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Abstract

We consider the approximation of the unsteady Stokes equations in a time dependent domain when
the motion of the domain is given. More precisely, we apply the finite element method to an Arbitrary
Lagrangian Eulerian (A.L.E.) formulation of the system. Our main results state the convergence of the
solutions of the semi-discretized (with respect to the space variable) and of the fully-discrete problems
towards the solutions of the Stokes system.

1 Introduction

In this work we consider the discretization of a system of partial differential equations which describes
the motion of a viscous incompressible fluid in a time dependent domain. More precisely we consider the
Stokes system written in a bounded domain €; C R? which depends on time ¢ € (0,7). We want to
approximate this system by considering an Arbitrary Lagrangian Eulerian (A.L.E.) formulation for the
problem and by using the finite element method.

In many problems and applications one has to work with a fluid written in a moving domain. It is
generally the case for fluid-structure interaction problems like the displacement of fishes or of submarines
or like the motion of blood in the arteries, etc. Several numerical techniques have been proposed in the
literature to overcome the difficulty due to the time dependent domain: see, for instance, |26], [38], [39],
[9], [19], [20], [32], [36], [4], [29]. Here we consider the Arbitrary Lagrangian Eulerian (A.L.E.) method
which main idea consists in moving in a convenient way the mesh in order to follow the motion of the
domain, instead of re-meshing at each step time (which leads to a too expensive computation). If the
deformation of the domain is not too important, it is possible to keep the regularity properties of the
initial grid. This method have been proposed and studied by many authors: [12], [14], [23], [15], [30], [16],
[27], [13], [17].

For many fluid-structure interaction problems, the motion of the domain is time dependent but is also
an unknown of the problem and the equations for the fluid have to be coupled with some equations for the
structure. For instance, if we deal with the motion of rigid bodies into a viscous incompressible fluid, the
problem can be modeled by the coupling between the Navier-Stokes equations (corresponding to the fluid
part) and ordinary differential equations (corresponding to the rigid bodies). The problem could even be



more complicated if the structure is deformable and although many authors (see, for instance, [3], [5],
[11], [8]) have tackled the well-posedness of such systems, there are still many open questions (even for
deriving a model with “good” properties). In the present paper, we tackle the problem when the motion
of the domain is given. Moreover, to split the difficulties, we focus on the Stokes equations, neglecting the
non linear term of the Navier-Stokes system. Despite these hypotheses, the problem remains complicated
since we have to consider a mixed formulation in a time dependent domain, which is completely new with
respect to the recent literature.

Let us briefly recall some reference about the numerical convergence for the Stokes/Navier-Stokes equa-
tions and the fluid-structure interaction problems. In the case of a fixed domain, and for the Navier-Stokes
equations, the Lagrange-Galerkin method has been proposed and analyzed in [33]. In [37], the author has
proved optimal error estimates for the Lagrange-Galerkin mixed finite element approximation of Navier-
Stokes equations in a velocity /pressure formulation. We also mention the work of Achdou and Guermond
[1], where convergence analysis of a finite element projection/Lagrange-Galerkin method for the incom-
pressible Navier-Stokes equations is done. In the case where the domain is time dependent but given,
the convergence analysis for the ALE method has been considered by [15], [30], [16], in the case of the
advection-diffusion equation instead of the Stokes or the Navier-Stokes equations. Finally, when the do-
main is time dependent but unknown, few results exist in the literature: Grandmont, Guimet and Maday
(in [21]) deal with the case of one dimensional problem discretized by using the ALE formulation. In [36]
the authors have proved the convergence of a numerical method based on the use of characteristics and
on finite elements with a fixed mesh for a two dimensional fluid-rigid body problem.

Let us describe more precisely our problem. For a given T' > 0, and for each ¢t € [0,7], we consider a
bounded polyhedral convex domain €2 in R?. We set

Qr={(x,t) eR® | x ey, t€(0,T)}.

The Stokes system in the domain €4, ¢ € (0,7') can be written as follows:

g—ltl —vAu+Vp = f in Qr,
divu = 0 in Qr, (1.1)
u = 0 ondYy, te(0,T),
11(0) = U in Qo.

In these equations, u = (u1, uz) is the velocity of the fluid, its density is assumed to be equal to 1, v > 0
is its constant kinematic viscosity and p is its pressure; f = (f1, f2) represents a density of body forces per
unit mass (for instance, gravity).

It can be proved that the system (1.1) is well-posed provided that Q7 and the data (f and ug) are smooth
enough. The difficulty in this proof, which comes from the fact that the domain is moving on time, has
been overcome by several works. We mention, among others, the paper of Otani and Yamada [31] and the
work of Inoue and Wakimoto [25]. In the last one, the equations (1.1) are recast on a cylindrical space
time domain introducing a suitable diffeomorphism. A result of existence of a weak solution is obtained
also in Salvi [35], [34] through an elliptic regularization, under weaker hypotheses on the regularity of the
domain boundary than in the previously cited paper.

The paper is organized as follows. In the next section we deal with the ALE formulation of the Stokes
system and we state our main results. The first result given in Theorem 2.1 consists in the convergence of
a semi-discretization scheme with respect to the space variable and the second one (Theorem 2.2) states
an error estimate for a fully-discrete formulation. Section 3 is devoted to some preliminary results useful
to prove our main theorems. In Section 4 we introduce the projections on the finite element spaces and
we prove some estimates for their time derivative on the ALE frame. The fifth section is devoted to the
proof of the first main result and finally, in Section 6 we prove the second main result.



2 Statement of the main results

2.1 The ALE formulation of the Stokes equations
Let first give some assumptions on the non cylindrical domain Q7. We assume that there exists a mapping
X € H'(0,T; W2(00)?) such that for each ¢ € (0,7, the mapping

th QO — Qt,

y — X(y.1), @1

is invertible and X; ' € WH(Q;)2. In the literature, y € Qq is called the ALE coordinate, and x € €
the spatial (or Eulerian) coordinate.

Using the transformation X, we can write the ALE formulation of (1.1). To achieve this, we introduce
the following notation: first, we denote by w the domain velocity, which is defined by

w: Qr — R?, w(x,t) = E(X;I(x),t). (2.2)

d
Then we use the notation d:‘ for the time derivative on the ALE frame which is defined as follows: for
Y

any function v: Q7 — R regular enough and defined on the Eulerian frame, we set

2 e — R
ty 2.3
dv ov (2:3)
(x,t) — @ty (x,t) = a(x, t)+w(x,t) - Vo(x,t).

Using this definition, we obtain that the Stokes system (1.1) is equivalent to the following system (“ALE
formulation of (1.1)"):

d
dfltl —vAu+Vp—(w-V)u = f  inQp,

divu = 0 in Qr, (2.4)
0 on QQt, tc (O,T),

11(0) = WO n Qo.

Y

c
Il

It may be noticed that the main difference with the original formulation (1.1) is the appearance of the
convective-type term due to the domain movement.

In order to write the ALE weak formulation of problem (2.4) we need some results on the time derivatives
of integrals on moving domains. This kind of results will be developed in details in Section 3. Using these
results, we get the following mixed weak formulation:

Find u: Q7 — R? and p: Qr — R such that for each t € (0,7), u(-,t) € Hi(Q:)?, p(-,t) € L3() and
the following system holds:

.
i u.(voX;l)dx—i— VU:V(VOX;I)dX
dt foN Q
_/ div (w®u) - (voXt_l)dX—/ pdiV(VoXt_l)dX
Qt Qt
= [ f-(voX;hdx  VveH} () (2:5)
Q
/ (qOX;l)diVlldX:O VqGLQ(QO)a
Q¢
u(~,0) = uo(-) in Q(),




where for any open set @ C R2, we have denoted by LZ(€2) the classical pressure space, that is:
L2(Q) = {f e L2(Q) ‘ / F(x) dx = o}.
Q

Let us also introduce the classical space of free divergence fields associated to Stokes problem, defined
by

H () = {u € HY(Q)? | divu=0}.

Since we deal with the mixed formulation (2.5), it is natural to assume the following uniform “inf-sup”

condition:
/ pdivvdx
Q4

inf sup > 0, (2.6)
PELY(U) veHl(0:)? IVIlE @2 1PNl z2 @)

where (3 is a positive constant which does not depend on time. The “inf-sup” condition was introduced
independently by Babuska [2| and Bezzi [7]. Notice that a sufficient condition to guarantee (2.6) is that
the deformation of €2, is “small”. More precisely, there exists a constant o > 0 depending only on €y such
that if

X = Id|| oo (g x (0.1))2 + VX = 1d|[ Lo (g x (0,7))1 < @, (2.7)

then (2.6) holds true. It is important to remark that the assumption (2.7) is quite natural: indeed, in
practice, the ALE formulation can not be used to discretize a problem when the deformation are too big
and it is usually necessary to re-mesh the domain to preserve the regularity of the mesh (see, |28] for
instance)

2.2 Semi-discretization scheme and statement of the first main result

In order to discretize our problem with respect to the space variable, we introduce two finite element
spaces of Hood-Taylor type; these spaces depend on time since our problem is written on the domain £2;.

Let h denote a discretization parameter, with 0 < h < 1. At initial time ¢ = 0, we consider a quasi-
uniform triangulation 7} o of g, as defined, for instance, in Brenner and Scott [6, p.106]. We also assume
that there is no triangle of 7 with two edges on 0€)y. These assumptions on 75 will be assumed
throughout this paper.

For any t € [0, T, we consider a discretization of the mapping X; by means of piecewise linear Lagrangian
finite elements, denoted by X ; :
X]%t: QO — Qt,
y — Xpu(y)
We assume that Xp ; is smooth and invertible. Let 7j; be the image of 7 under the discrete ALE
mapping Xy ;.

We associate to this triangulation two classical approximation spaces used in the mixed finite element
methods for the Stokes system. The first space, classically used for the approximation of the velocity
field in the mixed statement of the Stokes system, is denoted by W}, ; and is composed with the &-finite
elements associated to 73, ;. More precisely:

Wh,t = {Uh S H&(Qt) ‘ Uh| € e@z(K) VK € 7;1,7:}7

where &,,(K) is the set of polynomials on K of degree less than or equal to n.



The second space, classically used for the approximation of the pressure in mixed formulations of the
Stokes system, is denoted by M}, ; and is composed with the Z71-finite elements associated to 7, that is,

My, = {QhGHl(QthMKE@ﬂK) VKG'E,t}-

We also consider the space

M,?yt = My, N L3(Q).

Since {29 is a polyhedral convex domain and X, ; is piecewise linear and smooth, we can characterize
the spaces Wy ; and Mj,; as follows:

Wh,t = {’Uh o X};i ‘ vy, € Wh70}, (2.8)

My, = {Qh o X;:i | qn € Mh,0}~ (2.9)

As in the previous subsection, we consider wy, the velocity field associated to the discrete ALE mapping:

OXht (-1
wa(x,t) = = (xh,t (x)) .
Using this discrete velocity field, we can introduce the time derivative on the discrete ALE frame as follows:
for any v: @7 — R smooth enough, we define

dv |" ov

% N (x,t) = E(X’ t) + wn(x,t) - Vou(x,t). (2.10)

Now, using the weak ALE formulation (2.5) and the definitions above, we can derive a semi-discrete
version of our problem. For any h € (0,1) we denote by uy, and pj, the solution of the following problem:

Find uy, and py, such that up(+,0) = upo and for any t € (0,7), up(-,t) € (Whi)?, pu(-,t) € M}?’t and
the following system holds

(d
el uy, - (VhOX;:i) dx +v Vuh3v(vhoxi:i) dx
dt oM ’ Q¢ ,
—/ div (wp @ uy) - (VhOX,;%) dx — / pr div (VhOX}:%) dx
o, ’ oM ’ (2.11)

= Iy <f(t) - (vno Xﬁ%)) Vv € (Whpo)?,
/ (qh o Xﬁ%) divup,dx =0 Van € Mp,p,
\ ’

where uy, o is a finite element approximation of the initial data up. In the third line we have used the
notation .FTVW(F) to denote a numerical quadrature formula for the integral / F(x)dx. In the rest of
Q

t
paper, we assume that the quadrature formula is exact for the continuous functions in €2;, whose restriction
of each triangle is polynomial of degree less than or equal to 4. Using this fact, each integral of the above
numerical scheme can be replaced by the numerical integration formula.

To get the convergence of the numerical scheme, it essential to assume that the discrete ALE mapping
X}, approximates X in some sense. More precisely, we assume that the following error estimate holds true.

1Xe = X il Loe(aoyz + 1 IV(Xe = X o)l oyt < C R A] [ Xelly2oe ()2 (2.12)



For more details about the construction of a mapping X, satisfying such an estimate, we refer the reader
to Gastaldi [16]. We can notice that if we assume w(t) € W2°°(Q;)?, then the following error estimate on
the domain velocity holds true (for more details, see Gastaldi [16]): for all ¢t € (0,7),

Iw(t) = Wi (t)l| oo ()2 + PIV (W () = Wa(t))l| oo 0 < CH*[A] [[w(t)[lzo0 (02 (2.13)

The other important hypothesis to obtain the convergence of our scheme is that the triangulation 73,
remains non-degenerate with the time (see |6, pp.106-107]): we assume that there exists p > 0 such that

diam Bg > phdiam K VK € Tp (2.14)

for all t € [0,7] and for all h € (0,1], where By is the largest disk contained in K. In practice, this
hypothesis holds only for a small time interval, especially when one deals with great deformations. If
we assume that 73 is non-degenerate, that the deformation is small enough (see (2.7)) and that the
approximation Xy, is close to X (see (2.12)), then for h small enough, we can prove that (2.14) holds true.

We are now in position to state the first main result of the paper:
Theorem 2.1. Suppose that the above assumptions on Tp; and on Xy, hold true and that (2.6) is satisfied.

Let also assume that the solution (u,p) of the problem (2.4) and the data w, f satisfy the following
properties:

d
we L0, T; H3(Q)? N H (), d%; € L*(0,T; H*()?), u(0) € H()?,
Y
- d 2.15
p € L0, T; H* () N LA()), d];‘ e L20,T; H'(Q)), p(0) € H2(Q), (2.15)

Y
w € L0, T; W2>2()?), f e L2(0,T; W29(Q4)?), for some q > 2.

Then there exists a constant C > 0, independent of h, such that the solution (up,pp) of the semi-
discretization problem (2.11) satisfies

o = Wl 0.2 0200y2) T VIV = W)l 220 1 p2(0,0) < 00 = Whol 720y

du| |J?
+ ORI 720 mawzaqaz) + 10l Foo o rm3(00)2) + ‘ @t |y ll o0 e,
545 t
dp

2
+ 1P oo 0,112 (520 + H o ] (2.16)

L2(0,T;H ()

‘ Y

2.3 The fully-discrete formulation and statement of the second main result

In order to discretize our problem with respect to the time variable, let us denote by At > 0 the time step
and t, = nAt, for n =0,..., N, where N is such that ty <T and tyy1 > T.

In the fully-discrete problem, we will consider a piecewise linear interpolation in time of the domain
deformation. Thus, the domain velocity is constant on each interval (¢,t,+1) and at time ¢t = t,41 is

given by:
* 1 -
Wh,n,n—f—l(x) = E |:X - Xh,tn (Xh,%n+1 (X))} Vx € Qtn+17

forall n € {0,...,N —1}.

With the above definitions, we can introduce the fully-discrete problem, using an implicit Euler scheme,
as follows:



Flind {u}} and {p}} such that u) = up and for any n =0,..., N — 1, one has that u}"' € (Wj4,,,)?,
pptteM }?7,:”“ and the following system holds:

/Q Z“ (VhOXht+1)dX_/Q uz-(vhoX,;%n)dx
t

n+1 tn
—I-Z/At/ Vu 't V(v o Xht +1) dx
Qtn+1 "
—At div (W;kl,n’n+1 ® uZ'H) (vpo X}_L;nﬂ) dx
Qtn+1 (2.17)
P
—At div (v 0 X 1 o) X
Qtn+1

= Atfh,tnﬂ (f(tn+1) (vpo X, tn+1)) Vv, € (Wh’O)Q,
/Qt (anoXj;,, )divup™dx =0 Vg, € M.

n+1

In the sequel, we state the second main result of this paper, which gives the error estimate in the approach
given by the ALE method for the Stokes problem in time depending domain. More precisely, we have the
following theorem:

Theorem 2.2. Suppose that the assumptions of Theorem 2.1 hold true. Let also assume that

%X,

df
I € L®(0,T; L®(Q0)?) and —| € L*(0,T;L*()?). (2.18)

dt |y

Then, there exists a positive constant C, independent of h and At, such that for all sufficiently small
At and h, we have the following error estimate:

n+1
[atnn) = uy T, e +v ALY IV (ults) = uj) 72, )
=1
h4 4 2 2
< HuU — up 0||L2 (€0)2 +C AtQ +h (”uHLoo(07T;H3(Qt)2) + HpHLOO(O,T;HQ(Qt)))
X, , 1° s
+CAL sup > (s) 1l Zeo 0 7sz2(@02) + CAL BT Y IEE) [F20(q, )2
s€(0,T) Os
’ Lo (90)2 i=1

o [ (| du 2 dp ’

veae [ Sl @] e+ |2 o

0 Y H(Q)2 L2(Q)
df 2

(t)

+HP(’5)H%11(Qt) + H @ty + ||f(t)H12ql(Qt)2> dt. (2.19)

L2()2
Remark 2.3. In particular, if there exists a fixed constant Cy > 0 such that h < CpAt and ||u(0) —
un0llr2(0g)2 < Coh, we have that

n+1
la(tos) = Bagq, e v A STV (u(t) = uh) 32, 0 < CAE.
=1

Remark 2.4. Let us observe that the condition h < CyAt is quite natural for the convergence of mixed
schemes. For instance, in [33] the convergence is obtained for h < CyoAt and in [37] for h? < CoAt < C1h°
and o > 1/2 (with h and At small enough).



Remark 2.5. The regularity assumption (2.18) on X}, is quite natural in the case of a time depending
operator, in order to obtain the fully error estimate (2.19) given above in the Theorem 2.2. If we use the
construction of X, and its continuous counterpart X, given in Gastaldi [16], it is clear that this regularity
with respect to t is strictly related with the displacement of the boundary.

3 Preliminary results

This section is devoted to some preliminary results which will be useful to prove Theorem 2.1 and Theorem
2.2. These results are either easy to prove or classical and, for this reason, we shall omit all the proofs in
what follows.

Let us first recall the following classical result (see, for instance [22, pp.19-20]). In the context of ALE
formulations, this result has been also presented in [15].

Proposition 3.1. Consider Q1 and Qo two bounded open subsets of R? and assume that X € W1H>°(Qy).
Suppose also that X : Q1 — Qo is invertible and such that Xt € WH™(Qy). Then for any u € H' ()
we have that uo X € H({).

This proposition justify the mixed formulation (2.5) and will be used throughout the paper.

Since we have to deal with integrals on moving domain in this problem, we give also some useful
formulas for the time derivative of integrals on moving domains. First of all, we recall the Reynolds
transport formula, that is, let 1(x,t) be a smooth function defined on Q7. Then for any open subdomain
Vi € Q such that V; = Xy (V) with Vy C Qp, we have that

% Vtw(x,t)dx:/Vt(?f—i—vw‘w—i-l/}dww) dx:/w(cf;fY—i-wdivw) dx

(see, for instance, Gurtin [24]).

= 0, it is not difficult to prove
Y

d
Furthermore, since for any x : Q9 — R? we have that T (x o Xt_l)

the following lemma, which is a consequence of the above formula.

Lemma 3.2. Let assume that ¢: Qr — R?, ¥: Qr — R and x : Qo — R? are smooth functions. Then
we have the following relations:

d

— -1 . =
dt Q, (XOXt ) (de /

d
(xoxt—l).< © —|—<pdivw) dx, (3.1)
Q¢

dt |y

4 ch:V(XoXt_l)dx:/

[V(Chp > 'V (xoX; ') + Ve : V(xoX; ) divw
dt /o, O

dt |y

— ((VW + VWT) VLP) V4 (X o Xt_l)] dx, (3.2)

a (XoXt_l)diVQOdX:/

dt J . [(on{l)div (sz >+(on;1)div<pdivw
t t

‘ Y

—(xoX;!) Vw: chT] dx, (3.3)



4 Wdiv (XoXt_l) dx:/

dt Q, Oy

[dw’ div (XoXt_l) + pdiv (XoXt_l) divw
dt |y

-9 Vw:V (XOX;1)T dx. (3.4)

It is well-known (see, for instance, [18]) that the mixed formulation (2.11) is a well-posed problem,
provided that the spaces Wy, M ,(L]’t and the bilinear form

b(ph, vn) ;:/ pp, div vy dx
Q¢

satisfy the Brezzi-Babugka (inf-sup) condition. The fact that this inf-sup condition is satisfied in our case,
at each time ¢ € (0,7), follows from the choice of the finite element used. That is, at each time ¢ € (0,7,
there exists a positive constant §; such that

/ pp, div vy, dx
. Q
inf sup

preMY  vieWi? Vel a2 IPnllrz(o))

= B

In fact, if h is small enough, we can choose a constant 3* independent of ¢ instead of 3; in the above
inequality. More precisely, we have the following result.

Theorem 3.3. Assume that (2.6) and (2.14) hold true. Then there exist two positive constant h*and (*
such that for all t € (0,T) and for all h € (0, h*),

/ pp, div vy, dx
inf sup 2 > 3. (3.5)

ph€M , vpe(Wi.)? IVhlla oz Ipellzz @)

This theorem can be easily proved by using (2.14) and (2.6) and by following the proof of Theorem
10.6.6 in |6]. Therefore, we omit the proof of the preceding theorem.

4 Estimates of the projection on the finite element spaces

One of the key ingredient in the proof of our convergence results is the introduction of a projection on the
finite element space (Wp+)? x M ,?’t of the exact problem solution

(w,p) € [H*1(Q0)* 0 Ho ()] x [H*(2) N L§()]
(with s a real number s > 1).

Proposition 4.1. Suppose that s > 1 is a real number. If u(t) € H*T1(Q)? N HY(Q)? and p(t) €
H?(Q) N LE(S), then there exists an unique couple (U(t), P(t)) in (Wh4)? x M,%t such that

v [ VU0 - ) Vvdx - [ (PO - p)divvidc=0 € (W)
Q Q¢ (4.1)
; gndiv (U(t) —u(t)) dx =0 Vg, € My .

Moreover, there exists a positive constant C' > 0, independent of h and t, such that

() = OOl g1, + Ip(t) = PW)l120,) < OB (@)l 41002 + 1P| 17(02)) (4.2)

for all v such that 1 <r < min(2, s).



The proof of this Proposition is a direct consequence of Theorem 1.1 from Girault and Raviart (see [18,
p.114]) and of Theorem 3.3.

Remark 4.2. Due to Proposition 3.1, the problem (4.1) is equivalent to the following one:

;

v ; V(U(t) —u(t)) : V(vi o0 X,:;) dx

—/Q (P(t) — p(t)) div (vp 0 X}:i) dx =0 Vv € (Wyo)?, (4.3)

/ (gn 0 X Y)div (U(t) —u(t) dx=0  Vay € Myy.
Q¢ ’

In order to prove our main results, we need some estimates of the time derivatives on the ALE frame
for the projections introduced above. More precisely, we get the following theorem:

Theorem 4.3. Assume that u: Qr — R2, p: Q7 — R satisfy
u(t) € H*()* N Hy (), p(t) € H*(Q) NL§(Q),  for allt € (0,7T).

Let consider the projection (U(t), P(t)) onto (Wp4)? x M,(l)yt of (u(t),p(t)), defined in Proposition 4.1. We
assume that p
T e )% Ll (1) e BHY (). (4.4)
dt |y dt |y

Then there exists a positive constant C, independent of h, such that

d
w(t) € W2°(0,)2, P

h

du du |t dp|" dp |
n (t)—ﬁ (t) + P (t)—g (t)
Y Y Hl(Qt)Q Y Y L2(Qt)
du dp
< Chjn (!lu(t)\|H3(Qt)2+‘ L] 0l + || o ) (45
v lm20)2 Yy )

Proof. Using (3.2)-(3.4) we differentiate with respect to ¢ the both equations of (4.3), then we obtain: for
all vy, € (Wh70)2 and gy, € Mp,

I//V d—U
o, dt
_/ dP

o, \ dt

h

du
(t)— —
v dt

h

(t)> : V(v o X,:%) dx

h

Y

. g (t)) div (vp, 0 X,ﬁ) dx
= —V/Q V(U(t) —u(t)) : V(vyo X}Z%)divwh(t) dx
+ I//Q (Vwi(t) + Vwi(t)1) V (U(t) —u(t) : V(v 0 X}Zi) dx

+ / (P(t) = p(t)) div (vi 0 X, ;) divwy(t) dx
Q

- /Q (P() — p(t) Vwa(t) : ¥ (vi o X; 1)  dx, (4.6a)

10



h
| (@ xi ai (i}j J0-5 (t)) dx
_ /Q (g 0 Xj2)div (U(t) — u(t)) divwy(t) dx
+ / (g 0 X7 ) V() : 7 (U(E) — u(t))” dx. (4.6b)
Q¢
Now, we recall that
"y = B ) () - wit) - 9 u() 47
dt |y dt|y W) W s (4.7)
ap|* n o= P ¢ £)) - Vp(t 48
EY() = ay()*—(Wh()—W())' p(t), (4.8)

therefore, the system (4.6a)—(4.6b) can be written as follows: for all v;, € (W, 0)? and gy € M,
h du

dU

ap|" dp 1
B arit o _ 9P . _
/Qt ( p Y( ) it |y (t)> div (vy, otht) dx

=—v A V(U(t) —u(t)) : V(vpo Xﬁ;)divwh(t) dx

+ V/Q (Vwy(t) + Vw,(H)1) V (U(t) —u(t) : V(vy 0 X,:%) dx

(t)) : V(v o XE%) dx
Y

+ / (P(t) — p(t)) div (vp 0 X;L;)div wp(t) dx
Q
_ /Q (P(t) = p(t) Vwa(t) : ¥ (vi o X;, 1) dx
+u/ V[ (wa(t) = w(t) - V) u(t)] : V(v 0 X; 1) dx
Q

— /Q (Wi (t) — w(t)) - Vp(t)div (vs 0 X}ﬁ) dx (4.9a)

and

1\ 4. [ dU
/Qt (qh o Xh;)dlv (dt

h du
Y@—ﬁJﬁw

_ /Q (g 0 X5 1) div (U(t) — u(t)) divwi (t) dx

+ / (qn o X,:;)th(t) :V (U(t) —u(t)” dx
Qy

v / (g © X5 1) div [ (wa(t) — w(t)) - V) u(t)] dx. (4.9b)
Q4

11



d d
On the other hand, we have that d‘;‘ (t) € H2(Q)? N HE(Q)? and diz (t) € H'(Q). In order to
Y Y

d
project them onto (W) x M} ,, since dﬂ (t) & L2(Q), we need to introduce an auxiliary function p
Y
defined by

nn =G 0=

1 dp
where A = / — t) dx.
1| Ja, dt Q

d
Let us note that the equation (4.9a) is also true if we change d—]: (t) by p1(t).
Y

Now, since p1(t) € H* () N L3(€%), we can consider the projection (Ui(t), Pi(t)) € (Why)? X M,(L)’t of

du
dt

(t), ;1 (t)) , which are solutions of the following well-defined problem:
Y

du
v V{IUi(t) — —
/Qt ( 1(> th

d
—/ <P1(t) — dlt” (t) + )\> div (va o X ;)dx =0 Vvj, € (Who)?, (4.10)
Q4 Y

(qn o X,;j)div (Ul(t)

(t)> :V(vi o X, ,) dx

du

Cdt

(t)) dx =0 Vg, € Myp.
Y

\ Qt
From Proposition 4.1 and Proposition 3.1, we have that

du dp
— bP(t)— — t A
= )~ 7| ()

Ui (t) —
[0

L

H'(Q¢)? L2(Q)

<cn (Hdu ; Hdp (t)H ) (4.11)
dtly " Mz 1ty iy

Subtracting (4.10) from the system obtained by (4.9a) and (4.9b), we get the following problem: for all
Vv € (Wh70)2 and qn € Mh,O;

V/V @
o dt
(%
o, \ dt

- V(U(t) —u(t) : V(vh o X)) div wy(t) dx

+v /Q (Twa(t) + Vi ()T) V (U(t) — u(t)) : ¥ (vi 0 X;, 1) dx

o)

h
(t) — Ul(t)> : V(Vh o X};%) dx
Y

h

(t)— P, (t)) div (vj o X,;}) dx
Y

+ / (P(t) — p(t)) div (vj 0 X,;%)div wp(t) dx
Q

T

_/Q (P(t)—p(t))vwh(t)ZV(VhOX};%) dx

+v ) VI ((wr(t) —w(®) - V)u®)] : V(vso XE%) dx

— /Q (wh(t) — w(t)) - Vp(t)div (vp o X;i) dx (4.12a)

12



and

_1N dU
/Qt (Qh o Xh;)dlv (dt

_ /Q (gn 0 X5 D) div (U(t) — u(t)) divw(t) dx

h
(t) — Ul(t)> dx
Y

* / (an 0 X5, 1) VWi (1) : V (U(1) —u(t)" dx

Qi

+ / (g o X5 )div [ ((wi(t) — w(t) - V) u(t)] dx. (4.12b)
Q

ap|"
In the system (4.12a)—(4.12b), we can change ’r (t) by the corresponding zero mean value projection
Y
Py (t) defined by
- dp|"
Pi(t)= — t)— A
(0 =G| 0=

h

1 ap
where A\, = / —
and Raviart (see [18, p.117]), we have that

(t) dx. By using this zero mean value projection and Remark 1.3 from Girault

h h
(t) = A — Pi(2)

Y

au
dt

dpP

(t) — Ui(t) ar

Y HY()?2 L2(2)

< CNIVWr ()| oo (@ns (IV (UE) —u(®) [ 208 + 1P#) — ()|l 2200))
+ Clwi(t) = w(t) lwre 2 ()| p2(002 + IO a1(0y)) » (413)

where the constant C' > 0 is independent of h and t. Therefore, using (2.13) and (4.2) (with s =7 = 2),
the estimate (4.13) becomes

h h
(t) = An = P1(t)

Y

ar
dt

dU

v (t) — Uq(t) +

Hl(Qt)2

Y L2()

< Chllnh| [[W(t)lw2ec 2 (Ia(®)llrz@02 + 1P lr20,) - (4.14)
By (4.11) and (4.14) it follows that

h du h

dU
L=

dt

dP dp
o= o

Y dt |y

(t)

Y

+
H ()2

L2(Q)

du
< Ch|Inh| (!\u(t)llH3<Qt)2 + Hdt Q
Y

H?2 ()2

)z + dp'Y <t>\

dt

) FON =Ml (4.15)
H(Q4)

In order to estimate the term |A — Ap|, let us remark that
/ () dx—/ P)ydx =0 Vi€ (0,T),
Qt Qt

13



then by differentiating with respect to t we get

1 1

——— [ p(t)divw(t) dx and A\, = ——— [ P(t)divwy(t) dx.
€] Ja, €] Ja,

A=
Hence,

1 1
A =An| < m”ﬁ(t) = Pl z2@)lIVWh(®)ll 2200t + me(prmt)HV(Wh(t) = w(t) 20,

This inequality together with (2.13) and (4.2) yields to
A=Al < Chllnh([[u(®)][ g3 @,)2 + POl r200))-

Using this estimate, (4.15) becomes

du du dp | dp
i ()—% (t) il (t)—a (t)
Y Y HY ()2 Y Y L2(Q)
du dp
<crfhl (@l +| Gl O+ lpOlmeg+ |5 @ ). @10
v a2 Yy a0

Therefore, the estimate (4.5) is a direct consequence of (4.16). In fact, we have that

dU|® du " dpP|" dp|"
r (t) — T (t) pr (t) — P (1)
Y Yo llEr Qe Y Yo Ml
du |t du dp|" dp
< a (t) — T (1) + I (t) — I (1)
Y Y H(94)? Y Y L2(9y)
+ [ (Wi (t) = w(t) - V) u®)ll g, + [(Wa(t) = w(t)) - V()| 20,
du |" du dp|" dp
< s (t) — T (1) + 7 (t) — pr (1)
Y Yo @2 Y Yo Ml

+C[wi(t) = wt)lwree @z (I()llrz@n2 + IpO @) -

and we conclude by combining (2.13) and (4.16).

O
5 Proof of first main result
In this section we prove Theorem 2.1 by using the results of the previous section.
Since (u,p) is solution of (2.4), then we have
d
— [ u@®) - (vpoX, dx+v [ Vu(t): V(vyoX,1)dx
dt Q4 ’ Q ’
—/ div (wp(t) @ u(t)) - (vp o X 1) dx — / p(t)div (v o X}:%) dx
Qe ’ o ’
(5.1)

= | f(t)- (vioX; ) dx  Vvi € (Who)?,
Q¢

/ (qh o X;%)div u(t)dx =0 Yan € My,
Q ’

u(O) = Up in QO-

14



Subtracting (2.11) from (5.1) and introducing the projections U(t) € (W )%, P(t) € Mi?,t of the exact
solutions u(t), p(t) defined in Proposition 4.1, we obtain

/Q (u(t) = un(t) - (vao X;}) dx + v A V(U@®) —up(t) : V(vpoX;;) dx

- /Q div [wp(t) ® (u(t) —up(t) ] - (vi o X}, ;) dx

t

Sl

(P(t) — pa(t)) div (vj 0 X,:}%) dx

S~

Q
_ /Q £0) - (vi o X;h) dx — T () (vio X71)) Wi € (W)
t

A (qn o X,:;)div (U(t) —up(t)dx=0 Yan, € My,
u(6) —up(0) =up — upy in Q.

For the time derivative of the first integral, we apply formula (3.1) to obtain

dul” duy, |"
/ [dt (t) — cTth (t)] - (vho X;:;) dx+v | V(U(t)—up(t) - V(vyo Xﬁ%) dx
Qy Y Y Q
—/Q (Wp(t) - V) (u(t) —up(t)) - (Vh o X}:;) dx — /Q (P(t) — pn(t))div (vh o X}Z%) dx

= /Q £(t) - (vino X }) dx — I (f(t) ~(vho Xﬁ%)) Vi € (Who)?, 52

(gn o X, 1)div (U(t) —up(t))dx =0 Vg, € My,

t
u(0) —up(0) =ug — upy in Q.
Using Proposition 3.1, we can choose in the above system the test functions (vy, ;) such that
vio Xyt = Ut —uy(t) € (Wie)?,
ghoXy; = P(t)—pp(t) € My,

Then it follows that

[ [
o, | dt

h h

duh

Y(t)—ﬁ

(t)] (U(t) —up(D)dx +v [ [V(U(E) = up (1) dx

Y Q

—/Xmﬁywmw—mwrww—wme

Q4

—Afmwuw—wwmemaw«ww—ww»<w>

On the other hand, due to the Reynolds formula, it can be checked that

h h

14 U

du
2 _ h
mew—wwmmm—éjﬁ

(t) — i

(t)] (U(t) —un(t)) dx

Y Y

= [ ) )0 i 0) - (V) ~ wn) dx
t
Combining this identity with (5.3), we obtain that:
1d ) ) ’
5 71U = wn(®)llz2(,)2 + VIVUQR) = un(t) 72 = T, (5.4)

i=1
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where the terms 17,75 and T3 are defined as follows:

du "
Tl - / [dt
Q Y

T, - /Q (wa(t) - 9) (u(t) — U(®)) - (U(t) — w, (1)) dx,

h
)=~ Y (t)] - (U(t) — up(t))dx,

s = /Q £(t) - (U(t) — un(t) dx — Ing (£(1) - (U(t) — un(1))) -

Now, let us estimate separately each term. Due to the Cauchy-Schwarz inequality and Theorem 4.3 we
get that the first term is bounded as follows:

du
dt

(t)\

dp
T, < Chlnh (Hu()IIHthH Ol + | 5| )
H ()

1U(t) — un(t)l L2 (002

The next term can be bounded using the Cauchy-Schwarz inequality, the estimates (2.13), (4.2) and we
obtain that

HQ(Qt)2

Ty < CH|lw(t) lwee (@2 (I0®)llmz (02 + 2] H20,) 10) = wn(®)] 2202

Now, let us estimate T3. Using the fact that Q; = |J K we can write
KEThyt

Ty = / £(t) - (U(t) — () dx — I (1) - (UE) —un(0) = Y. Exe (£(1) - (U(t) —un(t))),
4 KeTy ¢

where E represents the quadrature error on triangle K. To estimate this term, we apply Theorem 4.1.5
from Ciarlet [10, p. 195] and we obtain that for any ¢ > 2,

Ty < On 3 K2 ) o UG — wn (0] e
KETh,t

Combining the above inequality and the Holder inequality (with % + % + é = 1) , it follows that

1/p 1/q 1/2
1_1
o< ont| Y K| > IO e, > 10 — ()l ey
KeTh, KeTh+ KeTh
< CRA[IE®) w2a0n2 10E) — an (@)l ane.

By using all previous bounds and the Poincaré inequality, (5.4) becomes

5 2 10 = w00 + v IV (U — wn(6) 20,

du
dt

<t>\

dp
< ChlInh [nu( s +] Oy + | B
Y

H2(04)2 H ()

+IE@lw2a@)2 | IVUOE) = un(®)ll 22,
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Now, integrating the above inequality, from 0 to ¢, we get

1 t
SN0 — w0320,y + v / IV (U(s) = un(s)) 22, s

du

@ty (s)

1
< §HU(0) - uh( )HL2 Q0)2 +Ch|lnh| /

la(s)llso 2+\
HQ(QS)Z

+£(s)llw2a0.)2
HY(9)

IV(U(s) = un(s))ll L2 (,)1ds,

dp
+1p(5) L2 + H P ()
Y

5
then, due to the inequality ab < 2—(12 + %IP Va,b € R, we obtain that for all ¢ € (0,7),
v

1 v [t
§HU(7§) — uh(t)||%z(9t)z + 2/ [V(U(s) - uh(s))HQLQ(QS)“dS
0

1 du 2
< 5 10(0) = un(0)lI72(qq)2 + CA*|In k| / () 12502 + ‘ (s)
2 0 dt H2(0,)2
+[lp(s) 3720, H + ||f(s)||§v2,qms)2] ds.
Hl(@ )

Hence,

v
§HU - uhH%OO(O,T;LQ(QtV) + §||V(U - uh)”%ﬂ(QT;L?(Qt)‘l)

du 2

1
< SIU(0) = wn ()32 + R AR {320 1,50 + H du

v 20,15 12(00)2)
dp 2
+ 1Pl 20,7 200)) + H dt’

+ ||fH%2(07T;W2,q(Qt)2)] . (5.5)
Y IIL2(0,T;H (Q))

In order to obtain the estimation (2.16), let us first observe that

1 v
ZHU - uh||%oo(o,T;L2(Qt)2) + ZHV(U —u )H%Q(o T;L2(Q4)%) < —||u - UH%OO (0,T;L2(Q4)2)
v
+5lIV(u - U)ll72(0,7;22(00)1) + ||U — Wpll7 e (07512 (002 ”V( — ) T2 zsr2i00) (5:6)

On the other hand, since (4.2) holds true for each ¢t € (0,7"), we get that
2 v 2
5”“ — Ul 0,15220002) T 5“V(u = Ulllz20,7,2200%)

< Ch? (HUH%OO(QT;H?’(Qt)?) + Hp”%w(O,T;H?(%))) (5.7)

and

1
SIU0) = w020y < [1(0) = TO) 2,2 + 1(0) — wa(0) 30 2
< On* (I[(0) (a2 + 1P(O) 312y ) + 1000) = wa(0) 22 e (5.8)

By using (5.5)-(5.8), we get the result stated in Theorem 2.1.
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6 Proof of second main result

In this section, we will analyze the full discretization of the problem (2.5) given in (2.11). We will prove that
the numerical solution converges to the exact solution of the problem, when the discretization parameters
At and h go to zero, if a compatibility condition between At and h is fulfilled.

6.1 Proof of Theorem 2.2

We remark that the approximation error u(tp4+1) — U(t,+1) is well known, and is given in the estimate
(4.2). For this reason, we will study the following error:

e/ =U(tp41) —ut™t Vn=0,...,N -1 (6.1)

Since (u,p) is solution of (2.4), we have that

.
d
E ut)- (vio Xy dx+v [ Vu(t): V(vaoX; 1) dx
dt oM ’ Q 7
‘/ p(t)div (vi 0 X, 1) dx / div (wa(t) @ u(t)) - (vh o Xj3) dx
Q4 ’ Q 7
= / f(t) . (Vh o Xg%) dx Yvy, € (Wh’o)Q, (62)
Q ’
/ (qh o X;%)dlv u(t) dx =0 Vay € Mh,O)
Q b
u(f)) = Up in Qo.
Then, integrating the first equation of the above system from ¢, to t,41, we get
/ u(tni1) - (Vh 0 X1, +1) dx _/ ultn) - (Vh ° X’:%n) dx
Qtn+1 Qt 7
trnait tn+1
—I—I// Vu():V(vhoXht) dxdt—/ / dlv(vhoXht)dth
tn tn Q
tn+1
/ / div (wp(t) @ u(t)) - (va oX,:%) dx dt
tn Qt 7
tnt1
/ /Q (vioXpl)dxdt Vv, € (Wio)>
tn t

The previous identity could be rewritten similarly to the numerical equations as follows:

/Q u(tnt1) - (Vh o Xht +1> dx — /Qtn u(ty,) - (Vh o X};in) dx

tn+1

+ At V/Q Vu(tyy1): V (vh o X}:;Ml) dx — At/Q P(tn1)div (vh o Xht +1> dx
t t

n+1 n+1

At / v (waltn 1) © u(tns)) - (vio X5k ) dx
Q

n+1

4
:At/ f(tns1) - (vhoX}Z%n_H) dx+> Qi Yvi € (Who)?, (6.3)
Q¢

n+1 =1
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where Q; (i = 1,...,4) are the differences between the time integrals and the numerical approximations
given by the right point integration formula. That is,

Q1 = yAt/Q

tn+1
Vu(tps1):V (vh o X;;Hl) dx — I//t ; Vu(t) : V(vp 0 X;}i) dx dt, (6.4)
n t

tn41
Qs = —At/ div (Wh(thrl) (%9 u(th)) . (Vh o X};;H_l) dx
Qtn+1
tn+1
+/ / div (wp(t) @ u(t)) - (vh o X}:%) dx dt, (6.5)
tn (oN ’
tn+1
Q3 = —At/ p(tnt1)div (Vh o X,:;nﬂ) dx —1—/ / p(t)div (vp o Xg%) dx dt, (6.6)
Qtn+1 tn Qt
1 bt 1
Qs = —At/Q f(tnt1) - (Vh o Xf_z,tn+1> dx —i—/t /Q £(t)- (vio XI:,t) dx dt. (6.7)
tn+1 n t

Using the projections of u(t,41) and p(ty41), denoted by U(tpi1) € (Why,,,)? and P(tnq1) € Mf(L),tn+1’
and defined in (4.3), the problem (6.2) can be written as follows:

.
/ u(tyy1) - (vh o X,:jnﬂ) dx
Q

n+1
—/ u(ty,) - (vh o Xl:;) dx + At 1// VU(tpt1) : V (vh o X,:;Hl) dx
Qtn Qtn«‘ﬁl
—At div (Wh<tn+1) X u(tn+1)) . <Vh o Xg% +1) dx
Qtn+1 sbn
—At P(tp41)div (vh oX,:% +1) dx (6.8)
Qtn+1 o

4
= At/ f(tn+1) . (Vh o X]:;nﬂ) dx + Z Q; Vvy, € (Wh’0)27
Qt, 4 i=1
/ (qh o X;%nﬂ) divU(tp41)dx =0 Van € My,
Q¢

n+1
u(0) =up in Q.

The preceding system allows us to compare directly the numerical solution with the exact one: by
subtracting (6.8) and (2.17) we get
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Carty. - —uy)- i
/Qth (u(tn-f—l) uy ) (vh OXht +1> o /Qtn (a(tn) = ) <vh Otht") dx
+ At I// \V4 (U(tn_H) — uZ+1) .V (Vh o Xht +1) dx
Qtn+1

—At div (W ( n+1) & ll( n+1)) : <Vh OXht +1) dx

Qtn«l»l

+At div (W27n7n+1 ® uZ+1) : (Vh o Xht +1) dx

Qtn«l»l

_ At (P(th) — pZ'H) div (vh o Xh . +1) dx
Q

(6.9)

n+1

= Z Qi + At/ f(tn+1) : (Vh o Xf:;'rr&»l) dx

an+1

At (F(tusn) - (o Xph 1)) vV € (Wio)?,
/Q (qh o Xht +1) div (U(tps1) —uf™) dx =0 Vay € My,
t

n+1

[ u(0) —uf) =up —upg in Q.

We note that in the previous problem there are two convective terms, with the velocities wj and
W} a1+ Inorder to compare these two velocities, we use the definition of wy ., and therefore we get

% 1 tnt1 82Xh _
Wh(X, 1) = Wi i1 (%) + 2 /t (s = tn) 5" (Xh;n+1(x),s) ds. (6.10)

Gathering this identity and (6.9), then by using the notation (6.1) it follows the following system:

\

| @) Ot - (o Xy, ) dx

n+1

),

_/Q (u(ty,) — U(ty)) - (Vh o X};%n) dx

tn
+/ eZ‘H . (Vh OXht +1> dx —/ e - (Vh oX}Z%n> dx
an+1 Qiy,

+At u/ Vet v (vhoXht 1) dx
Qtn+1 ’

—At div (Whnn+1 ® en+1> ( Vp O Xh tn+1> dx

Qtn«l»l

. tn+1 aQXh 1 _1 (611)
_ /{;t div </t\n (S — tn)W (Xh’tn+1(x),8> ds & u(tn—l-l)) . (Vh o} Xh,tn+1) dx

n+1

_A¢t (P(tn+1) — p;ll"'l) div (Vh o Xh p +1> dx

Qtn+1

4
_ZQi+At/ f(tn-i-l)’ (VhOXht +1) dx
=1

Qg

1=
7At-[h7tn+1 (f(tn+1) (Vh ° X]’Lt +1)> vvh € (Wh70)27
<qh o X}_Lin+1> div eZ'H dx =0 VQh € Mh,oa

n+1

u(0) — u) =ug — upg in Q.
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In the above system, we choose the following test functions:

vi = epttoXy,,., € (Wio)?,
an = (Pltpt1) —pp™) o Xty € Mio
and we get
9
[Crand PP L T At ||ve"+1\|L2(Qtn+1)4 => R, (6.12)
where the right hand side is given by
Ry = / ey - ( o Xy, 0 X ) dx + At/ div (W} 1 ® ej ™) ef Tl dx, (6.13)
Qtn o Qtn+1
Re = [ (utn) = Ul (¢ o Xnsyy 0 X, ) dx
Qtn vn
[ (altas) - Ultas)) e (6.14)
Qtn+1
Ry — —At / div (WE e ® (Wtag1) — Ultnsr))) - 8 dx, (6.15)
Qi
) lny1 82Xh . n+1
Ry = / div / (s = ta) 5t (thtm(x), s) ds @ u(tn1) dx, (6.16)
Qi1 tn 5
Ry = I/At/ Vu(tni1) : Vepttdx
Qtn+1
tn41
—1// / Vu(t e/ o D, O X;é) dx dt, (6.17)
tn Q4
Re = —Al / div (Wh(tas1) ® ultnrr)) - €) ! dx
Qt'rH—l
bt 1 1
+ /t /Q div (wa(t) ® u(t)) - (! 0 Xy, 0 Xyh) dcdt,  (6.13)
n t
tn+1
R; = —At/ p(tns1)divel ™ dx + / / t)div (e} o Xy, ., 0 X 1) dx dt, (6.19)
Q40 tn Q¢ ’
tn+1
Ry = —At/ £(tnt1) - +1dx+/ / et o Xy, 0 X5 1) dxdt, (6.20)
Dt tn Q ’
Ry = At/ f(tpi1) - ep T dx — AtDy,  (F(tasr) - ep ') (6.21)
Qtn+1
The estimates of the terms R; (i = 1,...,9) are very technical, and we prefer to postpone their proof to

Subsection 6.2. For the sake of completeness, in the sequel we present the results obtained, nevertheless,

the precise results are stated in Lemmas 6.1-6.4 below. We get that

1
Ry < ||ehHL2 ()2t *HenJrlHL? )2 + At llep e HL2 (Qpyr)??
where
v= max sup  ||divwy (1) Lo (q sup Jx - Jx—
n=0,...,N—1 t€(tn tng1) ($2¢) te(tn:tn+1) H hit HL (Q0) X, tn+1 Loo(Qtn_H)

+ldiv Wil |-
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Furthermore,

1 n
Ry < CEHU—UHQLOO(O,T;L?(Qt) 2) SVAt Ve +1HL2(Qtn+1)47 (6.23)
Ry < CAtlu=U|Zwqr.r20002) + ) VAt “ven+1"L2(Qtn+1)47 (6.24)
92X .
Ry < CA#  sup 7211(5) [l oo o.7:22(00)2) + VAt IVeh ™ 72, ys-(6:25)
Se(tn,tn+1) 68 oo (QO) o +1
In addition,
2
o [ 2 du n+1
Rs < CAt / (W @2 + || 5| @) dt + *VAt IVer ™z, e (6:26)
tn Y H (D)2 m
2
o (I 2 du n+1
Re < CAt ()71 2 + ) (t) dt + VAt Ve HL?(Qth)% (6.27)
tn Y LQ(Qt)Q
9 tn+1 9 dp h 2 1 n+1
Ry < CAt / 1P I72(0,) + s (t) dt‘i‘EVAt Ve ”L2(Qt ot (6:28)
tn Y L2()
o [t a|" |’ 1 nt12
Rs < CAt / OIS FA O i+ s Ve g, 0 (6.29)
n L2(S)?
and
Ry < CAt h4||f(tn+1)||%V2,q(Qth)2—|— uAtHve"“” 2, (6.30)

By using these estimates of R; (i =1,...,9) in (6.12), we obtain

”en+1|’L2(Qt 2t At HvenHHH Dk < At 7“en+1”L2(an+1)2

+ e, e+ (27 + At) T T LLC [ SO

X, , 1
+ CAL? sup { 5 2h (s)] HuH%oo(O,T;L?(Qt)Q)
S€(tn,tnt1) § L (Q0)
2

tnt1 dul"
+ CAtQ/ (Hu( M2 + @y (t) + o172,

tn I‘Il(Qt)2

9 2
dp|" df |
+ 2] @ +IIEO17 20, + @y (t)
Y L2() L2(94)2
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In order to obtain the global error, we sum over n, that is,

n+1 n+1
166 e, 2+ 80 3 IVelliaga, e < leflZaane + 4072 leiliz,
i=1 i=1
1 n+1
+Cn <At + At) Hu — U‘|%W(O7T;L2(Qt)2) + CAt b Z Hf(ti)|’12/I/ZQ(Qti)2
i=1
X, 17
+ CnAt® sup {2(8)] HuH%OO(O,T;LQ(Qt)Q)
Js
s€(0,T) Lo°(Q)
2
bnt1 du "
+ C’AtQ/ a1 @2 + || | @)
0 dt Y H(Q4)2
2
dp|" df |"
@220 + || 55| ) FEO 2002 + || 7| ®)
dt |y dt |y
L2(%)
By applying the discrete Gronwall lemma, we get
n+1 4
leh ™ I,y +7 A D [IVehlTao, ) < CrllefllZz
i=1
1 n+1
+ CC\T (AtQ + 1) la = U120 1:12(002) + COLAL B? Z Hf(ti)”%WvQ(Qti)Q
i=1
?x, 17
+ CClTAt2 sup |: ) 2h (S):| HuH%oo(O T;L2(£24)?)
S b k)
s€(0,T) L0 (Q0)
2
tn+1 d h
+CCLAL / (Hu(t)ﬂzmm + G ®
0 dt |y
H(€)?
9 2
dp|" dr|"
P20 + || 5| © HIEOIT202 + || 72| @)
Y L2(Qt) Y L2(Qt)2

where the constant C is given by

i
Cr = exp (ts1—2—— ).
' eXp( Hl—vﬁt)

2
) o
L2(Q)2

) dt, (6.31)

In the previous estimate, we will introduce the continuous ALE derivatives using the identities (4.7),

(4.8) and

h df

Y(t) @t |y

df
dt

(@) + ((wWn(t) —w(t)) - V) £(2).
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Therefore, the estimate (6.31) becomes

n+1
5™ e, 2 + ¥ At Y IVeh 2, 0 < Cllefaa
=1
1 n+1
+C (M + 1) o= Ul o,r:22(002) + CAE B Y 1€ [fr2aq, g2
i=1
92X, .
+ CAt? sup [ 2h(5)] Hu||%,°°(OT-L2(Q )2)
0s e ‘
s€(0,T) L0 (Q0)
nt1 du 2
+cm2/ (Hu( W0, + H i, @
0 H(Q0)2
dp 2 df 2

) dt. (6.32)
L2(24)?

This inequality gives us the numerical error U(t,41) — u}™'. In order to obtain the complete error, we
observe that

e+ || @ IO+ |G ©

L2(Q)

n+1
[a(tns1) — uZ—HH%%Qth)? +v At Y ||V (ult;) —uf) 1720, )
1 - n+1
< §||u(tn+1) - U(tn+1)||%2 )2 + v At Z IV (u(t;) — U(t)) H%Q(Qti)‘l
- 1 -
*HenHHL?(QthP +gv At > IVeilag, -
i=1

Combining the previous inequalities and using (4.2), we conclude the proof of the second main result of
this paper.

6.2 Some additional estimates

In this subsection, we derive estimates on R; (i = 1,...,9) which have been used in the proof of Theorem
2.2.

Lemma 6.1. Suppose that the assumptions of Theorem 2.2 hold true. Then, the terms R; and Ra defined
in (6.13) and (6.14) satisfy (6.22), respectively (6.23).

Proof. By using the Cauchy-Schwarz inequality, we have that

Ry < HehHL2 (@2 T fHeTH'1 0 X b4, © X,:énH%z(Qtn)g + At/ div (W} 1 ® e”H) et dx,
Qin+1
then, integrating twice by parts, we obtain

_ 1 o
Rl ||ehHL2 Qt )2 —+ 7||en+1 @) thtn+l o Xh,inH%Z(Qtn)Q —+ 5 At / |en+1|2d1V Wh7n7n+1dx. (633)

Qt'n,«‘ﬁl
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In order to transform the second term in the right hand side, we use the Reynolds formula:

il
dt Jg,

Therefore, integrating from ¢, to t,4+1, we get

2
+1 —1]° 5
e oXp i, © Xoi| div wp, (t)dx.

2
n+1 —1 _
e, o Xp i, © Xh,t‘ dx = /Q
t

2
1 1 -1
HeZ+ ”%Q(Qtn+l)2 — HeZ"’ 0 Xptnyr © Xh,tn

L2(an)2

AN

By combining the above equation with (6.33), we get

2
eZJrl 0 X tpiq © X;% div wy(t) dx) dt.

Lo o2 Lo o1 1 12 3
Ry < Sllenllze gy, )2 + 5\!62* 220, , )2 + 5 A leh P divw), 1 dx

tn41

S
2 tn Q4

2
e oXyy o X, 1| divwy(t) dx) dt.
Hence, we get that

1 2 1 +1712 1 . +12
Rl é §||GZ||L2(QM)2 + 5”82 ||L2(Qtn+1)2 + §At ||d1VWZ,n,n+1HL°0(Qth) Hez ||L2(Qtn+1)2

1

tn+1
+ 2.0 [div wh (8)[| oo (c2,) /t left! o Xty © X tll72(0002 db- (6.34)

In order to bound the last integral, let us remark that, due to the change of variable y = Xp 4, ., (X,_L% (x)) )
we have that

Let us observe that

2
n+1 —1
€, 0 X,y © Xh,t‘

n+1 ||2
LZ(Qt)Q

e : 6.35
Lo (Qtn+1) " L2(Qtn+1 )? ( )

< H‘]Xh,tHL‘X’(QO) HJX—l

2
|, . HLOO(QO) = ||det (Jx,,,) HLOO(QO) < CNIx, 70 gyt + CRII AL X[l y2.00 (02 -
Thus, there exists C depending on X and hg > 0 such that
HJXh,tHLoo(QO)
We can prove in a similar way that there exists C> depending on X and hg > 0 such that

HJX_I

ht

Lo ($2)

From (6.35), (6.36) and (6.37), we obtain

|

Combining the above inequality with (6.34) we get (6.22).

2
n+1 -1
e oXpt ., 0X ’
h stn+1 h,t L2(9)2

< CIC2||eZ+1H%2(Qtn+1)2- (6.38)
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<C, Vtel0,T], Vh € (0, ho). (6.36)

< (Cy vt € [0,T], Vh € (0, ho). (6.37)



Let us estimate the term Ry. The Cauchy-Schwarz inequality together with (6.38) yields to
1
Ry < Cllu— Ul ger.r202 lef iz, 2
To conclude, it is enough to use the Poincaré inequality and that

2 1
ab < Za® + —

2
R. .
< gat+ gt Vabe (6.39)

O

Lemma 6.2. Suppose that the assumptions of Theorem 2.2 hold true. Then, the terms Rs and R4 defined
in (6.15) and (6.16) satisfy (6.24), respectively (6.25).

Proof. To estimate Rs, first we integrate by parts:

Rs = —At / (Whni1- V) e/ (u(tny1) — Ultns1)) dx.
Q4

n+1

Then, by the Cauchy-Schwarz inequality and (6.39), we obtain

4 * 2 2 1 +12
R3 S ;At ||wh,n,n+1||L°°(Qtn+l)2||u - U’|LOO(0’T;L2(Qt)2) + EVAt ||Ve2 ||L2(Qtn+1)47

which implies the estimate (6.24).

Let us estimate the term Ry. First, we integrate by parts and use the Einstein notation:

tni1 62X
= ‘/Q (/t (s =) 5" (Ko (9:5) dsV) e ultns) dx
tny1 n

tna1 82Xh ) 8(en+1)i
= - —in — | X} —h 2 i\ln .

J

-1

In order to write the integral in the domain g, we use the change of variable X -

then it follows that

tn41 a?X 8 en+1 oX " .
Ry = —/ (s —tn)/ [8;(3"8)] (e hiner);
tn Qo S

(X) =Yy € Qo,

j Ok
Xt
yin+41 k
T; (u(tnt1) © Xntoya); TRty @Y 5.
Applying the Cauchy-Schwarz inequality, we have
( +1 ) 2 1/2
tn1 o en o Xht ~8yk
R < — t h stn41 /4 Y9k d
4_/tn s — ty] /Qo o Dy | TXninir Y

1/2
9%X,, 2 )
. (/QO [882(3’,8)] (u(tn+1) oXh,th)i th’tnﬂ dy ds,

J
and therefore,

1/2

tn+1
Ry < / |s — tn] HVeZHHm(Qt |’u(tn+1)HL2(Qtn+1)2 ds.
tn

Lo (Qo)2

n+1 )4

[T
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By using the Cauchy-Schwarz inequality in time, it follows that
) 1/2

X,
a2 )

At?
R, < — sup

\/g Se(tn 7tn+1)

which yields (6.25).

[ull L o.7:22(002) VR 12,

n+1 )4 ’
oo (QO)2

O]

Lemma 6.3. Suppose that the assumptions of Theorem 2.2 hold true. Then, the terms Rs to Rg defined
in (6.17)-(6.20) satisfy (6.26)-(6.29), respectively.

Proof. In order to simplify matters, let us start our proof by studying the terms @1 to (4 defined in
(6.4)—(6.7), which are basically the same as the terms R5 to Rg, but written for a general test function
vy € (Whp)z.

We will begin by rewriting the term )1 as follows:

tn+1
Q1 = 1// [/ Vu(tps1): V(v o X | dx— [ Vu(h): V(vpo X, ) dx| dt
tn Qt stn )

n+1 Qt

tn+1 tn+1 d
= 1// [/ </ Vu(s) : V(v onLl)dx> ds] dt.
tn t ds Ja, *

Due to Lemma 3.2, it follows that

oo [

— ((Vwi(s) + Vw(s)T) Vu(s)) : V(v 0 X,:i)} dx} ds] dt. (6.40)

h

(s)) :V(vpo X;i) + Vu(s) : V(vy o X,;i,)div wh(s)
Y

Similarly, we deduce that

Q=" [/{/ e (22

(s) ® u(s)) + div (wi(s) ® u(s))divwa(s)
Y

du

+ div (wh(s) ® T

Z(S))] : (vhoX,;;) dx} ds] dt, (6.41)

h
(s)div (va 0 X5 1) + p(s)div (vi 0 X;, L) div wi(s)
Y

o= [

—p(s)Vwy(s) : V(vp o0 X,:i,)} dx} ds] dt, (6.42)

o[

In order to obtain the estimates (6.26)-(6.29), let us choose in the terms Q;, for all i = 1,...,4, the
following test function:

Z(S) +f(5)diVWh(5)> : (vh oX,;;) dx} ds] dt. (6.43)

_ +1 2
vy = eZ o thtn+1 c (Whp) .
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Therefore, we have that

tn+1 tn+1
RB_VAH*[l*{LS[V<§;

+Vu(s) : V(e[ o Xpy,,, 0 X;;)div wi(s)

h
(s)) L V(ep ! 0 Xy, 0 X5)
Y

— ((Vwa(s) + Vwy(s)T) Vu(s)) : V(e ™ 0 Xy, 0 X;i)} dx} ds] dt.

Applying the Cauchy-Schwarz inequality, we obtain

s [ (L)

4 3Hth<s>||Loo(Qs)4HVu(s)HLQ(QSy)
LZ(QS)4

. HV (eZ'H 0 X i1 © X,:i)

ds| dt. (6.44)
L2(Qs)4

By using the following inequality

2
HV (ezJrl © Xty © Xﬁ) ‘ < 2! HJXh,t HiOO(QO)‘l

LQ(Qt)4

Iy -1
Xh,,t Loc(Qt)
2

Jthtn+1

.

hvtn+1

n+12
)HVeh ||L2(Qtn+1)4’ (645)

Lo°(Q,, 4 )* Lo (Qo

then (6.44) yields to

tn+1 tn+1 du
wze [ ([
VAt

h
(5)) + 3||vwh(s)|LW(QS)4|yvu(s)||L2(Qs)4>
Y

L2(Qs)4

|| vert| L2,

ds] dt.

By the Cauchy-Schwarz inequality and (2.13), the previous estimation becomes

tn+1 h
Rs < CA3? / Hv (du (t)>
. dt |y

and therefore, due to (6.39), we get

du | ?
“(%)

LQ(Qt)AL
which completes the proof of the estimate (6.26).
On the other hand, we have that

tn+1 tn+1 dWh
roe [ e (2

+div (wh(s) ® —

2

4,

+IVa(@®) |2 | dt ”V€Z+1‘|L2(Qt
L2(Q)

n+1)

tnt1 1
o< | VU@ o | i+ 700 1V g, e

18

h

N (s)® u(s)) + div (wp(s) ® u(s))divwy(s)

h
v (S)>] . (e%“rl o Xh,tn+1 o X;}g) dx} dsl dt,




then, integrating by parts, it follows that

tnt1 tn41
Rg = / / / @ (S) -V (eZ‘H o Xh,tn+1 o Xgi) . u(s) dx | ds| dt
tn t Qs dt |y ,
tnt1 tnt1 d L
+ /t [ /t ( / (wa(s)- V) (e2+1 0 Xt © X;é) : d%‘ L@ dx) dsl dt
tnt1 tn+1
_/t [/t </Q [div wp(s)]?u(s) - (eZ"i‘l 0 X1 © X;i) dx> ds] dt

- / [ / ( / dvwn(5) () ) (s) - (60 X 0 X)) dx) ds] dt.

Applying the Cauchy-Schwarz inequality, (6.35) and (6.45), we get

tn+1 tn+1 dWh
< 27
flo = € tn [/tn <H dt

du
dt

h

h
(s)

Y

h

(s)

Y

a(s)llz2(.)2
Loo(QS)Q

+IwWa(s)ll (0.2

o )2> HVeZ+1”L2(Qtn+I)4 d8:| dt

tn+1

tnt1
v [T (19l

in

+ vah(s)||L°°(Qs)4Hwh(S)”LOO(QS)?Hvu(S)HLQ(QS)4> leh ™ 2, )2 ds| dt.

Using the estimate (2.13), the hypothesis (2.18) and the Cauchy-Schwarz inequality, it follows that

h

bt du
Rg < CAt?’/Q |:/ (Hu(t)HLQ(Qt)Q + H E (t)
tn Y

2 11/2
) dt] IVer o, e
L2(94)2 +

3/2 ftt 2 1Y n+1
+ CAt [/ (Hu(t)Hm(QtP+Hvu(t)HL2(Qt)4> dt} ler ™ 2, )2

then, by the Poincaré inequality and (6.39), we get (6.27).

Estimates (6.28) and (6.29) can be obtained in a similar way, then we skip their derivation. O

Lemma 6.4. Suppose that the assumptions of Theorem 2.2 hold true. Then, the term Ry defined in (6.21)
satisfies (6.30).

Proof. First of all, we observe that this term is similar with 73, which has been estimated in the proof of
Theorem 2.1. Hence, we are going to proceed similarly. We have that

Ry = At / f(tyi1) - et dx — Aty (F(tns1) -ep ™)
of

n+1

= At Z EK (f(tn—f—l) . eZ"'l) .

KGThxtrH-l

In order to obtain this error, we use Theorem 4.1.5 from Ciarlet [10, p.195], then for any ¢ > 2,

Ry < CALEE 37 (K2 V8 () fwmaco e s o

KETh,thrl
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Now, applying the Hélder inequality (With % + % + % = 1) , we get

1
q 2

1
1 p
Ry < CA (zmz ) <Z||f<tn+1>||‘avz,qm2> (Zuez“iiipmz)
K K K

S CAt h,2 ||f(tn+1) H W2’q(Qtn+1 )2 ||ez+1 HHl (Qthrl )2 .

Q=

To conclude, we combine the above relations with the Poincaré inequality and with (6.39). O
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