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Introduction

It is well known that the one dimensional ferromagnetic Ising model exhibits a phase transition when the forces are sufficiently long range. A fundamental work on the subject is due to Dyson [START_REF] Dyson | Existence of phase transition in a one-dimensional Ising ferromagnetic[END_REF]. He proved, by comparison to a hierarchical model, that for a two body interaction J(n) = ln ln(n+3) n 2 +1 , where n denotes the distance, there is spontaneous magnetization at low enough temperature.

On the other hand Rogers &Thompson [START_REF] Rogers | Absence of long range order in one dimensional spin systems[END_REF] proved that the spontaneous magnetization vanishes for all temperatures when lim

N →∞ 1 [ln N ] 1 2 N n=1 nJ(n) = 0.
Later, Fröhlich & Spencer [START_REF] Fröhlich | The phase transition in the one-dimensional Ising model with 1 r 2 interaction energy[END_REF] proved the existence of spontaneous magnetization when J(n) = n -2 . For the same model Aizenman, Chayes, Chayes, & Newman [START_REF] Aizenman | Discontinuity of the magnetization in one-dimensional 1/|x -y| 2 percolation, Ising and Potts models[END_REF] proved the discontinuity of the magnetization at the critical temperature, the so-called Thouless effect. When J(n) = n -2+α , α < 0 there is only one Gibbs state [START_REF] Ruelle | Statistical mechanics of one-dimensional Lattice gas[END_REF][START_REF] Dobrushin | The description of a random field by means of conditional probabilities and. conditions of its regularity[END_REF][START_REF] Dobrushin | The conditions of absence of phase transitions in one-dimensional classical systems[END_REF] and the free energy is analytic in the thermodynamic parameters, see [START_REF] Dobrushin | Analyticity of correlation functions in one-dimensional classical systems with slowly decreasing potentials[END_REF]. More recently the notion of contours introduced in [START_REF] Fröhlich | The phase transition in the one-dimensional Ising model with 1 r 2 interaction energy[END_REF] was implemented in [START_REF] Cassandro | Geometry of contours and Peierls estimates in d = 1 Ising models with long range interaction[END_REF], by giving a graphical description of the spin configurations better suited for further generalizations. The case studied in [START_REF] Cassandro | Geometry of contours and Peierls estimates in d = 1 Ising models with long range interaction[END_REF] covers the regime 0 ≤ α ≤ (ln 3/ ln 2) -1. By applying Griffiths inequalities the existence of a phase transition in the full interval 0 ≤ α < 1 can be deduced either by [START_REF] Cassandro | Geometry of contours and Peierls estimates in d = 1 Ising models with long range interaction[END_REF], or by [START_REF] Fröhlich | The phase transition in the one-dimensional Ising model with 1 r 2 interaction energy[END_REF].

A natural extension of this analysis is its application to disordered systems. One of the simplest prototype models for disordered spin systems is obtained by adding random magnetic fields, say gaussian independent identically distributed with mean zero and finite variance. The problem of (lower) critical dimension for the d-dimensional Random Field Ising Model was very challenging at the end of the eighties since the physical literature predicted conflicting results. For finite range interaction the problem was rigorously solved by two complementary articles, Bricmont & Kupiainen [START_REF] Bricmont | Phase transition in the three-dimensional random field Ising model[END_REF] and Aizenman & Wehr [START_REF] Aizenman | Rounding of first order phase transitions in systems with quenched disorder[END_REF]. In [START_REF] Bricmont | Phase transition in the three-dimensional random field Ising model[END_REF] a renormalization group argument was used to show that if d ≥ 3 and the variance of the random magnetic field is small enough then almost surely there are at least two distinct Gibbs states (the plus and the minus Gibbs states). In [START_REF] Aizenman | Rounding of first order phase transitions in systems with quenched disorder[END_REF] it was proved that for d ≤ 2, almost surely there is an unique Gibbs state. The guide lines of these proofs are suggested by a heuristic argument due to Imry & Ma [START_REF] Imry | Random field instability of the ordered state of continuous symmetry[END_REF].

In the long-range one-dimensional setting the Imry & Ma argument is the following: the deterministic cost to create a run of -1 in an interval of length L with respect to the state made of +1 at each site, is of order L α , while the cumulative effect of the random field inside this interval is just L 1/2 . So when 0 ≤ α ≤ 1/2 the randomness is dominant and there is no phase transition. This has been proved by Aizenman & Wehr [START_REF] Aizenman | Rounding of first order phase transitions in systems with quenched disorder[END_REF]. They show that the Gibbs state is unique for almost all realizations of the randomness. When 1/2 < α < 1, the above Imry & Ma argument suggests the existence of a phase transition since the deterministic part is dominant with respect to the random part as in the case of the three-dimensional random field Ising model. However a rigorous result is this direction was missing.

In this paper we study the random field one-dimensional Ising model with long range interaction n -2+α , α ∈ ( 1 2 , ln 3 ln 2 -1) ≃ ( 1 2 , 58 100 ). We assume that the random field h[ω] := {h i [ω], i ∈ Z Z} is given by a collection of independent random variables, with mean zero and symmetrically distributed. We take h i [ω] = ±1 with p = 1 2 and we introduce the strength parameter θ. However one could take different distributions, for example gaussian distribution with mean zero and variance θ 2 , or subgaussian. In fact all that is needed is E(e th1 ) ≤ e cθ 2 t 2 for some positive constant c and for all t ∈ IR. We prove that for 1 2 < α < ln 3 ln 2 -1 the situation is analogous to the three-dimensional short range random field Ising model: for temperature and variance of the randomness small enough, with IP = 1 with respect to the randomness, there exist at least two distinct infinite volume Gibbs states, namely the µ + [ω] and the µ -[ω] Gibbs states. The proof is based on the representation of the system in term of the contours as defined in [START_REF] Cassandro | Geometry of contours and Peierls estimates in d = 1 Ising models with long range interaction[END_REF]. A Peierls argument is obtained by using the lower bound of the deterministic part of the cost to erase a contour and controlling the contribution of the stochastic part. This control is done applying an exponential Markov inequality and the so-called Yurinski's martingale difference sequences method. We do not need to use any coarse-grained contours as in [START_REF] Bricmont | Phase transition in the three-dimensional random field Ising model[END_REF], a fact that simplifies the proof. In the one dimensional case the contours can be described in terms of intervals and the Imry& Ma argument can be implemented. Namely in our case bad configurations of the random magnetic field, the ones for which the naive Imry & Ma argument fails, are treated probabilistically. A kind of energy entropy argument is successfully used, see (3.14), to prove that they can be neglected. In 3 dimensions this specific energy entropy argument fails. The coarse grained contours in [START_REF] Bricmont | Phase transition in the three-dimensional random field Ising model[END_REF] allow to control these bad contours on various length scales by using a renormalization group argument. As a by-product an estimate on the decay of the truncated two point correlation functions is given in [START_REF] Bricmont | Phase transition in the three-dimensional random field Ising model[END_REF]. Our method does not give any information on this decay. Therefore we do not think that it can be directly applied to give an alternative proof of Bricmont & Kupiainen results [START_REF] Bricmont | Phase transition in the three-dimensional random field Ising model[END_REF]. For α ∈ [(ln 3/ ln 2) -1, 1) we still expect the same result to hold but we are not able to prove it. In this case the lower bound for the deterministic contribution to the cost of erasing a contour does not hold, see Lemma 2.3. Known correlations inequalities are not relevant to treat this range of values of α as in the case where the random field is absent.

2 Model, notations and main results

The model and the main results

Let (Ω, B, IP ) be a probability space on which we define h ≡ {h i } i∈Z Z , a family of independent, identically distributed Bernoulli random variables with

IP [h i = +1] = IP [h i = -1] = 1/2.
The spin configuration space is S ≡ {-1, +1} Z Z . If σ ∈ S and i ∈ Z Z, σ i represents the value of the spin at site i. The pair interaction 22/december/2008; 13:00 among spins is given by J(|i -j|) defined as following1 :

J(n) =    J(1) >> 1 1 n 2-α if n > 1, with α ∈ [0, 1).
For Λ ⊆ Z Z we set S Λ = {-1, +1} Λ ; its elements are denoted by σ Λ ; also, if σ ∈ S, σ Λ denotes its restriction to Λ. Given Λ ⊂ Z Z finite and a realization of the magnetic fields, the Hamiltonian in the volume Λ, with τ = ±1 boundary conditions, is the random variable on (Ω, A, IP ) given by

H τ (σ Λ )[ω] = H τ 0 (σ Λ ) + θG(σ Λ )[ω] (2.1)
where

H τ 0 (σ Λ ) := 1 2 (i,j)∈Λ×Λ J(|i -j|)(1 -σ i σ j ) + i∈Λ j∈Λ c J(|i -j|)(1 -τ σ i ), (2.2) 
and

G(σ Λ )[ω] := - i∈Λ h i [ω]σ i . (2.3)
In the following we drop the ω from the notation. The corresponding Gibbs measure on the finite volume Λ, at inverse temperature β > 0 and + boundary condition is then a random variable with value on the space of probability measures on S Λ defined by

µ + Λ (σ Λ ) = 1 Z + Λ exp{-βH + (σ Λ )} σ Λ ∈ S Λ , (2.4) 
where Z + Λ is the normalization factor. Using FKG inequalities, one can construct with IP = 1 the infinite volume Gibbs measure µ + [ω] as limits of local specifications with homogeneous plus boundary conditions along any deterministic sequence of increasing and absorbing finite volumes Λ n . Of course the same holds with minus boundary conditions, see for example Theorem 7.2.2 in [START_REF] Bovier | Cambridge Series in Statistical and Probabilistic mathematics[END_REF] or Theorem IV.6.5 in [START_REF] Ellis | Entropy, Large deviation and Statistical mechanics[END_REF]. The main results are the following.

Theorem 2.1 Let α ∈ ( 1 2 , ln 3 ln 2 -1) and ζ = ζ(α) = 1 -2(2 α -1) > 0.
(

2.5)

There exist positive θ 0 := θ 0 (α) > 0 and β 0 := β 0 (α) > 0 so that for 0 < θ ≤ θ 0 and β ≥ β 0 there exists

Ω 1 ⊂ Ω such that IP [Ω 1 ] ≥ 1 -e -b 200 , (2.6) 
and for any ω

∈ Ω 1 , µ + {σ 0 = -1} [ω] < e -b 200 (2.7) where b = min( βζ 4 , ζ 2 2 10 θ 2 ).
(2.8)

Remark: Since the translation invariant, B measurable event A ≡ {∃i ∈ Z Z : µ + [ω](σ i = +1) > 1 -e -b 200
} has strictly positive probability, see (2.6) and (2.7), by ergodicity IP [A] = 1. Therefore almost surely the two extremal Gibbs states µ ± [ω] are distinct.

The proof of Theorem 2.1 is given in Section 3. In the next subsection we recall the definition of contours and in Section 4 we prove the main probabilistic estimate.

Geometrical description of the spin configurations

We will follow the geometrical description of the spin configuration presented in [START_REF] Cassandro | Geometry of contours and Peierls estimates in d = 1 Ising models with long range interaction[END_REF] and use the same notations. We will consider homogeneous boundary conditions, i.e the spins in the boundary conditions are either all +1 or all -1. Actually we will restrict ourself to + boundary conditions and consider spin configurations σ = {σ i , i ∈ Z Z} ∈ X + so that σ i = +1 for all |i| large enough.

In one dimension an interface at (x, x + 1) means σ x σ x+1 = -1. Due to the above choice of the boundary conditions, any σ ∈ X + has a finite, even number of interfaces. The precise location of the interface is immaterial and this fact has been used to choose the interface points as follows: For all x ∈ Z Z so that (x, x+1) is an interface take the location of the interface to be a point inside the interval [x+ 1 2 -1 100 , x+ 1 2 + 1 100 ], with the property that for any four distinct points r i , i = 1, . . . , 4 |r 1r 2 | = |r 3r 4 |. This choice is done once for all so that the interface between x and x + 1 is uniquely fixed. Draw from each one of these interfaces points two lines forming respectively an angle of π 4 and of 3 4 π with the Z Z line. We have thus a bunch of growing ∨lines each one emanating from an interface point. Once two ∨lines meet, they are frozen and stop their growth. The other two lines emanating from the the same interface points are erased. The ∨lines emanating from others points keep growing. The collision of the two lines is represented graphically by a triangle whose basis is the line joining the two interfaces points and whose sides are the two segment of the ∨lines which meet. The choice done of the location of the interface points ensure that collisions occur one at a time so that the above definition is unambiguous. In general there might be triangles inside triangles. The endpoints of the triangles are suitable coupled pairs of interfaces points. The graphical representation just described maps each spin configuration in X + to a set of triangles. Notation Triangles will be usually denoted by T , the collection of triangles constructed as above by {T } and we will write

|T | = cardinality of T ∩ Z Z = mass of T,
and by supp(T ) ⊂ IR the basis of the triangle.

We have thus represented a configuration σ ∈ X + as a collection of T = (T 1 , . . . , T n ). The above construction defines a one to one map from X + onto {T }. It is easy to see that a triangle configuration T belongs to {T } iff for any pair T and

T ′ in T dist(T, T ′ ) ≥ min{|T |, |T ′ |}. (2.9) 
We say that two collections of triangles S ′ and S are compatible and we denote it by S ′ ≃ S iff S ′ ∪ S ∈ {T } (i.e. there exists a configuration in X + such that its corresponding collection of triangles is the collection made of all triangles that are in S ′ or in S.) By an abuse of notation, we write

H + 0 (T ) = H + 0 (σ), G(σ(T ))[ω] = G(σ)[ω], σ ∈ X + ⇐⇒ T ∈ {T }.
Definition 2.2 The energy difference Given two compatible collections of triangles S ≃ T , we denote 

H + (S|T ) := H + (S ∪ T ) -H + (T ). ( 2 
H + (T ) = H + (T 1 |T \ T 1 ) + H + (T \ T 1 ). (2.11)
The following Lemma proved in [START_REF] Cassandro | Geometry of contours and Peierls estimates in d = 1 Ising models with long range interaction[END_REF], see Lemma 2.1 there, gives a lower bound on the cost to "erase" triangles sequentially starting from the smallest ones.

Lemma 2.3 [START_REF] Cassandro | Geometry of contours and Peierls estimates in d = 1 Ising models with long range interaction[END_REF] For α ∈ (0, ln 3 ln 2 -1) and ζ := ζ(α) as defined in (2.5) one has

H + 0 (T 1 |T \ T 1 ) ≥ ζ|T 1 | α , (2.12) 
and by iteration, for any

1 ≤ i ≤ n H + 0 (∪ i ℓ=1 T ℓ |T \ [∪ i ℓ=1 T ℓ ]) ≥ ζ i ℓ=1 |T ℓ | α . (2.13)
The estimate (2.13) involves contributions coming from the full set of triangles associated to a given spin configuration, starting from the triangle having the smallest mass. To implement a Peierls bound in our set up we need to "localize" the estimates to compute the weight of a triangle or of a finite set of triangles in a generic configuration. In order to do this [START_REF] Cassandro | Geometry of contours and Peierls estimates in d = 1 Ising models with long range interaction[END_REF] introduced the notion of contours as clusters of nearby triangles sufficiently far away from all other triangles.

Contours A contour Γ is a collection T of triangles related by a hierarchical network of connections controlled by a positive number C, see (2.14), under which all the triangles of a contour become mutually connected. We denote by T (Γ) the triangle whose basis is the smallest interval which contains all the triangles of the contour. The right and left endpoints of T (Γ) ∩ Z Z are denoted by x ± (Γ). We denote |Γ| the mass of the contour Γ |Γ| =

T ∈Γ

|T |

i.e. |Γ| is the sum of the masses of all the triangles belonging to Γ. We denote by R(•) the algorithm which associates to any configuration T a configuration {Γ j } of contours with the following properties.

P.0 Let R(T ) = (Γ 1 , . . . , Γ n ), Γ i = {T j,i , 1 ≤ j ≤ k i }, then T = {T j,i , 1 ≤ i ≤ n, 1 ≤ j ≤ k i } P.
1 Contours are well separated from each other. Any pair Γ = Γ ′ verifies one of the following alternatives.

T (Γ) ∩ T (Γ ′ ) = ∅ i.e. [x -(Γ), x + (Γ)] ∩ [x -(Γ ′ ), x + (Γ ′ )] = ∅, in which case dist(Γ, Γ ′ ) := min T ∈Γ,T ′ ∈Γ ′ dist(T, T ′ ) > C |Γ| 3 , |Γ ′ | 3 (2.14)
where C is a positive number.If

T (Γ) ∩ T (Γ ′ ) = ∅,
then either T (Γ) ⊂ T (Γ ′ ) or T (Γ ′ ) ⊂ T (Γ); moreover, supposing for instance that the former case is verified, (in which case we call Γ an inner contour) then for any triangle

T ′ i ∈ Γ ′ , either T (Γ) ⊂ T ′ i or T (Γ) ∩ T ′ i = ∅ and dist(Γ, Γ ′ ) > C|Γ| 3 , if T (Γ) ⊂ T (Γ ′ ). ( 2 

.15)

22/december/2008; 13:00 P.2 Independence. Let {T (1) , . . . , T (k) }, be k > 1 configurations of triangles; R(T (i) ) = {Γ (i) j , j = 1, . . . , n i } the contours of the configurations T (i) . Then if any distinct Γ (i) j and Γ (i ′ ) j ′ satisfies P.1, R(T (1) , . . . , T (k) ) = {Γ (i) j , j = 1, . . . , n i ; i = 1, . . . , k}.

As proven in [START_REF] Cassandro | Geometry of contours and Peierls estimates in d = 1 Ising models with long range interaction[END_REF], the algorithm R(•) having properties P.0, P.1 and P.2 is unique and therefore there is a bijection between families of triangles and contours. Next we report the estimates proven in [START_REF] Cassandro | Geometry of contours and Peierls estimates in d = 1 Ising models with long range interaction[END_REF] which are essential for this paper.

Theorem 2.4 [START_REF] Cassandro | Geometry of contours and Peierls estimates in d = 1 Ising models with long range interaction[END_REF] Let α ∈ (0, ln 3 ln 2 -1) and the constant C in the definition of the contours, see (2.14), be so large that

m≥1 4m [Cm] 3 ≤ 1 2 , (2.16) 
where [x] denotes the integer part of x. For any T ∈ {T }, let Γ 0 ∈ R(T ) be a contour, S (0) the triangles in Γ 0 and ζ(α) as in (2.5) Then

H + 0 (S (0) |T \ S (0) ) ≥ ζ 2 |Γ 0 | α , (2.17) 
where (2.20)

|Γ 0 | α := T ∈Γ 0 |T | α . ( 2 
In the sequel, it is convenient to identify in each contour Γ the families of triangles having the same mass.

Definition 2.6 Γ = {T (0) , T (1) , . . . T (kΓ) }

where for ℓ = 0, . . . k Γ , T (ℓ) := {T

(ℓ) 1 , T (ℓ) 2 , . . . T (ℓ)
n ℓ }, and each triangle of the family T (ℓ) has the same mass, i.e. for all i ∈ {1, . . . n ℓ }, |T The proof of Theorem 2.1 is an immediate consequence of the following proposition and the Markov inequality.

(ℓ) i | = ∆ ℓ for ∆ ℓ ∈ IN . According to (2.18) |Γ| ρ = kΓ ℓ=0 |T (ℓ) | ρ , |T (ℓ) | ρ = T ∈T (ℓ) |T | ρ = n ℓ ∆ ρ ℓ , ρ ∈ IR + . ( 2 
Proposition 3.1 Let α ∈ ( 1 2 , ln 3 ln 2 -1). There exist positive θ 0 := θ 0 (α) > 0 and β 0 := β 0 (α) > 0 so that for 0 < θ ≤ θ 0 and β ≥ β 0

IE µ + 1 -σ 0 2 ≤ e -b 100 , (3.1)
where b is the quantity defined in (2.8).

Proof: A necessary condition to have σ 0 = -1 is that the site zero is contained in the support of some contour Γ so that

µ + Λ (σ 0 = -1) ≤ µ + Λ ({∃Γ : 0 ∈ Γ}) ≤ Γ∋0 µ + Λ (Γ). (3.2)
By definition, see (2.4),

µ + Λ (Γ)[ω] := 1 Z + Λ [ω] T :T ≃Γ e -βH + (T ∪Γ)[ω] , (3.3) 
where T :T ≃Γ means that the sum is over all families of triangles compatible with the contour Γ. Recalling (2.2) and (2.10), for any j such that 0 ≤ j ≤ k Γ , we write for the deterministic part of the Hamiltonian

H + 0 (T ∪ Γ) = H + 0 (T ∪ Γ \ (∪ j ℓ=0 T (ℓ) )) + H + 0 (T ∪ Γ \ (∪ j ℓ=0 T (ℓ) )|(∪ j ℓ=0 T (ℓ) )). (3.4)
Using estimate (2.17) and recalling notation (2.21)

H + 0 (T ∪ Γ \ (∪ j ℓ=0 T (ℓ) )|(∪ j ℓ=0 T (ℓ) )) ≥ ζ 2 j ℓ=0 n ℓ |∆ ℓ | α . (3.5) Therefore µ + Λ (Γ) ≤ e -β ζ 2 j ℓ=0 n ℓ |∆ ℓ | α 1 Z + Λ T :T ≃Γ e -βH + 0 (T ∪Γ\(∪ j ℓ=0 T (ℓ) ))+βθG(σ(T ∪Γ))[ω] . (3.6)
We multiply and divide (3.6) by

T :T ≃Γ e -βH + 0 (T ∪Γ\(∪ j ℓ=0 T (ℓ) ))+βθG(σ(T ∪Γ\∪ j ℓ=0 T (ℓ) ))[ω] , (3.7) 
and reconstruct µ + Λ (Γ \ [∪ j ℓ=0 T (ℓ) ]), observing that T :T ≃Γ 1 ≤ T :T ≃Γ\∪ j ℓ=0 T (ℓ) 1. We get

µ + Λ (Γ) ≤ e -βζ 2 j ℓ=0 |T (ℓ) | α µ + Λ (Γ \ [∪ j ℓ=0 T (ℓ) ])e βFj [ω] (3.8)
where

F j [ω] := 1 β ln    T :T ≃Γ e -βH + 0 (T ∪Γ\∪ j ℓ=0 T (ℓ) )+βθG(σ(T ∪Γ))[ω] T :T ≃Γ e -βH + 0 (T ∪Γ\(∪ j ℓ=0 T (ℓ) ))+βθG(σ(T ∪Γ\(∪ j ℓ=0 T (ℓ) ))[ω]    . (3.9)
In (3.8) we explicitly quantify the deterministic cost of the first smaller families of triangles {T (0) , . . . , T (j) } and express the main random contribution F j [ω] so that it is antisymmetric with respect to the sign exchange of the random field inside ∪ j ℓ=0 T (ℓ) , see (4.6). This observation allows to estimate this random contribution 22/december/2008; 13:00 in a very convenient way, see Lemma 3.2. To this aim we define for each Γ the partition: Ω = ∪ kΓ j=-1 B j where for j ∈ {0, . . . k Γ -1}

B j = B j (Γ) := {ω : F j [ω] ≤ ζ 4 j ℓ=0 |T (ℓ) | α , and ∀i > j, F i [ω] > ζ 4 i ℓ=0 |T (ℓ) | α }, (3.10) 
B kΓ = B kΓ (Γ) := {ω : F kΓ [ω] ≤ ζ 4 kΓ ℓ=0 |T (ℓ) | α }, (3.11) 
and

B -1 = B -1 (Γ) := {ω : ∀i > -1; F i [ω] > ζ 4 i ℓ=0 |T (ℓ) | α }. (3.12) 
The relevant properties of the partition are given in the following lemma, whose proof is given in Section 4.

Lemma 3.2 For -1 ≤ j ≤ k Γ , IE 1I Bj ≤ e -ζ 2 2 10 θ 2 k Γ ℓ=j+1 |T (ℓ) | 2α-1 . (3.13)
with the convention that an empty sum is zero.

We then write

µ + Λ (Γ) = kΓ j=-1 µ + Λ (Γ)1I {Bj }
and apply to each µ + Λ (Γ)1I {Bj } estimate (3.8). We obtain

IE µ + Λ (Γ) = kΓ j=-1 IE µ + Λ (Γ))1I {Bj } ≤ kΓ j=-1 e -βζ 4 j ℓ=0 |T (ℓ) | α e -c ζ 2 θ 2 k Γ ℓ=j+1 |T (ℓ) | 2α-1 ≤ (k Γ + 1)e -b k Γ ℓ=0 |T (ℓ) | 2α-1 , (3.14) 
where b := min( βζ 4 , ζ 2 2 10 θ 2 ). Recalling (2.20), one has Let h = h[ω] be a realization of the random magnetic fields and A ⊂ Z Z. Define

IE µ + Λ ({0 ∈ Γ}) ≤ Γ∋0 (k Γ + 1)w 2α-1 b (Γ) = m≥3 (m + 1) 0∈Γ:|Γ|=m w 2α-1 b (Γ). ( 3 
(S A h) i = -h i , if i ∈ A; h i , otherwise , (4.1) 
and denote h

[S A ω] ≡ S A h[ω].
In the following to simplify notation we wet S T h = S supp(T ) h. Recalling (2.3), it is easy to see that

G(σ(T ∪ Γ \ T (0) ))[ω] = G(σ(T ∪ Γ))[S T (0) ω]. (4.2) 
In general

G(σ(T ∪ Γ \ ∪ i ℓ=0 T (ℓ) ))[ω] = G(σ(T ∪ Γ))[S Di ω] (4.3) 
where

D i ⊂ ∪ i ℓ=0 supp(T (ℓ) ) (4.4)
is the non-empty set so that S Di = S T (i) S T (i-1) . . . S T (1) S T (0) .

When all the triangles in (T (ℓ) , ℓ = 0, . . . , j) have disjoint supports (4.4) becomes an equality. In general there are triangles inside triangles and in this case the inclusion in (4.4) is strict. By construction the F j [ω] defined in (3.9) are such that

F j (h(D c j ), h(D j )) = -F j (h(D c j ), -h(D j )), j ∈ 0, . . . , k Γ , (4.6) 
where for a set A ⊂ Z Z, we denote by h(A) = {h i : i ∈ A}. Therefore one gets that IE[F j ] = 0.

Proof of Lemma 3.2 Set

A i := ζ 4 i ℓ=0 |T (ℓ) | α . (4.7) 
We have

IP [B j ] ≤ IP [∀i > j; F i [ω] > A i ] .
Let λ i for i = j + 1, . . . , k Γ be positive parameters, by exponential Markov inequality we have

IP [∀i > j : F i [ω] ≥ A i ] ≤ e - k Γ ℓ=j+1 λ ℓ A ℓ IE e k Γ ℓ=j+1 λ ℓ F ℓ . (4.8) 
Set

F [ω] := kΓ i=j+1 λ i F i [ω]. (4.9) 
It remains to estimate IE[e F ]. Note that F [ω] depends on all the random fields on Λ. Let N be the number of sites in Λ. To avoid involved notations, we define a bijection Π from Λ to {1, . . . , N } as follows: first pick up all the n 0 ∆ 0 sites in supp(T (0) ) and put them consecutively in N, . . . , Nn 0 ∆ 0 + 1 (keeping them in the same order as they are for definiteness). Then pick up the sites in supp(T (1) ) that are not in supp(T (0) ) and put them consecutively starting at Nn 0 ∆ 0 until they are exhausted. Note that if no triangles of size ∆ 0 are within triangle of size ∆ 1 , Π maps supp(T (0) ) ∪ supp(T (1) ) onto {N, . . . , Nn 0 ∆ 0n 1 ∆ 1 + 1}; otherwise Π maps supp(T (0) ) ∪ supp(T (1) ) onto a proper subset of {N, . . . , Nn 0 ∆ 0n 1 ∆ 1 + 1}. One can iterate this procedure until all the sites of the support of Γ are exhausted. As above, for all 1 ≤ j ≤ k Γ -1, if all triangles considered are disjoint Π maps ∪ j+1 ℓ=0 supp(T (ℓ) ) onto {N, N -1, . . . , N -M j+1 + 1} where M j+1 = j+1 ℓ=0 n ℓ ∆ ℓ , otherwise on a proper subset of it. Then one can pick up all the remaining sites of Λ 22/december/2008; 13:00 and continue as above. The Π so defined induces a bijection from the random magnetic fields indexed by Λ to a family of random variables (h 1 , . . . , h N ) by (Πh) i := h Πi , ∀i ∈ Λ. Using this bijection, one can work with the random variables (h i , 1 ≤ i ≤ N ). Define the family of increasing σ-algebra:

(∅, Ω) = Σ 0 ⊂ Σ 1 = σ(h 1 ) ⊂ Σ 2 = σ(h 1 , h 2 ) ⊂ . . . ⊂ Σ N = σ(h 1 , h 2 , . . . , h N ) and ∆ k (F ) = IE [F |Σ k ] -IE [F |Σ k-1
] the associated martingale difference sequences. We have

IE[F |Σ N ] = F ; IE[F |Σ 0 ] = IE[F ] = 0, F = N k=1 ∆ k (F ). Remark that IE[F j+1 |Σ i ] = 0 ∀i ∈ {1, . . . N -M j+1 } (4.10) since by (4.6) F j+1 (h(D c j+1 ), h(D j+1 )) = -F j+1 (h(D c j+1 ), -h(D j+1 )) and Πh(∪ j+1 ℓ=0 T (ℓ) ) ⊂ {h N -Mj+1 , . . . , h N }. Note also that IE[F |Σ i ] = 0 ∀i ∈ {1, . . . N -M kΓ }, (4.11) 
and

IE[e F ] = IE[e N -1 k=1 ∆ k (F ) IE[e ∆N (F ) |Σ N -1 ]].
With self explained notations, using Jensen inequality one has

IE[e ∆N (F ) |Σ N -1 ] = e ∆N (F ) IP (dh N ) ≤ e [F (h<N ,hN )-F (h<N , hN )] IP (dh N )IP (d hN ). (4.12) 
We then expand the exponential in the right hand side of (4.12). All the odd powers but the constant one vanish. For the even power we recall (4.9) and by the Lipschitz continuity of each term with respect to (h 1 , . . . , h N ) we get

F (h <N , h N ) -F (h <N , hN ) ≤ kΓ i=j+1 λ i |F i (h <N , h N ) -F i (h <N , hN )| ≤ 2θ|h N -hN | kΓ ℓ=j+1 λ ℓ . (4.13) 
Then estimating |h N -hN | ≤ 2 and 2 (2n-1) + (2n!) -1 ≤ (n!) -1 to re-sum the series one gets

IE[e ∆N |Σ N -1 ] ≤ e 16θ 2 ( k Γ ℓ=j+1 λ ℓ ) 2 . ( 4 

.14)

In the case of gaussian or subgaussian variable one just performs all the integration instead of using |h N -hN | ≤ 2. This will modify the result by a constant different from 16. To iterate, one uses again the Jensen inequality obtaining

IE[e ∆N-1 |Σ N -2 ] = e ∆N-1(F ) IP (dh N -1 )
≤ e [F (h<N-1,hN-1, ĥN )-F (h<N-1, hN-1, ĥN )]IP (d ĥN ) IP (dh N -1 )IP (d hN-1 ).

22/december/2008; 13:00

It is clear that the random variable

F (h <N -1 , h N -1 , ĥN ) -F (h <N -1 , hN-1 , ĥN ) IP (d ĥN )
is a symmetric ones under IP (dh N -1 )IP (d hN-1 ) and satisfies an estimate as (4.13) from which one gets One can check easily that for all 0 ≤ ℓ ≤ j one has

IE[e ∆N-1(F ) |Σ N -2 ] ≤ e 16θ 2 ( k Γ ℓ=j+1 λ ℓ ) 2 . ( 4 
ζ 4 μj+1 ∆ α ℓ -16θ 2 ∆ ℓ (μ j+1 ) 2 = ζ 2 ∆ ℓ 2 9 θ 2 ∆ 1-α j+1 1 ∆ 1-α ℓ - 1 2∆ 1-α j+1 > 0 (4.26)
since by construction ∆ ℓ < ∆ j+1 for 0 ≤ ℓ ≤ j. By (4.8), (4.18), (4.24), and (4.25) one gets (3.13).

.18) Theorem 2 . 5 [ 5 ]

 255 For any γ > 0 there exists C 0 (γ) so that for b ≥ C 0 (γ) and for all m > 0 0∈Γ|Γ|=m w γ b (Γ) ≤ 2me -bm γ ,

. 15 ) 2 + 2 .16θ 2 1 ℓ 2 10 θ 2 .16θ 2

 152221222 Iterating one getsIE[e ∆ k (F ) |Σ k-1 ] ≤ e 4θ 2 ( k Γ ℓ=j+1 λ ℓ ) 2 for k ∈ {N, N -1, . . . , N -M j+1 }. When k = N -M j+1 -1, a new fact happens. Using (4.10) for i = N -M j+1 ≡ m and computing ∆ m (F ) = kΓ i=j+1 λ i (IE[F i |Σ m ] -IE[F i |Σ m-1 ]) (4.16)one obtains that the term corresponding to i = j + 1 in the sum gives zero contribution. Therefore, in this case, one hasF (h <m , h m , ĥ>m ) -F (h <m , hm , ĥ>m ) IP ( ĥ>m ) ≤ 4θ ...+n k Γ ∆ k Γ (λk Γ ) (4.18)The estimate (4.18) suggests to set for ℓ = j + 1, . . . , k Γ (λ i ≥ 0, j + 1 ≤ i ≤ k Γ ) become µ ℓ decreasing with ℓ. We write the first exponent of (4.8) in terms of {µ ℓ } j ℓ=0 obtaining-(µ ℓ ) 2 n ℓ ∆ ℓ . (4.21) Denote f (µ ℓ ) ≡ -ζ 4 µ ℓ ∆ α ℓ + 16θ 2 µ 2 ℓ ∆ ℓ ℓ = j + 1, . . . k Γ .22/december/2008; 13:00is the minimizer of f (µ ℓ ). Note that μℓ is a decreasing function of ℓ andf (μ ℓ ) = -ζ 2 ∆ 2α-(4.23) Therefore collecting together the last sum in (4.20) and the one in (4.21) we get -(μ ℓ ) 2 n ℓ ∆ ℓ = -4.20) and (4.21), taking in account (4.22) and (4.24) we get ℓ -16θ 2 ∆ ℓ (μ j+1 ) 2 . (4.25)

  Let T = (T 1 , . . . , T n ) with |T i | ≤ |T i+1 | then using (2.10) one has

.10) 
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The condition J(1) >> 1 is essential to apply the results of[START_REF] Cassandro | Geometry of contours and Peierls estimates in d = 1 Ising models with long range interaction[END_REF], reported in Subsection

2.2.22/december/2008; 13:00
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