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We present explicit solution formulas f = Rϕ and u = R λ f for the equations ∂f = ϕ and (∂ + λdz 1 )u = f -H λ f on an affine algebraic curve V ⊂ C 2 . Here H λ f denotes the projection of f ∈ W 1, p 1,0 (V ) to the subspace of pseudoholomorphic (1,0)-forms on V : ∂H λ f = λdz 1 ∧ H λ f . These formulas can be interpreted as explicit versions and precisions of the Hodge-Riemann decomposition on Riemann surfaces. The main application consists in the construction of the Faddeev-Green function for ∂(∂ + λdz 1 ) on V as the kernel of the operator R λ • R. This Faddeev-Green function is the main tool for the solution of the inverse conductivity problem on bordered Riemann surfaces X ⊂ V , that is, for the reconstruction of the conductivity function σ in the equation d(σd c U ) = 0 from the Dirichlet-to-Neumann mapping U bX → σd c U bX . The case V = C was treated by R.Novikov [N1]. In § 4 we give a correction to the paper [HM], in which the case of a general algebraic curve V was first considered.

Introduction

This paper is motivated by a problem from two-dimensional Electrical Impedance Tomography, namely the question of how to reconstruct the conductivity function σ on a bordered Riemann surface X from the knowledge of the Dirichlet-to-Neumann mapping u bX → σd c U bX for solutions U of the Dirichlet problem:

d(σd c U ) X = 0, U bX = u, where d = ∂ + ∂, d c = i( ∂ -∂).
For the case X = Ω ⊂ R 2 ≃ C (z = x 1 + ix 2 ) the exact reconstruction scheme was given firstly by R.Novikov [N1] under some restriction on the conductivity function σ. This restriction was eliminated later by A.Nachman [Na].

The scheme consists in the following. Let σ(x) > 0 for x ∈ Ω and σ ∈ C (2) ( Ω). Put σ(x) = 1 for x ∈ R 2 \ Ω. The substitution ψ = √ σU transforms the equation d(σd c U ) = 0 into the equation

dd c ψ = d d c √ σ √ σ ψ on R 2 .
From L.Faddeev's [F1] result (with additional arguments [START_REF] Beals | The spectral problem for the Davey-Stewartson and Ishimori hierarchies[END_REF] and [Na]) it follows that, for each λ ∈ C, there exists a unique solution ψ(z, λ) of the above equation, with asymptotics ψ(z, λ) • e -λz def = µ(z, λ) = 1 + o(1), z → ∞.

Such a solution can be found from the integral equation

µ(z, λ) = 1 + i 2 ξ∈Ω g(z -ξ, λ) µ(ξ, λ)d d c √ σ √ σ ,
where the function g(z, λ) = -1 2i(2π) 2 w∈C e i(w z+ wz) dw ∧ d w w( wiλ)

, z ∈ C, λ ∈ C, is called the Faddeev-Green function for the operator µ → ∂(∂ + λdz)µ.

From work of R.Novikov [N1] it follows that the function ψ bΩ can be found through the Dirichlet-to-Neumann mapping by the integral equation ψ(z, λ) bΩ = e λz + ξ∈bΩ e λ(z-ξ) g(zξ, λ)( Φψ(ξ, λ) -Φ0 ψ(ξ, λ)),

where Φψ = ∂ψ bΩ , Φ0 ψ = ∂ψ 0 bΩ , ψ 0 bΩ = ψ, ∂∂ψ 0 Ω = 0.

By results of R.Beals, R.Coifmann [START_REF] Beals | Multidimensional inverse scattering and nonlinear partial differential equations[END_REF], P.Grinevich, S.Novikov [GN] and R.Novikov [N2] it then follows that ψ(z, λ) satisfies a ∂-equation of Bers-Vekua type with respect to λ ∈ C:

∂ψ ∂ λ = b(λ) ψ,
where λ → b(λ) ∈ L 2+ε (C) ∩ L 2-ε (C), and ψ(z, λ)e -λz → 1 as λ → ∞, for all z ∈ C. This ∂-equation combined with R.Novikov's integral equation permits us to find, starting from the Dirichlet-to-Neumann mapping, firstly the boundary values ψ bΩ , secondly the " ∂-scattering data" b(λ), and thirdly ψ Ω .

Summarizing, the conductivity function σ Ω is thus retrieved from the given Dirichletto-Neumann data by means of the scheme:

DN data → ψ bΩ → ∂-scattering data → ψ Ω → d d c √ σ √ σ Ω .

Main result

We suppose that instead of C we have a smooth algebraic Riemann surface V in C 2 , given by an equation V = {z ∈ C 2 ; P (z) = 0}, where P is a holomorphic polynomial of degree d ≥ 1. Put z 1 = w 1 /w 0 , z 2 = w 2 /w 0 and suppose that the projective compactification Ṽ of V in CP 2 ⊃ C 2 with coordinates w = (w 0 : w 1 : w 2 ) intersects CP 1 ∞ = {z ∈ CP 2 ; w 0 = 0} transversally in d points. In order to extend the Novikov reconstruction scheme on the Riemann surface V ⊂ C 2 we need, firstly, to find an appropriate Faddeev type Green function for ∂(∂ + λdz 1 ) on V . One can check that for the case V = C the Faddeev-Green function g(z, λ) is a composition of Cauchy-Green-Pompeiu kernels for the operators f → ϕ = ∂f and u → f = (∂ + λdz)u, where u, f , and ϕ are respectively a function, a (1,0)-form, and a (1,1)-form on C. More precisely, one has the formula

g(z, λ) = -1 i(2π) 2 w∈C e λw-λ wdw ∧ d w (w + z) • w .
The main purpose of this paper is to construct an analogue of the Faddeev-Green function on the Riemann surface V . To do this we need to find explicit formulas f = Rϕ and u = R λ f (with appropriate estimates), for solutions of the two equations ∂f = ϕ and (∂ + λdz 1 )u = f -H λ f on V . Here we consider V equipped with the Euclidean volume form dd c |z| 2 , and we require ϕ V ), and u ∈ L ∞ (V ), p > 2, with H λ f being the projection of f on the subspace of pseudoholomorphic (1,0)-forms on Ṽ :

∈ L 1 1,1 (V ), f ∈ W 1, p 1,0 ( 
∂H λ f = λdz 1 ∧ H λ f .
The new formulas obtained in this paper for solution of ∂f = ϕ and (∂ + λdz 1 )u = f on V one can interprete as explicit and more precise versions of the classical Hodge-Riemann decomposition results on Riemann surfaces. We will define the Faddeev type Green function for ∂(∂ + λdz 1 ) on V as the kernel g λ (z, ξ) of the integral operator R λ • R.

Further results

Let σ ∈ C (2) (V ), with σ > 0 on V , and σ ≡ const on a neighborhood of Ṽ \V . Let a 1 , . . . , a g be generic points in this neighborhood, with g being the genus of Ṽ . Using the Faddeev type Green function constructed here, we have in [HM] obtained natural analogues of all steps of the Novikov reconstruction scheme on the Riemann surface V . In particular, under a smallness assumption on d log √ σ, the existence (and uniqueness) of the solution µ(z, λ) of the Faddeev type integral equation

µ(z, λ) = 1 + i 2 ξ∈V g λ (z, ξ) µ(ξ, λ)d d c √ σ √ σ + i g l=1 c l g λ (z, a l ), z ∈ V, λ ∈ C
holds for any a priori fixed constants c 1 , . . . , c g . However (and this was overlooked in [HM]), there exists only one unique choice of constants c l = c l (λ, σ) for which the integral equation above is equivalent to the differential equation

∂(∂ + λdz 1 )µ = i 2 dd c √ σ √ σ µ + i g l=1 c l δ(z, a l ),
where δ(z, a l ) are Dirac measures concentrated in the points a l (see also §4 below). §1. A Cauchy-Pompeiu type formula on an affine algebraic Riemann surface By L p,q (V ) we denote the space of (p,q)-forms on V with coefficients in distributions of measure type on V . By L s p,q (V ) we denote the space of (p,q)-forms on V with absolutely integrable in degree s ≥ 1 coefficients with respect to the Euclidean volume form on V . If V = C and f is a function from L 1 (C) such that ∂f ∈ L 0,1 (C), then the generalized Cauchy formula has the following form Let Ṽ be a smooth algebraic curve in CP 2 given by the equation Ṽ = {w ∈ CP 2 ; P (w) = 0}, with P being a homogeneous holomorphic polynomial in the homogeneous coordinates w = (w 0 : w 1 : w 2 ) ∈ CP 2 . Without loss of generality we may suppose that i

f (z) = - 1 2πi ξ∈C ∂f (ξ) ∧ dξ ξ -z , z ∈ C.
) Ṽ intersects CP 1 ∞ = {w ∈ CP 2 ; w 0 = 0} transversally, Ṽ ∩ CP 1 ∞ = {a 1 , . . . , a d }, d = deg P ; ii) V = Ṽ \CP 1 ∞ is a connected curve in C 2 with equation V = {z ∈ C 2 ; P (z) = 0}, where P (z) = P (1, z 1 , z 2 ) such that ∂P/∂z 1 ∂P/∂z 2 ≤ const(V ), if |z 1 | ≥ r 0 = const(V ); iii) For any z * ∈ V , such that ∂P ∂z 2 (z * ) = 0 we have ∂ 2 P ∂z 2 2 (z * ) = 0.
By the Hurwitz-Riemann theorem the number of such ramification points is equal to d(d -1). Let us equip V with the Euclidean volume form

d d c |z| 2 . Notation Let W 1, p(V ) = {F ∈ L ∞ (V ); ∂F ∈ L p 0,1 (V )}, p > 2.
Let us denote by H p 0,1 (V ) the subspace in L p 0,1 (V ), 1 < p < 2, consisting of antiholomorphic forms. For all p ∈ (1, 2), the space H p 0,1 (V ) coincides with the space of antiholomorphic forms on V admitting an antiholomorphic extension to the compactification Ṽ ⊂ CP 2 . Hence, by the Riemann-Clebsch theorem one has dim C H p 0,1 (V ) = (d -1)(d -2)/2 for all p ∈ (1, 2).

Proposition 1. Let {V j } be the connected components of {z ∈ V ; |z 1 | > r 0 }. Then for all j ∈ {1, . . . , d} there exist operators R 1 :

L p 0,1 (V ) → L p(V ) and R 0 : L p 0,1 (V ) → W 1, p(V ) and H: L p 0,1 (V ) → H p 0,1 (V ), 1 < p < 2, 1/p = 1/p -1/2 such that, for all Φ ∈ L p 0,1 (V ), one has the decomposition Φ = ∂RΦ + HΦ, where R = R 1 + R 0 , (1.1) R 1 Φ = 1 2πi ξ∈V Φ(ξ) dξ 1 ∂P ∂ξ 2 det ∂P ∂ξ (ξ), ξ - z |ξ -z| 2 , HΦ = g j=1 V Φ ∧ ω j ωj , (1.2)
with {ω j } being an orthonormal basis for the holomorphic (1,0)-forms on Ṽ , i.e., V ω j ∧ ωk = δ jk , j, k = 1, 2, . . . , g , and lim

z∈V j z→∞ RΦ(z) = 0. Remark 1. If p ∈ [1, 2) and q ∈ (2, ∞] the condition Φ ∈ L p 0,1 (V ) ∩ L q 0,1 (V ) implies that RΦ ∈ C( Ṽ ).
Remark 2. For the case when V = C = {z ∈ C 2 ; z 2 = 0} Proposition 1 and Remark 1 are reduced to the classical results of Pompeiu [P1], [P2] and of Vekua [V].

Remark 3. Based on the technique of [HP] one can construct an explicit formula not only for the main part R 1 of the R-operator, but for the whole operator R.

Proof of Proposition

1: Let Q(ξ, z) = {Q 1 (ξ, z), Q 2 (ξ, z)} be a pair of holomorphic poly- nomials in the variables ξ = (ξ 1 , ξ 2 ) and z = (z 1 , z 2 ), such that Q(ξ, ξ) = ∂P ∂ξ (ξ) and P (ξ) -P (z) = Q 1 (ξ, z)(ξ 1 -z 1 ) + Q 2 (ξ, z)(ξ 2 -z 2 ) def = Q(ξ, z), ξ -z .
(1.

3)

The conditions i) and ii) imply that for ε 0 small enough there exists a holomorphic retraction z → r(z) of the domain

U ε 0 = {z ∈ C 2 : |P (z)| < ε 0 } onto the curve V . Put U ε,r = {z ∈ C 2 ; |P (z)| < ε, |z 1 | < r}, where 0 < ε ≤ ε 0 and r ≥ r 0 . Put also V c = {z ∈ C 2 ; P (z) = c}, where c ∈ C, |c| ≤ ε 0 and Φ(z) = Φ(r(z)), z ∈ U ε 0 . The condition Φ ∈ L p 0,1 (V ) and properties of the retraction z → r(z) together imply that ∂ Φ = 0 on U ε 0 and Φ L p (V c ) ≤ const(V ) • Φ L p (V ) , (1.4)
uniformly with respect to c, for |c| ≤ ε 0 . By results from [H] and [Po] we can choose the following explicit solution Fε,r on

U ε,r of the ∂-equation ∂ Fε,r = Φ U ε ,r : Fε,r (z) = 1 2πi ξ∈U ε,r Φ ∧ det ξ - z |ξ -z| 2 , ∂ξ ξ - z |ξ -z| 2 ∧ dξ 1 ∧ dξ 2 + ξ∈bU ε,r : |ξ 1 |=r Φ ∧ - ( ξ2 -z2 ) (ξ 1 -z 1 )|ξ -z| 2 ∧ dξ 1 ∧ dξ 2 + ξ∈bU ε,r : |P (ξ)|=ε Φ ∧ det ξ - z |ξ -z| 2 , Q P (ξ) -P (z) ∧ dξ 1 ∧ dξ 2 , z ∈ U ε,R .
(1.5)

The property (1.4) implies that for any z ∈ V we have

ξ∈U ε,r Φ ∧ det ξ - z |ξ -z| 2 , ∂ξ ξ - z |ξ -z| 2 ∧ dξ 1 ∧ dξ 2 → 0, ε → 0 and ξ∈bU ε,r : |ξ 1 |=r Φ ∧ - ( ξ2 -z2 ) (ξ 1 -z 1 )|ξ -z| 2 ∧ dξ 1 ∧ dξ 2 → 0, ε → 0, r → ∞.
Hence for all z ∈ V there exists lim ε→0 r→∞ Fε,r = F (z), where

F (z) = - 1 2πi ξ∈V Φdξ 1 ∂P ∂ξ 2 (ξ) ∧ det ξ - z |ξ -z| 2 , Q(ξ, z) .
(1.6)

From (1.5) and (1.6) it follows that ∂z F V = Φ(z).

(1.7)

Now put F 1 = R 1 Φ. Using (1.2), (1.3), (1.6), and (1.7) we obtain ∂z F 1 (z) V = 1 2πi ξ∈V Φ(ξ) ∧ dξ 1 ∂P ∂ξ 2 ∧ det ∂P ∂ξ (ξ), ∂z ξ - z |ξ -z| 2 = Φ + 1 2πi ξ∈V Φ(ξ) ∧ dξ 1 ∂P ∂ξ 2 ∧ 1 |ξ -z| 4 det ∂P ∂ξ 1 (ξ) ξ 2 -z 2 ∂P ∂ξ 2 (ξ) -(ξ 1 -z 1 ) det ξ1 -z1 dz 1 ξ2 -z2 dz 2 = Φ + KΦ,
where

KΦ = 1 2πi ξ∈V Φ(ξ) ∧ dξ 1 |ξ -z| 4 ∧ ∂P ∂ξ (ξ), ξ -z • ∂ P ∂ ξ (z), ξ -z ∂P ∂ξ 2 (ξ) • ∂ P ∂ ξ2 (z) dz 1 .
(1.8)

The estimate R 1 Φ = F 1 ∈ L p(V ) follows from the property Φ ∈ L p (V ) and the following estimate of the kernel for the operator R 1 :

∂P ∂ξ 2 (ξ) -1 det ∂P ∂ξ (ξ), ξ - z |ξ -z| 2 dξ 1 = O 1 |ξ -z| (|dξ 1 | + |dξ 2 |),
where ξ, z ∈ V .

For the kernels of operators Φ → KΦ and Φ → ∂ z KΦ we have the corresponding estimates

∂P ∂ξ (ξ), ξ -z • ∂ P ∂ ξ (z), ξ -z dξ 1 ∧ dz 1 ∂P ∂ξ 2 (ξ) • |ξ -z| 4 • ∂ P ∂ ξ2 (z) = O 1 1+|z| 2 |(dξ 1 + dξ 2 ) ∧ (dz 1 + dz 2 )| if |ξ -z| ≤ 1, O 1 |ξ-z| 2 |(dξ 1 + dξ 2 ) ∧ (dz 1 + dz 2 )| if |ξ -z| ≥ 1.
(1.9)

∂ z ∂P ∂ξ (ξ), ξ -z • ∂ P ∂ ξ (z), ξ -z dξ 1 ∧ dz 1 ∂P ∂ξ 2 (ξ) • |ξ -z| 4 • ∂ P ∂ ξ2 (z) =    O 1 (1+|z| 2 )|ξ-z| |(dξ 1 + dξ 2 ) ∧ (dz 1 + dz 2 ) ∧ (dz 1 + dz 2 )| if |ξ -z| < 1, O 1 |ξ-z| 3 |(dξ 1 + dξ 2 ) ∧ (dz 1 + dz 2 ) ∧ (dz 1 + dz 2 )| if |ξ -z| ≥ 1, (1.10) ξ, z ∈ V .
These estimates imply that, for all p > 2 and p > 1, one has

Φ 0 def = KΦ ∈ W 1, p 0,1 (V ) ∩ L p 0,1 (V ).
(1.11)

From estimates (1.9)-(1.11) it follows that the (0,1)-form Φ 0 = KΦ on V can be considered also as a (0,1)-form on the compactification Ṽ of V in CP 2 belonging to the spaces W 1,p 0,1 ( Ṽ ) for all p < 2, where Ṽ is equipped with the projective volume form d d c ln(1 + |z| 2 ).

From the Hodge-Riemann decomposition theorem [Ho], [W] we have

Φ 0 = ∂( ∂ * GΦ 0 ) + HΦ 0 , (1.12)
where HΦ 0 ∈ H 0,1 ( Ṽ ), and G is the Hodge-Green operator for the Laplacian ∂ ∂ * + ∂ * ∂ on Ṽ with the properties

G(H 0,1 ( Ṽ )) = 0, ∂G = G ∂, ∂ * G = G ∂ * .
The decomposition (1.12) implies that

∂ * GΦ 0 ∈ W 2,p ( Ṽ ), p ∈ (1, 2) and HΦ 0 ∈ H 0,1 ( Ṽ ),
and this in turn implies that ∂ * GΦ 0 ∈ C( Ṽ ). Returning to the affine curve V with the Euclidean volume form, we obtain that

R0 Φ def = ∂ * GKΦ V ∈ W 1, p(V ), ∀p > 2, where W 1, p(V ) def = {F ∈ L ∞ (V ); ∂F ∈ L p 0,1 (V )}, and HΦ def = HKΦ V ∈ H p 0,1 (V ), p > 1.
(1.13)

Now put R = R 1 + R0 . Then, for all Φ ∈ L p 0,1 (V ), we have R0 Φ ∈ W 1, p(V ), and RΦ ∈ L ∞ (V ) ∪ L p(V ).
By Corollary 1.1 below, which is based only on (1.13), it follows that, for any form Φ ∈ L p 0,1 (V ), one has a limit

lim z→∞ z∈V j RΦ(z) def = RΦ(∞ j ) . Put R 0 Φ = R0 Φ -RΦ(∞ j ) and RΦ = RΦ -RΦ(∞ j ). We then have property (1.1) for R = R 1 + R 0 . This concludes the proof of Proposition 1. Corollary 1.1. Let F ∈ L ∞ (V ) and ∂F ∈ L p 0,1 (V ), 1 < p < 2.
Then, for all j ∈ {1, . . . , d}, there exists a limit lim

z→∞ z∈V j F (z) def = F (∞ j ) such that (F -F (∞ j )) V j ∈ L p.
Proof: Put ∂F = Φ. Then by (1.13) we have RΦ ∈ L ∞ (V ) ∪ L p(V ) and ∂(F -RΦ) = HΦ.

Then the function h = F -RΦ is harmonic on V . The estimates F ∈ L ∞ (V ) and RΦ ∈ L p(V ) ∪ L ∞ (V ) imply by the Riemann extension theorem that h can be extended to a harmonic function h on Ṽ . Hence, h = F -RΦ ≡ const = c. This implies that there exists lim

z→∞ z∈V j F (z) = c j def = F (∞ j ). Corollary 1.1 is proved.
Corollary 1.1 admits the following useful reformulation.

Corollary 1.2. In the notations of Proposition 1, for any bounded function ψ on V , such that ∂ψ ∈ L p (V ), 1 < p < 2, the following formula is valid:

ψ(z) = ψ(∞ j ) + R 0 ∂ψ + 1 2πi ξ∈V ∂ξ det ∂P ∂ξ (ξ), ξ -z dξ ∂P ∂ξ 2 (ξ) • |ξ -z| 2 ∧ ψ, where R 0 ∂ψ ∈ W 1, p(V ), 1/p = 1/2 -1/p, and R 0 ∂ψ(z) → 0, for z ∈ V j , with z → ∞. §2. Kernels and estimates for ∂f = ϕ with ϕ ∈ L 1 1,1 (V ) Let ϕ be a (1,1)-form of class L ∞ 1,1 (V ) with support in V 0 = {z ∈ V ; |z 1 | ≤ r 0 }
, where r 0 satisfies the condition ii) of §1.

If V = C then by classical results from [P1] and [V], the Cauchy-Pompeiu operator

ϕ → dz 2πi ξ∈V 0 ϕ(ξ) ξ -z def = Rϕ
determines a solution f = Rϕ for the equation ∂f = ϕ on C with the property

f ∈ W 1, p 1,0 (C) ∩ O 1,0 (C\V 0 ) for all p > 2.
In this section we derive an analogous result for the case of an affine algebraic Riemann surface

V ⊂ C 2 . Let V \V 0 = ∪ d j=1 V j , where {V j } are the connected components of V \V 0 . Lemma 2.1. Let Φ = dz 1 ⌋ϕ and f = F dz 1 = (RΦ)dz 1 , where R is the operator from Proposition 1. Then i) Φ ∈ L p 0,1 (V 0 ), p ∈ [1, 2), Φ = 0 on V \V 0 ; ii) F V 0 ∈ W 1,p (V 0 ) ∀p ∈ (1, 2), f ∈ W 1, p 1,0 (V ) ∀p ∈ (2, ∞), ∂F = Φ -HΦ, where H is the operator from Proposition 1, ∂f = ϕ -(HΦ) ∧ dz 1 , and F L ∞ (V \V 0 ) + F L p(V 0 ) ≤ const(V, p) Φ L p (V ) , 1/p = 1/p -1/2; iii) if, in addition, ϕ ∈ W 1,∞ (V ), then f ∈ W 2, p(V ).

Proof:

i) The property Φ V \V 0 = 0 follows from ϕ V \V 0 = 0.

Put V ± 0 = {z ∈ V 0 ; ± ∂P ∂z 2 ≥ ± ∂P ∂z 1 }. The definition Φ = dz⌋ϕ implies that Φ V + j = Φ + dz 1 , where Φ + ∈ L ∞ (V + 0 ) and Φ V - j = Φ -dz 2 /(∂z 1 /∂z 2 ), where Φ -∈ L ∞ (V - 0 ).
(2.1)

The properties (2.1) imply that Φ ∈ L p 0,1 (V 0 ) for all p ∈ (1, 2). ii) The equalities ∂F = Φ -HΦ and ∂f = ϕ -(HΦ) ∧ dz 1 follow from Proposition 1 together with the definitions Φ = dz 1 ⌋ϕ and

f = F dz 1 . The inclusions F ∈ L ∞ (V \V 0 ) and F V 0 ∈ W 1,p (V 0 ) follow from the formula F = RΦ and Proposition 1. The inclusion f ∈ W 1, p 1,0 (V ) follows from the equalities ∂f = ϕ -(HΦ) ∧ dz 1 , f = F dz 1 and Proposition 1. iii) If, in addition, ϕ ∈ W 1,∞ 1,1 (V ), then f ∈ W 2, p 1,0 (V ). It follows from equalities above with ϕ ∈ W 1,∞ 1,1 (V ) and supp ϕ ⊂ V 0 .
Lemma 2.2. For each (0, 1)-form g ∈ H p 0,1 (V ) there exists a (1, 0)-form h ∈ L p 1,0 ( Ṽ ) (1 ≤ p < 2), unique up to adding holomorphic (1,0)-forms on Ṽ , such that ∂h Ṽ = gdz 1 .

(2.2)

Proof: For any g ∈ H p 0,1 (V ) the (1,1)-form g ∧ dz 1 determines a current G on Ỹ by the equality

G, χ def = lim R→∞ d j=1 V j (χ -χ j (∞))gdz 1 + χ j (∞) {z∈V j ; |z 1 |<r} g ∧ dz 1 , where χ ∈ C (ε) ( Ṽ ), ε > 0 and χ j (∞) = lim z∈V j z→∞ χ(z).
By Serre duality [S], the current G is ∂-exact on Ṽ if and only if

G, 1 = lim R→∞ {z∈V ; |z 1 |≤r} g ∧ dz 1 = 0. (2.3)
Let us check (2.3). We have

{z∈V : |z 1 |≤r} g ∧ dz 1 = - {z∈V : |z 1 |=r} z 1 ∧ g.
Putting w 1 = 1/z 1 into the right-hand side of this equality, we obtain

{z∈V : |z 1 |≤r} g ∧ dz 1 = - d j=1 |w 1 |=1/r g j ( w1 ) d w1 w 1 = 0.
Here the last equality follows from the properties g j ( w1 )d w1 = g V j ∩{|w 1 |≤1/r} and ḡj ∈ O(D(0, 1/r)).

Hence, by (2.3) there exists h ∈ L 1 1,0 ( Ṽ ) such that equality (2.2) is valid in the sense of currents. Moreover, any solution of (2.2) automatically belongs to L p 1,0 ( Ṽ ), 1 < p < 2. Such a solution h of (2.2) is unique up to holomorphic (1,0)-forms on Ṽ because the conditions h ∈ L p 1,0 ( Ṽ ) and ∂h = 0 on V imply that h extends as a holomorphic (1,0)-form on Ṽ .

Notation: Let H ⊥ : H p 0,1 (V ) → L p 1,0 ( Ṽ ) (1 < p < 2)
be the operator defined by the formula g → H ⊥ g, where H ⊥ g is the unique solution h of (2.2) in L p 1,0 ( Ṽ ) with the property V h ∧ g = 0 for all g ∈ H p 0,1 (V ).

Lemma 2.2 guarantees the existence and uniqueness of H ⊥ g ∈ L p 1,0 ( Ṽ ) for any g ∈ H p 0,1 (V ).

Proposition 2. Let R be the operator defined by formula (1.1), and H the operator defined by formula (1.13). For any (1,1)-form

ϕ ∈ L 1 1,1 (V ) ∩ L ∞ 1,1 (V ) with support in V 0 , put Rϕ = R 1 ϕ + R 0 ϕ, (2.4) where R 1 ϕ = (R(dz 1 ⌋ϕ))dz 1 , R 0 ϕ = H ⊥ • H(dz 1 ⌋ϕ). Then ∂ Rϕ = ϕ, (2.5), f = F dz 1 = Rϕ ∈ W 1, p 1,0 (V ) for all p ∈ (2, ∞), F V 0 ∈ W 1,p (V 0 ) for all p ∈ (1, 2) and f V l = ∞ k=1 c (l) k z k 1 dz 1 + b l dz 1 , if |z 1 | ≥ r 0 .
(2.6)

Here l = 1, . . . , d, and b l = 0 for l = j.

Proof: The properties (2.5) and f = Rϕ ∈ W 1, p 1,0 (V ) follow from Proposition 1 and Lemmas 2.1, 2.2. The properties (2.5) and ϕ V \V 0 = 0 imply analyticity of f on V \V 0 . The series expansion (2.6) follows from the analyticity of f V \V 0 and the inclusion f V ). §3. Kernels and estimates for

V \V 0 ∈ L ∞ 1,0 (V \V 0 ). Supplement: Let Ṽ0 = {z ∈ V : |z 1 | ≤ r0 }, where r0 > r 0 . If supp ϕ ⊆ V 0 and (ϕ - g l=1 c l δ(z, a l )) ∈ L ∞ 1,1 (V ), where a l ∈ V j(l) ∩ Ṽ0 , then ( Rϕ - g l=1 c l R(δ(z, a l ))) ∈ W 1, p 1,0 ( 
(∂ + λdz 1 )u = f , with f ∈ W 1, p 1,0 (V ) If V = C then the equation ∂u + λudz 1 = f was also introduced by Pompeiu [P2].
One can check that this equation can be solved by the explicit formula:

e λz-λz u(z) = 1 2πi ξ∈C e λξ-λ ξ f (ξ)d ξ ξ - z def = lim r→∞ 1 2πi {ξ∈C: |ξ|<r} e λξ-λ ξ f (ξ)d ξ ξ - z .
For a Riemann surface V = {z ∈ C 2 : P (z) = 0} we will obtain the following generalization of this formula.

Proposition 3. Let f = F dz 1 be a (1,0)-form as in Proposition 2, i.e., F V 0 ∈ W 1,p (V 0 ) for all p ∈ (1, 2), f ∈ W 1, p 1,0 (V ) for all p ∈ (2, ∞), and supp ∂f ⊂ V 0 . Let e λ (ξ) = e λξ 1 -λ ξ1 . Put R 1 (ē λ f ) def = - 1 2πi lim r→∞ {ξ∈V : |ξ|<r} e λ (ξ)f (ξ) d ξ1 ∂ P /∂ ξ2 det ∂ P ∂ ξ (ξ), ξ -z |ξ -z| 2 .
Put also Hf def = H f , where H is the operator from Proposition 1. Finally, let

u = R λ f = R 1 λ f + R 0 λ f, (3.1)
where

R 1 λ f +R 0 λ f = e -λ (z)•R 1 (ē λ f )+e -λ (z)•R 0 (ē λ f ), with R 1 and R 0 being the operators from Proposition 1.
Then for all λ = 0 one has:

i) (∂ + λdz 1 )R λ f = f -H λ (f ), where H λ (f ) = e -λ (z)H(e λ f ). ii) u -u(∞ l ) L ∞ (V ) ≤ const(V, p) • min 1 |λ| , 1 |λ| F L p(V 0 ) + F L ∞ (V \V 0 ) + ∂F L p 1,0 (V ) , ∂u L p 1,0 (V ) ≤ const(V, p) • ∂F L p 1,0 (V )
, where 1/p = 1/p -1/2, l = 1, . . . , d. iii)

(1 + |z 1 |)(u -u(∞ l )) L ∞ (V l ) ≤ const(V, p) |λ| ( F L p(V 0 ) + F L ∞ (V \V 0 ) ), (1 + |z 1 |)∂u L ∞ 1,0 (V ) ≤ const(V, p)( |λ| + 1)( F L p(V 0 ) + F L ∞ (V \V 0 ) ), ∀p > 2. Supplement: Put L 2±ε (V ) = {u; u Ṽ0 ∈ L 2-ε ( Ṽ0 ), u V \ Ṽ0 ∈ L 2+ε (V \ Ṽ0 )}. If f = f 0 -f 1 , where f 0 ∈ W 1, p 1,0 (V ), supp ∂f 0 ⊂ V 0 and f 1 = g l=1 c l R(δ(z, a l )), a l ∈ V j(l) ∩ Ṽ0 ,
then instead of i)-iii) we have i) and the following conclusion:

ii) ′ R λ f -R λ f (∞ l ) L 2+ε (V l ) ≤ const(V, p) ε min |λ| -1/2 , |λ| -1 f 0 W 1, p 1,0 + g l=1 |c l | , ∂R λ f L 2±ε 1,0 (V ) ≤ const(V, p) ε f 0 W 1, p 1,0 + g l=1 |c l | , H λ (f ) L ∞ 1,0 (V ) ≤ const(V, p) (1 + |λ|) f 0 W 1, p 1,0 + g l=1 |c l | , where p > 2, 0 < ε < 1/2. Lemma 3.1. Put J(z) = {ξ∈C: |ξ|<ρ} ψ(ξ)dξ ∧ d ξ |ξ| • |ξ -z| , z ∈ C,
where ψ ∈ L p (V 0 ), p > 1. Then, for any ε > 0 and any p > 2, one has the estimate

J(z) L p(C) ≤ 1 ε O(ρ (2-2ε p)/ p) • ψ L (1+ε)/ε (V 0 ) .
Proof: Using the notation ψ ε = ψ L (1+ε)/ε (V 0 ) , we obtain from the expression for J(z) the following estimates:

|J(z)| ≤ |ξ|≤ρ |dξ ∧ d ξ| |ξ| 1+ε |ξ -z| 1+ε 1/(1+ε) • ψ ε ≤ O ρ r=0 dr r ε 1 0 dϕ (|r -|z|| + |z|ϕ) 1+ε 1/(1+ε) • ψ ε ≤ O ρ r=0 dr r ε 1 |z| 1+ε 1 0 dϕ (| r |z| -1| + ϕ) 1+ε 1/(1+ε) • ψ ε ≤ 1 ε O ρ 0 dr r ε 1 |z| 1 |r -|z|| ε - 1 (|r -|z|| + |z|) ε 1/(1+ε) • ψ ε .
From the last estimate we deduce

|J(z)| ≤ 1 ε O 1 |z| |z| 0 dr r ε |z| ε + ρ |z| ε|z| r ε r ε r 1/(1+ε) ψ ε , if |z| ≤ ρ, and |J(z)| ≤ 1 ε O 1 |z| ρ 0 dr r ε |z| ε 1/(1+ε) ψ ε , if |z| ≥ ρ.

These equalities imply

|J(z)| ≤ 1 ε O 1 |z| 2ε/(1+ε) ψ ε , if |z| ≤ ρ, |J(z)| ≤ 1 ε O 1 |z| ρ (1-ε)/(1+ε) ψ ε , if |z| ≥ ρ.
Putting |z| = t we obtain finally that

J L p(C) ≤ 1 ε O ρ 0 dt t 2ε p/(1+ε)-1 + ρ 1-ε 1+ε p ∞ ρ dt t p-1 1/ p ψ ε ≤ 1 ε O ρ 2-ε p p ψ ε .
Lemma 3.1 is proved.

Proof of Proposition 3: i) (∂ + λdz 1 )R λ f = (∂ + λdz 1 )e -λ (z) • R(ē λ f ) = ∂(e -λ (z)) • R(ē λ f ) + e -λ (z)∂(R(ē λ f )) + λdz 1 e -λ (z) • R(ē λ f ) = (-λdz 1 + λdz 1 )e -λ (z) • R(ē λ f )+ e -λ (z) • (e λ (z)f -Hē λ f ) = f -e -λ H(e λ f ) def = f -H λ f,
where we have used the equality (1.1) from Proposition 1.

iii

) Let r ≥ r 0 . Let the functions χ ± ∈ C (1) (V ) be such that χ + + χ -≡ 1 on V , supp χ + ⊂ {ξ ∈ V : |ξ 1 | < 2r}, supp χ -⊂ {ξ ∈ V : |ξ 1 | ≥ r}, and |dχ ± | = O(1/r).
We then have u = u + + u -, where

u ± (z) = R λ (χ ± f ). (3.1) ±
Using the properties f ∈ L ∞ (V ) and |e λ | ≡ 1, in combination with the equality ∂u + = χ + F dz 1λu + dz 1 -H λ (χ + f ), we obtain for u + and ∂u ± ∂z 1 the estimates:

(1 + |z|)(u + (z) -u + (∞ l )) L ∞ (V l ) = O(r) f L ∞ 1,0 (V ) , l = 1, . . . , d, (1 + |z|)∂u + (z) L ∞ 1,0 (V ) = O(λr + 1) f L ∞ 1,0 (V ) . (3.2) 
In order to estimate u -we transform the expression (3.1) -using the series expansion (2.6) for f V j , and we integrate by part. We thus obtain

u -(z) = R λ χ -f = R 1 λ χ -f + R 0 λ χ -f = - e -λ (z) 2πi 1 λ ξ∈V e λξ 1 -λ ξ1 (dχ -)F ∧ d ξ1 det ∂ P ∂ ξ (ξ), ξ -z ∂ P ∂ ξ2 (ξ) • |ξ -z| 2 + e -λ (z) 2πi 1 λ j ξ∈V j e λξ 1 -λ ξ1 χ - ∞ k=1 k c (j) k ξ k+1 1 dξ 1 ∧ d ξ1 det ∂ P ∂ ξ (ξ), ξ -z ∂ P ∂ ξ2 (ξ) • |ξ -z| 2 - e -λ (z) 2πi 1 λ ξ∈V e λξ 1 -λ ξ1 χ -F ∂ ξ det ∂ P ∂ ξ (ξ), ξ -z d ξ1 ∂ P ∂ ξ2 (ξ) • |ξ -z| 2 + e -λ (z) R0 (e λ χ -f ), (3.3) 
where the operator R 0 = ∂ * GK is defined by (1.13). Using Corollary 1.2 we have, in addition,

- e -λ (z) 2πi 1 λ ξ∈V e λξ 1 -λ ξ1 χ -F ∂ ξ det ∂ P ∂ ξ (ξ), ξ -z d ξ1 ∂ P ∂ ξ2 (ξ) • |ξ -z| 2 = e -λ (z) 2πi 1 λ e λ (z)χ -(z)F (z) - e -λ (z) 2πi 1 λ R0 (∂(e λ χ -F )) = 1 2πi 1 λ χ -(z)F (z) - e -λ (z) 2πi 1 λ R0 (∂(e λ χ -F )).
Putting the last equality in (3.3) and making use of the properties

|e λ | ≡ 1, |dχ -| = O(1/r), ∂u -= χ -F dz 1 -λu -dz 1 -H λ (χ -f )
, and the property of R 0 , we obtain from Proposition,1:

(1 + |z 1 |)(u --u -(∞ l )) L ∞ (V l ) = O 1 |λ|r ( F L p(V 0 ) + F L ∞ (V \V 0 ) ) + (1 + |z 1 |) R0 (e λ χ -f ) L ∞ (V ) + 1 2π|λ| (1 + |z 1 |) R0 ∂(e λ χ -F ) L ∞ (V ) ≤ O 1 |λ|r F L p(V ) , l = 1, . . . , d and (1 + |z 1 |) ∂u - ∂z 1 L ∞ (V ) = O(1/r + 1)( F L p(V 0 ) + F L ∞ (V \V 0 ) ).
(3.4)

The estimates (3.2) and (3.4) imply

(1 + |z 1 |)(u -u(∞ l )) L ∞ (V l ) = O r + 1 |λ|r ( F L p(V 0 ) + F L ∞ (V \V 0 ) ),
and

(1 + |z 1 |)∂u L ∞ 1,0 (V ) = O(|λ|r + 1/r + 1)( F L p(V 0 ) + F L ∞ (V \V 0 ) ), ∀p > 2.
(3.5) Putting in (3.5) r = r 0 / |λ| we obtain iii).

ii) For proving ii) let us put r = r0 and transform (3.1) + for u + in the following way:

u + (z) = R λ χ + f = - e -λ (z) 2πi 1 λ |ξ 1 |≤r e λξ 1 -λ ξ1 dχ + F ∧ d ξ1 det ∂ P ∂ ξ (ξ), ξ -z ∂ P ∂ ξ2 (ξ) • |ξ -z| 2 - e -λ (z) 2πi 1 λ |ξ 1 |≤r e λξ 1 -λ ξ1 χ + ∂F ∧ d ξ1 det ∂ P ∂ ξ (ξ), ξ -z ∂ P ∂ ξ2 (ξ) • |ξ -z| 2 - e -λ (z) 2πi 1 λ |ξ 1 |≤r e λξ 1 -λ ξ1 χ + F ∂ det ∂ P ∂ ξ (ξ), ξ -z d ξ1 ∂ P ∂ ξ2 (ξ) • |ξ -z| 2 + e -λ (z) R0 (e λ χ + f ), (3.6) 
where R 0 is the operator from Proposition 1. Using the last expression for u + (z), together with the property F V 0 ∈ W 1,p (V 0 ) and Corollary 1.2, we obtain

u + L ∞ (V ) = O(1/λ) F W 1,p (V 0 ) . (3.7)
This inequality together with (3.4) and statement iii) proves the first part of statement ii). Formula u = R λ f implies ∂ z u = fλdz 1 u -H λ f . From this and from the already obtained estimates for u we deduce the second part of statement ii):

∂u L p 1,0 (V ) ≤ const(V, p) ∂F L p 1,0 (V ) .
ii) ′ In order to prove in this case the estimate for u = R λ f with |λ| ≤ 1, we combine the arguments above with Lemma 3.1, and obtain instead of (3.5) the following:

u -u(∞ l ) L 2+ε (V l ) ≤ 1 ε O r + 1 |λ|r f 0 W 1, p 1,0 (V ) + g l=1 |c l | ∂u L 2±ε 1,0 (V ) ≤ λ ε O r + 1 + r |λ|r f 0 W 1, p 1,0 (V ) + g l=1 |c l | . (3.5) ′
Putting in (3.5) ′ r = r 0 |λ|, we obtain the required estimate for R λ f with |λ| ≤ 1. To prove the estimate for u = R λ f with |λ| ≥ 1, we use (3.6) and the Calderon-Zygmund L 2-ε -estimate for the singular integral on the right hand side of (3.6).

In order to prove the statement concerning H λ f , we just perform an integration by parts in the expression

H λ f = e -λ H(e λ f ) = g l=1 e -λ (z) Ṽ e λ (ξ)f (ξ) ∧ ω l (ξ) ω l (z), where f = f 0 + g l=1 c l R(δ(z, a l ))
, and where {ω l , l = 1, . . . , g} is an orthonormal basis of holomorphic (1,0)-forms on Ṽ . §4. Faddeev type Green function for ∂(∂ + λdz 1 )u = ϕ and further results

Let R be the operator defined by formula (2.4) and let R λ be the operator defined by formula (3.1).

Proposition 4. Let ϕ ∈ L ∞ 1,1 (V ) with support in V 0 = {z ∈ V : |z 1 | ≤ r 0 }, where r 0 satisfies the condition of §1. Then, for u = G λ ϕ def = R λ • Rϕ, where λ = 0, one has i) ∂(∂ + λdz 1 )u = ϕ + λdz 1 ∧ H λ ( Rϕ) on V ; ii) u L ∞ (V ) ≤ const(V 0 , p) • min (1/ |λ|, 1/|λ|) ϕ L ∞ 1,1 (V 0 ) , p > 2, ∂u L p 1,0 (V ) ≤ const(V 0 , p) ϕ L ∞ 1,1 (V 0 ) , p > 2.
Supplement. If we can write ϕ = ϕ 0 + ϕ 1 , where ϕ 0 ∈ L ∞ 1,1 (V ), supp ϕ 0 ⊂ V 0 , and ϕ 1 = g l=1 ic l δ(z, a l ), with a l ∈ V j(l) ∩ Ṽ0 , then instead of i)-ii) we have i) and the following conclusion:

ii) ′ u -u(∞ l ) L 2+ε (V l ) ≤ const(V, ε) • min (|λ| -1/2 , |λ| -1 ) ϕ 0 L ∞ 1,1 (V 0 ) + g j=1 |c j | , ∂u L 2±ε 1,0 (V ) ≤ const(V, ε) ϕ 0 L ∞ 1,1 (V 0 ) + g l=1 |c l | ,
where 0 < ε < 1/2.

Proof: By Proposition 2 we have

f = F dz 1 = Rϕ ∈ W 1, p 1,0 (V ) ∀p ∈ (2, ∞), F V 0 ∈ W 1,p (V 0 ) ∀p ∈ (1, 2).
Propositions 2 and 3 imply that u = R λ • Rϕ ∈ W 1, p(V ). Let us now verify statement i) of Proposition 4. From Proposition 3 i) we obtain

(∂ + λdz 1 )u = (∂ + λdz 1 )R λ • Rϕ = Rϕ + H λ ( Rϕ)
, where where we have used that H( Rϕ) ∈ H 1,0 ( Ṽ ). Property 4 ii) follows from Proposition 3 ii), iii). The supplement to Proposition 4 follows from the supplement to Proposition 3.

Definition

We define the Faddeev type Green function for ∂(∂ + λdz 1 ) on V as the kernel g λ (z, ξ) of the integral operator R λ • R.

Definition

Let q ∈ C 1,1 ( Ṽ ) be a form with supp q contained in V 0 , and let g denote the genus of Ṽ .

The function ψ(z, λ), z ∈ V , λ ∈ C, will be called the Faddeev type function associated with the potential q and the points a 1 , . . . , a g ∈ V \ V0 , if ∀λ ∈ C\E, where E is compact in C, the function µ = ψ(z, λ)e -λz 1 satisfies the properties:

∂(∂ + λdz 1 )µ = i 2 qµ + i g l=1 c l δ(z, a l ) and lim z→∞ z∈V 1 µ(z, λ) = 1, (µ -µ(∞ j )) V j ∈ L p(V j ), p > 2, j = 1, . . . , d,
where δ(z, a l )-Dirac measure concentrated in point a l .

Based on the Faddeev type Green function g λ (z, ξ), and on Proposition 4, we have in [HM] extended the Novikov reconstruction scheme from the case X ⊂ C to the case of a bordered Riemann surface X ⊂ V .

Definition

Let {ω j } be an orthonormal basis for the holomorphic forms on Ṽ . An effective divisor {a 1 , . . . , a g } on V will be called generic, if det ω j dz 1 (a k ) j,k=1,2,...,g = 0.

Lemma. Let {a j } be a generic divisor on V . Put

∆(λ) = det ξ∈V R(δ(ξ, a j )) ∧ ωl (ξ)e λξ 1 -λ ξ1 j,l=1,2,...,g ,
where R is the operator from Proposition 2. Then, under the condition that |a

j | ≥ A, j = 1, 2, . . . , g, with A large enough, lim λ→∞ |λ g • ∆(λ)| < ∞, lim λ→∞ |λ g • ∆(λ)| > 0 and the set E = {λ ∈ C : ∆(λ) = 0} is a compact nowhere dense subset of C. ( * )
The following is a corrected version of the main results from [HM]: 1. Let X be a domain with smooth boundary on ), σ > 0 on V and σ = 1 on V \X. Let a 1 , . . . , a g be a generic divisor on Y \ X, satisfying condition ( * ). Then for all λ ∈ C\E there exists a unique Faddeev type function ψ(z, λ) = µ(z, λ)e λz 1 associated with the potential q

V such that X ⊃ V0 , X ⊂ Y ⊂ V . Let σ ∈ C (2) (V
= d d c √ σ √ σ
and the divisor {a j }. Such a function can be found (together with constants {c l }) from the integral equation:

µ(z, λ) = 1 + i 2 ξ∈X g λ (z, ξ)µ(ξ, λ)q(ξ) + i g l=1 c l (λ)g λ (z, a l ), (4.2) where 1 2 H λ ( R(qµ)) = g l=1 c l H λ ( R(z, a l )), µ(z, λ) → 1, z ∈ V 1 , z → ∞, (4.3) λ ∈ C\E.
The relation (4.3) is equivalent to the system of equations

2 g l=1 c l (λ)e λa j,1 -λā j,1 ωk dz 1 (a j ) = - z∈X e λz 1 -λz 1 d d c √ σ √ σ -2i∂ ln √ σ ∧ ∂ ln √ σ µ(z, λ) ωk dz 1 (z),
where k = 1, . . . , g and {ω j } is an orthonormal basis of holomorphic forms on Ṽ . 2. For all λ ∈ C\E the restriction of µ = e -λz 1 ψ(z, λ 1 ) to bX can be found through Dirichlet-to-Neumann data for µ on bX by the Fredholm integral equation

µ(z, λ) bX + ξ∈bX g λ (z, ξ)( ∂µ(ξ, λ) -∂µ 0 (ξ, λ)) = 1 + i g j=1 c j g λ (z, a j ), (4.4) 
where

-i g j=1 (a j,1 ) -k c j = z∈bX z -k 1 (∂ + λdz 1 )µ = 0, k = 2, . . . , g + 1, (4.5) 
and µ 0 is the solution of the Dirichlet problem ∂(∂ + λdz 1 )µ 0 X = 0, µ 0 bX = µ bX .

The parameters {a j,1 } (the first coordinates of {a j }) are supposed to be mutually different. The equations (4.4), (4.5) are solvable simultaneously with (4.2), (4.3). The relations (4.5) are equivalent to the equality In contrast to the planar case, when d = 1, g = 0, equation (4.10) does not necessarily have a unique solution. This makes it possible for almost all z 1 ∈ C to find a basis of independent solutions of (4.10) where (z 1 , z 2 ) = (z 1 , z 2,j (z 1 )) ∈ V , j = 1, 2, . . . , d. The condition for the form µ -1 ∂(∂ + λdz 1 )µ to be independent of λ allows us to find (maybe not uniquely) the coefficients γ j,k (z) in the expression for µ(z 1 , z 2 , λ). The equalities i 2 For the reconstruction of σ X it is in fact sufficient to use data ψ θ (z, λ) bX×C for at most d different values of the parameter θ.

∂(∂ + λdz 1 )µ V \X = i g j=1 c j δ(z, a j ).
d d c √ σ √ σ X = q X = µ -1 ∂(∂ + λdz 1 )µ X

H

  λ ( Rϕ) = e -λ H(e λ Rϕ). (4.1) From (4.1) and Proposition 2 we obtain ∂(∂ + λdz 1 )u = ϕ + ∂(H λ ( Rϕ)) = ϕ + λdz 1 ∧ H λ ( Rϕ),

3.

  The Faddeev type function µ = ψ(z, λ)e -λz 1 satisfies the Bers-Vekua type ∂-equation with respect to λ ∈ C\E ∂µ(z, λ) ∂ λ = b(λ)μ(z, λ)e λz 1 -λz 1 , with l = 1, . . . , d. The function b(λ), referred to as nonphysical scattering data, can be found by (4.6) through µ bX .In addition, the following important formulas for the data b(λ) are validd • λ • b(λ) = -λa j,1 -λā j,1 , (4.7)where λ ∈ C\E.On the basis of (4.3), (4.7) and Proposition 3, one can derive the estimate|λ • b(λ)| ≤ const(V, σ)(1 + |λ|) -g |∆(λ)| -1 , λ ∈ C\E. (4.8)4. Let us suppose now that the divisor {a 1 , . . . , a g } on Y \X is such that the exceptional compact E in C consists of isolated points λ 1 , . . . , λ N and|∆(λ)| ≥ const(V )dist(λ, E) if dist(λ, E) ≤ const. (4.9)Then the reconstruction procedure for µ X×C and σ X through scattering data b C can be done in the following way.The relations (4.2), (4.3), combined with the inequalities (4.8), (4.9), imply that the ∂-equation (4.6) can be replaced by the singular integral equation: e ξz 1 -ξz 1 d ξ ∧ dξ ξλ , whereµ l = lim δ→0 |ξ-λ l |≤δ bμe ξ z1 -ξz 1 d ξ ∧ dξ = lim δ→0 |ξ-λ l |=δ µdξ = O z (1), l = 1, 2, . . . , N, λ ∈ C\E. (4.10) This equation is of Fredholm-Noether type in the space of functions λ → (µ(•, λ) -1) : |µ -1| • |∆(λ)|(1 + |λ|) ∈ L p(C), p > 2.

λ

  → µ k (z 1 , λ), k = 1, 2, . . . , d, λ ∈ C, d ≥ d. Put µ(z 1 , z 2 , λ) = µ(z 1 , z 2,j (z 1 ), λ) = d k=1 γ j,k (z 1 )µ k (z 1 , λ),

  finally permit us to find all q and σ with given scattering data b C .The uniqueness of the reconstruction of µ X×C and σ X from the data b on C \ E is plausible but still unknown. Nevertheless, the uniqueness of the reconstruction of σ X from Dirichlet-to-Neumann data of the equation d(σd c U ) X = 0 can be proved by the above procedure using Dirichlet-to-Neumann data not just for a single function, but for a family of Faddeev type functions depending on a parameter θ:ψ θ (z, λ) = e λ(z 1 +θz 2 ) µ θ (z 1 , z 2 , λ), where ∂(∂ + λ(dz 1 + θdz 2 ))µ θ = i 2 qµ θ + i g l=1 c l δ(z, a l ) and lim z→∞ z∈V 1 µ θ (z, λ) = 1, (µ θµ θ (∞ j )) V j ∈ L p(V j), p > 2, λ ∈ C\E θ , j = 1, . . . , d.

  This formula becomes the classical Cauchy formula, when f = 0 on C\Ω and f ∈ O(Ω), where Ω is some bounded domain with rectifiable boundary in C.

	The generalized Cauchy
	formula was discovered by Pompeiu [P1] in connection with his solution of the Painlevé
	problem, i.e., in proving the existence for a totally disconnected compact set E with
	positive Lebesgue measure of a non-zero function f ∈ O(C\E) ∩ C(C) ∩ L 1 (C). The Cauchy-Pompeiu formula has a large number of fundamental applications: in the the-
	ory of distributions (L.Schwartz), in approximations problems (E.Bishop, S.Mergelyan,
	A.Vitushkin), in the solution of the corona problem (L.Carleson), in the theory of pseudo-
	analytic functions (L.Bers, I.Vekua), and in inverse scattering and integrable equations
	(R.Beals, R.Coifman, M.Ablowitz, D.Bar Yaacov, A.Fokas).
	Motivated by applications to Electrical Impedance Tomography we develop in this paper the Cauchy-Pompeiu type formulas on affine algebraic Riemann surfaces V ⊂ C 2 and give some applications.