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Can the computer help resolve the problem of ethnographic description?†

Jim Kippen* Bernard Bel**

Introduction

Anthropology has for some time been experiencing a paradigmatic shift where arguably
the problem of description has emerged as the main methodological issue, so supplanting the
discussion of issues relating to generalisation and comparison (Holy 1987).  Accordingly,
anthropologists have become increasingly interested in the process of constructing reliable,
accurate, and valid primary data in a systematic way rather than in what to do with
information once it has been collected (Bernard et al 1986).  This, in turn, has led to a degree
of thoughtful introspection (as suggested, perhaps, by ‘Ethnography as Autobiography’ as the
proposed topic for the 1989 ASA meetings) and to critical re-examinations (some quite
vehement) of the ethnographic method and in particular of the status and authority of the
ethnographic record (see, for example, Tedlock 1987, Watson 1987, and Sangren 1988).  At
the heart of the matter is the apparent paradox that, on the one hand, anthropologists claim to
be concerned with the description of culture from the actors’ perspective(s) while, on the
other, they more or less acknowledge that ethnographic facts are ‘joint constructions of the
anthropologist and the people studied’ (Holy 1987:7).

Recently, computational approaches have suggested possible solutions to the problem of
ethnographic description: a problem that may be summed up as the search for ways to
disentangle folk models from the joint constructions that are analytical models.  In particular,
knowledge-based systems have contributed to the development of formal structures for the
representation and manipulation of symbols associated with particular physical and conceptual
phenomena.  A knowledge-based system comprises two components: a base of knowledge
(facts and rules specific to the domain of application) and an inference engine allowing the
solution of problems by transforming the knowledge base, using a mechanized model of
reasoning (abstractly speaking, a derivation schema).  Consequently, ‘a problem may be
formalised as an initial state, a goal state, and a collection of actions or of state transformation
operators’ (Chouraqui 1984:153).  Expert systems, a kind of knowledge-based system in
which in which inference is mainly of a hypothetico-deductive type, have played a major role
in popularising Artificial Intelligence through practical applications, to the extent that there is
a general tendency nowadays (outside the AI world) to call any computer program designed
to imitate the behaviour of a human expert an ‘expert system’ .  In this paper we will invoke
this extended meaning to designate a knowledge-based system, the Bol Processor (BP), in
which derivation schemata are borrowed from the theory of formal languages.

Although wary of being over-optimistic about the effectiveness of expert systems, Fischer
(1986) has pointed out their potential for the manipulation of qualitative data and for
interactive work with the human experts whose knowledge they are modelling.  In support of
this view, Kippen (1988a:318) has suggested that knowledge-based systems offer the prospect
of more efficient analytical tools because their output is interpretable by experts in the domain
described by the knowledge base, so that it can be evaluated in order to assess the accuracy
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and relevance of the stored information.  This suggests a new methodological approach: one
in which the computer can be incorporated into the process of data collection, representation,
and analysis in order to facilitate an ‘apprentice-like’ (cf. Emmet 1976:85) interaction
between informants and analysts where priority may be given to the modelling of informants’
and not analysts’ views.  Now, more and more anthropologists are adopting the view that,
where appropriate, computer systems like expert systems should be integrated into the
processes of data collection and analysis, at the very least as a supplement to the ethnographic
and analytical enterprise.

This paper will test the claim that knowledge-based systems can be useful to
anthropologists by describing one such system and its role in research recently conducted into
the tabla drumming of North India.  Musical knowledge in general, and the intuitive
knowledge models of Indian musicians in particular, are appropriate fields of application for
existing ‘expert’ systems because they represent (implicit) cultural knowledge that is
quantified (through encoding), non-hierarchical, reasonably coherent, consistent, and above
all bounded.  The advantage of such domains is that they naturally lend themselves to
reproducible experiments.  Furthermore, experimental work produces important, yet often
underestimated, feedback to computer science.  As pointed out by Chouraqui (1984:154),

First, AI remains largely an experimental science; on the other hand, it involves the coming together of
several disciplines.  This state of affairs implies not only a deepening of theoretical concentration on the
theories and methods borrowed from other disciplines for the computational modelling of reasoning, but
also the development of a theoretical and experimental programme of research with the aim of
mechanizing and validating models developed as part of applications relating to the real world.  But a
large number of pieces of research in AI have rested upon conventional and isolated examples.  This is
probably one of the causes of the difficulties which this field of research has faced in the last few years in
solving the — often ambitious — problems which it has set itself.  In fact the choice of application
domains is one of the principal elements contributing to the way any experimental advance defines its
epistemological framework.

In setting up an experimental programme involving computational techniques there are
problems that must not be overlooked as they require experience both in the field of
application as well as in knowledge engineering: (1) the choice of a description language for
data; (2) appropriate rule formats; (3) the design of domain-specific heuristics in the
manipulation of derivation schemata; and (4) an experimental methodology that makes it
possible to transfer knowledge from human experts to machines.

The general methodology of the research

The tabla (two-piece, tuned drum set) is the most popular drum of North India, and is
widely used both as an accompanying and solo instrument.  A large part of its highly-
developed solo repertoire is characterised by improvisation, here taken to mean the repetition,
substitution, and permutation of key strings of drum strokes that can be represented,
conveniently, by verbal symbols called bols that carry no semantic meaning: dha, ge, ti, na,
tirakita etc.  Many thousands of new strings (variations) may be derived from a single given
pattern (or ‘theme’) of, say, sixteen bols, yet only a small proportion of these would be
considered musically viable, and a far smaller number, sometimes as few as five or six and
only rarely more than twelve, would be played at any one time (see Kippen 1988b:161-68).

Initial attempts to involve a computer in the research resulted in the redesign of a word
processor for bol notation (hence the name Bol Processor).  A key-correlation system was
created whereby a key signified a bol and not a single character, facilitating error-free and fast
typing: thus only one byte was needed to encode dha or tira.  This led to the idea of using
search-and-replace procedures arranged in pre-programmed sequences (e.g. Applewriter’s
Word Processing Language) where each sequence emulates a rewriting process by which a
variation is presumably derived from a theme.  An elementary rewriting process may be
represented as a production rule, and sets of such rules are arranged in formal grammars in
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which all variations plus the theme itself are derivations of a unique starting symbol.  In order
to generate a whole set of variations, the choice of derivation sequences needs to be non-
deterministic (enumerative or stochastic).  The actual process is therefore accomplished under
the supervision of a module called an inference engine.  The inference engine (and the editor)
of the BP have been implemented in assembly language on the only microcomputer available
that was portable enough for fieldwork on location at the time we started the project (in 1983,
the Apple IIc).

A detailed description of the Bol Processor and its operation may be found in Kippen &
Bel (1988b).  We will restrict here to the main features of BP grammars, pointing out at
similarities and differences between derivation schemata based on grammars and those based
on logic.

Music synthesis with the BP is similar to modus ponens in expert systems: from an initial
state represented as the starting symbol (the axiom) the machine is requested to derive a
sentence — a set of terminal symbols (a theorem).  The sentence displayed on the screen is
recited by the analyst so allowing expert musicians to assess its quality and accuracy.
However, to prove that the current model is representative of the full scope of the piece under
investigation, it is necessary to invoke a proof procedure (modus tollens, or membership test)
for any sentence proposed by the informant as a correct variation.

The interaction between the expert, the machine, and the analyst in Bol Processor
experiments may be summarised in the following flowchart:

musicien analyste

machine modèle théorique

musician

machine theoretical model

analyst
music and

statements about music

questions and comments

synthesized
music

evaluation
statements
about
grammars

recognition
and synthesis
procedures

Informants’ analytical observations are thus incorporated into the model in order to correct
the machine’s inadequacies and to help in the formulation of increasingly valid hypotheses of
musical structure.

Even though calling the BP an ‘expert system’ may be argued if one compares its
architecture and derivation schemata with those of current expert systems, this flowchart
highlights similarity in terms of knowledge acquisition, a typical experimental process.
Knowledge acquisition in expert systems is primarily based on the interpretation of interviews
between expert(s) and a knowledge engineer.  A closer interaction is possible in BP
experiments as the expert gets an immediate feed-back of his attempts to improve the model.
This methodology has been suggested by dialectical anthropologists: models should be
elaborated and evaluated by informants themselves.

Readers who wish to be introduced to (non-technical aspects of) knowledge acquisition in
expert systems may consult Anna Hart's Knowledge acquisition for expert systems (1986).
Besides, an excellent statement on how much AI may benefit from ethno science(?s) in the
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field of knowledge acquisition has been proposed by anthropologist/computer scientist Claude
Vogel in his book Génie cognitif (1988).

The BP is not an attempt to model human behaviour on the basis of rules explicitly
formulated by human experts and rewritten to a suitable machine code by an analyst.  Music
improvisation is mainly the result of ‘subcognitive’ processes that cannot be reduced to (a
finite set of) verbal statements.  The aim of a computational model is to analyse as well as
generate acceptable music, its performance in both tasks being improved during interactive
experiments highlighting those aspects of music that human experts consider most relevant.
If the BP were merely a machine producing random music, it would barely be more refined
than any piece of software claiming to generate ‘poetry’ by shuffling a small set of words in
which all semantic relations are predefined (Roszak 1988:97ff).  The outcome of the
analytical process — the major part of our experimental method — is that acceptable
sequences of bols are assigned deep structures.  Evaluating a sequence, therefore, is a pattern
recognition process that may be paralleled to a semantic operation in computational
linguistics.  This is supported by our informants’ views that incorrect drumming sequences
have no ‘meaning’.  Indeed, this relates to an aesthetical evaluation rather than to the
information that is supposedly conveyed by the sequence.

The description language in the BP

In many knowledge-based systems, first-order logic is used for representing facts and
knowledge about facts.  This logic is closest to natural languages (e.g. English) and derived
from set theory, making use of the elementary Boolean operations (‘and’, ‘or’, and ‘not’) and
quantifiers (universal = ‘for all...’ and existential = ‘there exists...’).  For instance, a predicate
like ‘Socrates is a man’ may be represented as:

man(Socrates)

and a production rule like ‘Every man is mortal’ is translated
for all X, mortal(X) or not(man(X))

or equivalently
not (there exists X, man(X) and not(mortal(X)))

which may be written in natural logic :
man(X) —> mortal(X)

Using this rule, natural deduction consists of inferring mortal(Socrates) if man(Socrates) is
present in the base of knowledge.

In the BP, production rules are elementary rewritings (or derivations).  A derivation is
similar to inference in natural logic except that the expression unified with the premise of the
rule is erased after the inference.  Applied to logic, a derivation would erase the fact
man(Socrates) as soon as mortal(Socrates) has been inferred.  In addition, derivations are
applied to strings, which may be viewed as ordered sets of facts (symbols).  Each rewriting is
therefore one step of a derivation sequence of the work string characterising the current state
of the problem.  For instance, if the current work string is T2 T1 T1 T2, applying rules

(1) T1 —> dha

(2) T1 —> -

(3) T2 —> tite

(4) T2 —> dheena

in order 3, 1, 2, 4 will result in any of the following derivation sequences
T2 T1 T1 T2 => tite T1 T1 T2 => titedha T1 T2 => titedha- T2 => titedha-dheena

T2 T1 T1 T2 => tite T1 T1 T2 => tite T1 dha T2 => tite-dha T2 => tite-dhadheena

T2 T1 T1 T2 => T2 T1 T1 tite => T2 dha T1 tite => T2 dha-tite => dheenadha-tite
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T2 T1 T1 T2 => T2 T1 T1 tite => T2 T1 dhatite => T2 -dhatite => dheena-dhatite

depending on the position of the derivation.  In this case, the same initial states and rule
ordering result in different final states.  Among these derivation sequences, the first is called a
leftmost derivation.  It is often realistic to assume that sentences are built from left to right, in
which case a grammar may be instructed to perform leftmost derivations, using the instruction
‘LIN’ (see GRAM#3 and GRAM#4 in the appendix).

Multi-stage inference and transformational grammars

In logic inference original facts are not erased; repeated application of production rules on
original and deduced facts may therefore lead to combinatory explosion.  Consequently,
heuristics are used to explore deduction paths in such a way that the first facts deduced are
those that an expert would consider most ‘meaningful’.  Heuristic deduction strategies which
are not domain-dependent may be expressed in second-order logic (Laurière 1984:15), i.e.
rules that modify rules.

One of the methods for controlling inference in modus ponens consists of splitting the base
of rules into subsets that refer to several deduction stages (e.g. FIN ETAPE in expert system
SNARK, Laurière 1984:11).  This amounts to dividing a problem into sub-problems with
intermediate goals.  In the same way, derivation sequences in a formal grammar may be seen
as distinct stages defined with the aid of several layers of transformational grammars
(subgrammars).  We use the term ‘transformational’ as defined in formal language theory
(Bel 1987b:356) and not linguistics.  In a subgrammar there is more than one starting symbol,
and a derivation sequence in that subgrammar consists of transforming a string of starting
symbols to a string of terminal symbols .  Symbols that are terminal to a subgrammar may
become the starting symbols of the next subgrammar(s) to be applied, and so on.

The grammar in appendix 2 is layered in five subgrammars.  For instance, T1 and T2 are
the terminal symbols of subgrammar #3 and the starting symbols of subgrammar #4.  S1F is a
terminal symbol of subgrammar #1 and a starting symbol of both subgrammars #2 and #5.
The inference engine takes one subgrammar at a time, attempting to derive all possible
transformations from its rules.  Only then it considers the set of rules in the next grammar.
The splitting of grammars to subgrammars is mainly conceptual, but there are also restrictions
on formal languages that render it necessary.

In modus ponens, subgrammars are needed if some variables are used as contexts.  For
example, rules in subgrammar #2 are context-sensitive.  Should all subgrammars be merged, a
variable like S1F might be derived too early if rule [7] of subgrammar #5 (see appendix) was
used.  This would lead to the following derivation sequence:

S —> S64 —> S1F S2F S1V S2F E32 —> dhadhatitedhadhadheena S2F S1V S2F E32

ending in a cul-de-sac as no further derivation is possible.  In theory, this does not disqualify
the grammar, because backtracking would take care of finding successful derivation paths, but
in practice much computing time may be wasted in this process.

In modus-tollens (see below under ‘membership test’), subsets of rules are determined in
such a way that rules recognising large patterns are considered first.  See for instance
subgrammar #4 in the appendix: small patterns like dhadha, tite, teena, etc. may be identified
individually only if they are not part of larger patterns such as +dhadhateena, etc.  Since
these larger patterns belong to subgrammar #5, which is considered first by the inference
engine, they can be recognised correctly.

Rule format in the BP

In computational linguistics, the most common grammar format is context-free (type 2 in
Chomsky’s classification), i.e. the premise of a rule must be a single variable.  The main
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reason for adopting this format is the existence of efficient parsing techniques for context-free
grammars.  Indeed, all languages representing tabla compositions are finite (bound by the
metre) and therefore can be represented with context-free grammars.  Yet context-sensitive
rules describe more clearly the dependence of derivations on information defining certain
positions within the musical structure.  For instance in subgrammar #5, symbols ‘++’ and ‘+’
are used as contexts to mark, respectively, the beginning and middle of a phrase and the
position of a cadence.

In some cases, non-restricted (type 0) grammar formats may even be used as they provide
a more compact representation.  For instance, subgrammar #3 could have been written

V15 —> A A A A A A A A A A A A A A A

V14 —> A A A A A A A A A A A A A A

V13 —> ...

...

V6 —> A A A A A A

A —> T1

A A —> T2

in which the last rule is type 0 (length-decreasing).  Yet using a context-free grammar here
was the only way to suppress selectively subsets of sentences that do not fulfil certain musical
constraints (e.g. accentuation, see Bel 1987b:361).  In addition, context-free grammars are
best suited to probabilistic inference (see below).

The BP grammar format is also designed for representing patterns (Kippen & Bel 1988b):
a pattern is a repeated sequence, in which the transformation voiced/unvoiced may occur (see
Kippen 1988b:162-64).  For example, the repetition pattern in dhadhatitedhadhatite may be
explicitly represented as (=dhadhatite)(:dhadhatite) and the voiced/unvoiced transformation
in dhadhadheenatatateena as (=dhadhadheena)*(:tatateena).  Rules with explicit pattern
structures are found in subgrammar #2 (see appendix 2).  If a rule is written:

A —> (= B) (: B)

these two occurrences of variable B will be forced identical derivations.

Brackets and other structural symbols (‘=’, ‘:’, ‘*’, ‘+’, etc.) are removed automatically
from final sentences: sentences are displayed with a lay-out suitable to their time structure, so
that they can be quickly read by the analyst (see appendix 1).   If, on the other hand, structural
symbols are kept in a final sentence, and all terminal symbols replaced with dots, a
description of the pattern structure is obtained which we call a template.  For instance, the
template of (=dha dha dhee na)*(:ta ta tee na) is:

(= ....) * (: ....)

The six templates, i.e. pattern structures, of all sentences generated by the grammar are
listed in appendix 3.  These have been generated by the inference engine, and will be needed
for membership tests (see below).

A probabilistic model

In modus ponens, the BP may be instructed to produce the set of all possible sentences that
the current grammar generates.  In practice this non-deterministic enumerative process is
rarely used as the set is very large.   The only realistic method for testing a grammar with an
expert musician, therefore, is to instruct the machine to produce one randomly chosen
sentence at a time.  If the sentence is assessed correct, the procedure is called again and
another sentence is generated.  Generally, the grammar is considered to be satisfactory if all
sentences generated within a few sessions have been accepted by the expert.

Since the correctness of a grammar can never be fully assessed — indeed, like musicians
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themselves, machines may be allowed casual mistakes — it is important to enable the
stochastic production process to generate sentences from a wide and representative subset of
the language.  This can be achieved by weighting the decisions of the inference engine.

Unlike representations in logic, formal grammars offer the possibility of defining
consistent probabilistic models that apply to a very wide class of languages.  We developed
such a model as a response to the need to inhibit rules in context-free grammars.  This model
is derived from probabilistic grammars/automata as defined by Booth & Thompson (1973),
the difference being that a weight — within the range [0,255] — rather than a probability is
attached to every context-free rule.  The rule probability is computed from weights as follows:
if the weight is zero then the probability is zero; if the weight is positive then the inference
engine calculates the sum of weights of all candidate rules, and the rule probability is the ratio
of its own weight to the sum.  Candidate rules are those whose premise is a substring of the
work string.  Consider, for example, the set of rules

[4] <100> T2 —> dhadha

[5] <100> T2 —> tite

[6] <50> T2 —> dheena

[7] <50> T2 —> teena

in which the sum of the weights is 100+100+50+50 = 300.  The probability of choosing rule
(6) in the derivation of a string containing T2 is therefore 50/300 = 0.166.  Using weights
instead of probabilities has the advantage that is does not presuppose the sum of coefficients
of all candidate rules to be 1.

Weights (and their associated probabilities) are used in modus ponens to direct the BP’s
production along paths more or less likely to be followed by musicians.  In some context-free
grammars — those that fulfil the consistency condition expressed by Booth & Thompson
(1973:442) — they may be used for computing a probabilistic sentence function, i.e. a
coefficient representing the likelihood of occurrence of each sentence in the language.
Grammars that are constructed in a systematic way (like the one defining all sequences of T1
and T2 in the above example) are good examples of consistent probabilistic grammars.

Another remarkable feature of consistent grammars is that rule probabilities can be
inferred from a set of sentences (Maryanski & Booth 1970:525).  Given a correct grammar
and a subset of the language that this grammar generates (for instance a sample sequence
taken from a performance of an expert musician), rule weights are inferred as follows: let all
weights be reset to zero; then analyse every sentence and increment by one unit the weights of
all rules used in the derivation.  (The algorithm described here is more general than the one
devised by Maryanski and Booth, since the latter requires the choice of a sample set in which
all rules have been used.)

Evidently, rules that are never used in the analysis of the sample set remain with weight
(and therefore probability) zero, which inhibits their use in modus ponens.  Those rules may
be scrutinised to see whether they are incorrect or whether they point to fragments of the
language that have not yet been explored.  To test this, their weights are set to a high value so
that the BP is forced to generate sentences that either have never been assessed or at least are
not being considered by the informant at the time.

Using weighted rules resulted in a marked improvement in the quality of the generated
music.  This went a long way towards solving the problem of musical credibility encountered
in earlier experiments, a problem that arose from the complete randomness of the generative
process.

The problem of the membership test

Modus-tollens is much more demanding on rule format, as reflected dramatically in first-
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order logic: if a fact is provable then it can be proved in finite time (the logic is complete), but
if it is not provable then the resolution algorithm may loop for ever (the logic is not
decidable).  Therefore, expert systems are generally based on a decidable subset of first-order
logic for which there exist efficient proof procedures.  One of the most common rule formats
is that of Horn clauses, for which a proof algorithm is based on Robinson’s resolution
principle — the actual foundation of the Prolog programming language (Robinson 1968,
Colmerauer 1983).  In a Horn clause, the conclusion of a rule must not contain any disjunctive
form.  For example, a rule like ‘every child is a boy OR a girl’ cannot be inserted in the
knowledge base of most expert systems.

If for some application domain a different logic is required, for which there is no efficient
proof procedure, heuristics are used to make sure that in most cases the proof will be
computed in realistic time.

Formal grammars used in the Bol Processor must be decidable (or recursive): given a
grammar G and a sentence P, there must be a procedure to assess (in finite time) whether or
not P belongs to the language generated by G.  The theory indicates that context-sensitive (or
length-increasing) grammars are decidable (Salomaa 1973:82-93), although there are also
length-decreasing grammars that share this property (Bel 1987a:4).  A grammar is length-
increasing if the conclusion of each rule contains a number of symbols larger than or equal to
the premise.

A membership test must be performed at high speed and use a minimum of memory space.
In experimental situations, the expert musician proposes a new variation which he expects the
machine to evaluate.  The variation can be typed almost at performance speed using the
keyboard encoding (one key to one syllable).  Then the machine is requested to give its
opinion within a few seconds, failing to which experts would quickly loose interest in the
game...  The BP membership test, therefore, needed be computed at high speed within the
very small amount of memory available in the Apple IIc.

The heuristic on which the test has been based is that, in most cases, large ‘chunks’, i.e.
substrings of the input sentence, must be recognised first.  We call this the ‘chunk’ rule.
Following this principle it has been possible to implement a deterministic bottom-up (data-
driven) parsing, given an algorithm for selecting the proper rule and position of derivation at
each step of the derivation.  This algorithm is based on context-sensitive rightmost derivation
as defined by J.M. Hart (1980:82) for strictly context-sensitive grammars, i.e. rules in which
the premise contains no more than one variable, which we extended to all length-increasing
grammars (Bel 1987b:357).  The derivation sequence used in the membership test rewrites
symbols from right to left in the work string.  For any correct sentence of length N, the
analysis is completed in less than N steps.  See appendix 3 for examples of derivation
sequences.

One major advantage of the parsing technique in the BP is that it is deterministic: if at
some point of the derivation a dead end is reached (no further derivation possible) then the
test is negative.  It is therefore very easy to follow this process step by step and to understand
why it was unsuccessful .  This fulfills a requirement of expert systems that an explanation of
failures pointing to a deficiency of the base of rules is needeed.

The ‘chunk’ rule imposes a few restrictions on grammar format, the main one being a
partial ordering of rules.  For instance, in subgrammar #4, dha is a substring of dhadha.
Should rule 2 be considered before rule 4, then dhadha would never be recognised.  To
facilitate this, the inference engine gives priority to rules at the bottom of each subgrammar
whenever the derivation is ambiguous; consequently, rule 4 will be considered first.

There is also a non-deterministic feature in the membership test algorithm, and this relates
to patterns and templates (see above under ‘rule format’).  Before a sentence is parsed it must
be written with the symbols that indicate its pattern structure: brackets, ‘*’, etc.  This is
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performed automatically by the inference engine: taking one template after the other, it
attempts to write the terminal symbols of the sentence over the dots, checking that strings are
structurally correct.  For each acceptable template the membership test is invoked (see
appendix 3).  This template matching may result in assigning several hypothetical structures if
the sentence is structurally ambiguous, each of which may also be assigned a probability.

Language modelling: putting theory into practice

Features imbedded in BP grammars, especially pattern representation, point at deficiencies
of simple models of formal languages when essential aspects of music need to be represented
in a comprehensive way.  Simple models are attractive because they have known
mathematical properties, e.g. context-free grammars are easy to parse.  Still, since no natural
language — and indeed no musical language — is context-free, a more general model is
required.  In computational linguistics, using Prolog’s tree structures instead of simple
variables has led to metamorphosis grammars (Colmerauer 1978) which have a wider
generative power than context-free grammars.  For technical reasons we developed the BP
grammar model on an easy-to-parse subset of unrestricted languages in which patterns are
represented in a simple manner.  (In fact, implementing just the kernel of Prolog II requires
more memory space than the whole BP system itself.)

At present we are developing the BP theoretical model to make it fit with more general
models of music, e.g. polyphonic structures, for which no computer representation is available
that would describe the management of time as perceived by musicians.  This points at the
difference between prescriptive human-oriented models of music, that provide insights to
musical structures, and machine-oriented models that are mainly aimed at generating musical
sequences.

Strictly speaking, the Bol Processor is a programming language and its inference engine is
the generic part of knowledge about a certain type of music representation.  A grammar is
specific knowledge, yet not just ‘frozen’ data.  It may be seen as the dynamic description of a
potentially very large set of data.  Therefore a grammar is a descriptive generalisation
inferred from a very incomplete, although certain, set of facts (the examples provided by
experts).

Declarative and procedural knowledge in the Bol Processor

There has been a controversy in cognitive science as to whether knowledge should be
viewed primarily as declarative or procedural.  Declarative knowledge is formatted as
unordered ‘knowing that’ assertions like “all children like candies; Jim is a child; candies are
cheap...”, whereas in a procedural representation emphasis is put on ‘knowing how’: “to make
a phone call, first insert a coin, then...”.  Declarative knowledge is the essence of logic
representations; this has led to the concepts of logic programming (the Prolog language) and
production-rule based systems (e.g. expert systems or the Bol Processor).  In a pure
declarative programming environment, the order in which bits of data have been encoded has
no bearing on the result of the computation.   In other words, the specification of the problem,
e.g. ‘generate a sentence’, is clearly separated from the method of solution (Kowalski
1985:82).  Procedural programming, on the other hand, amounts to defining methods by
which objects are created, deleted, or interact with each other.  It is found typically in
procedural languges (e.g. Lisp or Logo) and as part frame-oriented knowledge bases.  Indeed,
in most recent AI applications both declarative and procedural representations are used in
some non-conflicting way.

Part of the success of the Bol Processor as a model of music improvisation and evaluation
lies in the fact that its grammars may be viewed as both declarative and procedural.  In modus
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ponens, the order in which rules are arranged in the grammar is irrelevant: knowledge is
therefore declarative.  This suits experimental situations in modus ponens where production
rules are inferred from unrelated bits of information — sets of positive instances of the
language.  In modus tollens, however, the inference engine requires that rules be partially
ordered, as this order will be reflected in the derivation sequence that yields the answer to the
membership test.  The step by step parsing of a sentence may therefore be viewed as a
procedural description of its inner structure, in which each rule is used as a program
instruction.  In fact, the inference engine could take care of rule ordering since the
information that is used in this process is the same for any grammar. But in implementing
such a resolution technique one would lose the explanatory power of step by step trackings of
membership tests. Experience has shown that these trackings are the most effective way of
highlighting the inadequacies of the grammars, where grammars may be viewed as pattern
recognition procedures.

Results achieved

About 20 grammars have been evolved for the successful description of a significant core
of traditional tabla music, and many more are still undergoing modifications.  We have shown
that an analyst can construct comprehensive models of musical structure.  Indeed, formal
representations (and methods to improve them) have been refined to a point where, in just a
few interactive sessions, experts may approve music generated by the BP, and the BP is able
to distinguish a correct from an incorrect variation.  Often, machine-generated variations are
judged to be excellent.

As a result of these experiments, we have often been asked if a machine (indeed, our
machine) might consistently reproduce the quality of composition or improvisation expected
of human experts.  We have observed that a number of musical effects that could be thought
of as representative of high-quality composition can be analysed a posteriori in terms of, for
instance, meta-patterns or polyrhythmic effects that can be made explicit with the aid of
production rules.  However, the grammars in which they are imbedded tend to grow beyond
the limits of comprehensible statements that a human analyst may be able to cope with.  This
problem was encountered when trying to model music created in concerts, but not during
lessons.  In the latter, the models transmitted tended instead to be simple, uncontroversial, and
idealised.  This is for two reasons: first, traditional masters attempt to pass on sets of ‘fixed
improvisations’ that function as implicit structural descriptions of the system; second, they
seem to be aware that, crystalised in this form, their music will resist detailed scrutiny by
competitors (see Kippen 1988c:30).  The problem of analysing music that is taught rather than
performed relates to a similar issue concerning the relevance of information gathered in
interviews in social research, as these produce data that are too context-laden (see Phillips
1971).  More recently, however, Briggs (1986) and Mishler (1986) have attempted to sort out
the relationship between what is said during interviews and what happens outside this context.

Another important aspect of the human-machine interaction has been a gradual shift of the
rôle played by some of the experts who, rather unconsciously, took advantage of the ability of
a theoretical model to clarify their own conceptions about music.  This may even become
problematic as these experts tend to distort their own intuitive models in view of ‘trying
something new’.  This situation is not uncommon in knowledge acquisition for expert
systems:

Un autre problème susceptible de se poser est le suivant: l'expert, consciemment ou non, peut se servir du
cogniticien — s'il s'intéresse au processus d'extraction du savoir ou s'il a très envie de comprendre son
propre savoir — pour expérimenter différents modèles de son domaine de savoir qu'il a mis au point.  Cela
prendra toujours beaucoup de temps, bien que cela puisse être utile; mais, en général, une expérimentation
faite sans que le cogniticien ne soit au courant provoque de la confusion et gêne habituellement les progrès
du travail.
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(A. Hart  1986: ??? p.29 in French text, under 'Chap.4: Le rôle du cogniticien: Acquisition
du savoir')

Conclusion

Is it realistic to try to determine where folk models end and where analytical
reconstructions begin?  And if so, then how far can experimentation with expert systems like
the BP help resolve the problem?  In order to answer these questions we need to examine
critically two essential shortcomings of the analytical method employed in this research.
First, in some cases we have been unable to investigate in detail the assumptions inherent in
the hypotheses of musical structure that were used as initial representational models to trigger
the interaction with informants.  Consequently it became impossible to determine whether the
operational model (the grammar) had reached a point of no return because the information
gathered was incomplete or because we had formalised our own intuitions that were several
steps ahead of what might have been expected during preliminary stages.  Indeed, whatever
the source, information is represented at the same (low) theoretical level, and therefore it is
not possible to separate general analytical statements from specific instances of facts.  We
conclude that a BP grammar can be nothing other than a joint construction of the informant
and the analyst.  Second, whenever a computer-generated variation was rejected by an
informant, no straightforward procedure for correcting the grammar was apparent.  This
reflects the general problem of knowledge acquisition in expert systems, and the need for
automated learning procedures.  The inference of probabilistic grammars has been our first
attempt to solve this problem.  We are now developing a learning module attached to the BP
by means of which grammars are constructed in a systematic manner.  Initial findings in this
new field of research have been summarised in Kippen & Bel (1988a).
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Appendix 1: example of qa‘ida

The following sentences have been generated by the BP and represent a few variations that
our informants consider ‘correct’, although some may be aesthetically more pleasing than
others, ranging from ‘very good’ (sentence 5) to ‘very ugly’ (sentence 6).  Sentence 1 may be
termed the theme of the qa‘ida as it is conventionally used to introduce the improvised
sequence.  Sentence [3] may be considered ambiguous as it fits two hypothetical structures
(templates, see appendix 2).

[1] dhadhatite dhadhadheena dhadhatite dhadhadheena
dhadhatite dhadhadheena dhadhatite dhadhateena
tatatite tatateena tatatite tatateena
dhadhatite dhadhadheena dhadhatite dhadhadheena

[2] dhadhadhadha teenatite dhadhatite dhadhateena
dhadhatite dhadhadheena dhadhatite dhadhateena
tatatata teenatite tatatite tatateena
dhadhatite dhadhadheena dhadhatite dhadhadheena

[3] dhadhateena dheenadhadha titetite teenateena
dhadhatite dhadhadheena dhadhatite dhadhateena
tatateena teenatata titetite teenateena
dhadhatite dhadhadheena dhadhatite dhadhadheena

[4] dhadhatite dhadhadheena dhadhatite dhadhateena
titetite titetite dhadhatite dhadhateena
tatatite tatateena tatatite tatateena
titetite titetite dhadhatite dhadhadheena

[5] dhadhatite dhadhadheena dheena-dhee nadhateena
dhadhatite dhadhadheena dhadhatite dhadhateena
tatatite tatateena teena-tee natateena
dhadhatite dhadhadheena dhadhatite dhadhadheena

[6] dhadhadhadha dhatitedha dhateenadha dhadhadha-
dhadhatite dhadhadheena dhadhatite dhadhateena
tatatata tatiteta tateenata tatata-
dhadhatite dhadhadheena dhadhatite dhadhadheena
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Appendix 2: a BP grammar for this qa‘ida

GRAM#1 [1] RND
GRAM#1 [2] <100> S —> S64
GRAM#1 [3] <100> S64—> S1F S2F S1V S2F E32
GRAM#1 [4] <100> S64—> S1V S2F S1F S2F E32
GRAM#1 [5] <100> S64—> S1F S2V S1F S2F E32
GRAM#1 [6] <100> S64—> S1V S2V S1F S2F E32
GRAM#2 [1] RND
GRAM#2 [2] <100> S1V S2F E32 —> (= V8 ) S2F * (= S1F S2F ) (: V8 ) S1F
GRAM#2 [3] <100> S1V S2F S1F S2F E32 —> (=++ A1 V7 ) S2F S1F S2F * (:++ A1 V7 ) * (=S2F ) S1F S1F
GRAM#2 [4] <100> S1V S2F S1F S2F E32 —> (=++ A2 V6 ) S2F S1F S2F * (:++ A2 V6 ) * (= S2F ) S1F S1F
GRAM#2 [5] <100> S1F S2V S1F S2F E32 —> S1F (= V6 + B2 ) S1F S2F * (= S1F ) * (: V6 + B2 ) S1F S1F
GRAM#2 [6] <100> S1V S2V S1F S2F E32 —> (=++ A1 V11 + B4 ) S1F S2F * (:++ A1 V11 + B4 ) S1F S1F
GRAM#2 [7] <100> S1V S2V S1F S2F E32 —> (=++ A2 V10 + B4 ) S1F S2F * (:++ A2 V10 + B4 ) S1F S1F
GRAM#2 [8] <100> S1V S2V S1F S2F E32 —> (=++ A1 V13 + B2 ) S1F S2F * (:++ A1 V13 + B2 ) S1F S1F
GRAM#2 [9] <100> S1V S2V S1F S2F E32 —> (=++ A2 V12 + B2 ) S1F S2F * (:++ A2 V12 + B2 ) S1F S1F
GRAM#2 [10] <100> S1V S2V S1F S2F E32 —> (=++ A1 V15 ) S1F S2F * (:++ A1 V15 ) S1F S1F
GRAM#2 [11] <100> S1V S2V S1F S2F E32 —> (=++ A2 V14 ) S1F S2F * (:++ A2 V14 ) S1F S1F
GRAM#3 [1] LIN [Right-linear grammar]
GRAM#3 [2] <10> V15 —> T1 V14
GRAM#3 [3] <100> V15 —> T2 V13
GRAM#3 [4] <10> V14 —> T1 V13
GRAM#3 [5] <100> V14 —> T2 V12
GRAM#3 [6] <10> V13 —> T1 V12
GRAM#3 [7] <100> V13 —> T2 V11
GRAM#3 [8] <10> V12 —> T1 V11
GRAM#3 [9] <100> V12 —> T2 V10
GRAM#3 [10] <10> V11 —> T1 V10
GRAM#3 [11] <100> V11 —> T2 V9
GRAM#3 [12] <10> V10 —> T1 V9
GRAM#3 [13] <100> V10 —> T2 V8
GRAM#3 [14] <10> V9 —> T1 V8
GRAM#3 [15] <100> V9 —> T2 V7

GRAM#3 [16] <10> V8 —> T1 V7
GRAM#3 [17] <100> V8 —> T2 V6
GRAM#3 [18] <10> V7 —> T1 V6
GRAM#3 [19] <100> V7 —> T2 V5
GRAM#3 [20] <10> V6 —> T1 V5
GRAM#3 [21] <100> V6 —> T2 V4
GRAM#3 [22] <10> V5 —> T1 V4
GRAM#3 [23] <100> V5 —> T2 V3
GRAM#3 [24] <10> V4 —> T1 V3
GRAM#3 [25] <100> V4 —> T2 V2
GRAM#3 [26] <10> V3 —> T1 V2
GRAM#3 [27] <100> V3 —> T2 T1
GRAM#3 [28] <10> V2 —> T1 T1
GRAM#3 [29] <100> V2 —> T2

GRAM#4 [1] LIN
GRAM#4 [2] <100> T1 —> dha
GRAM#4 [3] <100> T1 —> -
GRAM#4 [4] <100> T2 —> dhadha
GRAM#4 [5] <100> T2 —> tite
GRAM#4 [6] <50> T2 —> dheena
GRAM#4 [7] <50> T2 —> teena
GRAM#5 [1] RND
GRAM#5 [2] <100> + B2 —> +teena
GRAM#5 [3] <100> + B4 —> +dhadhateena
GRAM#5 [4] <100> ++ A1 —> ++dha
GRAM#5 [5] <100> ++ A2 —> ++dhadha
GRAM#5 [6] <50> ++ A2 —> ++dheena
GRAM#5 [7] <100> S1F —> dhadhatitedhadhadheena
GRAM#5 [8] <100> S2F —> dhadhatitedhadhateena

The following are the templates generated by this grammar, i.e. a list of possible structures
where each dot is a ‘slot’ into which a terminal symbol may fit.

[1] ................ (=........) ........ * (=................) (:........) ........
[2] (=++........) ........................ * (:++........) * (=........) ................
[3] ........ (=......+..) ................ * (=........) * (:......+..) ................
[4] (=++............+....) ................ * (:++............+....) ................
[5] (=++..............+..) ................ * (:++..............+..) ................
[6] (=++................) ................ * (:++................) ................
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Appendix 3: parsing a sentence

Below is an example of a membership test performed on the following variation:
dhadhatite dhadhadheena dheena-dhee nadhateena
dhadhatite dhadhadheena dhadhatite dhadhateena
tatatite tatateena teena-tee natateena
dhadhatite dhadhadheena dhadhatite dhadhadheena

The inference engine first tries to match each template (see appendix 2) with the sentence
in order to assess its hypothetical structure. Each time a template has been matched the
deterministic membership procedure is called.  This membership test was performed in 11
seconds on the Apple IIc.

Template #1:
dhadhatitedhadhadheenadheena-dheenadhateena (=dhadhatitedhadhadheena) dhadhatitedhadhateena *

(=tatatitetatateenateena-teenatateena) (:dhadhatitedhadhadheena) dhadhatitedhadhadheena
dhadhatitedhadhadheenadheena-dheenadhateena (=dhadhatitedhadhadheena) S2F * (=tatatitetatateenateena-teenatateena)

(:dhadhatitedhadhadheena)
dhadhatitedhadhadheenadhadhatitedhadhadheenadheena-dheenadhateena (=dhadhatitedhadhadheena) S2F *

(=tatatitetatateenateena-teenatateena) (:dhadhatitedhadhadheena) S1F
dhadhatitedhadhadheenadheena-dheenadhateena (=dhadhatitedhadhadheena) S2F * (= S1F dheena-dheenadhadheena)

(:dhadhatitedhadhadheena) S1F
dhadhatitedhadhadheenadheena-dheenadhateena (= S1F ) S2F * (= S1F dheena-dheenadhadheena) (: S1F ) S1F
S1F dheena-dheenadhateena (= S1F ) S2F * (= S1F dheena-dheenadhadheena) (: S1F ) S1F
S1F dheena-dheenadhateena (= S1F ) S2F * (= S1F dheena-dheenadha T2 ) (: S1F ) S1F
S1F dheena-dheenadhateena (= S1F ) S2F * (= S1F dheena-dheena T1 T2 ) (: S1F ) S1F
S1F dheena-dheenadhateena (= S1F ) S2F * (= S1F dheena- T2 T1 T2 ) (: S1F ) S1F
S1F dheena-dheenadhateena (= S1F ) S2F * (= S1F dheena T1 T2 T1 T2 ) (: S1F ) S1F
S1F dheena-dheenadhateena (= S1F ) S2F * (= S1F T2 T1 T2 T1 T2 ) (: S1F ) S1F
S1F dheena-dheenadha T2 (= S1F ) S2F * (= S1F T2 T1 T2 T1 T2 ) (: S1F ) S1F
S1F dheena-dheena T1 T2 (= S1F ) S2F * (= S1F T2 T1 T2 T1 T2 ) (: S1F ) S1F
S1F dheena- T2 T1 T2 (= S1F ) S2F * (= S1F T2 T1 T2 T1 T2 ) (: S1F ) S1F
S1F dheena T1 T2 T1 T2 (= S1F ) S2F * (= S1F T2 T1 T2 T1 T2 ) (: S1F ) S1F
S1F T2 T1 T2 T1 T2 (= S1F ) S2F * (= S1F T2 T1 T2 T1 T2 ) (: S1F ) S1F
S1F T2 T1 T2 T1 T2 (= S1F ) S2F * (= S1F T2 T1 T2 T1 V2 ) (: S1F ) S1F
S1F T2 T1 T2 T1 T2 (= S1F ) S2F * (= S1F T2 T1 T2 V3 ) (: S1F ) S1F
S1F T2 T1 T2 T1 T2 (= S1F ) S2F * (= S1F T2 T1 V5 ) (: S1F ) S1F
S1F T2 T1 T2 T1 T2 (= S1F ) S2F * (= S1F T2 V6 ) (: S1F ) S1F
S1F T2 T1 T2 T1 T2 (= S1F ) S2F * (= S1F V8 ) (: S1F ) S1F
S1F T2 T1 T2 T1 V2 (= S1F ) S2F * (= S1F V8 ) (: S1F ) S1F
S1F T2 T1 T2 V3 (= S1F ) S2F * (= S1F V8 ) (: S1F ) S1F
S1F T2 T1 V5 (= S1F ) S2F * (= S1F V8 ) (: S1F ) S1F
S1F T2 V6 (= S1F ) S2F * (= S1F V8 ) (: S1F ) S1F
S1F V8 (= S1F ) S2F * (= S1F V8 ) (: S1F ) S1F

Failed...

Template #2:
(=++dhadhatitedhadhadheena) dheena-dheenadhateenadhadhatitedhadhadheenadhadhatitedhadhateena *

(:++tatatitetatateena) * (=teena-teenatateena) dhadhatitedhadhadheenadhadhatitedhadhadheena
(=++dhadhatitedhadhadheena) dheena-dheenadhateenadhadhatitedhadhadheena S2F * (:++tatatitetatateena) *

(=teena-teenatateena) dhadhatitedhadhadheenadhadhatitedhadhadheena

etc...

(=++ S1F ) V8 S1F S2F * (:++ S1F ) * (= V8 ) S1F S1F

Failed...
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Template #3:
dhadhatitedhadhadheena (=dheena-dheenadha+teena) dhadhatitedhadhadheenadhadhatitedhadhateena *

(=tatatitetatateena) * (:teena-teenata+teena) dhadhatitedhadhadheenadhadhatitedhadhadheena
dhadhatitedhadhadheena (=dheena-dheenadha+teena) dhadhatitedhadhadheena S2F * (=tatatitetatateena) *

(:teena-teenata+teena) dhadhatitedhadhadheenadhadhatitedhadhadheena
dhadhatitedhadhadheena (=dheena-dheenadha+teena) dhadhatitedhadhadheena S2F * (=tatatitetatateena) *

(:teena-teenata+teena) dhadhatitedhadhadheena S1F
dhadhatitedhadhadheena (=dheena-dheenadha+teena) dhadhatitedhadhadheena S2F * (=tatatitetatateena) *

(:teena-teenata+teena) S1F S1F
dhadhatitedhadhadheena (=dheena-dheenadha+teena) dhadhatitedhadhadheena S2F * (= S1F ) * (:teena-

teenata+teena) S1F S1F
dhadhatitedhadhadheena (=dheena-dheenadha+teena) S1F S2F * (= S1F ) * (:teena-teenata+teena) S1F S1F
S1F (=dheena-dheenadha+teena) S1F S2F * (= S1F ) * (:teena-teenata+teena) S1F S1F
S1F (=dheena-dheenadha+ B2 ) S1F S2F * (= S1F ) * (:teena-teenata+ B2 ) S1F S1F
S1F (=dheena-dheena T1 + B2 ) S1F S2F * (= S1F ) * (:teena-teena T1 + B2 ) S1F S1F
S1F (=dheena- T2 T1 + B2 ) S1F S2F * (= S1F ) * (:teena- T2 T1 + B2 ) S1F S1F
S1F (=dheena T1 T2 T1 + B2 ) S1F S2F * (= S1F ) * (:teena T1 T2 T1 + B2 ) S1F S1F
S1F (= T2 T1 T2 T1 + B2 ) S1F S2F * (= S1F ) * (: T2 T1 T2 T1 + B2 ) S1F S1F
S1F (= T2 T1 V3 + B2 ) S1F S2F * (= S1F ) * (: T2 T1 V3 + B2 ) S1F S1F
S1F (= T2 V4 + B2 ) S1F S2F * (= S1F ) * (: T2 V4 + B2 ) S1F S1F
S1F (= V6 + B2 ) S1F S2F * (= S1F ) * (: V6 + B2 ) S1F S1F
S1F S2V S1F S2F E32
S64
S

Successful. Other templates are then tried but none produces a structure that results in a
successful test.


