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Cauchy-Pompeiu type formulas for 9 on
affine algebraic Riemann surfaces and some applications

G.M.Henkin
Dedicated to Oleg Viro on the occasion of his 60th birthday

Abstract

We present explicit solution formulas f = R(p and u = Ry f for the equations 0f = ¢
and (0 + Adz1)u = f — Hyf on an affine algebraic curve V C C?. Here H,f denotes
the projection of f € Wll”g (V') to the subspace of pseudoholomorphic (1,0)-forms on V:
OHxf = Az A Hyf. These formulas can be interpreted as explicit versions and preci-
sions of the Hodge-Riemann decomposition on Riemann surfaces. The main application
consists in the construction of the Faddeev-Green function for (0 + Adz1) on V as the
kernel of the operator Ry o R. This Faddeev—Green function is the main tool for the so-
lution of the inverse conductivity problem on bordered Riemann surfaces X C V, that is,
for the reconstruction of the conductivity function ¢ in the equation d(cdU) = 0 from
the Dirichlet-to-Neumann mapping U ‘ b — 0dU ‘bX. The case V = C was treated by
R.Novikov [N1]. In § 4 we give a correction to the paper [HM], in which the case of a
general algebraic curve V' was first considered.

Keywords Riemann surface. Inverse conductivity problem. 0-method. Homotopy formulas.
Mathematical Subject Classification (2000) 32565. 32V20. 35R30. 58J32.

Introduction

This paper is motivated by a problem from two-dimensional Electrical Impedance
Tomography, namely the question of how to reconstruct the conductivity function ¢ on a
bordered Riemann surface X from the knowledge of the Dirichlet-to-Neumann mapping

u‘b  — odU }b  for solutions U of the Dirichlet problem:

d(ach)‘X:Q U}bX:u, where d =0+0, d°=1i(0—0).

For the case X = Q C R®* ~ C (z = z1 + ix2) the exact reconstruction scheme was given
firstly by R.Novikov [N1] under some restriction on the conductivity function o. This
restriction was eliminated later by A.Nachman [Na].

The scheme consists in the following.

Let o(x) > 0 for z € Qand 0 € C?(Q). Put o(z) = 1 for z € R*\Q. The substitution
1 = /oU transforms the equation d(cd“U) = 0 into the equation dd®) = %@ZJ on R?.
From L.Faddeev’s [F1] result (with additional arguments [BC2] and [Na]) it follows that, for
each A € C, there exists a unique solution (2, A) of the above equation, with asymptotics

P(z,A) e E (2, ) =1+ 0(1), z— .

Such a solution can be found from the integral equation
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where the function

-1 e (W2HD2) duy A diw

A) = C, AeC

9(3) 22'(2702/ wiw—in ST NEE
weC

is called the Faddeev-Green function for the operator p — 9(0 + Adz)pu.

From work of R.Novikov [N1] it follows that the function w}bQ can be found through
the Dirichlet-to-Neumann mapping by the integral equation

(2N |y = € + / g (2 — €M) (PY(E,N) — Dot (€, ),
£€bQ

where (i)@bzézb}m, (i)O@[J:é@[JO‘bQ, ¢0‘bQ:¢’ 567,[10}(2:0.

By results of R.Beals, R.Coifmann [BC1], P.Grinevich, S.Novikov [GN] and R.Novikov
[N2] it then follows that ¥(z, A) satisfies a J-equation of Bers—Vekua type with respect to

A e C: o
o b(A)Y,

where A — b(\) € L2(C) N L?275(C), and ¥(z,\)e™** — 1 as A — oo, for all z € C.

This 0-equation combined with R.Novikov’s integral equation permits us to find, start-
ing from the Dirichlet-to-Neumann mapping, firstly the boundary values @b}bQ, secondly

the ”O-scattering data” b()\), and thirdly 7,[1} o

Summarizing, the conductivity function a‘ o, 1s thus retrieved from the given Dirichlet-
to-Neumann data by means of the scheme:

DN data — zp‘bﬂ — O—scattering data — zp‘Q —

dde\/a
BV

Main result

We suppose that instead of C we have a smooth algebraic Riemann surface V in
C?, given by an equation V = {z € C?; P(z) = 0}, where P is a holomorphic polyno-
mial of degree d > 1. Put z; = wi/wp, 22 = ws/wy and suppose that the projective
compactification V of V in CP? o C? with coordinates w = (wg : wy : we) intersects
CPL = {z € CP? wy = 0} transversally in d points. In order to extend the Novikov
reconstruction scheme on the Riemann surface V C C? we need, firstly, to find an appro-
priate Faddeev type Green function for 9(0+ Adz;) on V. One can check that for the case
V = C the Faddeev—Green function g(z,A) is a composition of Cauchy—Green—Pompeiu
kernels for the operators f + ¢ = 0f and u — f = (0 + A\dz)u, where u, f, and ¢ are
respectively a function, a (1,0)-form, and a (1,1)-form on C. More precisely, one has the

formula ~
-1 A=A doy A di
g(Z, )\) = 72 / — .
i(27) (w4 z)-w
wGC
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The main purpose of this paper is to construct an analogue of the Faddeev—Green function
on the Riemann surface V. To do this we need to find explicit formulas f = Rgp and
u = Ryf (with appropriate estimates), for solutions of the two equations df = ¢ and
(04 Adz1)u = f—Hxf on V. Here we consider V' equipped with the Euclidean volume
form dd°|z|?, and we require ¢ € L1 (V), f € Wibﬁ(V), and u € L>(V), p > 2, with
H,f being the projection of f on the subspace of pseudoholomorphic (1,0)-forms on V:
gHAf = j\le ANHNS.

The new formulas obtained in this paper for solution of 0f = ¢ and (0 + Adz1)u = f
on V one can interprete as explicit and more precise versions of the classical Hodge—
Riemann decomposition results on Riemann surfaces. We will define the Faddeev type
Green function for (0 + Adz1) on V as the kernel gy(z, &) of the integral operator Ry o R.

Further results

Let ¢ € C®)(V), with ¢ > 0 on V, and o = const on a neighborhood of V\V. Let
ai,...,aq be generic points in this neighborhood, with g being the genus of V. Using the
Faddeev type Green function constructed here, we have in [HM] obtained natural analogues
of all steps of the Novikov reconstruction scheme on the Riemann surface V. In particular,
under a smallness assumption on dlog+/c, the existence (and uniqueness) of the solution
p(z, A) of the Faddeev type integral equation

. c g
ueN =145 [ 0o T LS g a, seviaec

% =1

holds for any a priori fixed constants ci,...,c,. However (and this was overlooked in
[HM]), there exists only one unique choice of constants ¢; = ¢;(A, o) for which the integral
equation above is equivalent to the differential equation

0(0 + Mdz1)p ;(dd -1-7,2616 z,a),

where §(z, a;) are Dirac measures concentrated in the points a; (see also §4 below).

§1. A Cauchy—Pompeiu type formula on an affine algebraic Riemann surface

By L, (V) we denote the space of (p,q)-forms on V' with coefficients in distributions
of measure type on V. By L; (V') we denote the space of (p,q)-forms on V' with absolutely
integrable in degree s > 1 coefficients with respect to the Euclidean volume form on V.
If V= C and f is a function from L!(C) such that df € Lg1(C), then the generalized
Cauchy formula has the following form

1 Af(§) N de
2m/ -z z e C.
¢eC

fz) =



This formula becomes the classical Cauchy formula, when f = 0 on C\Q and f € O(Q),
where € is some bounded domain with rectifiable boundary in C. The generalized Cauchy
formula was discovered by Pompeiu [P1] in connection with his solution of the Painlevé
problem, i.e., in proving the existence for a totally disconnected compact set E with
positive Lebesgue measure of a non-zero function f € O(C\E) N C(C) N LY(C). The
Cauchy—Pompeiu formula has a large number of fundamental applications: in the the-
ory of distributions (L.Schwartz), in approximations problems (E.Bishop, S.Mergelyan,
A.Vitushkin), in the solution of the corona problem (L.Carleson), in the theory of pseudo-
analytic functions (L.Bers, I.Vekua), and in inverse scattering and integrable equations
(R.Beals, R.Coifman, M.Ablowitz, D.Bar Yaacov, A.Fokas).

Motivated by applications to Electrical Impedance Tomography we develop in this
paper the Cauchy—Pompeiu type formulas on affine algebraic Riemann surfaces V C C?
and give some applications.

Let V be a smooth algebraic curve in CP? given by the equation
V ={w e CP% P(w) =0},

with P being a homogeneous holomorphic polynomial in the homogeneous coordinates
w = (wp : wy : wy) € CP?. Without loss of generality we may suppose that
i)V intersects CPL, = {w € CP? wy = 0} transversally, V NCPL = {ay,...,aq},
d = deg P;
ii) V = V\CPL is a connected curve in C? with equation V = {z € C% P(z) = 0},

where P(z) = P(1, z1, z2) such that

OP/0
' /0 < const(V), if |z1] > ro = const(V);

8P/6zz

iii) For any z* € V, such that g—i(z*) = 0 we have 82P(,:/:"‘) # 0.

87;%
By the Hurwitz—Riemann theorem the number of such ramification points is equal to
d(d —1). Let us equip V with the Euclidean volume form d d¢|z|?.

Notation

Let WYP(V) = {F € L>*(V);0F € Lgl(V)}, p > 2. Let us denote by Hp (V) the
subspace in Lgvl(V), 1 < p < 2, consisting of antiholomorphic forms. For all p € (1,2),
the space Hé”l(V) coincides with the space of antiholomorphic forms on V' admitting an

antiholomorphic extension to the compactification V' c CP2. Hence, by the Riemann—
Clebsch theorem one has dimg H 1 (V) = (d — 1)(d — 2)/2 for all p € (1,2).

Proposition 1. Let {V;} be the connected components of {z € V; |z1| > ro}. Then for
all j € {1,...,d} there exist operators Ry: Lg (V) — LP(V) and Ry: L (V) — W'P(V)
and H: Ly, (V) — Hy,(V), 1 <p <2, 1/p=1/p—1/2 such that, for all ® € Lg,(V),
one has the decomposition

® = OR® + H®, where R = Ry + Ro, (1.1)

4
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¢ev ¢z

R — <£>@dt[ L), |§__ZZ|2]

(1.2)

g

HP = Z(/@ij)azj,

Jj=1 1%

with {w;} being an orthonormal basis for the holomorphic (1,0)-forms on V,ie.,

/WjA@k:5jk, j,k:1,2,...,g,
1%

and

lim R®(z) =0.
z€Vj

Z— 00

Remark 1. Tf p € [1,2) and ¢ € (2, 00] the condition ® € Lg (V) N L (V) implies that
Rd e C(V).

Remark 2. For the case when V = C = {z € C?; 2, = 0} Proposition 1 and Remark 1 are
reduced to the classical results of Pompeiu [P1], [P2] and of Vekua [V].

Remark 3. Based on the technique of [HP] one can construct an explicit formula not only
for the main part R; of the R-operator, but for the whole operator R.

Proof of Proposition 1: Let Q(§,z) = {Q1(&,2),Q2(&, 2)} be a pair of holomorphic poly-
nomials in the variables £ = (£1,&2) and z = (21, 22), such that

oP

Q€)= g(é’) and (1.3)

P(€) — P(2) = Qu(&, 2) (€1 — 21) + Qa(E, 2)(E2 — 2) = (Q(e, 2), € — 2).

The conditions i) and ii) imply that for g small enough there exists a holomorphic retrac-
tion z — 7(2) of the domain U., = {z € C*: |P(z)| < g9} onto the curve V.

Put U., = {z € C% |P(2)| < &, |z1] < 7}, where 0 < ¢ < g and r > 7. Put
also V¢ = {z € C% P(z) = ¢}, where ¢ € C, |c| < g0 and ®(z) = ®(r(2)), 2z € U,,.
The condition ® € Lg ; (V') and properties of the retraction z — r(2) together imply that
d® = 0 on U., and

[@]|Lr(vey < const(V) - [ @] Le vy, (1.4)

uniformly with respect to ¢, for |c| < gg. By results from [H] and [Po] we can choose the
following explicit solution F. L on U, of the d-equation GFE =0

U7’
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o= G [ B[] e

§€Ue

= (&2 — 2o)
/e {‘ @ —zl>|s—z|2} A A et (1:5)

gebue,'r: |§1‘:T

- -z Q
d A det |:|§—Z|2,P(§>—P(Z>} /\d&l/\dfg}, ZEU&R.

§eble v |P(§)|=2

The property (1.4) implies that for any z € V' we have

/&mdet[Ig |2,a5|§ |2}/\d§1/\d§2—>0 e—0 and

'Eeus,r

- (&2 — 22)
/ @/\{—(51_21)‘5_42}/\d{l/\d§2—>0,5—>O,r—>oo.

£eble 1 |€1]="r

Hence for all z € V' there exists hn% F., = F(z), where
E—

o= | g’dfl>”t[|§_ =02 0
&e

V8§

From (1.5) and (1.6) it follows that

O.F|, = ®(2). (1.7)
Now put F} = R1®. Using (1.2), (1.3), (1.6), and (1.7) we obtain

- 1 d OP - £—%
0Oy = g [ O G ndet | (0,055 | -
cev I
1 d&, 1 %(S) §2 — 22 51 —ZzZ1 dz;
<I>—|—2—m. @(5)/\;/\|§_Z|4det (@ (6 — =) det £z dz
Ecv 2
¢+ Ko
where L e ndn  (RO.6— ) (22(2),E—2)
Ko = — Tl ) 2 ) dz. (1.8)
cev I3 &2



The estimate R1® = I, € LP(V) follows from the property ® € LP(V) and the following
estimate of the kernel for the operator R;:

oP -t oP £z B 1
’(6—52(5)) det {6—5(0’ m] déy| = O(H) (|d&1] + |d&2l),
where £,z € V.

For the kernels of operators ® — K® and ® — 0,K® we have the corresponding

estimates _ ~
(56 (6):€ —2) - (55 (2),€ — 2) d&1 N2y

O (6)-1¢ —=*- 2L (2)
(1.9)
{O(1+| 2)[(dér + d&2) A (dZ +dz2)| i [§ -2 <1,
O(ezp) I(dér +déo) A (d2r +dz2)| i [€—2[ 2 1.
) <8—f;<£>s—z>~<8—’?<>é—->dslAdzl -
) 92(6)-1e—2I*- 22(2)
(1.10)
O(W)‘(dfl =+ d£2) A (dgl + dfg) A (le + dZQ)‘ if ‘f — Z‘ < 1,
O (e ) [(d€s + dé2) A (dz1 + dzo) A (dZ1 + dZs))] it 16—z >1,
& ze V.
These estimates imply that, for all p > 2 and p > 1, one has
By L KD € Wyl (V)N L5, (V). (1.11)

From estimates (1.9)-(1.11) it follows that the (0,1)-form &, = K® on V can be con81dered
also as a (0,1)-form on the compactification V of V in CP? belonging to the spaces Wo P(V)

for all p < 2, where V is equipped with the projective volume form d d° In(1+ |z]?).

From the Hodge-Riemann decomposition theorem [Ho], [W] we have
= 0(0*G®Pg) + HDy, (1.12)

where H®q € Ho,l(f/), and G is the HodgeGreen operator for the Laplacian 00* + 0*0
on V with the properties

G(Hy1(V)) =0, 0G =G0, 0*G = Gd*.
The decomposition (1.12) implies that

"GPy € W2P(V), pe (1,2) and HP, € Hy(V),

7



and this in turn implies that 9*G®, € C(V). Returning to the affine curve V with the
Euclidean volume form, we obtain that

Ro® € §*GK®|, € W'P(V), Vj > 2, where
WY (V) € (F e L®(V); OF € L, (V)}, (1.13)
def

and H® = HK®|, € Hy (V), p> 1.

Now put R = Ry + Ro. Then, for all ® € L} (V), we have Ry® € W'P(V), and
R® € L®(V)ULP(V).

By Corollary 1.1 below, which is based only on (1.13), it follows that, for any form
® € Lg,(V), one has a limit

Jim R®(2) o R®(c0;).
z€Vj
Put Ry® = Ry® — R®(co;) and R® = R® — RP(co,). We then have property (1.1) for

R = Ry 4+ Ry. This concludes the proof of Proposition 1.

Corollary 1.1. Let ' € L>(V) and OF € L ;(V),1 <p < 2. Then, forall j € {1,...,d},

there exists a limit lim F(z) e F(o0;) such that (F — F(o0;) € LP.

z€V;

v,

Proof: Put OF = ®. Then by (1.13) we have R® € L>°(V)ULP(V) and O(F — R®) = H®.
Then the function h = F — R® is harmonic on V. The estimates F € L>(V) and
R® € LP(V)U L>®(V) imply by the Riemann extension theorem that i can be extended
to a harmonic functlon h on V. Hence, h = F — R® = const = ¢. This implies that there

exists lim F(z) = cj = F(ooj). Corollary 1.1 is proved.
z€V;

Corollary 1.1 admits the following useful reformulation.

Corollary 1.2. In the notations of Proposition 1, for any bounded function ¢ on V', such
that Oy € LP(V), 1 < p < 2, the following formula is valid:

B _ 1 det [GE (€),€ — z]d¢
w(Z)—¢<OO])+R08¢+2—m€€/‘; af( g_P() |§—Z|2 )/\”(p,

where Rody € WhP(V), 1/p = 1/2 — 1/p, and Rydy(z) — 0, for z € V;, with z — oc.

§2. Kernels and estimates for 0f = ¢ with ¢ € L} (V)

Let ¢ be a (1,1)-form of class L% (V') with support in Vo = {2 € V; |21| < 70}, where 7o
satisfies the condition ii) of §1.



If V = C then by classical results from [P1] and [V], the Cauchy—Pompeiu operator

o4z [ el e g
2 -z
£eVo

determines a solution f = Ry for the equation 8f = ¢ on C with the property
FEWLP(C)NO1o(C\Vp) forall 5> 2.
In this section we derive an analogous result for the case of an affine algebraic Riemann

surface V' C C2.
Let V\Vy = U“f:le, where {V;} are the connected components of V\V;.

Lemma 2.1. Let ® = dz;|¢ and f = Fdz; = (R®)dz, where R is the operator from
Proposition 1. Then

i) ®e Lj,(Vo), p€[l,2), ®=0o0nV\V;
i) F|, € Whr(Vp) Vp € (1,2), f e WiF(V) Vb€ (2,00),
OF = ® —'H®, where ‘H is the operator from Proposition 1,
Of = — (H®) ANdz, and
1 E | oe v\ vo) + 1 F Nl Loy < const(Vip)||@f|Lovy, 1/p=1/p—1/2;
iti) if, in addition, ¢ € W°(V), then f € W>P(V).

Proof:

i) The property = 0 follows from @}V\VO = 0.

®|
V\Vo
Put Vi& = {z € V; ﬂ:}g—i} > j:‘g—i}}. The definition ® = dz ]y implies that

(‘D‘VJF = ®*dz;, where &1 € L>®(V;") and
’ 2.1
@‘V‘, = ®7dzy/(021/0%2), where ®~ € L>(Vy ). 21)

The properties (2.1) imply that ® € Lg (Vo) for all p € (1,2).

ii) The equalities OF = ® — H® and Of = ¢ — (H®) A dz; follow from Proposition 1
together with the definitions ® = dz; | and f = Fdz;. The inclusions F' € L>*(V\V})
and F }Vo € WtP(Vj) follow from the formula FF = R® and Proposition 1. The

inclusion f € Wll”(’f (V) follows from the equalities f = ¢ — (H®) Adz, f = Fdz
and Proposition 1.

iii) If, in addition, ¢ € Wllloo (V), then f € Wff(V) It follows from equalities above
with ¢ € W11100(V) and supp ¢ C Vj.

Lemma 2.2. For each (0,1)-form g € H},(V) there exists a (1,0)-form h € LY (V)
(1 < p < 2), unique up to adding holomorphic (1,0)-forms on V', such that

Oh|y = gdz. (2.2)

9



Proof: For any g € Hgvl(V) the (1,1)-form g A dz; determines a current G on Y by the
equality

d

(Gx) = lim Y [/(X — x;(00))gdz1 + x;(0) / g Adz],

R—o00 4

=ty (2€Vy; |z1|<r}

where x € C®)(V), ¢ > 0 and y;(c0) = lg/l x(2).
Z€V;

By Serre duality [S], the current G is d-exact on V if and only if

(G,1) = lim / gNAdz =0. (2.3)

R—o0
{z€V; |z1|<r}

Let us check (2.3). We have
/ gNhdz = — / z21 N\ g.
{zeV: |z1]<r} {z€V: |z1]=r}
Putting w; = 1/2; into the right-hand side of this equality, we obtain

[ ontn—= [ a0

: w1
{(z€V: |z |<r} 1=y |=1/r

Here the last equality follows from the properties
gj(ﬂJl)dﬁ)l = g‘Vjﬂ{|w1|§1/r} and g; € O(D(O, 1/7“)).

Hence, by (2.3) there exists h € L%’O(V) such that equality (2.2) is valid in the sense of
currents. Moreover, any solution of (2.2) automatically belongs to L’f’O(f/), 1 <p<2.

Such a solution h of (2.2) is unique up to holomorphic (1,0)-forms on V because the
conditions h € L’l’ﬂo(V) and 0h = 0 on V imply that h extends as a holomorphic (1,0)-form

on V.
Notation: Let Ht: Hf (V) — Lf,o(f/> (1 < p < 2) be the operator defined by the formula

g +— Htg, where H+g is the unique solution h of (2.2) in Lf’o(f/) with the property

/h/\gzo for all g € Hy (V).
v

10



Lemma 2.2 guarantees the existence and uniqueness of H+g € Lf’O(V) for any g € Hg (V).

Proposition 2. Let R be the operator defined by formula (1.1), and H the operator
defined by formula (1.13). For any (1,1)-form ¢ € L} (V)N L% (V) with support in Vg,
put

Ry = R'¢ + R, (2.4)
where
R'o = (R(dz]¢))dz1, R°p = Ht o H(dz |p).
Then o
ORp = o, (2.5),
f=Fdzsn =Rpe Wllv’g(V) for all p € (2, 00), F‘Vo € WHP(Vp) for all p € (1,2)
SO 2.6
and f}vl = Z CLkdzl + bidzy, if |z1| > ro. (2:6)
z
k=1 “1

Herel=1,...,d,and b; =0 for [l = j.

Proof: The properties (2.5) and f = Ry € Wll”g (V) follow from Proposition 1 and Lemmas
2.1, 2.2. The properties (2.5) and SD}V\VO = 0 imply analyticity of f on V\Vy. The
series expansion (2.6) follows from the analyticity of f‘V\VO and the inclusion f‘V\VO €
LT (VAVo).

Supplement: Let Vo = {z € V : |2| < 7}, where 7 > ro. If supp ¢ C V; and
g ~
(p — ché(z,al)) € LT (V), where a; € Vi NV,
=1

then ,
(Re = > aR(5(z,a))) € Wi (V).
=1

§3. Kernels and estimates for (0 + \dz;)u = f, with f € Wllﬂ’é;(V)

If V= C then the equation Ou + Audz; = f was also introduced by Pompeiu [P2].
One can check that this equation can be solved by the explicit formula:

NN MAF(EdE aer .1 NAEf(€)dE
Mg [T T m e [ S

eeC {56@: [€l<r}

For a Riemann surface V = {z € C? : P(z) = 0} we will obtain the following
generalization of this formula.

11



Proposition 3. Let f = Fdz; be a (1,0)-form as in Proposition 2, i.e., F‘Vo e Whr(Vp)

for allp € (1,2), f € Wibﬁ(V) for all p € (2,00), and supp Of C Vi. Let ey (&) = eM1 A
Put

Ryi(exf) = S lim / eA(g)f@)aﬁc’if(l%g det [ap(g) |§ _j‘z}

2Tl r—00
{€eV: |gl<r}

Put also H f o H—f, where ‘H is the operator from Proposition 1. Finally, let
u=Ryf=Ryf+ RS/, (3.1)

where R} f+ RS f = e_x(2)-Ri(exf)+e—_x(2)-Ro(exf), with Ry and Ry being the operators
from Proposition 1.

Then for all A # 0 one has:
i) (04 Mdz1)Rxf = f — Ha(f), where Hx(f) = e_x(2)H(exf).

i)
lu = u(o0r) || Lo vy <
consi(V: ) min = 50) (¥l + 1Pl + 10 g v0)
H(?UHL,;’O(V) < const(V, p) - [|OF | » o(v), where I/p=1/p—1/2,1=1,...,d.
iif)

const(V, p)
(1 + |21 ]) (w — u(o0r)) || oo (vy) < W(||F||Lﬁ(vo) F 1 F | oo (v\ve))s

11+ [22])Oull Lge, vy < const(V, p)(VIAl + D)([Fl| ove) + 1Fll Lo (vive)), VD > 2.

Supplement: Put

L**E(V) = {u; “‘v c L*7¢(Vp), c L>T*(V\Wy)}.

U‘V\V

s - _ g . -

If f = fo—f1, where fy € Wll”éo(V), suppdfo C Vpand f1 = > cR(6(z,a1)), a1 € V5NV,
=1

then instead of i)-iii) we have i) and the following conclusion:

i)

const(V, p)

g
|Raf = Raf (o)l zsey < min(IN 712, XY (ol + 3 lel),

=1

const(V D)
0Bl z5e ) < D)

(I oll2z + Z lal),
const(V, p)

IHA () s, 0v) < =)

(Il follyr2. + Z |ci]), where > 2,0 < & < 1/2.
' =1

12



Lemma 3.1. Put

B P(&)dE N dE
I(z) = / ez €
{§€C: |£]<p}

where ¢ € LP(Vy), p > 1. Then, for any € > 0 and any p > 2, one has the estimate

1

HJ(Z)HLﬁ((C) S g0<p(2_2€ﬁ)/ﬁ) : H¢||L(1+e)/e(vo).

Proof: Using the notation ||| = ||¢||La+e)/2(v4), We obtain from the expression for J(z)
the following estimates:

d d7 1/(1+e)
W”§</|wﬁﬁij e <

[€1<p
v ; 1/(14e)
dr
O — ) . <
( ve/‘v—zu+uwwﬂ) Il <
r=0 0
2 ! 1/(14¢)
0 /f@ ! /" dp e <
J e 2t ) (g =1 +e)tte

_O</dr 1< 1 1 )1/(”5) i
e \J I\ = Izl (= el + =) :

From the last estimate we deduce

|z

P
1 dr elz| 1/(1te) _
v o( ([ 2 [2E)) T e i <o
0

|z

" ar 1/(1+¢)
wd )< 20( 0 [H2)) Wl it Bz
0

re|z|¢

These equalities imply

1 1 2¢/(1+e .
) < 20( () )l it 1l <5

1 L (1—e)/(14e) :
|J(Z)\SEO (gp |Yle, if 2] > p.

13



Putting |z| = t we obtain finally that

1 f —e ~ T dt l/ﬁ 1
— =P = 1 -
HJ||L5(C) S c (/ t2€p/(1+€) 1 101 /tﬁ—l) Hw”& S 60(/)
0

P

[

+

) ..

Lemma 3.1 is proved.

Proof of Proposition 3:
i)

(04 Adzy)Ryf = (04 Mdzy)e_x(z2) - R(exf) =

d(e-x(2)) - R(erf) + e-x(2)A(R(ex])) + Adz1e_x(2) - R(erf) =
(=Adz + Adz1)e_x(2) - R(exf)+

e-a(2) - (ex(2)f = Her) = f —e_xHlerf) & f — Haf,

where we have used the equality (1.1) from Proposition 1.

iii) Let 7 > ro. Let the functions y+ € C(V) be such that xy +x_ = 1 on V,

suppx+ C{E eV |&| < 2r}, suppx— C {£ €V :|&| >r}, and |dx+| = O(1/r).
We then have © = u4 + u_, where

ug(z) = Ra(x+f). (3.1)4

Using the properties f € L*°(V) and |ey| = 1, in combination with the equality
Ouy = x+Fdz1 — Muydz — Ha(x+f), we obtain for vy and %HTT the estimates:

11+ [2]) (ur (2) = ug-(c0r)) Lo (viy = O f gy vy, 1=1,.-.d,

(3.2)
1+ [2)Our(2)|| gy (v) = O + DI FllLgs, (v

In order to estimate u_ we transform the expression (3.1)_ using the series expansion
(2.6) for f‘v-’ and we integrate by part. We thus obtain
J

u_(z) = Rax—f = R\x—f + RAx—f =

B e_)\(z)l / e>\£1—>\£1(dx VE A d€; det [8—12(5),5— z] N
2mi )\gev a§2< £) -6 — 2|2
6_)\(2) l A1 —NE > k C](cj) d§1 A dgl det [8_1?(§> 5_ Z} . (3.3)
2mi AZJV ST b T2 e —p
6_)\(2)1 >\€1—5\51 det [3_1;(5) 5_ Z]dél) _
omi )\ge/V ¢ X_Fa€< _15( )-|€ — 2|2 +e_x(z)Ro(exx—f),
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where the operator Ry = 0*GK is defined by (1.13). Using Corollary 1.2 we have, in
addition,

i (FE) ~ LE Ry )).

Putting the last equality in (3.3) and making use of the properties |ey| = 1, |[dx_| = O(1/r),
Ou_ = x_Fdz—Au_dz —Hx(x-f), and the property of Ry, we obtain from Proposition,1:

1L+ [z ]) (ue = u(000)l[ Lo () =

1 _
O(==) UF N oy + IF e (ryvey) + 11+ 21 ) Ro(eax— f)ll e vy +

|Alr
1 (3.4)

(1+ [z1])Rod(eax—F)llLevy < O() I FllLsqvy, 1=1,...,d

27|\ G

Ou_
and ||(1+ |Zl|>8—zl”L°°(V) =00 /r + 1)([|F|lscve) + 1Fllnoevr\va))-

The estimates (3.2) and (3.4) imply

I+ [22) (u = w(o0)) || oo (vi) =

1
O(r+ =) (IF |l Lsve) + 1 Fll Lo (v ve))

"
and [|(1+ |z ])0u e, 1) =
O+ 1/r + D(IF | 1ocvy + I F Lz qiva)s V5 > 2.

Putting in (3.5) r = ro/4/|A| we obtain iii).
ii) For proving ii) let us put r = 7p and transform (3.1) for uy in the following way:

ui(z) = Rax+f =
e_x(2) 1 / 1Ay FA dgldet[%—?(ﬁ),g — 2]

e A J 55 (©) - le — 2P

e_x(2) 1 / ex\él—X&XJra}_?’ A déldet[%—?(f), £ — z] (3.6)

2mi X|£1|<T 3—5(5) e — 22
e-x(2) 1 AL, <det BL(¢), & — z)déy ) ]
omi )\|€1|<T c X+ 10 8_152(5) g — 2P + e_x(z)Ro(exx+f),



where Ry is the operator from Proposition 1. Using the last expression for u, (z), together
with the property F‘VO € WP(Vy) and Corollary 1.2, we obtain

[t |l Loe vy = O/ NNF i1z )- (3.7)
This inequality together with (3.4) and statement iii) proves the first part of statement

ii). Formula v = Ry f implies d,u = f — Adz;u — H, f. From this and from the already
obtained estimates for u we deduce the second part of statement ii):

10ull 7 vy < const(Vop)|OF |y vy-

i)’ In order to prove in this case the estimate for v = Ry f with |A\| < 1, we combine the
arguments above with Lemma 3.1, and obtain instead of (3.5) the following:

1
= wtoe sy < 200+ () (Mol g +Z‘Cl

A 147
0ull 22y < ZO(r + e )(||f0||W1p(V)+Z|cl|

Putting in (3.5)" r = ro/+/|A|, we obtain the required estimate for Ry f with |A] < 1. To
prove the estimate for v = Ry f with |A] > 1, we use (3.6) and the Calderon-Zygmund
L?~¢-estimate for the singular integral on the right hand side of (3.6).

In order to prove the statement concerning H) f, we just perform an integration by
parts in the expression

Haf = e xHenf) = Ze O [ ©7(© 1a@ ),
g . 1%
where f = fo + > aR(6(z,a;)), and Where {wi, Il =1,...,¢9} is an orthonormal basis of
=1
holomorphic (1,0)-forms on V.

4. Faddeev type Green function for 9(d + Adz;)u = ¢ and further results

Let R be the operator defined by formula (2.4) and let Ry be the operator defined by
formula (3.1).

Proposition 4. Let p € L% (V) with support in Vo = {z € V : |z1| < 1o}, where 7o
satisfies the condition of §1. Then, for u = Gyp def Ry o Rgp, where A # 0, one has
i) A(0 + Mdz1)u = ¢+ Adz AHy(Ryp) on V;

i) [u]| oo (vy < const(Vo, p) - min (1/3/|AL L/[AD llellLee vy, P> 2,
|0ull 7 vy < const(Vo, ) @l g, (), P> 2.
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Supplement. If we can write ¢ = @y + @1, where o € L‘ff’l(V), supp o C Vp, and
Y1 = zg: ic10(z,ar), with a; € V) N Vo, then instead of i)-ii) we have i) and the following
conchllgilon:
i) ,
lu — u(ooy) || L2+evyy < const(V,e) - min (]A| /2, AT (leollzse, vy + > leil),
j=1

g
|0ull 2= vy < const(V, &) (llol e, (vo) + > lal),
=1

where 0 < e < 1/2.

Proof: By Proposition 2 we have
f=Fdz =Rpe Wi (V) Vpe (2,0, F|, e W) Vpe(l,2).

Propositions 2 and 3 imply that u = Ry o Rp € W1P(V). Let us now verify statement i)
of Proposition 4. From Proposition 3 i) we obtain

(04 Adz1)u = (0 + Adz)Ry o Rp = Rp + Ha(Ryp), where

. . (4.1)
'HA(RQO) = G_AH(GARQO).

From (4.1) and Proposition 2 we obtain
(0 + Mdz1)u = ¢ + O(HA(Ry)) = ¢ + Mz A HA(Ry),

where we have used that H(Ry) € Hy o(V).
Property 4 ii) follows from Proposition 3 ii), iii). The supplement to Proposition 4 follows
from the supplement to Proposition 3.

Definition B
We define the Faddeev type Green function for 9(0 + Adz1) on V' as the kernel gx(z, ) of
the integral operator Ry o R.

Definition
Let q € 01,1(‘7) be a form with supp ¢ contained in Vj, and let g denote the genus of V.
The function 1 (z,\), z € V, A € C, will be called the Faddeev type function associated
with the potential ¢ and the points ay,...,a, € V\Vo, if ¥\ € C\E, where E is compact
in C, the function u = 1¥(z, \)e~**! satisfies the properties:

- i < .
00+ Mdz1)p = S +1 chd(z, ar) and lim p(z,A) =1,

=1 zeVp

(1= (o), €LP(Vj), p>2, j=1,....d,
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where §(z, a;)- Dirac measure concentrated in point a;.

Based on the Faddeev type Green function g)(z,£), and on Proposition 4, we have in
[HM] extended the Novikov reconstruction scheme from the case X C C to the case of a
bordered Riemann surface X C V.

Definition 3
Let {w;} be an orthonormal basis for the holomorphic forms on V. An effective divisor
{a1,...,a4} on V will be called generic, if

det [ﬁ(aw }j,k:1,2,...,g} # 0.

Lemma. Let {a;} be a generic divisor on V. Put

AW =det [ B a) A@(O ],

Eev

where R is the operator from Proposition 2. Then, under the condition that |a;| > A,
j=1,2,...,g, with A large enough, limy_,|\? - A(A)| < oo, lim, _, |\ - A(N)| > 0 and
the set

E={AeC: A(N) =0} is acompact nowhere dense subset of C. (%)

The following is a corrected version of the main results from [HM]:

1. Let X be a domain with smooth boundary on V such that X D Vy, X CY C V. Let
o 670(2)(‘/), oc>0onV and o0 =1on V\X. Let ay,...,a, be a generic divisor on
Y\ X, satisfying condition (x). Then for all A € C\E there exists a unique Faddeev

type function (z, \) = p(z, A\)e**' associated with the potential ¢ = % and the

divisor {a;}. Such a function can be found (together with constants {¢;}) from the
integral equation:

peN =145 [ ool H AW, 02

feXx
where
_HA Rlqu)) Zcﬂ-l,\ (z,a1)), (4.3)
pu(z, A) — 1, zEVl, z — 00,
A e C\E.

18



The relation (4.3) is equivalent to the system of equations

g _
)\CL 1—XG;1 Wi
25 ci(N)ers it —(a;) =
dz
=1

<1

/ Az1— A% #_216111\/_/\8111\/7) ( );j;l(z>7

ze€X

where k = 1,..., g and {w;} is an orthonormal basis of holomorphic forms on V.

. For all A € C\E the restriction of p = e **19)(2, A1) to bX can be found through
Dirichlet-to-Neumann data for g on X by the Fredholm integral equation

Mix+ [ EO@EN ~ o ) = 1+1Ycioalzaa) (4)

£ebX J=1

where .
_iZ(aij)_ij = / PO+ Mz)u=0, k=2,...,9+1, (4.5)
j=1 z€bX

and g is the solution of the Dirichlet problem

0(0+ Adz1)po|x =0, prol,x = hf,x-

The parameters {a;} (the first coordinates of {a;}) are supposed to be mutually
different.

The equations (4.4), (4.5) are solvable simultaneously with (4.2), (4.3).
The relations (4.5) are equivalent to the equality

g

(0 + )\dzl),u}V\X = iché(z,aj).

Jj=1

. The Faddeev type function j = 1(z, \)e~**! satisfies the Bers—Vekua type 0-equation
with respect to A € C\E

WD) _ yn)z, e, (4.6)
O\
where o
b()\) def le)l’folo z1 N1 — Az (Z A)/ le)l’folo /J,(Z, )\),
z€V, )\ 0z 1 zeV,
with { = 1,...,d. The function b()), referred to as nonphysical scattering data, can

be found by (4.6) through u‘bx.
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In addition, the following important formulas for the data b(\) are valid

3 1 1 7 . g _

“A-b(N\) = —— )\21 )\Zla — b Az1—AZz1 . Aaj1—Aaja .

( ) 271 H= 271 26 QM+ZZCJG , ( )
zebY 2€X 7j=1

where \ € C\E.
On the basis of (4.3), (4.7) and Proposition 3, one can derive the estimate

IA-b(N)| < const(V,o)(1+ |A)7AN)|7!, A€ C\E. (4.8)

. Let us suppose now that the divisor {ai,..., a4} on Y\ X is such that the exceptional
compact F in C consists of isolated points Aq,..., Ay and

|A(N)| > const(V)dist(A, E) if dist(A, E) < const. (4.9)

Then the reconstruction procedure for u‘ +xC and O" + through scattering data b‘(C
can be done in the following way.

The relations (4.2), (4.3), combined with the inequalities (4.8), (4.9), imply that the
0-equation (4.6) can be replaced by the singular integral equation:

N
(/ub—l)—i-%lim / b(é) Ez1— 521(” )df/\d5+ 1 Z 122

T 6—0 §—A  2mi NN
Crufle—nl<sy N
1 d{' A dE
- £z1—€z h
57 b(&)e Toa where
C
p=lim [ et Sagndg=tim [ pdg=0.00),
[E—=X|<6 |€—X;|=6

l=1,2,...,.N, A€ C\E.
(4.10)
This equation is of Fredholm—Noether type in the space of functions

A= (5 A) = 1) s =11 [AMIA +[A]) € LP(C), > 2.

In contrast to the planar case, when d = 1, g = 0, equation (4.10) does not necessarily
have a unique solution. This makes it possible for almost all z; € C to find a basis of
independent solutions of (4.10)

A= up(z1,A), E=1,2,....d, XeC, d>d.
Put

w21, 22, A) = p(z1, 22,5(21), Z'ij (21)px (21, A),

20



where (21,22) = (21,20,5(21)) € V, j = 1,2,...,d. The condition for the form
p10(0 + Adz1)p to be independent of A allows us to find (maybe not uniquely)
the coefficients v; 1 (z) in the expression for p(z1, 22, A). The equalities

P
2 Jo x4

finally permit us to find all ¢ and o with given scattering data b}C.

}X =pu o0+ Adzl)u}x

The uniqueness of the reconstruction of ,u} v and O" + from the data b on C\ E is

plausible but still unknown. Nevertheless, the uniqueness of the reconstruction of a‘ <

from Dirichlet-to-Neumann data of the equation d(cd°U )‘ x = 0 can be proved by the
above procedure using Dirichlet-to-Neumann data not just for a single function, but for a
family of Faddeev type functions depending on a parameter 6:

Yoz, A) = eMF1T9%2) (2 25 N), where

. g
9(0 + A(dz1 + 0dza)) g = %QMG +iY_ad(z,a)) and  lim pg(z,\) =1,

=1 z€Vy
(1o — polooy )]y, € L(V), 5>2 NEC\Ea, j=1L,....d

For the reconstruction of 0} it is in fact sufficient to use data 1p(z, A ¢ for at

)‘be

most d different values of the parameter 6.
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