C 1 R τ ′ , and R T τ ∧τ ′ C 1 R τ ∧τ ′ and the four matrices such that ηεε ′ = -1 are C 2 , R T τ C 2 R τ , R T τ ′ C 2 R τ ′ , and R T τ ∧τ ′ C 2 R τ ∧τ ′ .
Proposition 8 shows that it is not true that two matrices C and C ′ with the same six invariants ι 1 , ι 2 , ι 4 , ι 5 , ι 6 , ι 7 satisfy either

C ′ = R T τ CR τ , or C ′ = R T τ ′ CR τ ′ , or C ′ = R T τ ∧τ ′ CR τ ∧τ ′ .
Therefore, factorization of W through (ι 1 , ι 2 , ι 4 , ι 5 , ι 6 , ι 7 ) is not possible.

Let us compute the determinants of matrices C 1 and C 2 that have been introduced in the previous proof. Letting for short a = a(ι 1 , ι 2 , ι 4 , ι 5 , ι 6 , ι 7 ), b = b(ι 1 , ι 2 , ι 4 , ι 6 , ι 7 ), c = c(ι 1 , ι 2 , ι 4 , ι 5 , ι 6 ), we obtain

ι 3 (C 1 ) = (ι 4 ι 6 -a)(ι 1 -(ι 4 + ι 6 )) -ι 6 b -ι 4 c + 2 (abc) 1 2 , ι 3 (C 2 ) = (ι 4 ι 6 -a)(ι 1 -(ι 4 + ι 6 )) -ι 6 b -ι 4 c -2 (abc) 1 2 ,
and, using d defined in (62),

ι 3 (C 1 ) -d = 2 (abc) 1 2 , ι 3 (C 2 ) -d = -2 (abc) 1 2 .
Therefore, knowledge of the sign of ι 3 -d selects one of the two subsets described in Proposition 8. This provides a new proof of Proposition 7.

Focus on the six invariants

(ι 1 , ι 3 , ι 4 , ι 5 , ι 6 , ι 7 ).
Another attempt in trying to reduce the classical set of seven invariants to a set of six invariants consists in trying to eliminate ι 2 while keeping ι 3 . Indeed, for ι 1 , ι 4 , ι 6 given, equations ( 61)-( 50)-( 51) constitute a set of three equations that provides ι 3 , ι 5 , ι 7 in terms of ι 8 , ι 9 , ι 10 . Indeed, 

ι 3 = κ1,4,6 -κ 1,
ι 2 8 + ι 2 9 = ι 5 -ι 2 4 , ( 74 
) ι 2 8 + ι 2 10 = ι 7 -ι 2 6 . (75) 
We assume that this system has at least one solution in O. It would be convenient that ι 2 8 , ι 2 9 , ι 2 10 , and sgn(ι 8 ι 9 ι 10 ) are then uniquely determined. In such a case, we would be allowed to replace in (48) these quantities by functions of ι 1 , ι 3 , ι 4 , ι 5 , ι 6 and ι 7 . But, this is not true. Indeed, we can construct symmetric definite positive matrices with identical (ι 1 , ι 3 , ι 4 , ι 5 , ι 6 , ι 7 ) and non identical ι 2 8 , ι 2 9 , ι 2 10 . Indeed, choose

C =    1 0 1 √ 2 0 1 1 √ 2 1 √ 2 1 √ 2 2    , C ′ =   1 1 √ 2 0 1 √ 2 1 0 0 0 2   .
For both of them,

ι 1 = 4, ι 3 = 1, ι 4 = 1, ι 5 = 3 2 , ι 6 = 1, ι 7 = 3 2 . But, for instance, ι 8 (C) = 0, ι 8 (C ′ ) = 1 √ 2 . Note that ι 2 (C) = 4 = ι 2 (C ′ ) = 5 2 .
Remark 7 -We mentioned at the beginning of this section that if a material is isotropic transversely to τ , then it is orthotropic with respect to τ and to any τ ′ orthogonal to τ . This can be checked on the representation formulas. Actually, let W be such that W (C) = w(ι 5 (C)). Then defining z by

z(ι 1 , ι 4 , ι 6 , j 8 , j 9 , j 10 , t) = w(ι 1 , ι 2 , ι 3 , ι 4 , ι 5 ), (76) 
where 60), (50) -we recover the expected expression (44).

ι 2 = ι 4 ι 6 + (ι 4 + ι 6 )(ι 1 -(ι 4 + ι 6 )) -j 2 8 -j 2 9 -j 2 10 , ι 3 = (ι 4 ι 6 -j 2 8 )(ι 1 -(ι 4 + ι 6 )) + 2 t j 8 j 9 j 10 -ι 6 j 2 9 -ι 4 j 2 10 , ι 5 = ι 2 4 + j 2 8 + j 2 9 -see (49), (

Summary

The main conclusion of Section 3.1 is that an orthotropic energy fonction W undertakes the reduced form

W = z(ι 1 , ι 4 , ι 6 , |ι 8 |, |ι 9 |, |ι 10 |, sgn(ι 8 ι 9 ι 10 )), (77) 
which is an easy to read formulation. In Section 3.2, in order to compare our result with available formulas, we wrote

W = w(ι 1 , ι 2 , ι 4 , ι 5 , ι 6 , ι 7 , sgn(ι 3 -d(ι 1 , ι 2 , ι 4 , ι 5 , ι 6 , ι 7 )). (78) 
Let us look more closely at (78). Letting

y(ι 1 , ι 2 , ι 3 , ι 4 , ι 5 , ι 6 , ι 7 ) = w(ι 1 , ι 2 , ι 4 , ι 5 , ι 6 , ι 7 , sgn(ι 3 -d(ι 1 , ι 2 , ι 4 , ι 5 , ι 6 , ι 7 )), (79) 
we have

W = y(ι 1 , ι 2 , ι 3 , ι 4 , ι 5 , ι 6 , ι 7 ), (80) 
and conversely any W of the form (80) is obviously orthotropic. Therefore, one might think that we have recovered the classical formulation. But, we are aware of the fact, left unclear in the literature up to our knowledge, that (ι 1 , ι 2 , ι 3 , ι 4 , ι 5 , ι 6 , ι 7 ) are not independent functions of C. Actually, our previous computations show that

ι 3 = d ± 2 (abc) 1/2 . (81) 
In particular, considering the partial derivative of W with respect to ι 3 while keeping ι 1 , ι 2 , ι 4 , ι 5 , ι 6 , ι 7 fixed is meaningless and should not be done when giving the expressions of constitutive laws.

Orthotropic constitutive laws

We recall that a hyperelastic energy is, by construction, differentiable with respect to C. As ι 4 , ι 6 , ι 8 , ι 9 , ι 10 are coefficients of the matrix representing C in a given basis and as ι 1 can be expressed linearly in terms of the coefficients, it is clear that z defined in (37) is differentiable on O and that

∀F ∈ M + 3 , Σ(F ) = 2 i=1,4 ,6,8,9,10 
∂z ∂ι i (ι O (F T F ))ι ′ i (F T F ). (82) 
In other words, letting

τ ′′ = τ ∧ τ ′ , Σ(F ) = 2 ∂z ∂ι 1 Id + 2 ∂z ∂ι 4 τ ⊗ τ + 2 ∂z ∂ι 6 τ ′ ⊗ τ ′ + ∂z ∂ι 8 (τ ⊗ τ ′ ) s + ∂z ∂ι 9 (τ ⊗ τ ′′ ) s + ∂z ∂ι 10 (τ ′ ⊗ τ ′′ ) s
where all partial derivatives are taken in ι O (F T F ) and where we have set (τ ⊗ν) s = τ ⊗ν+ν⊗τ for any two vectors τ and ν. This identity does not carry any information -apart from the fact that the material is hyperelastic -as long as we do not use the symmetries of z. It is a decomposition of Σ(F ) along a set of six independent symmetric matrices.

Let us now use the orthotropy and let us turn to z defined in (44). For any (ῑ 1 , ῑ4 , ῑ6 , j8 , j9 , j10 , t) in Ō, letting five of the first six variables and t fixed, there is an interval centered on the remaining variable (or a semi-interval if this variable is equal to 0) such that the product of the fixed variables and of this interval is included in Ō. Therefore, considering the partial derivative of z with respect to any of its first six variables is meaningful. From the identities z(ι 1 , ι 4 , ι 6 , j 8 , j 9 , j 10 , 1) = z(ι 1 , ι 4 , ι 6 , ηj 8 , εj 9 , ε ′ j 10 ) for ηεε ′ = 1, z(ι 1 , ι 4 , ι 6 , j 8 , j 9 , j 10 , -1) = z(ι 1 , ι 4 , ι 6 , ηj 8 , εj 9 , ε ′ j 10 ) for ηεε ′ = -1, we compute the partial derivatives of z in terms of the partial derivatives of z. By using the reverse form of the obtained formulas, we obtain 

∀ι O ∈ O, ∀k = 1, 4, 6, ∂z ∂ι k (ι O ) = ∂ z ∂ι k (|ι O |,
Σ = 2 ∂ z ∂ι 1 Id + 2 ∂ z ∂ι 4 τ ⊗ τ + 2 ∂ z ∂ι 6 τ ′ ⊗ τ ′ +sgn(ι 8 ) ∂ z ∂j 8 (τ ⊗ τ ′ ) s + sgn(ι 9 ) ∂ z ∂j 9 (τ ⊗ τ ′′ ) s + sgn(ι 10 ) ∂ z ∂j 10 (τ ′ ⊗ τ ′′ ) s (83) 
where all partial derivatives are taken in (|ι O |, sgn(ι 8 ι 9 ι 10 )). Equation ( 83) is the general form of an orthotropic constitutive law.

For isotropic (resp. transverse isotropic) laws, we have seen that Σ(F ) which belongs to a 6-dimensional vector space can actually be decomposed along a set of three (resp. five) matrices. This is no longer true for orthotropic materials. Equation ( 83) is a decomposition along six matrices. The orthotropy properties are seen in the coefficients. Let us check for instance that Σ(F R τ ) = R T τ Σ(F ) R τ , i.e. that Σ(R T τ CR τ ) = R T τ Σ(C) R τ . From (40) and (41), we know that (ι 8 ι 9 ι 10 )(R T τ CR τ ) = (ι 8 ι 9 ι 10 )(C). Then all partial derivatives are taken at the same value (|ι O |, sgn(ι 8 ι 9 ι 10 )) for both C and R T τ CR τ . Moreover, we have

τ ⊗ τ = R T τ (τ ⊗ τ )R τ because R τ (τ ) = τ , and we have τ ′ ⊗ τ ′ = R T τ (τ ′ ⊗ τ ′ )R τ because R τ (τ ′ ) = -τ ′ .
This proves that the first line of (83) behaves as expected. Let us examine the first term of the second line: we have, on the one hand, sgn(ι 8 (R T τ CR τ )) = -sgn(ι 8 (C)) and on the other hand R T τ (τ ⊗ τ ′ ) s R τ = -(τ ⊗ τ ′ ) s which gives as well the expected behavior. Remaining terms are treated in the same way.

Following the same path as above, we are able to get closer to classical formulations. We use first the mapping z 2 defined in (47) and, assuming that its partial derivatives exist -which when uvw = 0 is not a consequence of the hypotheses made till now -we obtain

Σ = 2 ∂z 2 ∂ι 1 Id + 2 ∂z 2 ∂ι 4 τ ⊗ τ + 2 ∂z 2 ∂ι 6 τ ′ ⊗ τ ′ +2 ι 8 ∂z 2 ∂u (τ ⊗ τ ′ ) s + 2 ι 9 ∂z 2 ∂v (τ ⊗ τ ′′ ) s + 2 ι 10 ∂z 2 ∂w (τ ′ ⊗ τ ′′ ) s (84) 
where all partial derivatives are taken in ι O,2 , sgn(ι 8 ι 9 ι 10 ) with ι O,2 = (ι 1 , ι 4 , ι 6 , ι 2 8 , ι 2 9 , ι 2 10 ). Then, the mapping w defined in (58) admits partial derivatives with respect to ι 1 , ι where all partial derivatives are taken in ι 1 , ι 2 , ι 4 , ι 5 , ι 6 , ι 7 , sgn(ι 3 -d(ι 1 , ι 2 , ι 4 , ι 5 , ι 6 , ι 7 ) . Formula (85) may be more convenient than formula (83) for the experimental determination of the coefficients in the sense that it does not use the vector τ ′′ which is not a material line, e.g. a fiber, but only the vectors τ and τ ′ which represent material entities and along which one can measure the effect of a deformation. One can check that as the case must be the six matrices used in (83) can be expressed in terms of the six matrices used in (85) as soon as ι 8 ι 9 ι 10 = 0. Indeed, it suffices to write the expression of C, (τ ⊗ Cτ ) s and (τ

′ ⊗ Cτ ′ ) s along (Id, τ ⊗ τ, τ ′ ⊗ τ ′ , (τ ⊗ τ ′ ) s , (τ ⊗ τ ′′ ) s , (τ ′ ⊗ τ ′′ ) s
) and to invert a linear system with three unknowns in S 3 to obtain

(τ ⊗ τ ′ ) s = 1 ι 8 [(ι 1 -(ι 4 + ι 6 )) Id + (ι 1 -ι 6 ) τ ⊗ τ + (ι 1 -ι 4 ) τ ′ ⊗ τ ′ -C + (τ ⊗ Cτ ) s + (τ ′ ⊗ Cτ ′ ) s ], (τ ⊗ τ ′′ ) s = 1 ι 9 [(ι 4 + ι 6 -ι 1 ) Id + (ι 6 -ι 1 -2ι 4 ) τ ⊗ τ + (ι 4 -ι 1 ) τ ′ ⊗ τ ′ + C -(τ ′ ⊗ Cτ ′ ) s ], (τ ′ ⊗ τ ′′ ) s = 1 ι 10 [(ι 4 + ι 6 -ι 1 ) Id + (ι 6 -ι 1 ) τ ⊗ τ + (ι 4 -ι 1 -2ι 6 ) τ ′ ⊗ τ ′ + C -(τ ⊗ Cτ ) s ].
Formula (85) is worth comparing with the classical formula, quoted for instance in formula (87) in [Ogden]. In the latter, Σ is decomposed along a set of eight matrices, namely the six matrices that appear in (85) plus C -1 and (τ ⊗ τ ′ ) s . Our reasoning shows that this is unnecessary.

Non orthogonal preferred directions

For non orthogonal preferred directions, W is seen in some classical works as a function of ι k , k = 1, . . . , 8, which makes it a function of eight variables. It will be seen in this section that ι 2 and ι 3 can take two real values at most when the other six variables are known.

In Definition 3, we stated that a material admits two non orthogonal preferred directions τ and τ ′ if and only if R τ ′′ ∈ G x where τ ′′ = τ ∧ τ ′ . Therefore, as already pointed out, this notion only uses the direction orthogonal to the plane generated by τ and τ ′ and not the vectors themselves. Let τ and τ ′ be two orthogonal unit vectors that generate the same plane as τ and τ ′ . We can decompose C along the orthonormal basis (τ , τ ′ , τ ′′ ). The obtained matrix reads with obvious notations

  ι4 (C) ι8 (C) ι9 (C) ι8 (C) ι6 (C) ι10 (C) ι9 (C) ι10 (C) ι1 (C) -(ι 4 (C) + ι6 (C))   .
Let us denote by ž the energy expressed in terms of (ι 1 , ι4 , ι6 , ι8 , ι9 , ι10 ). As seen in (42) the only condition that ž has to satisfy is ž(ι 1 , ι4 , ι6 , ι8 , ι9 , ι10 ) = ž(ι 1 , ι4 , ι6 , ι8 , -ι 9 , -ι 10 ), or, equivalently, ž(ι 1 , ι4 , ι6 , ι8 , ι9 , ι10 ) = z(ι 1 , ι4 , ι6 , ι8 , |ι 9 |, |ι 10 |, sgn(ι 9 ι10 )), where z is defined on

Ō = {(ι 1 , ι4 , ι6 , ι8 , ǰ9 , ǰ10 , t) ∈ R 4 × (R + * ) 2 × {-1, 1}; ι4 > 0, ι4 ι6 -ι2 8 > 0, (ι 4 ι6 -ι2 8 )(ι 1 -(ι 4 + ι6 )) -ι4 ǰ2 10 -ι6 ǰ2 9 + 2 t ι8 ǰ9 ǰ10 > 0} ∪ {(ι 1 , ι4 , ι6 , ι8 , ǰ9 , ǰ10 , t) ∈ R 4 × (R + ) 2 × {1}; ǰ9 ǰ10 = 0, ι4 > 0, ι4 ι6 -ι2 8 > 0, (ι 4 ι6 -ι2 8 )(ι 1 -(ι 4 + ι6 )) -ι4 ǰ2 10 -ι6 ǰ2 9 > 0}. ( 86 
)
We recall that any element in (86) necessarily satisfies ι1 > 0, ι6 > 0 in addition to ι4 > 0.

On the contrary, the sign of ι8 is arbitrary. Therefore, the general form of a constitutive law admitting two non orthogonal preferred directions in the plane generated by τ and τ ′ is

Σ = 2 ∂ z ∂ι 1 Id + 2 ∂ z ∂ι 4 τ ⊗ τ + 2 ∂ z ∂ι 6 τ ′ ⊗ τ ′ + ∂ z ∂ι 8 (τ ⊗ τ ′ ) s + sgn(ι 9 ) ∂ z ∂ ǰ9 (τ ⊗ τ ′′ ) s + sgn(ι 10 ) ∂ z ∂ ǰ10 (τ ′ ⊗ τ ′′ ) s (87) 
where all partial derivatives are taken in (ι 

CR τ ′′ ) = -ι k (C), one can check that Σ satisfies Σ(R T τ ′′ CR τ ′′ ) = R T τ ′′ Σ(C) R τ ′′ as it has to.
The disadvantage of this formulation is that it does not use the elements τ and τ ′ that have material existence. In order to make τ and τ ′ apparent in the final formulation, we choose to decompose the operators on the non orthonormal basis (τ, τ ′ , τ ∧ τ ′ ). In so doing we can prove the following proposition. 

2 = C 1 , or C 2 = r T τ ′′ C 1 r τ ′′ .
ii) There are generically four symmetric operators such that the six invariants ι 1 , ι 4 , ι 5 , ι 6 , ι 7 , ι 8 take the same given values, when the set of these values belongs to (ι 1 , ι 4 , ι 5 , ι 6 , ι 7 , ι 8 )(S + 3 ). For those four operators ι 3 can take at most two distinct values. Choosing one of this values reduces the set of operators to two -possibly equal -operators that read C and r T τ ′′ Cr τ ′′ .

Proof -i) Let C be a symmetric operator and let

E =   α α ′ α ′′ β β ′ β ′′ γ γ ′ γ ′′   (88) 
be its matrix on the basis (τ, τ ′ , τ ∧ τ ′ ). By the symmetry hypothesis, Cτ

• τ ′ = Cτ ′ • τ , Cτ ′ • τ ′′ = Cτ ′′ • τ ′ , and Cτ ′′ • τ = Cτ • τ ′′ , which gives α ′ = β + q (α -β ′ ), α ′′ = |τ ′′ | 2 p (γ -qγ ′ ), β ′′ = |τ ′′ | 2 p (γ ′ -qγ)
where we have set q = τ • τ ′ , p = (1 -q 2 ) -1 . Therefore, E is entirely known when the six coefficients α, β, γ, β ′ , γ ′ , γ ′′ are known. Let us now use the fact that ι 4 , ι 6 , ι 8 are given. From

ι 4 = Cτ • τ = α + q β, ι 8 = Cτ • τ ′ = q α + β, ι 6 = Cτ ′ • τ ′ = q α ′ + β ′ , ι 8 = Cτ ′ • τ = α ′ + q β ′ ,
we derive the four values α, β, α ′ , β ′ . Namely,

α = p (ι 4 -q ι 8 ), β = p (ι 8 -q ι 4 ), α ′ = p (ι 8 -q ι 6 ), β ′ = p (ι 6 -q ι 8 ). ( 89 
)
The value γ ′′ is determined by assuming that ι 1 is given. Indeed,

γ ′′ = ι 1 -(α + β ′ ). (90) 
Now, with εε ′ = sgn(ι 9 ι 10 ). The conclusion follows.

ι 9 = Cτ • τ ′′ = γ |τ ′′ | 2 , ι 10 = Cτ ′ • τ ′′ = γ ′ |τ ′′ | 2 .
ii) With a slight misuse of notation, let (ι 1 , ι 4 , ι 5 , ι 6 , ι 7 , ι 8 ) be an element of (ι 1 , ι 4 , ι 5 , ι 6 , ι 7 , ι 8 )(S + 3 ). From point i), we know that the matrix of a symmetric operator with the given values (ι 1 , ι 4 , ι 6 , ι 8 ) is of the form (88) with α, β, α ′ , β ′ given by (89) and γ ′′ given by (90). It remains to determine γ and γ ′ from which α ′′ and β ′′ follow by the formulas α ′′ = |τ ′′ | 2 p (γ -qγ ′ ), β ′′ = |τ ′′ | 2 p (γ ′ -qγ). Since

ι 5 = α 2 + β 2 + 2αβ(τ • τ ′ ) + γ 2 |τ ′′ | 2 , ι 7 = α ′2 + β ′2 + 2α ′ β ′ (τ • τ ′ ) + γ ′2 |τ ′′ | 2 ,
γ and γ ′ satisfy γ = εΓ, γ ′ = ε ′ Γ ′ where Γ = [ι 5 -(α 2 + β 2 + 2 q αβ)] and ε = ±1, ε ′ = ±1. When Γ and Γ ′ are non equal to 0, this gives exactly four symmetric opertors and all of them may be definite positive. Let us now compute the determinant of these operators. Their matrices read

E =   α α ′ |τ ′′ | 2 p (εΓ -q ε ′ Γ ′ ) β β ′ |τ ′′ | 2 p (ε ′ Γ ′ -q εΓ) εΓ ε ′ Γ ′ γ ′′   . (93) 
We obtain

ι 3 = (αβ ′ -βα ′ )γ ′′ -p |τ ′′ | 2 (q α ′ + β ′ )Γ 2 + (q β + α)Γ ′2 -(α ′ + β + q (α + β ′ ))ΓΓ ′ εε ′ = (αβ ′ -βα ′ )γ ′′ -p |τ ′′ | 2 (ι 6 Γ 2 + ι 4 Γ ′2 ) + 2p |τ ′′ | 2 ι 8 ΓΓ ′ εε ′ , (94) 
where we recall that α, β ′ , β, α ′ , γ ′′ , Γ, Γ ′ are known. As εε ′ can only be equal to 1 or to -1, this shows that ι 3 can take at most two distinct values.

An immediate consequence of the first point of Proposition 9 is the characterization of the energies we aimed at. Remark 8 -The second point of Proposition 9 shows that ι 3 is not independent of ι 1 , ι 4 , ι 5 , ι 6 , ι 7 , ι 8 . These six values are not sufficient to determine a symmetric operator. But, once they are known, ι 3 can only take two values. By selecting one of those values, one reduces the set of operators to two operators that read C and r T τ ′′ Cr τ ′′ . Therefore, introducing a partial derivative with respect to ι 3 in the expression of the constitutive law in addition to partial derivative with respect to ι 1 , ι 4 , ι 5 , ι 6 , ι 7 , ι 8 is meaningless. In a analog way, it is immediate that for E of the form (93), ι 2 (E) can only take two values. Therefore, ι 2 should not be considered either as a variable independent of ι 1 , ι 4 , ι 5 , ι 6 , ι 7 , ι 8 .

The main conclusion of this section is that the energy fonction W of a material that admits two non orthogonal preferred directions reads W = z(ι 1 , ι 4 , ι 6 , ι 8 , |ι 9 |, |ι 10 |, sgn(ι 9 ι 10 )).

(96)

By rewriting (94) under the form where all partial derivatives are taken in ι 1 , ι 4 , ι 5 , ι 6 , ι 7 , ι 8 , sgn(ι 3 -f /g) .

ι 3 = f (ι 1 ,

Remark 3 -

 3 Equation (19) shows that in addition to the usual three principal invariants which account for the local mean change of length of curves that are tangent to the eigenvectors of C, the local mean change of area of surface elements that are orthogonal to the eigenvectors of C and the local change of volume, the deformed energy depends on the fourth and fifth invariants. Since ι 4 (C) = τ • Cτ = F τ 2 , this invariant gives the value of the change of length along τ . Let us try and give an interpretation of the fifth invariant ι 5

 ι 4 ι 8 ι 9 ι 8 ι 6 ι 10 ι 9 ι

 9 where z is a function of six real numbers. The definition of ι 6 (C) and of ι 8 (C) is classical in the literature. We underline the fact that these so-called invariants are nothing but the coefficients of C in a basis attached to the preferred directions. The definition domain of z is the set O of the sextuplets ι O = (ι 1 , ι 4 , ι 6 , ι 8 , ι 9 , ι 10 ) in R 6 such that 10 ι 1 -(ι 4 + ι 6 )  is a symmetric positive definite matrix. By writing the explicit expressions of the principal minors, this gives

z(ι 1

 1 , ι 4 , ι 6 , ι 8 , ι 9 , ι 10 ) = z(ι 1 , ι 4 , ι 6 , |ι 8 |, |ι 9 |, |ι 10 |) on O.

Therefore, if |ι 9 |

 9 and |ι 10 | are given, then |γ| and |γ ′ | are determined. Finally, if in addition sgn(ι 9 ι 10 ) is given, then γ = ε(|ι 9 |/|τ ′′ | 2 ), γ ′ = ε ′ (|ι 10 /|τ ′′ | 2 ), with ε = ±1, ε ′ = ±1 and εε ′ = sgn(ι 9 ι 10 ). And E reads 9 | -q ε ′ |ι 10 |) β β ′ p (ε ′′ |ι 10 | -q ε|ι 9 |) ε |ι 9 | |τ ′′ | 2 ε ′ |ι 10 | |τ ′′ | 2 γ ′′

Corollary 1 -

 1 The energy of a material admitting two non orthogonal preferred directions τ and τ ′ can be written under the form W = z(ι 1 , ι 4 , ι 6 , ι 8 , |ι 9 |, |ι 10 |, sgn(ι 9 ι 10 )).(95)

  The set Ō defined in (43) is the image of O by the mapping ι O → (|ι O |, sgn(ι 8 ι 9 ι 10 )). Obviously, if z reads as in (44), then it satisfies conditions (38) and (39) and the material is orthotropic. For proving the converse assertion, it suffices to prove that if the material is orthotropic and if (ι 1 , ι 4 , ι 6 , ι 8 , ι 9 , ι 10 ) and (ι 1 , ι 4 , ι 6 , ι ′ 8 , ι ′ 9 , ι ′ 10 ) in O satisfy |ι 8 | = |ι ′ 8 |, |ι 9 | = |ι ′ 9 |, |ι 10 | = |ι ′ 10 | and sgn(ι 8 ι 9 ι 10 ) = sgn(ι ′

	Proof -8 ι ′ 9 ι ′ 10 ), then
	z(ι 1 , ι 4 , ι 6 , ι 8 , ι 9 , ι 10 ) = z(ι 1 , ι 4 , ι 6 , ι ′ 8 , ι ′ 9 , ι ′ 10 ).
	(45)

4 , ι 6 , ι 8 , ι 9 , ι 10 ) in O, z(ι O ) = z(|ι O |, sgn(ι 8 ι 9 ι 10 )) (44) where |ι O | := (ι 1 , ι 4 , ι 6 , |ι 8 |, |ι 9 |, |ι 10 |).

  4,6 ι 2 8 -ι 6 ι 2 9 -ι 4 ι 2 10 + 2 ι 8 ι 9 ι 10 , = ι 1 -(ι 4 + ι 6 ), κ1,4,6 = ι 4 ι 6 κ 1,4,6 . Let us examine the converse problem. We consider the system with unknowns (ι 8 , ι 9 , ι 10 ) which reads κ 1,4,6 ι 2 8 + ι 6 ι 2 9 + ι 4 ι 2 10 -2ι 8 ι 9 ι 10 = κ1,4,6 -ι 3 , (73)

		(70)
	ι 5 = ι 2 4 + ι 2 8 + ι 2 9 ,	(71)
	ι 7 = ι 2 6 + ι 2 8 + ι 2 10 ,	(72)
	where we have let κ 1,4,6	

  sgn(ι 8 ι 9 ι 10 )), |, sgn(ι 8 ι 9 ι 10 )), where we recall that |ι O | = (ι 1 , ι 4 , ι 6 , |ι 8 |, |ι 9 |, |ι 10 |). This allows us to write

	∀ι O ∈ O, ∀k = 8, 9, 10,	∂z ∂ι k	(ι O ) = sgn(ι k )	∂ ∂j k z	(|ι O

  2 , ι 4 , ι 5 ,

	ι 6 , ι 7 , and we obtain										
	Σ = 2(	∂w ∂ι 1	+ι 1	∂w ∂ι 2	)Id-2	∂w ∂ι 2	C +2	∂w ∂ι 4	τ ⊗τ +2	∂w ∂ι 5	(τ ⊗Cτ ) s +2	∂w ∂ι 6	τ ′ ⊗τ ′ +2	∂w ∂ι 7	(τ ′ ⊗Cτ ′ ) s (85)

  Proposition 9 -i) Let C 1 and C 2 be two symmetric operators such that ι 1 , ι 4 , ι 6 , ι 8 , |ι 9 |, |ι 10 |, sgn(ι 9 ι 10 ) take the same values on C 1 and C 2 . Then, either C

  1/2 |τ ′′ | = [ι 5 -p(ι 2 4 + ι 2 8 -2 q ι 4 ι 8 )] 1/2 |τ ′′ | Γ ′ = [ι 7 -(α ′2 + β ′2 + 2 q α ′ β ′ )] 1/2 |τ ′′ | = [ι 7 -p(ι 2 6 + ι 2 8 -2 q ι 6 ι 8 )] 1/2 |τ ′′ | (92)

  ι 4 , ι 5 , ι 6 , ι 7 , ι 8 ) + εε ′ g(ι 4 , ι 5 , ι 6 , ι 7 , ι 8 ) (97)25 with f (ι 1 , ι 4 , ι 5 , ι 6 , ι 7 , ι 8 ) = p (ι 4 ι 6 -ι 2 8 )ι 1 + 2p 2 ι 2 8 (ι 4 + ι 6 -q ι 8 ) -2p 2 q ι 4 ι 6 ι 8 -p (ι 5 ι 6 + ι 4 ι 7 ), (98) g(ι 4 , ι 5 , ι 6 , ι 7 , ι 8 ) = 2p ι 8 (ι 5 -p(ι 2 4 + ι 2 8 -2 q ι 4 ι 8 )) 1/2 (ι 7 -p(ι 2 6 + ι 2 8 -2 q ι 6 ι 8 )) 1/2 ,(99)the energy reads as wellW = w(ι 1 , ι 4 , ι 5 , ι 6 , ι 7 , ι 8 , sgn (ι 3 -f )/g .(100)From (96), we derive the general form of constitutive law admitting the non orthogonal preferred directions τ and τ ′ . It reads⊗ τ ′ ) s + sgn(ι 9 ) ∂ z ∂j 9 (τ ⊗ τ ′′ ) s + sgn(ι 10 ) ∂ z ∂j 10 (τ ′ ⊗ τ ′′ ) s(101)where all partial derivatives are taken in (ι 1 , ι 4 , ι 6 , ι 8 , |ι 9 |, |ι 10 |, sgn(ι 9 ι 10 )). This form is similar to (87) and, as in the first part of this section, one can check that Σ satisfiesΣ(R T τ ′′ CR τ ′′ ) = R T τ ′′ Σ(C)R τ ′′ as it has to.From (100), we derive another formulation closer to traditional ones. Actually,

	Σ (τ Σ = 2 = 2 ∂ z ∂ι 1 Id + 2 + ∂ z ∂ι 8 ∂w ∂ι 1 Id + 2 ∂w ∂ι 4 τ ⊗ τ + 2 ∂w ∂ι 5	∂ ∂ι 4 z (τ ⊗ Cτ ) s + 2 τ ⊗ τ + 2	∂ ∂ι 6 z ∂w ∂ι 6	τ ′ ⊗ τ ′ τ ′ ⊗ τ ′ + 2	∂w ∂ι 7	(τ ′ ⊗ Cτ ′ ) s +	∂w ∂ι 8	(τ ⊗ τ

′ ) s (102)
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3.2.1 Focus on the six invariants (ι 1 , ι 2 , ι 4 , ι 5 , ι 6 , ι 7 ).

In this section, we see that ι 2 , ι 5 , ι 7 used by other authors might seem natural candidates to replace ι 8 , ι 9 , ι 10 in the set of six coefficients ι O used in Section 3.1. But, it turns out that they are only able to replace ι 2 8 , ι 2 9 , ι 2 10 , and that the sign of ι 8 ι 9 ι 10 remains to be taken into account. Let

and let z 2 : O 2 → R be defined by

The subscript 2 has been chosen to recall that u, v and w play the role of squares. Then, we can reformulate (44) under the form

where ι O,2 = (ι 1 , ι 4 , ι 6 , ι 2 8 , ι 2 9 , ι 2 10 ). We remark that we can equivalently replace the triplet (ι 2 8 , ι 2 9 , ι 2 10 ) by (ι 2 , ι 5 , ι 7 ). Indeed, by computing ι 2 , ι 5 , ι 7 from (34), we have

Formulas ( 49)-( 50)-(51) can readily be inverted under the form

where

Therefore, letting w(ι 1 , ι 2 , ι 4 , ι 5 , ι 6 , ι 7 , t) = z 2 (ι 1 , ι 4 , ι 6 , a, b, c, t), (58) W (C) can be expressed for an orthotropic material as W (C) = w[(ι 1 , ι 2 , ι 4 , ι 5 , ι 6 , ι 7 , sgn(ι 8 ι 9 ι 10 ))(C)].

(59)