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Convergence of a nite element/ALE method for the Stokes equations in a domain depending on time

We consider the approximation of the unsteady Stokes equations in a time dependent domain when the motion of the domain is given. More precisely, we apply the nite element method to an Arbitrary Lagrangian Eulerian (A.L.E.) formulation of the system. Our main results state the convergence of the solutions of the semi-discretized (with respect to the space variable) and of the fully-discrete problems towards the solutions of the Stokes system.

Introduction

In this work we consider the discretization of a system of partial dierential equations which describes the motion of a viscous incompressible uid in a time dependent domain. More precisely we consider the Stokes system written in a bounded domain Ω t ⊂ R 2 which depends on time t ∈ (0, T ). We want to approximate this system by considering an Arbitrary Lagrangian Eulerian (A.L.E.) formulation for the problem and by using the nite element method.

In many problems and applications one has to work with a uid written in a moving domain. It is generally the case for uid-structure interaction problems like the displacement of shes or of submarines or like the motion of blood in the arteries, etc. Several numerical techniques have been proposed in the literature to overcome the diculty due to the time dependent domain: see, for instance, [START_REF] Masud | A space-time Galerkin/least-squares nite element formulation of the Navier-Stokes equations for moving domain problems[END_REF], [START_REF] Tezduyar | A new strategy for nite element computations involving moving boundaries and interfacesthe deforming-spatial-domain/space-time procedure. I. The concept and the preliminary numerical tests[END_REF], [START_REF] Tezduyar | A new strategy for nite element computations involving moving boundaries and interfacesthe deforming-spatial-domain/space-time procedure. II. Computation of free-surface ows, two-liquid ows, and ows with drifting cylinders[END_REF], [START_REF] Chang | A level set formulation of Eulerian interface capturing methods for incompressible uid ows[END_REF], [START_REF] Glowinski | A ctitious domain method for external incompressible viscous ow modeled by Navier-Stokes equations[END_REF], [START_REF]A ctitious domain method for unsteady incompressible viscous ow modelled by Navier-Stokes equations[END_REF], [START_REF] Peskin | Numerical analysis of blood ow in the heart[END_REF], [START_REF] San Martín | Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a uid-rigid system[END_REF], [START_REF] Bertoluzza | The fat boundary method: semi-discrete scheme and some numerical experiments[END_REF], [START_REF] Maury | A fat boundary method for the Poisson problem in a domain with holes[END_REF]. Here we consider the Arbitrary Lagrangian Eulerian (A.L.E.) method which main idea consists in moving in a convenient way the mesh in order to follow the motion of the domain, instead of re-meshing at each step time (which leads to a too expensive computation). If the deformation of the domain is not too important, it is possible to keep the regularity properties of the initial grid. This method have been proposed and studied by many authors: [START_REF] Donea | Arbitrary Lagrangian Eulerian Methods[END_REF], [START_REF] Farhat | Mixed explicit/implicit time integration of coupled aeroelastic problems: three-eld formulation, geometric conservation and distributed solution[END_REF], [START_REF] Guillard | On the signicance of the geometric conservation law for ow computations on moving meshes[END_REF], [START_REF] Formaggia | A stability analysis for the arbitrary Lagrangian Eulerian formulation with nite elements[END_REF], [START_REF] Nobile | Numerical approximation of uid-structure interaction problems with application to haemodynamics[END_REF], [START_REF] Gastaldi | A priori error estimates for the arbitrary Lagrangian Eulerian formulation with nite elements[END_REF], [START_REF] Maury | Characteristics ALE method for the unsteady 3D Navier-Stokes equations with a free surface[END_REF], [START_REF] Duarte | Arbitrary Lagrangian-Eulerian method for Navier-Stokes equations with moving boundaries[END_REF], [START_REF] Girault | One time-step nite element discretization of the equation of motion of two-uid ows[END_REF].

For many uid-structure interaction problems, the motion of the domain is time dependent but is also an unknown of the problem and the equations for the uid have to be coupled with some equations for the structure. For instance, if we deal with the motion of rigid bodies into a viscous incompressible uid, the problem can be modeled by the coupling between the Navier-Stokes equations (corresponding to the uid part) and ordinary dierential equations (corresponding to the rigid bodies). The problem could even be 1 more complicated if the structure is deformable and although many authors (see, for instance, [START_REF] Beirão | On the existence of strong solutions to a coupled uid-structure evolution problem[END_REF], [START_REF] Boulakia | Existence of weak solutions for an interaction problem between an elastic structure and a compressible viscous uid[END_REF], [START_REF] Desjardins | Weak solutions for a uid-elastic structure interaction model[END_REF], [START_REF] Chambolle | Existence of weak solutions for the unsteady interaction of a viscous uid with an elastic plate[END_REF]) have tackled the well-posedness of such systems, there are still many open questions (even for deriving a model with good properties). In the present paper, we tackle the problem when the motion of the domain is given. Moreover, to split the diculties, we focus on the Stokes equations, neglecting the non linear term of the Navier-Stokes system. Despite these hypotheses, the problem remains complicated since we have to consider a mixed formulation in a time dependent domain, which is completely new with respect to the recent literature.

Let us briey recall some reference about the numerical convergence for the Stokes/Navier-Stokes equations and the uid-structure interaction problems. In the case of a xed domain, and for the Navier-Stokes equations, the Lagrange-Galerkin method has been proposed and analyzed in [START_REF] Pironneau | On the transport-diusion algorithm and its applications to the Navier-Stokes equations[END_REF]. In [START_REF] Süli | Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations[END_REF], the author has proved optimal error estimates for the Lagrange-Galerkin mixed nite element approximation of Navier-Stokes equations in a velocity/pressure formulation. We also mention the work of Achdou and Guermond [START_REF] Achdou | Convergence analysis of a nite element projection/Lagrange-Galerkin method for the incompressible Navier-Stokes equations[END_REF], where convergence analysis of a nite element projection/Lagrange-Galerkin method for the incompressible Navier-Stokes equations is done. In the case where the domain is time dependent but given, the convergence analysis for the ALE method has been considered by [START_REF] Formaggia | A stability analysis for the arbitrary Lagrangian Eulerian formulation with nite elements[END_REF], [START_REF] Nobile | Numerical approximation of uid-structure interaction problems with application to haemodynamics[END_REF], [START_REF] Gastaldi | A priori error estimates for the arbitrary Lagrangian Eulerian formulation with nite elements[END_REF], in the case of the advection-diusion equation instead of the Stokes or the Navier-Stokes equations. Finally, when the domain is time dependent but unknown, few results exist in the literature: Grandmont, Guimet and Maday (in [START_REF] Grandmont | Numerical analysis of some decoupling techniques for the approximation of the unsteady uid structure interaction[END_REF]) deal with the case of one dimensional problem discretized by using the ALE formulation. In [START_REF] San Martín | Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a uid-rigid system[END_REF] the authors have proved the convergence of a numerical method based on the use of characteristics and on nite elements with a xed mesh for a two dimensional uid-rigid body problem.

Let us describe more precisely our problem. For a given T > 0, and for each t ∈ [0, T ], we consider a bounded polyhedral convex domain Ω t in R 2 . We set

Q T = (x, t) ∈ R 3 | x ∈ Ω t , t ∈ (0, T ) .
The Stokes system in the domain Ω t , t ∈ (0, T ) can be written as follows:

         ∂u ∂t -ν∆u + ∇p = f in Q T , div u = 0 in Q T , u = 0
on ∂Ω t , t ∈ (0, T ), u(0) = u 0 in Ω 0 .

(1. [START_REF] Achdou | Convergence analysis of a nite element projection/Lagrange-Galerkin method for the incompressible Navier-Stokes equations[END_REF] In these equations, u = (u 1 , u 2 ) is the velocity of the uid, its density is assumed to be equal to 1, ν > 0 is its constant kinematic viscosity and p is its pressure; f = (f 1 , f 2 ) represents a density of body forces per unit mass (for instance, gravity).

It can be proved that the system (1.1) is well-posed provided that Q T and the data (f and u 0 ) are smooth enough. The diculty in this proof, which comes from the fact that the domain is moving on time, has been overcome by several works. We mention, among others, the paper of Ôtani and Yamada [START_REF] Ôtani | On the Navier-Stokes equations in noncylindrical domains: an approach by the subdierential operator theory[END_REF] and the work of Inoue and Wakimoto [START_REF] Inoue | On existence of solutions of the Navier-Stokes equation in a time dependent domain[END_REF]. In the last one, the equations (1.1) are recast on a cylindrical space time domain introducing a suitable dieomorphism. A result of existence of a weak solution is obtained also in Salvi [START_REF]The exterior nonstationary problem for the Navier-Stokes equations ireference [13]n regions with moving boundaries[END_REF], [START_REF] Salvi | On the existence of weak solutions of a nonlinear mixed problem for the Navier-Stokes equations in a time dependent domain[END_REF] through an elliptic regularization, under weaker hypotheses on the regularity of the domain boundary than in the previously cited paper.

The paper is organized as follows. In the next section we deal with the ALE formulation of the Stokes system and we state our main results. The rst result given in Theorem 2.1 consists in the convergence of a semi-discretization scheme with respect to the space variable and the second one (Theorem 2.2) states an error estimate for a fully-discrete formulation. Section 3 is devoted to some preliminary results useful to prove our main theorems. In Section 4 we introduce the projections on the nite element spaces and we prove some estimates for their time derivative on the ALE frame. The fth section is devoted to the proof of the rst main result and nally, in Section 6 we prove the second main result.

2 Statement of the main results

2.1

The ALE formulation of the Stokes equations Let rst give some assumptions on the non cylindrical domain Q T . We assume that there exists a mapping X ∈ H 1 (0, T ; W 2,∞ (Ω 0 ) 2 ) such that for each t ∈ (0, T ), the mapping

X t : Ω 0 -→ Ω t , y -→ X(y, t), (2.1) 
is invertible and X -1

t ∈ W 1,∞ (Ω t ) 2 .
In the literature, y ∈ Ω 0 is called the ALE coordinate, and x ∈ Ω t the spatial (or Eulerian) coordinate.

Using the transformation X, we can write the ALE formulation of (1.1). To achieve this, we introduce the following notation: rst, we denote by w the domain velocity, which is dened by 

w : Q T -→ R 2 , w(x, t) = ∂X ∂t (X -1 t (x), t).
dv dt Y : Q T -→ R, (x, t) -→ dv dt Y (x, t) = ∂v ∂t (x, t) + w(x, t) • ∇v(x, t). (2.3) 
Using this denition, we obtain that the Stokes system (1.1) is equivalent to the following system (ALE formulation of (1.1)):

           du dt Y -ν∆u + ∇p -(w • ∇) u = f in Q T , div u = 0 in Q T , u = 0 on ∂Ω t , t ∈ (0, T ), u(0) = u 0 in Ω 0 . (2.4)
It may be noticed that the main dierence with the original formulation (1.1) is the appearance of the convective-type term due to the domain movement.

In order to write the ALE weak formulation of problem (2.4) we need some results on the time derivatives of integrals on moving domains. This kind of results will be developed in details in Section 3. Using these results, we get the following mixed weak formulation:

Find u : Q T → R 2 and p : Q T → R such that for each t ∈ (0, T ), u(•, t) ∈ H 1 0 (Ω t ) 2 , p(•, t) ∈ L 2 0 (Ω t
) and the following system holds:

                           d dt Ωt u • (v • X -1 t ) dx + Ωt ∇u : ∇(v • X -1 t ) dx - Ω t div (w ⊗ u) • (v • X -1 t ) dx - Ωt p div (v • X -1 t ) dx = Ωt f • (v • X -1 t ) dx ∀v ∈ H 1 0 (Ω 0 ) 2 , Ω t (q • X -1 t )div u dx = 0 ∀q ∈ L 2 (Ω 0 ), u(•, 0) = u 0 (•) in Ω 0 , (2.5) 
where for any open set Ω ⊂ R 2 , we have denoted by L 2 0 (Ω) the classical pressure space, that is:

L 2 0 (Ω) = f ∈ L 2 (Ω) Ω f (x) dx = 0 .
Let us also introduce the classical space of free divergence elds associated to Stokes problem, dened by

H 1 0,σ (Ω) = u ∈ H 1 0 (Ω) 2 | div u = 0 .
Since we deal with the mixed formulation (2.5), it is natural to assume the following uniform inf-sup condition:

inf

p∈L 2 0 (Ωt) sup v∈H 1 0 (Ωt) 2 Ωt p div v dx v H 1 (Ωt) 2 p L 2 (Ωt) β, (2.6) 
where β is a positive constant which does not depend on time. The inf-sup condition was introduced independently by Babu²ka [START_REF] Babu²ka | The nite element method with Lagrangian multipliers[END_REF] and Bezzi [START_REF] Brezzi | On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers[END_REF]. Notice that a sucient condition to guarantee (2.6) is that the deformation of Ω t is small. More precisely, there exists a constant α > 0 depending only on Ω 0 such that if

X -Id L ∞ (Ω 0 ×(0,T )) 2 + ∇X -Id L ∞ (Ω 0 ×(0,T )) 4 < α, (2.7) 
then (2.6) holds true. It is important to remark that the assumption (2.7) is quite natural: indeed, in practice, the ALE formulation can not be used to discretize a problem when the deformation are too big and it is usually necessary to re-mesh the domain to preserve the regularity of the mesh (see, [START_REF] Maury | Direct simulations of 2D uid-particle ows in biperiodic domains[END_REF] for instance)

2.2 Semi-discretization scheme and statement of the rst main result

In order to discretize our problem with respect to the space variable, we introduce two nite element spaces of Hood-Taylor type; these spaces depend on time since our problem is written on the domain Ω t .

Let h denote a discretization parameter, with 0 < h < 1. At initial time t = 0, we consider a quasiuniform triangulation T h,0 of Ω 0 , as dened, for instance, in Brenner and Scott [6, p.106]. We also assume that there is no triangle of T h,0 with two edges on ∂Ω 0 . These assumptions on T h,0 will be assumed throughout this paper.

For any t ∈ [0, T ], we consider a discretization of the mapping X t by means of piecewise linear Lagrangian nite elements, denoted by X h,t :

X h,t : Ω 0 -→ Ω t , y -→ X h,t (y).
We assume that X h,t is smooth and invertible. Let T h,t be the image of T h,0 under the discrete ALE mapping X h,t .

We associate to this triangulation two classical approximation spaces used in the mixed nite element methods for the Stokes system. The rst space, classically used for the approximation of the velocity eld in the mixed statement of the Stokes system, is denoted by W h,t and is composed with the P 2 -nite elements associated to T h,t . More precisely:

W h,t = v h ∈ H 1 0 (Ω t ) | v h| K ∈ P 2 (K) ∀K ∈ T h,t ,
where P n (K) is the set of polynomials on K of degree less than or equal to n.

The second space, classically used for the approximation of the pressure in mixed formulations of the Stokes system, is denoted by M h,t and is composed with the P 1 -nite elements associated to T h,t , that is,

M h,t = q h ∈ H 1 (Ω t ) | q h| K ∈ P 1 (K) ∀K ∈ T h,t .
We also consider the space

M 0 h,t = M h,t ∩ L 2 0 (Ω t ).
Since Ω 0 is a polyhedral convex domain and X h,t is piecewise linear and smooth, we can characterize the spaces W h,t and M h,t as follows:

W h,t = v h • X -1 h,t | v h ∈ W h,0 , (2.8) 
M h,t = q h • X -1 h,t | q h ∈ M h,0 .
(2.9)

As in the previous subsection, we consider w h the velocity eld associated to the discrete ALE mapping:

w h (x, t) = ∂X h,t ∂t X -1 h,t (x) .
Using this discrete velocity eld, we can introduce the time derivative on the discrete ALE frame as follows: for any v :

Q T -→ R smooth enough, we dene dv dt h Y (x, t) = ∂v ∂t (x, t) + w h (x, t) • ∇v(x, t).
(2.10)

Now, using the weak ALE formulation (2.5) and the denitions above, we can derive a semi-discrete version of our problem. For any h ∈ (0, 1) we denote by u h and p h the solution of the following problem: Find u h and p h such that u h (•, 0) = u h,0 and for any t ∈ (0, T ), u h (•, t) ∈ (W h,t ) 2 , p h (•, t) ∈ M 0 h,t and the following system holds

                     d dt Ω t u h • v h • X -1 h,t dx + ν Ωt ∇u h : ∇ v h • X -1 h,t dx - Ω t div (w h ⊗ u h ) • v h • X -1 h,t dx - Ω t p h div v h • X -1 h,t dx = I h,t f (t) • v h • X -1 h,t ∀v h ∈ (W h,0 ) 2 , Ωt q h • X -1 h,t div u h dx = 0 ∀q h ∈ M h,0 , (2.11) 
where u h,0 is a nite element approximation of the initial data u 0 . In the third line we have used the notation I h,t (F ) to denote a numerical quadrature formula for the integral

Ω t F (x) dx.
In the rest of paper, we assume that the quadrature formula is exact for the continuous functions in Ω t , whose restriction of each triangle is polynomial of degree less than or equal to 4. Using this fact, each integral of the above numerical scheme can be replaced by the numerical integration formula.

To get the convergence of the numerical scheme, it essential to assume that the discrete ALE mapping X h approximates X in some sense. More precisely, we assume that the following error estimate holds true.

X t -X h,t L ∞ (Ω 0 ) 2 + h ∇(X t -X h,t ) L ∞ (Ω 0 ) 4 ≤ C h 2 | ln h| X t W 2,∞ (Ω 0 ) 2 .
(2.12)

For more details about the construction of a mapping X h satisfying such an estimate, we refer the reader to Gastaldi [START_REF] Gastaldi | A priori error estimates for the arbitrary Lagrangian Eulerian formulation with nite elements[END_REF]. We can notice that if we assume w(t) ∈ W 2,∞ (Ω t ) 2 , then the following error estimate on the domain velocity holds true (for more details, see Gastaldi [START_REF] Gastaldi | A priori error estimates for the arbitrary Lagrangian Eulerian formulation with nite elements[END_REF]): for all t ∈ (0, T ),

w(t) -w h (t) L ∞ (Ωt) 2 + h ∇(w(t) -w h (t)) L ∞ (Ωt) 4 ≤ Ch 2 |lnh| w(t) W 2,∞ (Ωt) 2 .
(2.13)

The other important hypothesis to obtain the convergence of our scheme is that the triangulation T h,t remains non-degenerate with the time (see [6, pp.106-107]): we assume that there exists ρ > 0 such that

diam B K ≥ ρh diam K ∀K ∈ T h,t (2.14) 
for all t ∈ [0, T ] and for all h ∈ (0, 1], where B K is the largest disk contained in K. In practice, this hypothesis holds only for a small time interval, especially when one deals with great deformations. If we assume that T h,0 is non-degenerate, that the deformation is small enough (see (2.7)) and that the approximation X h is close to X (see (2.12)), then for h small enough, we can prove that (2.14) holds true.

We are now in position to state the rst main result of the paper:

Theorem 2.1. Suppose that the above assumptions on T h,t and on X h hold true and that (2.6) is satised.

Let also assume that the solution (u, p) of the problem (2.4) and the data w, f satisfy the following properties:

u ∈ L ∞ (0, T ; H 3 (Ω t ) 2 ∩ H 1 0,σ (Ω t )), du dt Y ∈ L 2 (0, T ; H 2 (Ω t ) 2 ), u(0) ∈ H 3 (Ω t ) 2 , p ∈ L ∞ (0, T ; H 2 (Ω t ) ∩ L 2 0 (Ω t )), dp dt Y ∈ L 2 (0, T ; H 1 (Ω t )), p(0) ∈ H 2 (Ω t ), w ∈ L ∞ (0, T ; W 2,∞ (Ω t ) 2 ), f ∈ L 2 (0, T ; W 2,q (Ω t ) 2 ), for some q > 2.            (2.15) 
Then there exists a constant C > 0, independent of h, such that the solution (u h , p h ) of the semidiscretization problem (2.11) satises

u -u h 2 L ∞ (0,T ;L 2 (Ωt) 2 ) + ν ∇(u -u h ) 2 L 2 (0,T ;L 2 (Ωt) 4 ) ≤ u 0 -u h,0 2 L 2 (Ω 0 ) 2 + Ch 2 | ln h| 2 f 2 L 2 (0,T ;W 2,q (Ωt) 2 ) + u 2 L ∞ (0,T ;H 3 (Ωt) 2 ) + du dt Y 2 L 2 (0,T ;H 2 (Ωt) 2 ) + p 2 L ∞ (0,T ;H 2 (Ωt)) + dp dt Y 2 L 2 (0,T ;H 1 (Ωt))
.

(2.16)

The fully-discrete formulation and statement of the second main result

In order to discretize our problem with respect to the time variable, let us denote by ∆t > 0 the time step and t n = n∆t, for n = 0, . . . , N, where N is such that t N ≤ T and t N +1 > T.

In the fully-discrete problem, we will consider a piecewise linear interpolation in time of the domain deformation. Thus, the domain velocity is constant on each interval (t n , t n+1 ) and at time t = t n+1 is given by:

w * h,n,n+1 (x) = 1 ∆t x -X h,tn X -1 h,t n+1 (x) ∀x ∈ Ω t n+1 ,
for all n ∈ {0, . . . , N -1}.

With the above denitions, we can introduce the fully-discrete problem, using an implicit Euler scheme, as follows:

Find {u n h } and {p n h } such that u 0 h = u h,0 and for any n = 0, . . . , N -1, one has that

u n+1 h ∈ (W h,t n+1 ) 2 , p n+1 h ∈ M 0
h,t n+1 and the following system holds:

                                       Ω t n+1 u n+1 h • (v h • X -1 h,t n+1 ) dx - Ω tn u n h • (v h • X -1 h,t n ) dx +ν∆t Ωt n+1 ∇u n+1 h : ∇(v h • X -1 h,t n+1 ) dx -∆t Ωt n+1 div w * h,n,n+1 ⊗ u n+1 h • (v h • X -1 h,t n+1 ) dx -∆t Ωt n+1 p n+1 h div (v h • X -1 h,t n+1 ) dx = ∆t I h,t n+1 f (t n+1 ) • (v h • X -1 h,t n+1 ) ∀v h ∈ (W h,0 ) 2 , Ω t n+1 (q h • X -1 h,t n+1 ) div u n+1 h dx = 0 ∀q h ∈ M h,0 .
(2.17)

In the sequel, we state the second main result of this paper, which gives the error estimate in the approach given by the ALE method for the Stokes problem in time depending domain. More precisely, we have the following theorem:

Theorem 2.2. Suppose that the assumptions of Theorem 2.1 hold true. Let also assume that

∂ 2 X h ∂t 2 ∈ L ∞ (0, T ; L ∞ (Ω 0 ) 2 ) and df dt Y ∈ L 2 (0, T ; L 2 (Ω t ) 2 ).
(

Then, there exists a positive constant C, independent of h and ∆t, such that for all suciently small ∆t and h, we have the following error estimate:

u(t n+1 ) -u n+1 h 2 L 2 (Ωt n+1 ) 2 + ν ∆t n+1 i=1 ∇ u(t i ) -u i h 2 L 2 (Ωt i ) 4 ≤ u 0 -u h,0 2 L 2 (Ω 0 ) 2 + C h 4 ∆t 2 + h 4 u 2 L ∞ (0,T ;H 3 (Ωt) 2 ) + p 2 L ∞ (0,T ;H 2 (Ωt)) + C∆t 2 sup s∈(0,T ) ∂ 2 X h ∂s 2 (s) 2 L ∞ (Ω 0 ) 2 u 2 L ∞ (0,T ;L 2 (Ωt) 2 ) + C∆t h 4 n+1 i=1 f (t i ) 2 W 2,q (Ωt i ) 2 + C∆t 2 t n+1 0 du dt Y (t) 2 H 1 (Ωt) 2 + u(t) 2 H 2 (Ωt) 2 + dp dt Y (t) 2 L 2 (Ωt) + p(t) 2 H 1 (Ωt) + df dt Y (t) 2 L 2 (Ωt) 2 + f (t) 2 H 1 (Ωt) 2 dt. (2.19)
Remark 2.3. In particular, if there exists a xed constant C 0 > 0 such that h ≤ C 0 ∆t and u(0) -

u h,0 L 2 (Ω 0 ) 2 ≤ C 0 h, we have that u(t n+1 ) -u n+1 h 2 L 2 (Ωt n+1 ) 2 + ν ∆t n+1 i=1 ∇ u(t i ) -u i h 2 L 2 (Ωt i ) 4 ≤ C∆t 2 .
Remark 2.4. Let us observe that the condition h ≤ C 0 ∆t is quite natural for the convergence of mixed schemes. For instance, in [START_REF] Pironneau | On the transport-diusion algorithm and its applications to the Navier-Stokes equations[END_REF] the convergence is obtained for h ≤ C 0 ∆t and in [START_REF] Süli | Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations[END_REF] for h 2 ≤ C 0 ∆t ≤ C 1 h σ and σ > 1/2 (with h and ∆t small enough).

Remark 2.5. The regularity assumption (2.18) on X h is quite natural in the case of a time depending operator, in order to obtain the fully error estimate (2.19) given above in the Theorem 2.2. If we use the construction of X h and its continuous counterpart X, given in Gastaldi [START_REF] Gastaldi | A priori error estimates for the arbitrary Lagrangian Eulerian formulation with nite elements[END_REF], it is clear that this regularity with respect to t is strictly related with the displacement of the boundary.

Preliminary results

This section is devoted to some preliminary results which will be useful to prove Theorem 2.1 and Theorem 2.2. These results are either easy to prove or classical and, for this reason, we shall omit all the proofs in what follows.

Let us rst recall the following classical result (see, for instance [22, pp.19-20]). In the context of ALE formulations, this result has been also presented in [START_REF] Formaggia | A stability analysis for the arbitrary Lagrangian Eulerian formulation with nite elements[END_REF].

Proposition 3.1. Consider Ω 1 and Ω 2 two bounded open subsets of R 2 and assume that X ∈ W 1,∞ (Ω 1 ). Suppose also that X : Ω 1 → Ω 2 is invertible and such that X -1 ∈ W 1,∞ (Ω 2 ). Then for any u ∈ H 1 (Ω 2 ) we have that u • X ∈ H 1 (Ω 1 ).
This proposition justify the mixed formulation (2.5) and will be used throughout the paper.

Since we have to deal with integrals on moving domain in this problem, we give also some useful formulas for the time derivative of integrals on moving domains. First of all, we recall the Reynolds transport formula, that is, let ψ(x, t) be a smooth function dened on Q T . Then for any open subdomain

V t ⊆ Ω t such that V t = X t (V 0 ) with V 0 ⊆ Ω 0 , we have that d dt Vt ψ(x, t) dx = Vt ∂ψ ∂t + ∇ψ • w + ψ div w dx = Vt dψ dt Y + ψ div w dx
(see, for instance, Gurtin [START_REF] Gurtin | An introduction to continuum mechanics[END_REF]).

Furthermore, since for any χ : Ω 0 → R 2 we have that

d dt χ • X -1 t Y
= 0, it is not dicult to prove the following lemma, which is a consequence of the above formula.

Lemma 3.2. Let assume that ϕ :

Q T → R 2 , ψ : Q T → R and χ : Ω 0 → R 2 are smooth functions. Then
we have the following relations:

d dt Ωt χ • X -1 t • ϕdx = Ωt χ • X -1 t • dϕ dt Y + ϕdiv w dx, (3.1) 
d dt Ωt ∇ϕ : ∇ χ • X -1 t dx = Ωt ∇ dϕ dt Y : ∇ χ • X -1 t + ∇ϕ : ∇ χ • X -1 t div w -∇w + ∇w T ∇ϕ : ∇ χ • X -1 t dx, (3.2) d dt Ω t χ • X -1 t div ϕ dx = Ω t χ • X -1 t div dϕ dt Y + χ • X -1 t div ϕdiv w -χ • X -1 t ∇w : ∇ϕ T dx, (3.3) d dt Ωt ψdiv χ • X -1 t dx = Ωt dψ dt Y div χ • X -1 t + ψdiv χ • X -1 t div w -ψ ∇w : ∇ χ • X -1 t T dx. (3.4)
It is well-known (see, for instance, [START_REF] Girault | Finite element methods for Navier-Stokes equations[END_REF]) that the mixed formulation (2.11) is a well-posed problem, provided that the spaces W h,t , M 0 h,t and the bilinear form

b(p h , v h ) := Ωt p h div v h dx
satisfy the Brezzi-Babu²ka (inf-sup) condition. The fact that this inf-sup condition is satised in our case, at each time t ∈ (0, T ), follows from the choice of the nite element used. That is, at each time t ∈ (0, T ), there exists a positive constant β t such that

inf p h ∈M 0 h,t sup v h ∈(W h,t ) 2 Ωt p h div v h dx v h H 1 (Ωt) 2 p h L 2 (Ωt) β t .
In fact, if h is small enough, we can choose a constant β * independent of t instead of β t in the above inequality. More precisely, we have the following result. Theorem 3.3. Assume that (2.6) and (2.14) hold true. Then there exist two positive constant h * and β * such that for all t ∈ (0, T ) and for all h ∈ (0, h * ), inf

p h ∈M 0 h,t sup v h ∈(W h,t ) 2 Ωt p h div v h dx v h H 1 (Ω t ) 2 p h L 2 (Ω t ) β * . (3.5) 
This theorem can be easily proved by using (2.14) and (2.6) and by following the proof of Theorem 10.6.6 in [START_REF] Brenner | The mathematical theory of nite element methods[END_REF]. Therefore, we omit the proof of the preceding theorem. [START_REF] Bertoluzza | The fat boundary method: semi-discrete scheme and some numerical experiments[END_REF] Estimates of the projection on the nite element spaces One of the key ingredient in the proof of our convergence results is the introduction of a projection on the nite element space (W h,t ) 2 × M 0 h,t of the exact problem solution

(u, p) ∈ H s+1 (Ω t ) 2 ∩ H 1 0 (Ω t ) 2 × H s (Ω t ) ∩ L 2 0 (Ω t )
(with s a real number s ≥ 1).

Proposition 4.1. Suppose that s ≥ 1 is a real number. If u(t) ∈ H s+1 (Ω t ) 2 ∩ H 1 0 (Ω t ) 2 and p(t) ∈ H s (Ω t ) ∩ L 2 0 (Ω t )
, then there exists an unique couple (U(t),

P (t)) in (W h,t ) 2 × M 0 h,t such that        ν Ωt ∇ (U(t) -u(t)) : ∇v h dx - Ωt (P (t) -p(t)) div v h dx = 0 ∀v h ∈ (W h,t ) 2 , Ω t q h div (U(t) -u(t)) dx = 0 ∀q h ∈ M h,t . (4.1) 
Moreover, there exists a positive constant C > 0, independent of h and t, such that

u(t) -U(t) H 1 (Ω t ) 2 + p(t) -P (t) L 2 (Ωt) ≤ Ch r u(t) H r+1 (Ωt) 2 + p(t) H r (Ω t ) , (4.2) 
for all r such that 1 ≤ r ≤ min(2, s).

The proof of this Proposition is a direct consequence of Theorem 1.1 from Girault and Raviart (see [18, p.114]) and of Theorem 3.3. Remark 4.2. Due to Proposition 3.1, the problem (4.1) is equivalent to the following one:

               ν Ωt ∇ (U(t) -u(t)) : ∇ v h • X -1 h,t dx - Ωt (P (t) -p(t)) div v h • X -1 h,t dx = 0 ∀v h ∈ (W h,0 ) 2 , Ωt q h • X -1 h,t div (U(t) -u(t)) dx = 0 ∀q h ∈ M h,0 . (4.3) 
In order to prove our main results, we need some estimates of the time derivatives on the ALE frame for the projections introduced above. More precisely, we get the following theorem:

Theorem 4.3. Assume that u : Q T -→ R 2 , p : Q T -→ R satisfy u(t) ∈ H 3 (Ω t ) 2 ∩ H 1 0,σ (Ω t ), p(t) ∈ H 2 (Ω t ) ∩ L 2 0 (Ω t ),
for all t ∈ (0, T ).

Let consider the projection (U(t), P (t)) onto (W h,t ) 2 × M 0 h,t of (u(t), p(t)), dened in Proposition 4.1. We assume that

w(t) ∈ W 2,∞ (Ω t ) 2 , du dt Y (t) ∈ H 2 (Ω t ) 2 , dp dt Y (t) ∈ H 1 (Ω t ). (4.4)
Then there exists a positive constant C, independent of h, such that

du dt h Y (t) - dU dt h Y (t) H 1 (Ωt) 2 + dp dt h Y (t) - dP dt h Y (t) L 2 (Ωt) ≤ Ch| ln h| u(t) H 3 (Ωt) 2 + du dt Y (t) H 2 (Ωt) 2 + p(t) H 2 (Ωt) + dp dt Y (t) H 1 (Ωt)
. (4.5)

Proof. Using (3.2)(3.4) we dierentiate with respect to t the both equations of (4.3), then we obtain: for

all v h ∈ (W h,0 ) 2 and q h ∈ M h,0 , ν Ωt ∇ dU dt h Y (t) - du dt h Y (t) : ∇ v h • X -1 h,t dx - Ω t dP dt h Y (t) - dp dt h Y (t) div v h • X -1 h,t dx = -ν Ωt ∇ (U(t) -u(t)) : ∇ v h • X -1 h,t div w h (t) dx + ν Ωt ∇w h (t) + ∇w h (t) T ∇ (U(t) -u(t)) : ∇ v h • X -1 h,t dx + Ωt (P (t) -p(t)) div v h • X -1 h,t div w h (t) dx - Ω t (P (t) -p(t)) ∇w h (t) : ∇ v h • X -1 h,t T dx, (4.6a) and Ωt q h • X -1 h,t div dU dt h Y (t) - du dt h Y (t) dx = - Ωt q h • X -1 h,t div (U(t) -u(t)) div w h (t) dx + Ω t q h • X -1 h,t ∇w h (t) : ∇ (U(t) -u(t)) T dx. (4.6b)
Now, we recall that

du dt h Y (t) = du dt Y (t) + ((w h (t) -w(t)) • ∇) u(t), (4.7 
)

dp dt h Y (t) = dp dt Y (t) + (w h (t) -w(t)) • ∇p(t), (4.8) 
therefore, the system (4.6a)(4.6b) can be written as follows: for all v h ∈ (W h,0 ) 2 and q h ∈ M h,0 , ν

Ω t ∇ dU dt h Y (t) - du dt Y (t) : ∇ v h • X -1 h,t dx - Ωt dP dt h Y (t) - dp dt Y (t) div v h • X -1 h,t dx = -ν Ω t ∇ (U(t) -u(t)) : ∇ v h • X -1 h,t div w h (t) dx + ν Ωt ∇w h (t) + ∇w h (t) T ∇ (U(t) -u(t)) : ∇ v h • X -1 h,t dx + Ω t (P (t) -p(t)) div v h • X -1 h,t div w h (t) dx - Ωt (P (t) -p(t)) ∇w h (t) : ∇ v h • X -1 h,t T dx + ν Ωt ∇ ((w h (t) -w(t)) • ∇) u(t) : ∇ v h • X -1 h,t dx - Ωt (w h (t) -w(t)) • ∇p(t) div v h • X -1 h,t dx (4.9a) and Ωt q h • X -1 h,t div dU dt h Y (t) - du dt Y (t) dx = - Ω t q h • X -1 h,t div (U(t) -u(t)) div w h (t) dx + Ω t q h • X -1 h,t ∇w h (t) : ∇ (U(t) -u(t)) T dx + Ωt q h • X -1 h,t div ((w h (t) -w(t)) • ∇) u(t) dx. (4.9b)
On the other hand, we have that (t), p1 (t) , which are solutions of the following well-dened problem:

du dt Y (t) ∈ H 2 (Ω t ) 2 ∩ H 1 0 (Ω t )
               ν Ωt ∇ U 1 (t) - du dt Y (t) : ∇ v h • X -1 h,t dx - Ωt P 1 (t) - dp dt Y (t) + λ div v h • X -1 h,t dx = 0 ∀v h ∈ (W h,0 ) 2 , Ωt q h • X -1 h,t div U 1 (t) - du dt Y (t) dx = 0 ∀q h ∈ M h,0 . (4.10) 
From Proposition 4.1 and Proposition 3.1, we have that

U 1 (t) - du dt Y (t) H 1 (Ωt) 2 + P 1 (t) - dp dt Y (t) + λ L 2 (Ωt) ≤ Ch du dt Y (t) H 2 (Ω t ) 2 + dp dt Y (t) H 1 (Ω t )
. (4.11)

Subtracting (4.10) from the system obtained by (4.9a) and (4.9b), we get the following problem: for all v h ∈ (W h,0 ) 2 and q h ∈ M h,0 , ν 

Ω t ∇ dU dt h Y (t) -U 1 (t) : ∇ v h • X -1 h,t dx - Ωt dP dt h Y (t) -P 1 (t) div v h • X -1 h,t dx = -ν Ωt ∇ (U(t) -u(t)) : ∇ v h • X -1 h,t div w h (t) dx + ν Ωt ∇w h (t) + ∇w h (t) T ∇ (U(t) -u(t)) : ∇ v h • X -1 h,t dx + Ωt (P (t) -p(t)) div v h • X -1 h,t div w h (t) dx - Ωt (P (t) -p(t)) ∇w h (t) : ∇ v h • X -1 h,t T dx + ν Ω t ∇ ((w h (t) -w(t)) • ∇) u(t) : ∇ v h • X -1 h,t dx - Ωt (w h (t) -w(t)) • ∇p(t)div v h • X -1 h,t dx (4.12a) and Ωt q h • X -1 h,t div dU dt h Y (t) -U 1 (t) dx = - Ωt q h • X -1 h,t div (U(t) -u(t)) div w h (t) dx + Ωt q h • X -1 h,t ∇w h (t) : ∇ (U(t) -u(t)) T dx + Ω t q h • X -1 h,t div ((w h (t) -w(t)) • ∇) u(t)
dU dt h Y (t) -U 1 (t) H 1 (Ωt) 2 + dP dt h Y (t) -λ h -P 1 (t) L 2 (Ωt) ≤ C ∇w h (t) L ∞ (Ω t ) 4 ∇ (U(t) -u(t)) L 2 (Ω t ) 4 + P (t) -p(t) L 2 (Ω t ) + C w h (t) -w(t) W 1,∞ (Ωt) 2 u(t) H 2 (Ωt) 2 + p(t) H 1 (Ωt) , (4.13) 
where the constant C > 0 is independent of h and t. Therefore, using (2.13) and (4.2) (with s = r = 2), the estimate (4.13) becomes then by dierentiating with respect to t we get

dU dt h Y (t) -U 1 (t) H 1 (Ωt) 2 + dP dt h Y (t) -λ h -P 1 (t) L 2 (Ωt) ≤ Ch| ln h| w(t) W 2,∞ (Ω t ) 2 u(t) H 3 (Ω t ) 2 + p(t) H 2 (Ω t ) . ( 4 
dU dt h Y (t) - du dt Y (t) H 1 (Ω t ) 2 + dP dt h Y (t) - dp dt Y (t) L 2 (Ω t ) ≤ Ch| ln h| u(t) H 3 (Ωt) 2 + du dt Y (t) H 2 (Ωt) 2 + p(t) H 2 (Ω t ) + dp dt Y (t) H 1 (Ωt) + C|λ -λ h |.
λ = - 1 |Ω t | Ωt p(t)div w(t) dx and λ h = - 1 |Ω t | Ωt P (t)div w h (t) dx.
Hence,

|λ -λ h | ≤ 1 |Ω t | p(t) -P (t) L 2 (Ωt) ∇w h (t) L 2 (Ωt) 4 + 1 |Ω t | p(t) L 2 (Ωt) ∇(w h (t) -w(t)) L 2 (Ωt) 4 .
This inequality together with (2.13) and (4.2) yields to

|λ -λ h | ≤ Ch| ln h|( u(t) H 3 (Ωt) 2 + p(t) H 2 (Ωt) ).
Using this estimate, (4.15) becomes

dU dt h Y (t) - du dt Y (t) H 1 (Ωt) 2 + dP dt h Y (t) - dp dt Y (t) L 2 (Ωt) ≤ Ch| ln h| u(t) H 3 (Ωt) 2 + du dt Y (t) H 2 (Ωt) 2 + p(t) H 2 (Ωt) + dp dt Y (t) H 1 (Ωt)
. (4.16)

Therefore, the estimate (4.5) is a direct consequence of (4.16). In fact, we have that

dU dt h Y (t) - du dt h Y (t) H 1 (Ωt) 2 + dP dt h Y (t) - dp dt h Y (t) L 2 (Ωt) ≤ dU dt h Y (t) - du dt Y (t) H 1 (Ωt) 2 + dp dt h Y (t) - dp dt Y (t) L 2 (Ωt) + ((w h (t) -w(t)) • ∇) u(t) H 1 (Ωt) 2 + (w h (t) -w(t)) • ∇p(t) L 2 (Ωt) ≤ dU dt h Y (t) - du dt Y (t) H 1 (Ωt) 2 + dp dt h Y (t) - dp dt Y (t) L 2 (Ωt) + C w h (t) -w(t) W 1,∞ (Ωt) 2 u(t) H 2 (Ωt) 2 + p(t) H 1 (Ωt) ,
and we conclude by combining (2.13) and (4.16).

Proof of rst main result

In this section we prove Theorem 2.1 by using the results of the previous section. Since (u, p) is solution of (2.4), then we have

                           d dt Ω t u(t) • v h • X -1 h,t dx + ν Ω t ∇u(t) : ∇ v h • X -1 h,t dx - Ωt div (w h (t) ⊗ u(t)) • v h • X -1 h,t dx - Ωt p(t) div v h • X -1 h,t dx = Ω t f (t) • v h • X -1 h,t dx ∀v h ∈ (W h,0 ) 2 , Ω t q h • X -1 h,t div u(t)dx = 0 ∀q h ∈ M h,0 , u(0) = u 0 in Ω 0 .
(5.1) Subtracting (2.11) from (5.1) and introducing the projections U(t) ∈ (W h,t ) 2 , P (t) ∈ M 0 h,t of the exact solutions u(t), p(t) dened in Proposition 4.1, we obtain

                                 d dt Ωt (u(t) -u h (t)) • v h • X -1 h,t dx + ν Ωt ∇ (U(t) -u h (t)) : ∇ v h • X -1 h,t dx - Ωt div w h (t) ⊗ (u(t) -u h (t)) • v h • X -1 h,t dx - Ωt (P (t) -p h (t)) div v h • X -1 h,t dx = Ωt f (t) • v h • X -1 h,t dx -I h,t f (t) • v h • X -1 h,t ∀v h ∈ (W h,0 ) 2 , Ωt q h • X -1 h,t div (U(t) -u h (t)) dx = 0 ∀q h ∈ M h,0 , u(0) -u h (0) = u 0 -u h,0 in Ω 0 .
For the time derivative of the rst integral, we apply formula (3.1) to obtain

                             Ωt du dt h Y (t) - du h dt h Y (t) • v h • X -1 h,t dx + ν Ωt ∇(U(t) -u h (t)) • ∇ v h • X -1 h,t dx - Ωt (w h (t) • ∇) (u(t) -u h (t)) • v h • X -1 h,t dx - Ωt (P (t) -p h (t))div v h • X -1 h,t dx = Ωt f (t) • v h • X -1 h,t dx -I h,t f (t) • v h • X -1 h,t ∀v h ∈ (W h,0 ) 2 , Ωt q h • X -1 h,t div (U(t) -u h (t)) dx = 0 ∀q h ∈ M h,0 , u(0) -u h (0) = u 0 -u h,0
in Ω 0 .

(5.2)

Using Proposition 3.1, we can choose in the above system the test functions (v h , q h ) such that

v h • X -1 h,t = U(t) -u h (t) ∈ (W h,t ) 2 , q h • X -1 h,t = P (t) -p h (t) ∈ M h,t .
Then it follows that

Ωt du dt h Y (t) - du h dt h Y (t) • (U(t) -u h (t))dx + ν Ωt |∇(U(t) -u h (t))| 2 dx - Ωt (w h (t) • ∇) (u(t) -u h (t)) • (U(t) -u h (t)) dx = Ωt f (t) • (U(t) -u h (t)) dx -I h,t (f (t) • (U(t) -u h (t))) (5.3)
On the other hand, due to the Reynolds formula, it can be checked that

1 2 d dt U(t) -u h (t) 2 L 2 (Ωt) 2 = Ωt dU dt h Y (t) - du h dt h Y (t) • (U(t) -u h (t)) dx - Ωt (w h (t) • ∇)(U(t) -u h (t)) • (U(t) -u h (t)) dx.
Combining this identity with (5.3), we obtain that:

1 2 d dt U(t) -u h (t) 2 L 2 (Ωt) 2 + ν ∇(U(t) -u h (t)) 2 L 2 (Ωt) 4 = 3 i=1 T i , (5.4) 
where the terms T 1 , T 2 and T 3 are dened as follows:

T 1 = - Ωt du dt h Y (t) - dU dt h Y (t) • (U(t) -u h (t))dx, T 2 = Ωt (w h (t) • ∇) (u(t) -U(t)) • (U(t) -u h (t)) dx, T 3 = Ωt f (t) • (U(t) -u h (t)) dx -I h,t (f (t) • (U(t) -u h (t))) .
Now, let us estimate separately each term. Due to the Cauchy-Schwarz inequality and Theorem 4.3 we get that the rst term is bounded as follows:

T 1 ≤ Ch| ln h| u(t) H 3 (Ω t ) 2 + du dt Y (t) H 2 (Ωt) 2 + p(t) H 2 (Ω t ) + dp dt Y (t) H 1 (Ωt) • U(t) -u h (t) L 2 (Ωt) 2 .
The next term can be bounded using the Cauchy-Schwarz inequality, the estimates (2.13), (4.2) and we obtain that

T 2 ≤ Ch 2 w(t) W 2,∞ (Ωt) 2 u(t) H 3 (Ωt) 2 + p(t) H 2 (Ωt) U(t) -u h (t) L 2 (Ωt) 2 .
Now, let us estimate T 3 . Using the fact that

Ω t = K∈T h,t
K we can write

T 3 = Ωt f (t) • (U(t) -u h (t)) dx -I h,t (f (t) • (U(t) -u h (t))) = K∈T h,t E K (f (t) • (U(t) -u h (t))) ,
where E K represents the quadrature error on triangle K. To estimate this term, we apply Theorem 4.1.5 from Ciarlet [10, p. 195] and we obtain that for any q > 2,

T 3 ≤ Ch 2 K∈T h,t |K| 1/2-1/q f (t) W 2,q (K) 2 U(t) -u h (t) H 1 (K) 2 .
Combining the above inequality and the Hölder inequality with 1 2 + 1 p + 1 q = 1 , it follows that

T 3 ≤ Ch 2   K∈T h,t |K| 1 2 -1 q p   1/p   K∈T h,t f (t) q W 2,q (K) 2   1/q   K∈T h,t U(t) -u h (t) 2 H 1 (K) 2   1/2 ≤ Ch 2 f (t) W 2,q (Ω t ) 2 U(t) -u h (t) H 1 (Ω t ) 2 .
By using all previous bounds and the Poincaré inequality, (5.4) becomes

1 2 d dt U(t) -u h (t) 2 L 2 (Ωt) 2 + ν ∇(U(t) -u h (t)) 2 L 2 (Ωt) 4 ≤ Ch| ln h| u(t) H 3 (Ωt) 2 + du dt Y (t) H 2 (Ω t ) 2 + p(t) H 2 (Ωt) + dp dt Y (t) H 1 (Ω t ) + f (t) W 2,q (Ωt) 2 ∇(U(t) -u h (t)) L 2 (Ωt) 4 .
Now, integrating the above inequality, from 0 to t, we get

1 2 U(t) -u h (t) 2 L 2 (Ωt) 2 + ν t 0 ∇(U(s) -u h (s)) 2 L 2 (Ωs) 4 ds ≤ 1 2 U(0) -u h (0) 2 L 2 (Ω 0 ) 2 + Ch| ln h| t 0 u(s) H 3 (Ωs) 2 + du dt Y (s) H 2 (Ωs) 2 + p(s) H 2 (Ω s ) + dp dt Y (s) H 1 (Ωs) + f (s) W 2,q (Ω s ) 2 ∇(U(s) -u h (s)) L 2 (Ω s ) 4 ds,
then, due to the inequality ab ≤ 5 2ν a 2 + ν 10 b 2 ∀a, b ∈ R, we obtain that for all t ∈ (0, T ),

1 2 U(t) -u h (t) 2 L 2 (Ωt) 2 + ν 2 t 0 ∇(U(s) -u h (s)) 2 L 2 (Ωs) 4 ds ≤ 1 2 U(0) -u h (0) 2 L 2 (Ω 0 ) 2 + Ch 2 | ln h| 2 t 0 u(s) 2 H 3 (Ωs) 2 + du dt Y (s) 2 H 2 (Ωs) 2 + p(s) 2 H 2 (Ωs) + dp dt Y (s) 2 H 1 (Ωs) + f (s) 2 W 2,q (Ωs) 2 ds.
Hence,

1 2 U -u h 2 L ∞ (0,T ;L 2 (Ωt) 2 ) + ν 2 ∇(U -u h ) 2 L 2 (0,T ;L 2 (Ωt) 4 ) ≤ 1 2 U(0) -u h (0) 2 L 2 (Ω 0 ) 2 + Ch 2 | ln h| 2 u 2 L 2 (0,T ;H 3 (Ωt) 2 ) + du dt Y 2 L 2 (0,T ;H 2 (Ω t ) 2 ) + p 2 L 2 (0,T ;H 2 (Ωt)) + dp dt Y 2 L 2 (0,T ;H 1 (Ω t ))
+ f 2 L 2 (0,T ;W 2,q (Ωt) 2 ) . (5.5)

In order to obtain the estimation (2.16), let us rst observe that

1 4 u -u h 2 L ∞ (0,T ;L 2 (Ωt) 2 ) + ν 4 ∇(u -u h ) 2 L 2 (0,T ;L 2 (Ωt) 4 ) ≤ 1 2 u -U 2 L ∞ (0,T ;L 2 (Ωt) 2 ) + ν 2 ∇(u -U) 2 L 2 (0,T ;L 2 (Ωt) 4 ) + 1 2 U -u h 2 L ∞ (0,T ;L 2 (Ωt) 2 ) + ν 2 ∇(U -u h ) 2 L 2 (0,T ;L 2 (Ωt) 4 ) . (5.6)
On the other hand, since (4.2) holds true for each t ∈ (0, T ), we get that

1 2 u -U 2 L ∞ (0,T ;L 2 (Ωt) 2 ) + ν 2 ∇(u -U) 2 L 2 (0,T ;L 2 (Ωt) 4 ) ≤ Ch 4 u 2 L ∞ (0,T ;H 3 (Ωt) 2 ) + p 2 L ∞ (0,T ;H 2 (Ωt))
(5.7) and

1 2 U(0) -u h (0) 2 L 2 (Ω 0 ) 2 ≤ u(0) -U(0) 2 L 2 (Ω 0 ) 2 + u(0) -u h (0) 2 L 2 (Ω 0 ) 2 ≤ Ch 4 u(0) 2 H 3 (Ω 0 ) 2 + p(0) 2 H 2 (Ω 0 ) + u(0) -u h (0) 2 L 2 (Ω 0 ) 2 . (5.8)
By using (5.5)(5.8), we get the result stated in Theorem 2.1.

6 Proof of second main result

In this section, we will analyze the full discretization of the problem (2.5) given in (2.11). We will prove that the numerical solution converges to the exact solution of the problem, when the discretization parameters ∆t and h go to zero, if a compatibility condition between ∆t and h is fullled.

6.1 Proof of Theorem 2.2

We remark that the approximation error u(t n+1 ) -U(t n+1 ) is well known, and is given in the estimate (4.2). For this reason, we will study the following error:

e n+1 h = U(t n+1 ) -u n+1 h ∀n = 0, . . . , N -1. (6.1)
Since (u, p) is solution of (2.4), we have that

                           d dt Ωt u(t) • v h • X -1 h,t dx + ν Ωt ∇u(t) : ∇ v h • X -1 h,t dx - Ω t p(t)div v h • X -1 h,t dx - Ω t div (w h (t) ⊗ u(t)) • v h • X -1 h,t dx = Ω t f (t) • v h • X -1 h,t dx ∀v h ∈ (W h,0 ) 2 , Ωt q h • X -1 h,t div u(t) dx = 0 ∀q h ∈ M h,0 , u(0) = u 0 in Ω 0 . (6.2)
Then, integrating the rst equation of the above system from t n to t n+1 , we get

Ω t n+1 u(t n+1 ) • v h • X -1 h,t n+1 dx - Ω tn u(t n ) • v h • X -1 h,tn dx + ν t n+1 tn Ωt ∇u(t) : ∇ v h • X -1 h,t dx dt - t n+1 tn Ωt p(t)div v h • X -1 h,t dx dt - t n+1 tn Ωt div (w h (t) ⊗ u(t)) • v h • X -1 h,t dx dt = t n+1 t n Ω t f (t) • v h • X -1 h,t dx dt ∀v h ∈ (W h,0 ) 2 .
The previous identity could be rewritten similarly to the numerical equations as follows:

Ωt n+1 u(t n+1 ) • v h • X -1 h,t n+1 dx - Ωt n u(t n ) • v h • X -1 h,tn dx + ∆t ν Ωt n+1 ∇u(t n+1 ) : ∇ v h • X -1 h,t n+1 dx -∆t Ωt n+1 p(t n+1 )div v h • X -1 h,t n+1 dx -∆t Ωt n+1 div (w h (t n+1 ) ⊗ u(t n+1 )) • v h • X -1 h,t n+1 dx = ∆t Ωt n+1 f (t n+1 ) • v h • X -1 h,t n+1 dx + 4 i=1 Q i ∀v h ∈ (W h,0 ) 2 , (6.3)
where Q i (i = 1, . . . , 4) are the dierences between the time integrals and the numerical approximations given by the right point integration formula. That is,

Q 1 = ν ∆t Ωt n+1 ∇u(t n+1 ) : ∇ v h • X -1 h,t n+1 dx -ν t n+1 tn Ωt ∇u(t) : ∇ v h • X -1
h,t dx dt, (6.4)

Q 2 = -∆t Ωt n+1 div (w h (t n+1 ) ⊗ u(t n+1 )) • v h • X -1 h,t n+1 dx + t n+1 tn Ωt div (w h (t) ⊗ u(t)) • v h • X -1
h,t dx dt, (6.5)

Q 3 = -∆t Ω t n+1 p(t n+1 )div v h • X -1 h,t n+1 dx + t n+1 t n Ω t p(t)div v h • X -1 h,t dx dt, (6.6 
)

Q 4 = -∆t Ωt n+1 f (t n+1 ) • v h • X -1 h,t n+1 dx + t n+1 tn Ωt f (t) • v h • X -1 h,t dx dt. (6.7)
Using the projections of u(t n+1 ) and p(t n+1 ), denoted by

U(t n+1 ) ∈ (W h,t n+1 ) 2 and P (t n+1 ) ∈ M 0 h,t n+1 ,
and dened in (4.3), the problem (6.2) can be written as follows:

                                                 Ω t n+1 u(t n+1 ) • v h • X -1 h,t n+1 dx - Ωt n u(t n ) • v h • X -1 h,tn dx + ∆t ν Ωt n+1 ∇U(t n+1 ) : ∇ v h • X -1 h,t n+1 dx -∆t Ωt n+1 div (w h (t n+1 ) ⊗ u(t n+1 )) • v h • X -1 h,t n+1 dx -∆t Ωt n+1 P (t n+1 )div v h • X -1 h,t n+1 dx = ∆t Ωt n+1 f (t n+1 ) • v h • X -1 h,t n+1 dx + 4 i=1 Q i ∀v h ∈ (W h,0 ) 2 , Ωt n+1 q h • X -1 h,t n+1 div U(t n+1 ) dx = 0 ∀q h ∈ M h,0 , u(0) = u 0 in Ω 0 . (6.8) 
The preceding system allows us to compare directly the numerical solution with the exact one: by subtracting (6.8) and (2.17) we get

                                                               Ωt n+1 u(t n+1 ) -u n+1 h • v h • X -1 h,t n+1 dx - Ωt n (u(t n ) -u n h ) • v h • X -1 h,tn dx +∆t ν Ωt n+1 ∇ U(t n+1 ) -u n+1 h : ∇ v h • X -1 h,t n+1 dx -∆t Ωt n+1 div (w h (t n+1 ) ⊗ u(t n+1 )) • v h • X -1 h,t n+1 dx +∆t Ωt n+1 div w * h,n,n+1 ⊗ u n+1 h • v h • X -1 h,t n+1 dx -∆t Ωt n+1 P (t n+1 ) -p n+1 h div v h • X -1 h,t n+1 dx = 4 i=1 Q i + ∆t Ωt n+1 f (t n+1 ) • v h • X -1 h,t n+1 dx -∆t I h,t n+1 f (t n+1 ) • (v h • X -1 h,t n+1 ) ∀v h ∈ (W h,0 ) 2 , Ωt n+1 q h • X -1 h,t n+1 div U(t n+1 ) -u n+1 h dx = 0 ∀q h ∈ M h,0 , u(0) -u 0 h = u 0 -u h,0 in Ω 0 . (6.9) 
We note that in the previous problem there are two convective terms, with the velocities w h and w * h,n,n+1 . In order to compare these two velocities, we use the denition of w * h,n,n+1 , and therefore we get

w h (x, t n+1 ) = w * h,n,n+1 (x) + 1 ∆t t n+1 t n (s -t n ) ∂ 2 X h ∂s 2 X -1 h,t n+1 (x), s ds. (6.10) 
Gathering this identity and (6.9), then by using the notation (6.1) it follows the following system:

                                                                                 Ωt n+1 (u(t n+1 ) -U(t n+1 )) • v h • X -1 h,t n+1 dx - Ωt n (u(t n ) -U(t n )) • v h • X -1 h,tn dx + Ω t n+1 e n+1 h • v h • X -1 h,t n+1 dx - Ω tn e n h • v h • X -1 h,tn dx +∆t ν Ω t n+1 ∇e n+1 h : ∇ v h • X -1 h,t n+1 dx -∆t Ω t n+1 div w * h,n,n+1 ⊗ e n+1 h • v h • X -1 h,t n+1 dx - Ωt n+1 div t n+1 tn (s -t n ) ∂ 2 X h ∂s 2 X -1 h,t n+1 (x), s ds ⊗ u(t n+1 ) • v h • X -1 h,t n+1 dx -∆t Ωt n+1 P (t n+1 ) -p n+1 h div v h • X -1 h,t n+1 dx = 4 i=1 Q i + ∆t Ωt n+1 f (t n+1 ) • v h • X -1 h,t n+1 dx -∆t I h,t n+1 f (t n+1 ) • (v h • X -1 h,t n+1 ) ∀v h ∈ (W h,0 ) 2 , Ω t n+1 q h • X -1 h,t n+1 div e n+1 h dx = 0 ∀q h ∈ M h,0 , u(0) -u 0 h = u 0 -u h,0 in Ω 0 . (6.11) 
In the above system, we choose the following test functions:

v h = e n+1 h • X h,t n+1 ∈ (W h,0 ) 2 , q h = P (t n+1 ) -p n+1 h • X h,t n+1 ∈ M h,0
and we get

e n+1 h 2 L 2 (Ωt n+1 ) 2 + ν ∆t ∇e n+1 h 2 L 2 (Ωt n+1 ) 4 = 9 j=1 R j , (6.12) 
where the right hand side is given by

R 1 = Ωt n e n h • e n+1 h • X h,t n+1 • X -1 h,tn dx + ∆t Ωt n+1 div w * h,n,n+1 ⊗ e n+1 h • e n+1 h dx, (6.13) 
R 2 = Ωt n (u(t n ) -U(t n )) • e n+1 h • X h,t n+1 • X -1 h,tn dx - Ω t n+1 (u(t n+1 ) -U(t n+1 )) • e n+1 h dx, (6.14) 
R 3 = -∆t Ωt n+1 div w * h,n,n+1 ⊗ (u(t n+1 ) -U(t n+1 )) • e n+1 h dx, (6.15) 
R 4 = Ωt n+1 div t n+1 tn (s -t n ) ∂ 2 X h ∂s 2 X -1 h,t n+1 (x), s ds ⊗ u(t n+1 ) • e n+1 h dx, (6.16 
)

R 5 = ν ∆t Ωt n+1 ∇u(t n+1 ) : ∇e n+1 h dx -ν t n+1 tn Ωt ∇u(t) : ∇ e n+1 h • X h,t n+1 • X -1 h,t dx dt, (6.17) 
R 6 = -∆t Ωt n+1 div (w h (t n+1 ) ⊗ u(t n+1 )) • e n+1 h dx + t n+1 tn Ωt div (w h (t) ⊗ u(t)) • e n+1 h • X h,t n+1 • X -1 h,t dx dt, (6.18) 
R 7 = -∆t Ωt n+1 p(t n+1 )div e n+1 h dx + t n+1 tn Ωt p(t)div e n+1 h • X h,t n+1 • X -1 h,t dx dt, (6.19) 
R 8 = -∆t Ωt n+1 f (t n+1 ) • e n+1 h dx + t n+1 tn Ωt f (t) • e n+1 h • X h,t n+1 • X -1 h,t dx dt, (6.20) 
R 9 = ∆t Ω t n+1 f (t n+1 ) • e n+1 h dx -∆t I h,t n+1 f (t n+1 ) • e n+1 h . (6.21) 
The estimates of the terms R i (i = 1, . . . , 9) are very technical, and we prefer to postpone their proof to Subsection 6.2. For the sake of completeness, in the sequel we present the results obtained, nevertheless, the precise results are stated in Lemmas 6.16.4 below. We get that

R 1 ≤ 1 2 e n h 2 L 2 (Ω tn ) 2 + 1 2 e n+1 h 2 L 2 (Ω t n+1 ) 2 + 1 2 ∆t γ e n+1 h 2 L 2 (Ω t n+1 ) 2 , (6.22) 
where

γ = max n=0,...,N -1 sup t∈(tn,t n+1 ) div w h (t) L ∞ (Ω t ) sup t∈(tn,t n+1 ) J X h,t L ∞ (Ω 0 ) J X -1 h,t n+1 L ∞ (Ω t n+1 ) + div w * h,n,n+1 L ∞ (Ω t n+1 ) . Furthermore, R 2 ≤ C 1 ∆t u -U 2 L ∞ (0,T ;L 2 (Ωt) 2 ) + 1 18 ν∆t ∇e n+1 h 2 L 2 (Ωt n+1 ) 4 , (6.23) R 3 ≤ C∆t u -U 2 L ∞ (0,T ;L 2 (Ωt) 2 ) + 1 18 ν∆t ∇e n+1 h 2 L 2 (Ωt n+1 ) 4 , (6.24) R 4 ≤ C∆t 3 sup s∈(tn,t n+1 ) ∂ 2 X h ∂s 2 (s) 2 L ∞ (Ω 0 ) u 2 L ∞ (0,T ;L 2 (Ωt) 2 ) + 1 18 ν∆t ∇e n+1 h 2 L 2 (Ωt n+1 ) 4 .(6.25)
In addition,

R 5 ≤ C∆t 2 t n+1 tn   u(t) 2 H 1 (Ωt) 2 + du dt h Y (t) 2 H 1 (Ωt) 2   dt + 1 18 ν∆t ∇e n+1 h 2 L 2 (Ωt n+1 ) 4 , (6.26) R 6 ≤ C∆t 2 t n+1 t n   u(t) 2 H 1 (Ωt) 2 + du dt h Y (t) 2 L 2 (Ωt) 2   dt + 1 9 ν∆t ∇e n+1 h 2 L 2 (Ωt n+1 ) 4 , (6.27) R 7 ≤ C∆t 2 t n+1 tn   p(t) 2 L 2 (Ωt) + dp dt h Y (t) 2 L 2 (Ωt)   dt + 1 18 ν∆t ∇e n+1 h 2 L 2 (Ωt n+1 ) 4 , (6.28) 
R 8 ≤ C∆t 2 t n+1 tn   f (t) 2 L 2 (Ωt) 2 + df dt h Y (t) 2 L 2 (Ωt) 2   dt + 1 18 ν∆t ∇e n+1 h 2 L 2 (Ωt n+1 ) 4 (6.29) 
and

R 9 ≤ C∆t h 4 f (t n+1 ) 2 W 2,q (Ωt n+1 ) 2 + 1 18 ν∆t ∇e n+1 h 2 L 2 (Ωt n+1 ) 4 .
(6.30)

By using these estimates of R i (i = 1, . . . , 9) in (6.12), we obtain

e n+1 h 2 L 2 (Ωt n+1 ) 2 + ν ∆t ∇e n+1 h 2 L 2 (Ωt n+1 ) 4 ≤ ∆t γ e n+1 h 2 L 2 (Ωt n+1 ) 2 + e n h 2 L 2 (Ωt n ) 2 + C 1 ∆t + ∆t u -U 2 L ∞ (0,T ;L 2 (Ωt) 2 ) + C∆t h 4 f (t n+1 ) 2 W 2,q (Ωt n+1 ) 2 + C∆t 3 sup s∈(tn,t n+1 ) ∂ 2 X h ∂s 2 (s) 2 L ∞ (Ω 0 ) u 2 L ∞ (0,T ;L 2 (Ωt) 2 ) + C∆t 2 t n+1 tn u(t) 2 H 1 (Ωt) 2 + du dt h Y (t) 2 H 1 (Ωt) 2 + p(t) 2 L 2 (Ωt) + dp dt h Y (t) 2 L 2 (Ω t ) + f (t) 2 L 2 (Ωt) 2 + df dt h Y (t) 2 L 2 (Ω t ) 2
dt.

In order to obtain the global error, we sum over n, that is,

e n+1 h 2 L 2 (Ωt n+1 ) 2 + ν ∆t n+1 i=1 ∇e i h 2 L 2 (Ωt i ) 4 ≤ e 0 h 2 L 2 (Ω 0 ) 2 + ∆t γ n+1 i=1 e i h 2 L 2 (Ωt i ) 2 + Cn 1 ∆t + ∆t u -U 2 L ∞ (0,T ;L 2 (Ωt) 2 ) + C∆t h 4 n+1 i=1 f (t i ) 2 W 2,q (Ωt i ) 2 + Cn∆t 3 sup s∈(0,T ) ∂ 2 X h ∂s 2 (s) 2 L ∞ (Ω 0 ) u 2 L ∞ (0,T ;L 2 (Ω t ) 2 ) + C∆t 2 t n+1 0 u(t) 2 H 1 (Ωt) 2 + du dt h Y (t) 2 H 1 (Ωt) 2 + p(t) 2 L 2 (Ω t ) + dp dt h Y (t) 2 L 2 (Ωt) + f (t) 2 L 2 (Ω t ) 2 + df dt h Y (t) 2 L 2 (Ωt) 2 dt.
By applying the discrete Gronwall lemma, we get

e n+1 h 2 L 2 (Ωt n+1 ) 2 + ν ∆t n+1 i=1 ∇e i h 2 L 2 (Ωt i ) 4 ≤ C 1 e 0 h 2 L 2 (Ω 0 ) 2 + CC 1 T 1 ∆t 2 + 1 u -U 2 L ∞ (0,T ;L 2 (Ωt) 2 ) + CC 1 ∆t h 4 n+1 i=1 f (t i ) 2 W 2,q (Ωt i ) 2 + CC 1 T ∆t 2 sup s∈(0,T ) ∂ 2 X h ∂s 2 (s) 2 L ∞ (Ω 0 ) u 2 L ∞ (0,T ;L 2 (Ωt) 2 ) + CC 1 ∆t 2 t n+1 0 u(t) 2 H 1 (Ωt) 2 + du dt h Y (t) 2 H 1 (Ωt) 2 + p(t) 2 L 2 (Ω t ) + dp dt h Y (t) 2 L 2 (Ωt) + f (t) 2 L 2 (Ω t ) 2 + df dt h Y (t) 2 L 2 (Ωt) 2
dt, (6.31) where the constant C 1 is given by

C 1 = exp t n+1 γ 1 -γ∆t .
In the previous estimate, we will introduce the continuous ALE derivatives using the identities (4.7), (4.8) and

df dt h Y (t) = df dt Y (t) + ((w h (t) -w(t)) • ∇) f (t).
Therefore, the estimate (6.31) becomes

e n+1 h 2 L 2 (Ωt n+1 ) 2 + ν ∆t n+1 i=1 ∇e i h 2 L 2 (Ωt i ) 4 ≤ C e 0 h 2 L 2 (Ω 0 ) 2 + C 1 ∆t 2 + 1 u -U 2 L ∞ (0,T ;L 2 (Ωt) 2 ) + C∆t h 4 n+1 i=1 f (t i ) 2 W 2,q (Ωt i ) 2 + C∆t 2 sup s∈(0,T ) ∂ 2 X h ∂s 2 (s) 2 L ∞ (Ω 0 ) u 2 L ∞ (0,T ;L 2 (Ωt) 2 ) + C∆t 2 t n+1 0 u(t) 2 H 2 (Ω t ) 2 + du dt Y (t) 2 H 1 (Ωt) 2 + p(t) 2 H 1 (Ω t ) + dp dt Y (t) 2 L 2 (Ωt) + f (t) 2 H 1 (Ω t ) 2 + df dt Y (t) 2 L 2 (Ωt) 2
dt. (6.32) This inequality gives us the numerical error U(t n+1 )u n+1 h . In order to obtain the complete error, we observe that

u(t n+1 ) -u n+1 h 2 L 2 (Ωt n+1 ) 2 + ν ∆t n+1 i=1 ∇ u(t i ) -u i h 2 L 2 (Ωt i ) 4 ≤ 1 2 u(t n+1 ) -U(t n+1 ) 2 L 2 (Ω t n+1 ) 2 + 1 2 ν ∆t n+1 i=1 ∇ (u(t i ) -U(t i )) 2 L 2 (Ω t i ) 4 + 1 2 e n+1 h 2 L 2 (Ωt n+1 ) 2 + 1 2 ν ∆t n+1 i=1 ∇e i h 2 L 2 (Ωt i ) 4 .
Combining the previous inequalities and using (4.2), we conclude the proof of the second main result of this paper.

Some additional estimates

In this subsection, we derive estimates on R i (i = 1, . . . , 9) which have been used in the proof of Theorem 2.2.

Lemma 6.1. Suppose that the assumptions of Theorem 2.2 hold true. Then, the terms R 1 and R 2 dened in (6.13) and (6.14) satisfy (6.22), respectively (6.23).

Proof. By using the Cauchy-Schwarz inequality, we have that

R 1 ≤ 1 2 e n h 2 L 2 (Ωt n ) 2 + 1 2 e n+1 h • X h,t n+1 • X -1 h,tn 2 
L 2 (Ωt n ) 2 + ∆t Ω t n+1 div w * h,n,n+1 ⊗ e n+1 h • e n+1 h dx,
then, integrating twice by parts, we obtain

R 1 ≤ 1 2 e n h 2 L 2 (Ω tn ) 2 + 1 2 e n+1 h • X h,t n+1 • X -1 h,t n 2 L 2 (Ω tn ) 2 + 1 2 ∆t Ωt n+1 |e n+1 h | 2 div w * h,n,n+1 dx. (6.33)
In order to transform the second term in the right hand side, we use the Reynolds formula:

d dt Ωt e n+1 h • X h,t n+1 • X -1 h,t 2 dx = Ωt e n+1 h • X h,t n+1 • X -1 h,t 2 div w h (t)dx.
Therefore, integrating from t n to t n+1 , we get

e n+1 h 2 L 2 (Ωt n+1 ) 2 -e n+1 h • X h,t n+1 • X -1 h,tn 2 
L 2 (Ωt n ) 2 = t n+1 tn Ωt e n+1 h • X h,t n+1 • X -1 h,t 2 
div w h (t) dx dt.

By combining the above equation with (6.33), we get

R 1 ≤ 1 2 e n h 2 L 2 (Ωt n ) 2 + 1 2 e n+1 h 2 L 2 (Ωt n+1 ) 2 + 1 2 ∆t Ωt n+1 |e n+1 h | 2 div w * h,n,n+1 dx - 1 2 t n+1 t n Ω t e n+1 h • X h,t n+1 • X -1 h,t 2 div w h (t) dx dt.
Hence, we get that

R 1 ≤ 1 2 e n h 2 L 2 (Ωt n ) 2 + 1 2 e n+1 h 2 L 2 (Ωt n+1 ) 2 + 1 2 ∆t div w * h,n,n+1 L ∞ (Ωt n+1 ) e n+1 h 2 L 2 (Ωt n+1 ) 2 + 1 2 sup t∈(tn,t n+1 ) div w h (t) L ∞ (Ω t ) t n+1 t n e n+1 h • X h,t n+1 • X -1 h,t 2 L 2 (Ωt) 2 dt. (6 .34) 
In order to bound the last integral, let us remark that, due to the change of variable y = X h,t n+1 X -1 h,t (x) ,

we have that

e n+1 h • X h,t n+1 • X -1 h,t 2 
L 2 (Ωt) 2 ≤ J X h,t L ∞ (Ω 0 ) J X -1 h,t n+1 L ∞ (Ωt n+1 ) e n+1 h 2 L 2 (Ωt n+1 ) 2 . (6.35) Let us observe that J X h,t L ∞ (Ω 0 ) = det J X h,t L ∞ (Ω 0 ) ≤ C J Xt 2 L ∞ (Ω 0 ) 4 + Ch| ln h| X t W 2,∞ (Ω 0 ) 2 .
Thus, there exists C 1 depending on X and h 0 > 0 such that

J X h,t L ∞ (Ω 0 ) ≤ C 1 ∀t ∈ [0, T ], ∀h ∈ (0, h 0 ). (6.36) 
We can prove in a similar way that there exists C 2 depending on X and h 0 > 0 such that

J X -1 h,t L ∞ (Ωt) ≤ C 2 ∀t ∈ [0, T ], ∀h ∈ (0, h 0 ). (6.37) 
From (6.35), (6.36) and (6.37), we obtain

e n+1 h • X h,t n+1 • X -1 h,t 2 
L 2 (Ω t ) 2 ≤ C 1 C 2 e n+1 h 2 L 2 (Ω t n+1 ) 2 . (6.38)
Combining the above inequality with (6.34) we get (6.22).

Let us estimate the term R 2 . The Cauchy-Schwarz inequality together with (6.38) yields to

R 2 ≤ C u -U L ∞ (0,T ;L 2 (Ωt) 2 ) e n+1 h L 2 (Ωt n+1 ) 2 .
To conclude, it is enough to use the Poincaré inequality and that

ab ≤ 2 9 a 2 + 1 18 b 2 ∀a, b ∈ R.
(6.39) Lemma 6.2. Suppose that the assumptions of Theorem 2.2 hold true. Then, the terms R 3 and R 4 dened in (6.15) and (6.16) satisfy (6.24), respectively (6.25).

Proof. To estimate R 3 , rst we integrate by parts:

R 3 = -∆t Ωt n+1 w * h,n,n+1 • ∇ e n+1 h • (u(t n+1 ) -U(t n+1 )) dx.
Then, by the Cauchy-Schwarz inequality and (6.39), we obtain

R 3 ≤ 4 ν ∆t w * h,n,n+1 2 
L ∞ (Ωt n+1 ) 2 u -U 2 L ∞ (0,T ;L 2 (Ωt) 2 ) + 1 18 ν∆t ∇e n+1 h 2 L 2 (Ωt n+1 ) 4 ,
which implies the estimate (6.24).

Let us estimate the term R 4 . First, we integrate by parts and use the Einstein notation:

R 4 = - Ωt n+1 t n+1 tn (s -t n ) ∂ 2 X h ∂s 2 X -1 h,t n+1 (x), s ds • ∇ e n+1 h • u(t n+1 ) dx = - t n+1 tn (s -t n ) Ωt n+1 ∂ 2 X h ∂s 2 X -1 h,t n+1 (x), s j ∂(e n+1 h ) i ∂x j u i (t n+1 ) dx ds.
In order to write the integral in the domain Ω 0 , we use the change of variable X -1 h,t n+1 (x) = y ∈ Ω 0 , then it follows that

R 4 = - t n+1 tn (s -t n ) Ω 0 ∂ 2 X h ∂s 2 (y, s) j ∂ e n+1 h • X h,t n+1 i ∂y k • ∂ X -1 h,t n+1 k ∂x j u(t n+1 ) • X h,t n+1 i J X h,t n+1 dy ds.
Applying the Cauchy-Schwarz inequality, we have

R 4 ≤ t n+1 tn |s -t n |   Ω 0 ∂ e n+1 h • X h,t n+1 i ∂y k ∂y k ∂x j 2 J X h,t n+1 dy   1/2 • Ω 0 ∂ 2 X h ∂s 2 (y, s) 2 j u(t n+1 ) • X h,t n+1 2 i J X h,t n+1 dy 1/2 ds,
and therefore,

R 4 ≤ t n+1 tn |s -t n | ∇e n+1 h L 2 (Ω t n+1 ) 4 ∂ 2 X h ∂s 2 (s) 2 1/2 L ∞ (Ω 0 ) 2 u(t n+1 ) L 2 (Ω t n+1 ) 2 ds.
By using the Cauchy-Schwarz inequality in time, it follows that

R 4 ≤ ∆t 2 √ 3   sup s∈(tn,t n+1 ) ∂ 2 X h ∂s 2 (s) 2 L ∞ (Ω 0 ) 2   1/2 u L ∞ (0,T ;L 2 (Ωt) 2 ) ∇e n+1 h L 2 (Ωt n+1 ) 4 ,
which yields (6.25).

Lemma 6.3. Suppose that the assumptions of Theorem 2.2 hold true. Then, the terms R 5 to R 8 dened in (6.17)(6.20) satisfy (6.26)(6.29), respectively.

Proof. In order to simplify matters, let us start our proof by studying the terms Q 1 to Q 4 dened in (6.4)(6.7), which are basically the same as the terms R 5 to R 8 , but written for a general test function

v h ∈ (W h,0 ) 2 .
We will begin by rewriting the term Q 1 as follows: then, by the Poincaré inequality and (6.39), we get (6.27).

Q 1 = ν t n+1 tn Ωt n+1 ∇u(t n+1 ) : ∇(v h • X -1 h,t n+1 ) dx - Ωt ∇u(t) : ∇ v h • X -1 h,t dx dt = ν t n+1 tn t n+1 t d ds Ωs ∇u(s) : ∇(v h • X -1 h,
∇ e n+1 h • X h,t n+1 • X -1 h,t 2 
L 2 (Ωt) 4 ≤ 2 4 J X h,t 2 
L ∞ (Ω 0 ) 4 J X -1 h,t L ∞ (Ωt) • J X -1 h,t n+1 2 L ∞ (Ωt n+1 ) 4 J X h,
Estimates (6.28) and (6.29) can be obtained in a similar way, then we skip their derivation. Lemma 6.4. Suppose that the assumptions of Theorem 2.2 hold true. Then, the term R 9 dened in (6.21) satises (6.30).

Proof. First of all, we observe that this term is similar with T 3 , which has been estimated in the proof of Theorem 2.1. Hence, we are going to proceed similarly. We have that

R 9 = ∆t Ωt n+1 f (t n+1 ) • e n+1 h dx -∆t I h,t n+1 f (t n+1 ) • e n+1 h = ∆t K∈T h,t n+1 E K f (t n+1 ) • e n+1 h .
In order to obtain this error, we use Theorem 4.1.5 from Ciarlet [10, p.195], then for any q > 2,

R 9 ≤ C∆t h 2 K∈T h,t n+1
|K| 1/2-1/q f (t n+1 ) W 2,q (K) 2 e n+1 h H 1 (K) 2 .

Now, applying the Hölder inequality with 1 2 + 1 p + 1 q = 1 , we get

R 9 ≤ C∆t h 2 K |K| 1 2 -1 q p 1 p K f (t n+1 ) q W 2,q (K) 2 1 q K e n+1 h 2 H 1 (K) 2 1 2
≤ C∆t h 2 f (t n+1 ) W 2,q (Ωt n+1 ) 2 e n+1 h H 1 (Ωt n+1 ) 2 .

To conclude, we combine the above relations with the Poincaré inequality and with (6.39).

(2. 2 )

 2 Then we use the notation dv dt Y for the time derivative on the ALE frame which is dened as follows: for any function v : Q T → R regular enough and dened on the Eulerian frame, we set

(4. 15 )

 15 In order to estimate the term |λ -λ h |, let us remark that Ωt p(t) dx = Ωt P (t) dx = 0 ∀t ∈ (0, T ),

  2 and ∈ H 1 (Ω t ). In order toproject them onto (W h,t ) 2 × M 0 h,t , since Now, since p1 (t) ∈ H 1 (Ω t ) ∩ L 2 0 (Ω t ), we can consider the projection U 1 (t), P 1 (t) ∈ (W h,t ) 2 × M 0 h,t of

	dened by	dp dt Y (t) dp dt Y 0 (Ω t ), we need to introduce an auxiliary function p1 (t) ∈ L 2
		p1 (t) =	dp dt Y	(t) -λ,
	where λ = Let us note that the equation (4.9a) is also true if we change 1 dp dt Y (t) dx. |Ω t | Ω t	dp dt Y	(t) by p1 (t).
	du		
	dt Y		

  By using this zero mean value projection and Remark 1.3 from Girault and Raviart (see[18, p.117]), we have that

						dx. (4.12b)
	In the system (4.12a)(4.12b), we can change	dP dt	h Y	(t) by the corresponding zero mean value projection
	P1 (t) dened by			
					P1 (t) =	dP dt	h Y	(t) -λ h ,
	where λ h =	1 |Ω t | Ωt	dP dt	h Y	(t) dx.

  s ) dx ds dt. ) + p(s)div (v h • X -1 h,s )div w h (s) -p(s)∇w h (s) : ∇(v h • X -1 h,s ) dx ds dt, (6.42) Q 4 = -• X h,t n+1 • X -1 h,s )div w h (s) -∇w h (s) + ∇w h (s) T ∇u(s) : ∇(e n+1 h • X h,t n+1 • X -1 h,s ) dx ds dt. + 3 ∇w h (s) L ∞ (Ω s ) 4 ∇u(s) L 2 (Ω s ) 4

	Therefore, we have that					
	R 5 = ν	t n+1 tn	t	t n+1	Ωs	∇	du dt	h Y	(s) : ∇(e n+1 h	• X h,t n+1 • X -1 h,s )
							+ ∇u(s) : ∇(e n+1 h
	Applying the Cauchy-Schwarz inequality, we obtain
	R 5 ≤ ν	t n+1 tn	t	t n+1	∇	du dt	h Y	(s)	L 2 (Ωs) 4
											• ∇ e n+1 h	• X h,t n+1 • X -1 h,s	L 2 (Ωs) 4 ds dt. (6.44)
	By using the following inequality		
	Due to Lemma 3.2, it follows that			
	Q 1 = ν	t n+1 tn	t	t n+1	Ωs	∇	du dt	
		t n+1 t n	t	t n+1	Ω s	div		dw h dt
		t n+1 t n	t n+1 h,s t n+1 t Ω s h dp dt Y (s)div (v h • X -1 t n+1 df
			tn		t		Ωs		dt

h Y (s) : ∇(v h • X -1 h,s ) + ∇u(s) : ∇(v h • X -1 h,s )div w h (s) -∇w h (s) + ∇w h (s) T ∇u(s) : ∇(v h • X -1 h,s

) dx ds dt. (6.40)

Similarly, we deduce that

Q 2 = -h Y (s) ⊗ u(s) + div (w h (s) ⊗ u(s))div w h (s) + div w h (s) ⊗ du dt h Y (s) • v h • X -1

h,s dx ds dt, (6.41)

Q 3 =h Y (s) + f (s)div w h (s) • v h • X -1 h,s dx ds dt.

(6.43)

In order to obtain the estimates (6.26)(6.29), let us choose in the terms Q i , for all i = 1, . . . , 4, the following test function:

v h = e n+1 h • X h,t n+1 ∈ (W h,0 ) 2 .

  t n+1 L ∞ (Ω 0 ) + 3 ∇w h (s) L ∞ (Ω s ) 4 ∇u(s) L 2 (Ω s ) 4 Ωt n+1 ) 4 ds dt. Ωs div w h (s) (w h (s) • ∇) u(s) • e n+1 h • X h,t n+1 • X -1 h,s dx ds dt. L ∞ (Ωs) 4 u(s) L 2 (Ω s ) 2 + ∇w h (s) L ∞ (Ωs) 4 w h (s) L ∞ (Ωs) 2 ∇u(s) L 2 (Ωs) 4 e n+1 h L 2 (Ωt n+1 ) 2 ds dt.Using the estimate (2.13), the hypothesis (2.18) and the Cauchy-Schwarz inequality, it follows that R 6 ≤ C∆t 3/2 L 2 (Ωt) 2 + ∇u(t) L 2 (Ωt) 4

	then, integrating by parts, it follows that
	R 6 =	t n+1 tn	t	t n+1		Ωs		dw h dt		h Y	(s) • ∇	e n+1 h	• X h,t n+1 • X -1 h,s • u(s) dx ds dt
			+	t n+1 tn	t	t n+1	Ωs	(w h (s) • ∇) e n+1 h	• X h,t n+1 • X -1 h,s •	du dt	h Y	(s) dx ds dt
			-	t n+1 t n	t	t n+1		Ω s	[div w h (s)] 2 u(s) • e n+1 h	• X h,t n+1 • X -1 h,s dx ds dt
							t n+1	t n+1			
				-		tn			t				
	Applying the Cauchy-Schwarz inequality, (6.35) and (6.45), we get
	R 6 ≤ C	t n+1 tn			t n+1 tn		dw h dt	h Y	(s)	L ∞ (Ωs) 2	u(s) L 2 (Ωs) 2
			+ w h (s) L ∞ (Ωs) 2	du dt	h Y	(s)	L 2 (Ωs) 2	∇e n+1 h	L 2 (Ωt n+1 ) 4 ds dt
								t n+1	t n+1
					+ C							
								tn						∇e n+1 h	2 L 2 (Ωt n+1 ) 4 , (6.45)
	then (6.44) yields to							
	R 5 ≤ C L 2 (By the Cauchy-Schwarz inequality and (2.13), the previous estimation becomes t n+1 tn t n+1 tn ∇ h du dt Y (s) L 2 (Ωs) 4 t n+1 tn u(t) L 2 (Ωt) 2 + h 2 1/2 du dt Y (t) L 2 (Ωt) 2 dt h L 2 (Ωt n+1 ) 4 ∇e n+1 • ∇e n+1 h + C∆t 3/2 t n+1 tn 1/2 u(t) 2 dt e n+1 h	L 2 (Ωt n+1 ) 2 ,
	R 5 ≤ C∆t 3/2	 	t n+1 tn	  ∇			du dt	h Y	(t)	L 2 (Ωt) 4	+ ∇u(t) L 2 (Ωt) 4	 2 	 dt 	1 2	∇e n+1 h	L 2 (Ωt n+1 ) 4 ,
	and therefore, due to (6.39), we get	
	R 5 ≤ C∆t 2		t n+1 tn	  ∇	du dt	h Y	(t)	2 L 2 (Ωt) 4	+ ∇u(t) 2 L 2 (Ωt) 4	  dt +	1 18	ν∆t ∇e n+1 h	2 L 2 (Ωt n+1 ) 4 ,
	which completes the proof of the estimate (6.26).
	On the other hand, we have that	
	R 6 = -	t n+1 tn		t	t n+1		Ωs	div			dw h dt
															h,s	dx ds dt,

h Y (s) ⊗ u(s) + div (w h (s) ⊗ u(s))div w h (s) +div w h (s) ⊗ du dt h Y (s) • e n+1 h • X h,t n+1 • X -1 tn ∇w h (s) 2
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