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Abstract We develop a Brownian penalisation procedure related to weight processes (Ft) of
the type : Ft := f(It, St) where f is a bounded function with compact support and St (resp.
It) is the one-sided maximum (resp. minimum) of the Brownian motion up to time t. Two
main cases are treated : either Ft is the indicator function of {It ≥ α, St ≤ β} or Ft is null
when {St − It > c} for some c > 0. Then we apply these results to some kind of asymptotic
Skorokhod embedding problem.
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1 Introduction

In a series of papers [18], [17], [16], [21], [23], [22], [24] (see also the surveys [19] and [20]
and the monograph [25]) we have introduced a penalisation procedure of Brownian paths
and applied it to many settings. To present the aim of this paper, we first introduce a few
notations.
Let

(
Ω = C(R+, R), (Xt)t≥0, (Ft)t≥0

)
be the canonical space, where (Xt)t≥0 denotes the

coordinate maps : Xt(ω) = ω(t), for any t ≥ 0. Let (Px)x∈R be the family of Wiener
probability measures on Ω : under Px, (Xt)t≥0 is a standard one-dimensional Brownian motion
started at x.
Next, we consider a stochastic process (Ft)t≥0 which takes its values in [0,∞[ and satisfies :

0 < E0(Ft) < ∞ ∀t ≥ 0. (1.1)

We shall say that the penalisation procedure (associated with the weight process (Ft)) holds
if :

QF
0 (Λs) := lim

t→∞
E0[1Λs Ft]

E0[Ft]
exists for any s ≥ 0 and Λs ∈ Fs. (1.2)
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We briefly recall (see Theorem 3.6 in [17], [16] and [21]) that the penalisation procedure holds
with Ft = ϕ(St) where :

1. ϕ : [0,∞[→ [0,∞[ is a Borel function such that

∫ ∞

0
ϕ(x)dx = 1

2. (St)t≥0 is the one-sided maximum process associated with (Xt)t≥0 :

St := max
u≤t

Xu ; t ≥ 0. (1.3)

According to Theorem 4.6 of [17], under QF
0 , the r.v. S∞ is finite and admits ϕ as a density

function. Consequently, the procedure (1.2) forces Brownian motion to have a finite one-sided
total maximum with the given probability density ϕ. This result presents some analogy with
Skorokhod’s embedding problem.

1.1 On Skorokhod’s problem for linear Brownian motion

Let µ be a probability measure (p.m.) on R, such that :

∫

R

|y|µ(dy) < ∞ and

∫

R

y µ(dy) = 0. (1.4)

A number of constructions of (finite) stopping times T such that (i) T is standard, i.e.
(Xs∧T ; s ≥ 0) is a uniformly integrable martingale, and (ii) the distribution of XT , un-
der P0 is µ, have been made by many authors, see e.g. ObÃlój’s thorough survey [11] of the
subject. We briefly recall the particular construction given by Azéma and Yor ([2], [1]) : there
exists a non-decreasing function φµ : [0, +∞[→ R such that for :

Tµ := inf
{
t ≥ 0, Xt ≤ φµ(St)

}
, (1.5)

Tµ is standard and XTµ ∼ µ (under P0).

Precisely, φµ is the right-continuous inverse of ψµ where : ψµ(x) =
1

µ
(
]x,∞[

)
∫

]x,∞[
ydµ(y).

1.2 An asymptotic resolution of Skorokhod’s problem for diffusions

Similarly to Skorokhod embedding problem for Brownian motion, let us start with a target
p.m. µ on R. For simplicity we suppose that µ admits a density function µ0 which is supposed
to be positive and of class C1

b : µ(dx) = µ0(x)dx.
Then, there exists a p.m. Q0 on (Ω,F∞) such that :

Xt = Bt +
1

2

∫ t

0

µ′
0(Xs)

µ0(Xs)
ds, t ≥ 0 (1.6)

and (Bt)t≥0 is a Q0-Brownian motion started at 0.
Moreover, under Q0, Xt converges in distribution to µ, as t → ∞. In other words, we have
introduced a diffusion process, whose limit distribution is the given p.m. µ, which may be
considered as an asymptotic kind of resolution of Skorokhod’s problem.
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1.3 Solving Skorokhod’s problem for (St, Xt)

The solution of Skorokhod’s problem given by Azéma and Yor [2] suggests to consider the
embedding problem for the two-dimensional process (St, Xt)t≥0. A complete answer is given
by Rogers [13] (see also [15]). Starting with a p.m. ν on R+ × R, assumed to satisfy :

∫

R+×R

|y| ν(dx, dy) < ∞,

∫

R+×R

y ν(dx, dy) = 0 (1.7)

a ν
(
[a,∞[×R

)
=

∫

R+×R

1{x≥a} y ν(dx, dy), ∀a ≥ 0, (1.8)

it is shown that there exists a finite standard stopping time T such that (ST , XT ) ∼ ν (under
P0).
Note that (1.7) and (1.8) correspond to

E
[
|XT |

]
< ∞, E

[
XT

]
= 0, (1.9)

resp.

aP (ST ≥ a) = E
[
XT |ST ≥ a

]
, ∀ a ≥ 0. (1.10)

1.4 The (St, Xt) asymptotic resolution of Skorokhod’s problem for diffusion

processes

Comparing Subsections 1.2 and 1.3, we may ask the following question : for which class of
p.m.’s ν on R+ × R, does there exist a p.m. Q1 on (Ω,F∞) under which :

Xt = Bt +

∫ t

0
b(u,X·)du (1.11)

where

(Bt)t≥0 is a Q1-standard Brownian motion with B0 = 0, (1.12)

(
b(t, X·)

)
t≥0

is an (Ft)-adapted process, (1.13)

the couple (St, Xt) converges in distribution towards ν, as t → ∞. (1.14)

Our approach is based on a Brownian penalisation procedure. This method is well fitted
for our purpose since it permits to obtain Markov processes whose distributions are locally
equivalent to that of Brownian motion and enjoy new path properties (for instance a finite
total unilateral maximum, see the beginning of Introduction).
Unfortunately we have not been able to solve completely this question. In Section 6, we only
give a class of p.m.’s ν verifying (1.11)-(1.14).

1.5 Organisation of the paper

Section 2 is a short survey of Brownian penalisations. To show that the penalisation procedure
(see (1.2) or Section 2 for more details) associated with a weight process (Ft) holds, we need
to be able to determine the rates of decay of E0[Ft] and E[Ft|Fs

]
as t → ∞. In this paper,
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we consider penalisations with Ft = f(It, St) where f : ] − ∞, 0] × [0,∞[→]0,∞[ is a Borel
bounded function with compact support and

It := inf
u≤t

Xu (t ≥ 0).

To determine the rate of decay of t 7→ E
[
f(It, St)

]
as t → ∞, we have been led to consider

two classes of functions f . These developments are given in Section 3. With these estimates
at hand, we shall show in Section 4 that the associated penalisation procedures hold. These
schemes give rise to two families of p.m. on the canonical space (Ω,F∞). In Section 5 we
determine the law of the process (Xt) under each of these new p.m.’s. Finally, in Section 6
we apply our results to the question discussed above in subsection 1.4.

2 A survey of Brownian penalisations

We keep notations from the Introduction.

2.1 The goal

Penalisations provide a method to define P0(· |A) for certain negligible events A in F∞ :=
∨

t≥0
Ft, i.e. P0(A) = 0.

This question arises naturally in probability theory and especially in the study of stochastic
processes. Let us give a few explicit examples :

A1 = {Xt ≥ 0 ; ∀t ≥ 0} (2.1)

A2 = {sup
t≥0

Xt ≤ a}, (a > 0) (2.2)

A3 = {inf
t≥0

Xt ≥ α, sup
t≥0

Xt ≤ β} (α < 0, β > 0). (2.3)

Conditioning by A1 may be treated by h-Doob’s transforms (see for instance Section 4, Chap.
V in [4]). As for (2.2), it is proved in [9], [10] that for any 0 < t1 < · · · < tn, the conditional
distribution of the random vector

(
Xt1 , · · · , Xtn

)
given {St ≤ a} converges as t → ∞.

The third case is the subject of our study. It is then demanded that (Xt)t≥0 stays in the strip
[α, β].

2.2 A solution via approximation

Given a decreasing family (At)t≥0 of events in F∞ such that P0(At) > 0 , ∀ t ≥ 0, we set
A = ∩

t≥0
At.

As an example, the set A3 given by (2.3) satisfies : A3 = ∩
t≥0

A3,t, with

A3,t := {It ≥ α, St ≤ β}, where (It)t≥0 is the one-sided minimum process, i.e.

It := inf
u≤t

Xu, t ≥ 0. (2.4)

Going back to the general case of the family (At)t≥0, we would like to define :

PA
0 (Λ) := lim

t→∞
P0(Λ|At), (2.5)
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for Λ ∈ F∞ such that the limit exists.
At this stage, three questions arise immediately :

for which Λ, does PA
0 (Λ) exist ? (2.6)

Can PA
0 be extended to a p.m. on (Ω,F∞) ? (2.7)

How does PA
0 depend on the family (At)t≥0 ? (2.8)

2.3 A penalisation procedure

It is actually easier to generalize the previous approach by replacing (At)t≥0 by a stochastic
process (Ft)t≥0 which takes its values in [0,∞[ and satisfies (1.1).
Our penalisation procedure is the following : the assumptions of the next theorem have been
shown to be satisfied for a large number of such weight processes

(
Ft

)
t≥0

; see [18], [17], [16],

[21], [23] and [24].

Theorem 2.1 Let (Ft)t≥0 as above. Assume that :

E0[Ft|Fs]

E0(Ft)

a.s.−→
t→∞

MF
s ∀s ≥ 0 (2.9)

and

E0(M
F
s ) = 1 ∀s ≥ 0. (2.10)

Then :

1. (MF
s ; s ≥ 0) is a non-negative P0-martingale.

2. For any s ≥ 0 and Λs ∈ Fs :

lim
t→∞

E0[1Λs Ft]

E0[Ft]
= QF

0 (Λs)

and

QF
0 (Λs) = E0[1Λs MF

s ].

3. QF
0 extends as a p.m. on (Ω,F∞).

Note that if we choose for the weight process (Ft)t≥0 : Ft = 1At , where (At)t≥0 is a decreasing
family of events such that P (At) > 0, then assuming that (2.9) and (2.10) hold in this
framework, we get :

QF
0 (Λs) = lim

t→∞
P0

(
Λs|At

)
.

Consequently QF
0 agrees with PA

0 , as tentatively defined by (2.5). Morever a solution to the
questions (2.6) and (2.7) has been given.
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3 Preliminary results

In subsection 3.1 below we shall study in a general framework the asymptotic behavior of
t 7→ E[f(It, St)] as t → ∞, where f : ] −∞, 0] × [0,∞[→ [0,∞[ is a bounded function with
compact support. However, in order to obtain an explicit rate of convergence, we will need
to impose some restrictions on f , see subsection 3.2.

3.1 A general result

For any Borel function f : ] −∞, 0] × [0,∞[→ [0,∞[ with compact support, let us define :

Kf = sup{β − α ; f(α, β) > 0}. (3.1)

This means that the support of f is included in the triangle with vertices (−Kf , 0), (0, 0)
and (0,Kf ).
Let us state the main result of this subsection.

Proposition 3.1 Let f : ] −∞, 0] × [0,∞[→ [0,∞[, bounded with compact support, then

E[f(It, St)] = ∆t(fa
(t)
0 ) + t∆t(fa

(t)
1 ) + t2∆t(fa2) + Rt(f) ; t ≥ 1 (3.2)

where

1. ∆t is the linear operator acting on functions g : ] −∞, 0] × [0,∞[→ [0,∞[ :

∆t(g) :=

∫

]−∞,0]×[0,∞[

g(α, β)

(β − α)6
exp

{
− π2t

2(β − α)2

}
dαdβ (3.3)

2. a
(t)
0 and a

(t)
1 are two continuous functions defined on ] −∞, 0] × [0,∞[ satisfying :

|a(t)
i (α, β)| ≤ C(1 + K4

f ), i = 0, 1 (3.4)

and

a2(α, β) := 4π3 sin

(
πβ

β − α

)
· (3.5)

3. Rt(f) is a remainder term, which satisfies :

|Rt(f)| ≤ C(1 + K4
f )

(
sup
α,β

f(α, β)
)

exp
{
− 8π2t

K2
f

}
; t ≥ 1. (3.6)

To prove Proposition 3.1, three Lemmas are required.

Lemma 3.2 For any t > 0, α < 0 and β > 0, we have :

P0(It > α, St < β) =
4

π

∑

k≥0

1

2k + 1
sin

((2k + 1)πβ

β − α

)
exp

{
− (2k + 1)2π2

2(β − α)2
t
}

(3.7)
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Proof.
According to ([3] section 11 of chap 2 ; [12], ex. 3.15, chap. III) we have :

P0(It > α, St < β, Xt ∈ dx) = 1[α,β](x)dx

×
∑

k∈Z

pt

(
x + 2k(β − α)

)
− pt

(
2β − x + 2k(β − α)

)
(3.8)

where pt(x) is the density function of the Gaussian distribution with mean 0 and variance t :

pt(x) =
1√
2πt

exp
{
− x2

2t

}
· (3.9)

Using the Poisson summation formula (see for instance [7], Chap. XIX, p. 630) we get :

∑

k∈Z

pt

(
x + 2k(β − α)

)
− pt

(
2β − x + 2k(β − α)

)

=
1

β − α

∑

k≥1

[
cos

(
kπx

β − α

)
− cos

(
kπ(2β − x)

β − α

)]
exp

{
− k2π2t

2(β − α)2

}

Since cos a − cos b = −2 sin
(a + b

2

)
sin

(a − b

2

)
, we obtain :

P0

(
It > α, St < β, Xt ∈ dx

)
= 1[α,β](x)dx (3.10)

× 2

β − α

∑

k≥1

sin
( kπβ

β − α

)
sin

(kπ(β − x)

β − α

)
exp

{
− k2π2t

2(β − α)2

}
·

Integrating (3.10) over [α, β], we easily obtain the announced result. ¥

Lemma 3.3 Let h1 : [0,∞[×] −∞, 0]×]0,∞[→ R be the function :

h1(t, α, β) :=
4

π
sin

( πβ

β − α

)
exp

{
− π2t

2(β − α)2

}
· (3.11)

Then

∂2h1

∂α∂β
(t, α, β) =

(
b0(t, α, β) + b1(t, α, β)t + b2(α, β)t2

)
exp

{
− π2t

2(β − α)2

}
(3.12)

where b0(t, ·) and b1(t, ·) are of C∞ class (in the variables α and β) except at 0, and :

|bi(t, α, β)| ≤ C

(β − α)6
(
1 + (β − α)4

)
, i = 0, 1 (3.13)

and

b2(α, β) := − 4π3

(β − α)6
sin

(
πβ

β − α

)
(3.14)
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Proof.
We first observe that h1(t, α, β) is the term which is obtained by taking k = 0 in the series
(3.7).
We begin with the α-partial derivative of h1 :

∂h1

∂α
(t, α, β) =

4

π

[
πβ

(β − α)2
cos

(
πβ

β − α

)
− π2t

(β − α)3
sin

(
πβ

β − α

)]
exp

{
− π2t

2(β − α)2

}
·

Taking the β-partial derivative in the above expression, it is clear that (3.12) holds. Then
(3.14) and (3.13) follow after straightforward calculations and estimates. ¥

Lemma 3.4 Let h2 be the function :

h2(t, α, β) :=
4

π

∑

k≥2

1

2k + 1
sin

(
(2k + 1)πβ

β − α

)
exp

{
− (2k + 1)2π2t

2(β − α)2

}
· (3.15)

Then
∣∣∣∣
∂2h2

∂α∂β
(t, α, β)

∣∣∣∣ ≤
C

(
1 + (β − α)4

)

t
exp

{
− 8π2t

(β − α)2

}
· (3.16)

Proof.
We proceed as in the proof of Lemma 3.3 :

∣∣∣∣
∂2h2

∂α∂β
(t, α, β)

∣∣∣∣ ≤ C t2
(
1 + (β − α)4

)



∑

k≥2

(2k + 1)3

(β − α)6
exp

{
− (2k + 1)2π2t

2(β − α)2

}



Since k ≥ 2, we have :

(2k + 1)2 = (2k − 3 + 4)2 ≥ (2k − 3)2 + 16

As a result :

∣∣∣∣
∂2h2

∂α∂β
(t, α, β)

∣∣∣∣ ≤ C t2
(
1 + (β − α)4

)



∑

k≥2

(2k + 1)3

(β − α)6
exp

{
− (2k − 3)2π2t

2(β − α)2

}



× exp
{
− 8π2t

(β − α)2

}
·

Let C := sup
x≥0

x3e−x. Then :

x3e−ax ≤ C

a3
, ∀x ≥ 0.

Taking x =
1

(β − α)2
and a =

(2k − 3)2π2t

2
in the above inequality, we get :

1

(β − α)6
exp

{
− (2k − 3)2π2t

2(β − α)2

}
≤ C

(2k − 3)6t3
·
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This implies (3.16). ¥

Proof of Proposition 3.1
It is clear that the definition of h1(t, α, β)

(
resp. h2(t, α, β)

)
given by (3.11)

(
resp. (3.15)

)

implies that

P (It > α, St < β) = h1(t, α, β) + h2(t, α, β), α < 0, β > 0.

Consequently :

E0

[
f(It, St)

]
= −

∫

]−∞,0]×[0,∞[
f(α, β)

∂2h1

∂α∂β
(t, α, β) dαdβ + Rt(f)

where

Rt(f) := −
∫

]−∞,0]×[0,∞[
f(α, β)

∂2h2

∂α∂β
(t, α, β) dαdβ.

It is obvious that (3.16) implies (3.6).
From (3.13) and (3.14), we may deduce :

E0

[
f(It, St)

]
= −

1∑

i=0

ti
∫

]−∞,0]×[0,∞[
bi(t, α, β)(β − α)6

f(α, β)

(β − α)6
exp

{
− π2t

(β − α)2

}
dαdβ

+t2
∫

]−∞,0]×[0,∞[
b2(α, β)(β − α)6

f(α, β)

(β − α)6
exp

{
− π2t

2(β − α)2

}
dαdβ + Rt(f).

Setting :

a
(t)
i (α, β) = −(β − α)6 bi(t, α, β) (i = 0, 1)

leads to (3.2).
Obviously, (3.4) is a consequence of (3.13). ¤

3.2 Applications

Let f : ] −∞, 0] × [0,∞[→ [0,∞[ be a bounded function with compact support. Recall that
Kf has been defined by (3.1). This quantity and the set :

Sf :=
{
β ∈]0, Kf [; f(β − Kf , β) > 0

}

will play an important role in our study.
One aim of our paper is to show that the penalisation procedure holds with the weight process
Ft := f(It, St). We briefly detail our approach. Formula (2.9) shows that it is natural to first
investigate the asymptotic behavior of t 7→ E

[
f(It, St)

]
, as t → ∞. Roughly speaking (3.2)

tells us that the dominant term is ∆t(fa2). We observe that :

sup
α<0,β>0,f(α,β)>0

exp
{
− π2t

2(β − α)2

}
= exp

{
− π2t

2K2
f

}
, (3.17)

and the above maximum is achieved at any point of the type (β − Kf , β) where β ∈ Sf .
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In this general setting, it seems difficult to obtain an equivalent for E
[
f(It, St)

]
as t → ∞.

This led us to consider two extreme cases : either Sf reduces to a single point or Sf =]0, Kf [.
The two corresponding prototypes of functions f are either :

f(α, β) = 1{α≥α0, β≤β0} where α0 < 0, β0 > 0 (3.18)

or

f(α, β) = 1{β−α≤c} where c > 0. (3.19)

More generally we have been able to deal with the two following cases.

Case 1.

f(α, β) = Φ(α, β) 1{α≥α0, β≤β0
} (3.20)

where α0 < 0, β0 > 0 and Φ : [α0, 0] × [0, β0] → R+ is continuous and

Φ(α0, β0) > 0. (3.21)

Note that then Kf = β0 −α0, Sf = {β0}, and (α0, β0) is the unique point which achieves the
maximum in (3.17). It seems reasonable to believe that :

E
[
f(It, St)

]
∼

t→∞
Cα0,β0

Φ(α0, β0) exp
{
− π2t

2(β0 − α0)2

}
. (3.22)

Case 2.

f(α, β) = Φ(α, β) 1{β−α≤c} (3.23)

where c > 0, Φ :
{
(α, β); α < 0, β > 0, β − α ≤ c

}
→ R+ is continuous and

∫ c

0
Φ(β − c, β)dβ > 0. (3.24)

In this case Kf = c and Sf =
{
β ∈]0, c[; Φ(β − c, β) > 0

}
. Therefore the maximum in (3.17)

is achieved at any (β − c, β), where β belongs to ]0, c[. The expected behavior would be :

E
[
f(It, St)

]
∼

t→∞
C(Φ, t) exp

{
− π2t

2c2

}
, (3.25)

where t 7→ C(Φ, t) has a polynomial rate of decay in t and depends on all the values of Φ over
the segment in R2 with endpoints (−c, 0) and (0, c).
The heuristic arguments leading to (3.22) and (3.25) will be justified in the remainder of the
section. Precisely we shall show :

Proposition 3.5 1. In Case 1, we have :

E
[
f(It, St)

]
∼

t→∞
8

π
Φ(α0, β0) sin

(
πβ0

β0 − α0

)
exp

{
− π2t

2(β0 − α0)2

}
(3.26)
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2. In Case 2, we have :

E
[
f(It, St)

]
∼

t→∞
4π

c2

(∫ 1

0
Φ

(
c(r − 1), cr

)
sin(πr)dr

)
t exp

{−π2t

2c2

}
· (3.27)

Remark 3.6 Suppose that ϕ : [0,∞[→ [0,∞[ is a Borel function such that

∫ ∞

0
ϕ(y)dy <

∞. Note that the rate of decay of t 7→ E
[
ϕ(St)

]
as t → ∞ is very different from that of

E
[
f(It, St)

]
. Indeed, (cf. Lemma 3.8 of [17]) it is easy to prove that :

E
[
ϕ(St)

]
∼

t→∞

√
2

π

∫ ∞

0
ϕ(y)dy

1√
t
.

Our proof of Proposition 3.5 requires 3 steps. First, we specify the ∆i
t(f) introduced in

Proposition 3.1, in Cases 1 and 2.

Lemma 3.7 Let a :] − ∞, 0] × [0,∞[→ R be a continuous function. Assume that f is a
function which satisfies either (3.20) or (3.23). Then

∆t(fa) =
1

2

∫ ∞

1/K2
f

Λ(Φa)(x) x exp
{
− π2t x

2

}
dx (3.28)

where

Λ(g)(x) =





∫ inf{1, β0

√
x}

(1+α0

√
x)+

g
(r − 1√

x
,

r√
x

)
in Case 1

∫ 1

0
g
(r − 1√

x
,

r√
x

)
dr in Case 2

(3.29)

Proof.
We only consider Case 2. According to (3.3) we have

∆t(fa) =

∫

]−∞,0]×[0,∞[
Φ(α, β)

a(α, β)

(β − α)6
exp

{
− π2t

2(β − α)2

}
1{β−α≤c}dαdβ

Setting x =
1

(β − α)2
(β fixed), we get :

∆t(fa) =
1

2

∫ ∞

1/c2
x3/2 exp

{
− π2t x

2

}(∫ 1/
√

x

0
Φ

(
β − 1√

x
, β

)
a
(
β − 1√

x
, β

)
dβ

)
dx.

The change of variable β = r/
√

x leads directly to (3.29). ¥

The proof of (3.26) and (3.27) is based on Laplace’s method, whose main result we briefly
recall (see for instance [6], chap. IV). We consider :

I(t) =

∫ ∞

0
g(x)et h(x)dx,

11



where g, h :]0,∞[→ R are continuous and satisfy the two following properties :

∫ ∞

0
|g(x)| et h(x)dx < ∞, ∀ t > 0 (3.30)

∃δ0 > 0, such that h(x) ≤ h(δ) for any x ≥ δ and 0 < δ < δ0. (3.31)

Proposition 3.8 Suppose that the functions g and h satisfy :

g(x) ∼
x→0+

g0x
ρ (3.32)

h(x) = h0 − h1 xτ + o(xτ ), x → 0 (3.33)

for some :

g0 6= 0, ρ > −1, h1 ≥ 0, τ > 0. (3.34)

Then :

I(t) ∼
t→∞

g0

τ
Γ
(ρ + 1

τ

)
(h1t)

− ρ+1

τ eh0t. (3.35)

As an application of the previous instance of Laplace’s method, we obtain the following
asymptotics.

Lemma 3.9 Let a :] −∞, 0] × [0,∞[→ R be a continuous function.

1. In Case 1, we have :

∆t(fa) ∼
t→∞

2

π4
(Φa)(α0, β0)

1

t2
exp

{
− π2t

2K2
f

}
(3.36)

when a(α0, β0) 6= 0.

2. In Case 2, we have

∆t(fa) ∼
t→∞

1

π2K2
f

(∫ 1

0
(Φa)

(
(r − 1)Kf , rKf

)
dr

)
1

t
exp

{
− π2t

2K2
f

}
(3.37)

where it is assumed that

∫ 1

0
(Φa)

(
(r − 1)Kf , rKf

)
dr 6= 0.

Proof.
According to (3.28), we have

∆t(fa) =
1

2

∫ ∞

1/K2
f

Λ(Φa)(y) y exp
{
− π2ty

2

}
dy.

Setting y = x + 1/K2
f we get :

∆t(fa) =
1

2

(∫ ∞

0
Λ(Φa)

(
x +

1

K2
f

)(
x +

1

K2
f

)
exp

{
− π2tx

2

}
dx

)
exp

{
− π2t

2K2
f

}
. (3.38)
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a) We begin with Case 2 which is easier.
From (3.29) we deduce :

Λ(Φa)
(
x +

1

K2
f

)
=

∫ 1

0
(Φa)


 r − 1√

x + 1/K2
f

,
r√

x + 1/K2
f


 dr.

Since Φ and a are continuous, we obtain :

lim
x→0

Λ(Φa)
(
x +

1

K2
f

)
=

∫ 1

0
(Φa)

(
(r − 1)Kf , rKf

)
dr. (3.39)

b) Next, we deal with Case 1. Due to (3.29) we have :

Λ(Φa)
(
x +

1

K2
f

)
=

∫ τ1(x)

τ0(x)
(Φa)

( r − 1√
x + 1/K2

f

,
r√

x + 1/K2
f

)
dr

with

τ0(x) =
(
1 + α0

√
x + 1/K2

f

)

+
, τ1(x) = inf

{
1, β0

√
x + 1/K2

f

}
.

We observe that

lim
x→0+

τ0(x) =

(
1 +

α0

Kf

)

+

=

(
1 +

α0

β0 − α0

)

+

=
β0

β0 − α0

lim
x→0+

τ1(x) = inf
{

1,
β0

Kf

}
= inf

{
1,

β0

β0 − α0

}
=

β0

β0 − α0
.

This implies that :

Λ(Φa)
(
x +

1

K2
f

)
∼

x→0+

(
τ1(x) − τ0(x)

)
(Φa)(α0, β0).

When x is small, we have

τ1(x) − τ0(x) = β0

√
x + 1/K2

f − 1 − α0

√
x + 1/K2

f

=
√

xK2
f + 1 − 1.

As a result :

Λ(Φa)
(
x +

1

K2
f

)
∼

x→0+

K2
f

2
(Φa)(α0, β0) x. (3.40)

c) We apply Laplace’s method with

g(x) =
(
x +

1

K2
f

)
Λ(Φa)

(
x +

1

K2
f

)
, and h(x) = −π2x

2
·

It is clear that (3.30), (3.31) and (3.33) hold with

h0 = 0, h1 =
π2

2
and τ = 1.
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In Case 2 (resp. Case 1), relation (3.39)
(
resp. (3.40)

)
implies that (3.32) is satisfied with

g0 =
1

K2
f

∫ 1

0
(Φa)

(
(r − 1)Kf , rKf

)
dr and ρ = 0

(
resp. g0 =

1

2
(Φa)(α0, β0) and ρ = 1

)
.

Lemma 3.9 is a direct consequence of (3.35) and (3.38). ¥

Proof of Proposition 3.5
1) We begin with Case 2. It is clear that (3.37) and (3.5) imply :

∆t(fa2) ∼
t→∞

4π

K2
f

(∫ 1

0
Φ

(
(r − 1)Kf , rKf

)
sin(πr)dr

)
1

t
exp

{
− π2t

2K2
f

}
. (3.41)

Let i = 0, 1. From (3.4) we have :

|∆t(fa
(t)
i )| ≤ C(1 + K4

f ) ∆t(f). (3.42)

Using (3.37), we get :

∆t(f) ∼
t→∞

µ

t
exp

{
− π2t

2K2
f

}
(for some µ > 0). (3.43)

Applying (3.2), (3.6) and (3.41)-(3.43) shows (3.27).

2) Similarly to Case 2, in Case 1, the main term of E
[
f(It, St)

]
is ∆t(fa). As a result, (3.26)

follows from (3.36).

4 Penalisation with the maximum and the minimum

4.1 Penalisation with f(It, St), Case 1

In this subsection we suppose that f satisfies (3.20).

Theorem 4.1 The Brownian penalisation procedure holds with the weight process
Ft = f(It, St), i.e.

1. Property (2.9) holds :

lim
t→∞

E0

[
f(It, St)|Fu

]

E0

[
f(It, St)

] = Mα0,β0
u , for any u ≥ 0 (4.1)

where

Mα0,β0
u = Nα0,β0(u ∧ Tα0

∧ Tβ0
) ; u ≥ 0 (4.2)

Nα0,β0
u =

1

sin
( πβ0

β0−α0

) sin

(
π(β0 − Xu)

β0 − α0

)
exp

{
π2u

2(β0 − α0)2

}
u ≥ 0. (4.3)

Tx = inf{t ≥ 0, Xt = x}. (4.4)

2. Moreover (2.10) is satisfied :

E0[M
α0,β0
u ] = 1 ∀u ≥ 0. (4.5)
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Remark 4.2 1. According to Theorem 2.1 :

(a) (Mα0,β0
u ; u ≥ 0) is a non-negative P0-martingale, which converges to 0.

(b) For any u ≥ 0 and Λu ∈ Fu,

Qα0,β0

0 (Λu) := lim
t→∞

E0

[
1ΛuΦ(It, St)1{It≥α0,St≤β0}

]

E0

[
Φ(It, St)1{It≥α0,St≤β0}

] (4.6)

exists and Qα0,β0

0 is a p.m. on (Ω,F∞) which satisfies :

Qα0,β0

0 (Λu) = E0[1ΛuMα0,β0
u ] u ≥ 0, Λu ∈ Fu. (4.7)

2. In the particular case : f = 1 and β0 = −α0, then

Ft = 1{It≥−β0,St≤β0} = 1{X∗

t ≤β0},

where X∗
t = St ∨ (−It) = max

u≤t
|Xu|. Moreover :

M−β0,β0
u = cos

(πX(u ∧ T ∗
β0

)

2β0

)
exp

{π2(u ∧ T ∗
β0

)

2β2
0

}
,

where T ∗
β0

= inf{t ≥ 0, |Xt| = β0}.

3. Note that in [17], a penalisation procedure has been considered with weight processes :

Ft :=

∫

]−∞,0]×[0,∞]
1{It≥α,St≤β} exp

{1

2

( 1

β
− 1

α

)
L0

t

}
ν(dα, dβ)

where ν is a p.m. on ]−∞, 0]× [0,∞] and (L0
t ) is the local time process at 0 associated

with (Xt).

It has been proved (cf Theorem 3.18 in [17]) that the martingales generated by this
penalisation are functions of the 4-uple (It, St, L

0
t , Xt). Consequently, they are not of

the form
(
M−β0,β0

t

)
.

Proof of Theorem 4.1
To show that the penalisation procedure holds with Ft = f(It, St) we need to prove (4.1)
and (4.6). Observe that relation (3.26) in Proposition 3.5 gives the rate of decay of t →
E0

[
f(It, St)

]
, t → ∞. Next, we need to determine the asymptotic behavior of

t → E
[
f(It, St)|Fu

]
. We will prove in step 1 below that the rate of decay of E

[
f(It, St)|Fu

]

may be deduced from (3.26). In step 2 we will prove (4.5).

1) Proof of (4.1)
Let u > 0 be fixed. We introduce X ′

t = Xt+u − Xu, t ≥ 0.
Under P0, (X ′

t)t≥0 is a Brownian motion started at 0 and independent from Fu. Moreover :

Su+h = Su ∨ (Xu + S′
h), Iu+h = Iu ∧ (Xu + I ′h), h > 0

where S′
h = max

v≤h
X ′

v and I ′h = min
v≤h

X ′
v.
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This implies that

E0

[
f(Iu+v, Su+v)|Fu

]
= H(Iu, Su, Xu, v) ; v ≥ 0 (4.8)

where

H(a, b, x, v) := E0

[
f
(
a ∧ (x + I ′v), b ∨ (x + S′

v)
)]

. (4.9)

Suppose that a, b, x are fixed, a ≤ x, b ≥ x. We introduce :

f̃(α, β) = f
(
a ∧ (x + α), b ∨ (x + β)

)
α ≤ 0, β ≥ 0. (4.10)

Since :

a ∧ (x + α) ≥ α0 ⇔ a ≥ α0 and α ≥ α0 − x

and

b ∨ (x + β) ≤ β0 ⇔ b ≤ β0 and β ≤ β0 − x

then (3.20) implies that

H(a, b, x, v) = 1{a≥α0,β≤β0}E0

[
Φ

(
a ∧ (x + Iv), b ∨ (x + Sv)

)
1{Iv≥α0−x, Sv≤β0−x}

]
.

We may apply (3.26) :

H(a, b, x, v) ∼
v→∞

8

π
Φ(α0, β0) sin

(
π(β0 − x)

β0 − α0

)
exp

{
− π2v

2(β0 − α0)2

}
1{a≥α0, b≤β0}.

Consequently :

E0

[
f(Iu+v, Su+v)|Fu

]
∼

v→∞
8

π
Φ(α0, β0) sin

(
π(β0 − Xu)

β0 − α0

)
exp

{
− π2v

2(β0 − α0)2

}
(4.11)

×1{Iu≥α0, Su≤β0}.

Recall that

E0

[
f(Iu+v, Su+v)

]
∼

v→∞
8

π
Φ(α0, β0) sin

(
πβ0

β0 − α0

)
exp

{
− π2(u + v)

2(β0 − α0)2

}
.

This proves (4.1) because
Nα0,β0(Tα0

) = Nα0,β0(Tβ0
) = 0

and
{Iu ≥ α0} = {u ≤ Tα0

}, {Su ≤ β0} = {u ≤ Tβ0
}.

2) Proof of (4.5)

(Nα0,β0
u , u ≥ 0) is a continuous local martingale as combination of exponential martingales.

Itô’s formula confirms this :

dNα0,β0
u = − π

β0 − α0

1

sin
( πβ0

β0−α0

) cos

(
π(β0 − Xu)

β0 − α0

)
exp

{ π2u

2(β0 − α0)2

}
dXu. (4.12)

It is clear that Nα0,β0
u is uniformly bounded on any interval [0, T ], T fixed. This shows that

(Nα0,β0
u , u ≥ 0) is a martingale. Applying the Doob’s optional stopping theorem we get :

E0[M
α0,β0
u ] = E

[
Nα0,β0(u ∧ Tα0

∧ Tβ0
)
]

= Nα0,β0(0) = 1. ¥
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4.2 Penalisation with f(It, St), Case 2

We study penalisation in Case 2. Namely f satisfies (3.23) :

f(α, β) = Φ(α, β)1{β−α≤c}.

Theorem 4.3 The Brownian penalisation holds with Ft = f(It, St), f satisfying (3.23).

1. Property (2.9) holds :

lim
t→∞

E0

[
f(It, St)|Fu

]

E0

[
f(It, St)

] = MΦ,c
u , ∀u ≥ 0 (4.13)

where

MΦ,c
u = NΦ,c

(
u ∧ θ(c)

)
; u ≥ 0 (4.14)

NΦ,c(u) =
c + Iu − Su

cρ(F )

{∫ 1

0

[
Φ

(
Su − c + r(c + Iu − Su), Su + r(c + Iu − Su)

)

(4.15)

× sin
(π

c

(
Su − Xu + r(c + Iu − Su)

))]
dr

}
exp

{π2u

2c2

}

=
1

ρ(Φ)

(∫ (Iu−Xu+c)/c

(Su−Xu)/c
Φ(Xu + c(r − 1), Xu + rc) sin(πr)dr

)
(4.16)

× exp
{π2u

2c2

}

ρ(Φ) =

∫ 1

0
Φ

(
c(r − 1), cr

)
sin(πr)dr (4.17)

θ(c) = inf{t ≥ 0; St − It = c} (4.18)

2. Moreover (2.10) holds :

E0[M
Φ,c(u)] = 1. (4.19)

Remark 4.4 1. Applying Theorem 2.1, we may deduce that :

(a) (MΦ,c
u ; u ≥ 0) is a non-negative P0-martingale, which converges to 0.

(b) For any u ≥ 0 and Λu ∈ Fu,

QΦ,c
0 (Λu) := lim

t→∞

E0

[
1ΛuΦ(It, St)1{St−It≤c}

]

E0

[
Φ(It, St)1{St−It≤c}

]

exists.

Moreover QΦ,c
0 is a p.m. on (Ω,F∞) and

QΦ,c
0 (Λu) = E0[1ΛuMΦ,c

u ] u ≥ 0, Λu ∈ Fu. (4.20)
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2. When Φ(α, β) = Φ0(β − α) then f(α, β) = Φ0(β − α)1{β−α≤c} and

NΦ,c
u =

1

2

[
cos

(π(Su − Xu)

c

)
+ cos

(π(Iu − Xu)

c

)]
exp

{π2u

2c2

}
. (4.21)

Recall that MΦ,c
u = NΦ,c(u ∧ θ(c)) u ≥ 0.

Proof of Theorem 4.3
Our proof of Theorem 4.3 is close to that of Theorem 4.1. The details are left to the reader.
However we would like to explain how the martingale (MΦ,c

t )t≥0 appears. We go back to the

proof of Theorem 4.1. Obviously (4.8)-(4.10) are still valid. We have to make f̃ explicit in
Case 2. From (3.23) :

f̃(α, β) = Φ
(
a ∧ (x + α), b ∨ (x + β)

)
1{b∨(x+β)−a∧(x+α)≤c}

Since :

b ∨ (x + β) − a ∧ (x + α) ≤ c ⇔ b − a ≤ c, b − x − α ≤ c, x + β − a ≤ c, β − α ≤ c

then

f̃(α, β) = 1{b−a≤c} Φ̃(α, β) 1{β−α≤c}

where

Φ̃(α, β) = Φ
(
a ∧ (x + α), b ∨ (x + β)

)
1{b−x−α≤c, x+β−a≤c}.

Consequently, K
f̃

= Kf = c and

Φ̃
(
c(r − 1), cr

)
= Φ

(
a ∧ (x + cr − c), b ∨ (x + cr)

)
1{b−x≤cr≤c+a−x}

= Φ(x + cr − c, x + cr) 1{b−x≤cr≤c+a−x}.

Applying (3.27) leads to (4.13) and (4.16). ¥

5 The law of (Xt) under Q
α0,β0

0 and Q
Φ,c
0

We first consider the distribution of the canonical process (Xt) under Qα0,β0

0 . Let α0 < 0 and

β0 > 0 be two fixed real numbers. Recall the definition of the p.m. Qα0,β0

0 on (Ω,F∞) :

Qα0,β0

0 (Λu) = E0[1ΛuMα0,β0
u ] Λu ∈ Fu (5.1)

where (Mα0,β0
u )u≥0 is the P0-martingale defined by (4.2).

Theorem 5.1 Under Qα0,β0

0 :

1. (Xt) is a diffusion process solving :

Xt = Bt −
π

β0 − α0

∫ t

0
cot

(
π(β0 − Xu)

β0 − α0

)
du ; t ≥ 0, (5.2)

where (Bt)t≥0 is a Qα0,β0

0 -Brownian motion started at 0.
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2. (Xt) has the following path properties :

α0 < Xt < β0 ∀t ≥ 0 (5.3)

S∞ = sup
t≥0

Xt = β0, I∞ = inf
t≥0

Xt = α0. (5.4)

3. Xt converges in distribution, as t → ∞ to the p.m. pα0,β0(x)dx on R, with :

pα0,β0(x) :=
2

β0 − α0
sin2

(
π(β0 − x)

β0 − α0

)
1(α0,β0)(x). (5.5)

Remark 5.2 1. Property (5.3) follows intuitively from our penalisation procedure and the
fact that the support of the p.m. on Fu :

Λu 7→
E0

[
1ΛuΦ(It, St)1{It≥α0,St≤β0}

]

E0

[
Φ(It, St)1{It≥α0,St≤β0}

] (t > u)

is included in
{
Iu ≥ α0, Su ≤ β0

}
.

2. Note that Qα0,β0

0 does not depend on Φ.

Proof of Theorem 5.1
a) (Mα0,β0

t ; t ≥ 0) is a non-negative Qα0,β0

0 -martingale and can be written as :

Mα0,β0

t = E(J)t := exp

{∫ t

0
Ju dXu − 1

2

∫ t

0
J2

udu

}

for any t < Tα0
∧ Tβ0

. Indeed, from (4.12) and (4.3) we have :

Ju = − π

β0 − α0
cot

(
π(β0 − Xu)

β0 − α0

)
, 0 ≤ u < Tα0

∧ Tβ0
.

Then Girsanov’s theorem implies (5.2).

b) To investigate the path properties of (Xt), we define Yt = β0 − Xt, then

Yt = β0 − Bt +
π

β0 − α0

∫ t

0
cot

(
π Yu

β0 − α0

)
du (5.6)

Obviously (Yt)t≥0 is a one-dimensional diffusion. Let S
(
resp. m(dy)

)
denote its scale function

(resp. speed measure), see for instance : (Section 1, chap. 4 of [8]), (Section 1, chap II of
[4]). Using standard calculations (i.e. [14] (Section 52, chap V), [5] (Section 12, chap 16)))
we easily get :

S(y) = − cot

(
πy

β0 − α0

)
, y ∈]0, β0 − α0[

m
(
[0, y]

)
=

(β0 − α0)

π
y − (β0 − α0)

2

2π2
sin

(
2πy

β0 − α0

)
, y ∈]0, β0 − α0[.

According to the classification of boundary points of a linear diffusion (cf Section 1, chap II
of [4]), we have :
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i) 0 is not an exit point since :
∫

(0,x)
m

(
[y, z]

)
S′(y)dy = ∞ (z ∈]0, β0 − α0[). (5.7)

ii) 0 is an entrance point since :
∫

(0,z)

(
S(z) − S(y)

)
m(dy) < ∞ (z ∈]0, β0 − α0[). (5.8)

Similarly β0 − α0 is not an exit point and is an entrance one. This shows (5.3).

c) The diffusion (Yt)t≥0 which takes its values in (0, β0 −α0) is recurrent. This implies (5.4).
Let p be the density of its invariant p.m. From the Fokker-Planck equation, p solves :

1

2
p′′(y) − π

β0 − α0

(
cot

( π, y

β0 − α0

)
p(y)

)′
= 0. (5.9)

It is easy to verify that

p(y) =
2

β0 − α0
sin2

(
πy

β0 − α0

)
y ∈ (0, β0 − α0)

is the unique density function solving (5.9). ¥

To study the law of (Xt)t≥0 under QΦ,c
0 it is more convenient to express the p.m. QΦ,c

0 via

the family of p.m.’s
{
Qβ−c,β

0 ; 0 < β < c
}

(see Theorem 5.3 below). This result will allow to

determine easily the distribution of (Xt) under QΦ,c
0 .

Theorem 5.3 Let c > 0, and Φ :
{
(α, β) ; α < 0, β > 0, β − α ≤ c

}
→ R+ be a continuous

function satisfying (3.24). Then :

QΦ,c
0 (·) =

1

cρ(Φ)

∫ c

0
Φ(β − c, β) sin

(
πβ

c

)
Qβ−c,β

0 (·)dβ. (5.10)

Proof.
a) Assume for a while that the following holds :

EΦ,c
0

[
1Λuh(Su, S∞)

]
=

1

cρ(Φ)

∫ c

0
Φ(v − c, v) sin

(πv

c

)
Ev−c,v

0

[
1Λuh(Su, v)

]
dv (5.11)

for any h : R2
+ → R+ Borel, u > 0, Λu ∈ Fu, and that EΦ,c

0 (resp. Eα0,β0

0 ) stands for the

expectation under QΦ,c
0 (resp. Qα0,β0

0 ).
Taking h = 1 in (5.1) implies that (5.10) holds on Fu. Since the p.m.’s in (5.10) are defined
on F∞ they coincide on F∞.

b) The remainder is devoted to the proof of (5.11).
i) We claim that :

QΦ,c
0 (S∞ − I∞ ≤ c) = 1. (5.12)

Indeed, from the definition of QΦ,c
0 we have :

QΦ,c
0 (St − It > c) = EΦ,c

0 [1{St−It>c}M
Φ,c
t ] = EΦ,c

0 [1{t>θ(c)}M
Φ,c
t ]
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From Doob’s optional stopping theorem and the fact that MΦ,c
θ(c) = 0, we get :

QΦ,c
0 (St − It > c) = EΦ,c

0 [1{t>θ(c)}M
Φ,c
θ(c)] = 0.

Taking t → ∞, we obtain (5.12).

ii) Due to the monotone class theorem and (5.12), it is sufficient to show (5.11) with

h(x, y) := 1[0,β](x)1]β′,c](y) (0 < β < β′ < c)

In this case, (5.11) reduces to :

A =
1

cρ(Φ)

∫ c

β′

Φ(v − c, v) sin
(πv

c

)
P v−c,v

0

(
Λu ∩ {Su ≤ β}

)
dv, (5.13)

where

A := PΦ,c
0

(
Λu ∩ {Su ≤ β, S∞ > β′}

)
. (5.14)

It is clear that

A = lim
t→∞

A(t), with A(t) := PΦ,c
0

(
Λu ∩ {Su ≤ β, St > β′}

)
.

Then, for t > u, we have :

A(t) = E0[1{Λu∩{Su≤β} 1{St>β′} MΦ,c
t ]

= E0[1Λu∩{Su≤β} 1{Tβ′<t} MΦ,c
t

]

Due to Doob’s optional stopping theorem we get :

A(t) = E0

[
1{Λu∩{Su≤β} 1{Tβ′<t} MΦ,c(Tβ′)

]

Taking the limit t → ∞, we obtain :

A = E0

[
1Λu∩{Su≤β} MΦ,c(Tβ′)

]
.

Using (4.14) and (4.16) we have :

A =
1

ρ(Φ)
E0

[
1Λu∩{Su≤β}

( ∫ 1

0
1{rc<I(Tβ′ )−β′+c} sin(πr)Φ

(
β′ + c(r − 1), β′ + rc

)
dr

)

× 1{β′−I(Tβ′ )<c} exp
{π2Tβ′

2c2

}]
.

Observe that 0 > I(Tβ′) > rc + β′ − c implies that I(Tβ′) > β′ − c and β′ + rc < c. Making
the change of variable v = β′ + rc leads to

A =
1

cρ(Φ)

∫ c

β′

Φ(v − c, v) sin

(
π(v − β′)

c

)
A1(v)dv (5.15)

where

A1(v) := E0

[
1Λu∩{Su≤β} 1{I(Tβ′ )>v−c} exp

{π2Tβ′

2c2

}]
.
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Since u ≤ Tβ < Tβ′ , we get, by using the Markov property at time u :

E0

[
1{I(Tβ′ )>v−c} exp

{π2Tβ′

2c2

}∣∣∣Fu

]
= 1{Iu>v−c}A2(Xu) exp

{π2u

2c2

}

with :

A2(x) := E
[
1{I(Tβ′

−x)>v−c−x} exp
{π2Tβ′−x

2c2

}]
.

Let α1 < 0 < β1 and assume that β1 − α1 < c. Then, using the fact that

Zt := sin
(π(Xt − α1)

c

)
exp

{π2t

2c2

}
, t ≥ 0

is a martingale, and Doob’s optional stopping theorem at Tβ1
∧ Tα1

lead to :

E0

[
1{I(Tβ1

)>α1} exp
{π2Tβ1

2c2

}]
= − sin

(
π α1

c

)

sin
(

π
c (β1 − α1)

) . (5.16)

Consequently, we obtain successively :

A2(x) =
sin

(
π (v−x)

c

)

sin
(π(v−β′)

c

)

A =
1

cρ(Φ)

∫ c

β′

Φ(v − c, v)A3(v)dv,

with

A3(v) := E0

[
1Λu∩{Su≤β, Iu>v−c} sin

(π(v − Xu)

c

)
exp

{π2u

2c2

}]
.

Note that Su ≤ β < β′ < v ; then according to (4.2) and (4.3) we have :

A2(v) = sin
(πv

c

)
E0

[
1Λu∩{Su≤β} Mv−c,v

u

]
.

Finally

A =
1

cρ(Φ)

∫ c

β′

Φ(v − c, v) sin
(πv

c

)
E0

[
1Λu Mv−c,v

u 1{Su≤β}
]
dv

=
1

cρ(Φ)

∫ c

β′

Φ(v − c, v) sin
(πv

c

)
P v−c,v

0

(
Λu ∩ {Su ≤ β}

)
dv.

This shows (5.13). ¥

We will deduce from Theorem 5.3 two main consequences (see Theorems 5.4 and 5.5 below).
We first interpret the identity (5.10) in a more probabilistic way.

Theorem 5.4 1. Conditionally on S∞ = v, (It, St, Xt)t≥0 is distributed under QΦ,c
0 as the

three dimensional process (It, St, Xt)t≥0 under Qv−c,v
0 .

2. The density function of S∞ under QΦ,c
0 is

1

cρ(Φ)
Φ(v − c, v) sin

(πv

c

)
1(0,c)(v).
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Proof.
Let u > 0 and Λu ∈ Fu. Let us apply (5.11) with h(x, y) = H(y), for H : [0,∞[→ [0,∞[ :

EΦ,c
0

[
1ΛuH(S∞)

]
=

1

cρ(Φ)

∫ c

0
Φ(v − c, v) sin

(πv

c

)
H(v)Qv−c,v

0 (Λu)dv

If we take in particular Λu = Ω, we get

EΦ,c
0

[
H(S∞)

]
=

1

cρ(Φ)

∫ c

0
H(v)Φ(v − c, v) sin

(πv

c

)
dv.

This shows ii).
Then i) follows from

EΦ,c
0

[
1ΛuH(S∞)

]
= EΦ,c

0

[
H(S∞)PΦ,c

0 (Λu|S∞)
]

=
1

cρ(Φ)

∫ c

0
H(v)PΦ,c

0 (Λu|S∞ = v)Φ(v − c, v) sin
(πv

c

)
dv.

¥

We are now able to present a few path properties of (Xt) under QΦ,c
0 .

Theorem 5.5 Under QΦ,c
0 :

1. We have :

It > I∞ and St < S∞ for any t ≥ 0 (5.17)

S∞ − I∞ = c. (5.18)

2. When t goes to infinity, the couple (St, Xt) converges in distribution to the p.m. on
R+ × R :

2

c2ρ(Φ)
sin2

(
π(x − y)

c

)
sin

(πx

c

)
Φ(x − c, x)1{0<x<c, x−c<y<x}dxdy.

Remark 5.6 1. Property (5.18) can be deduced intuitively from our penalisation procedure
and the fact that the support of the p.m. on Fu :

Λu 7→
E0

[
1ΛuΦ(It, St)1{St−It≤c}

]

E0

[
Φ(It, St)1{St−It≤c}

] (t > u)

is included in
{
Su − Iu ≤ c

}
.

2. Recall that the p.m. Qα0,β0

0 which arises from penalisation with Φ(It, St)1{It≥α0,St≤β0}
does not depend on the values of Φ. Therefore penalisation associated with the process
Φ(It, St)1{St−It≤c} is very different since the p.m. QΦ,c

0 depends on the values of Φ over
the segment

{
(β − c, β); β ∈ [0, c]

}
.
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Proof of Theorem 5.5.
It is easy to deduce (5.17)

(
resp. (5.18)

)
from (5.3)

(
resp. (5.4)

)
and Theorem 5.4. The

details are left to the reader. Let g : R+ × R → R be a continuous and bounded function.
According to Theorem 5.4 we have :

EΦ,c
0

[
g(St, Xt)

]
=

1

cρ(Φ)

∫ c

0
Φ(v − c, v) sin

(πv

c

)
Ev−c,v

0

[
g(St, Xt)

]
dv.

Applying Theorem 5.1, we get :

lim
t→∞

Ev−c,v
0

[
g(St, Xt)

]
=

2

c

∫ v

v−c
g(v, y) sin2

(π(v − y)

c

)
dy.

Point 2) of Theorem 5.5 is a direct consequence of the dominated convergence theorem.
¥

We formulate differently item 2) of Theorem 5.5.

Corollary 5.7 The pair
(St + It

2
, Xt −

St + It

2

)
converges in distribution as t → ∞ to :

(
1

cρ(Φ)
Φ

(
x − c

2
, x +

c

2

)
cos

(πx

c

)
1[

− c
2
, c
2

](x)dx

)
×

(
2

c
cos2

(πy

c

)
1[

− c
2
, c
2

](y)dy

)

hence, its two components are asymptotically independent.

Proof.
This is a direct consequence of 2) of Theorem 5.4, (5.18) and simple changes of variables.

¥

Remark 5.8 Using Girsanov’s theorem it may be proved that (Xt) solves :

Xt = Bt +

∫ t

0

∂ΓΦ,c

∂x

ΓΦ,c
(Iu, Su, Xu)1{Su−Iu<c}du (5.19)

where (Bt)t≥0 is a QΦ,c
0 Brownian motion, and

ΓΦ,c(a, b, x) =

∫ (a−x+c)/c

(b−x)/c
Φ(x + c(r − 1), x + rc) sin(πr)dr (5.20)

∂ΓΦ,c

∂x
(a, b, x) = −π

c

∫ (a−x+c)/c

(b−x)/c
Φ(x + c(r − 1), x + rc) cos(πr)dr.

In the particular case Φ = 1 (i.e. penalisation with St − It ≤ c) then :

Γ1,c(a, b, x) =
1

π

(
cos

(
π(b − x)

c

)
+ cos

(
π(a − x)

c

))

This implies that (Xt) solves :

Xt = Bt +
π

c

∫ t

0
tan

(
π

c

(
Su + Iu

2
− Xu

))
1{Su−Iu<c}du. (5.21)
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6 Application to diffusions

Our approach is based on Theorem 5.1. Let µ be a p.m. on ]−∞, 0]× [0,∞[ which does not
charge (0, 0). Let us consider the associated p.m. Qµ

0 on (Ω,F∞) :

Qµ
0 (·) =

∫

]−∞,0]×[0,∞[
Qα,β

0 (·)µ(dα, dβ) (6.1)

where Qα,β
0 has been defined by (5.1). Note that from Theorem 5.3, the p.m. QΦ,c

0 is equal
to Qµ

0 where

µ(dα, dβ) = µΦ,c(dα, dβ) :=
1

cρ(Φ)
Φ(β − c, β) sin

(
πβ

c

)
δβ−c(dα)1[0,c](β)dβ. (6.2)

Proposition 6.1 Under Qµ
0 :

1. (It, St) converges a.s. as t → ∞ to (I∞, S∞) and the distribution of (I∞, S∞) is µ.

2. (It, St, Xt) converges in distribution, as t → ∞ to the p.m. on ] −∞, 0] × [0,∞[×R :

λ(dα, dβ, dx) = pα,β(x)µ(dα, dβ)dx, (6.3)

where the density function pα,β(x) has been defined by (5.5).

In particular, (St, Xt) converges in law, as t → ∞, to

ν(dβ, dx) :=

(∫ 0

−∞
pα,β(x)µ(dα, dβ)

)
dx. (6.4)

Proof.
Proposition 6.1 is a direct consequence of Theorem 5.1.

¥

Remark 6.2 1. It seems difficult to characterize all possible p.m.’s ν obtained by this
randomization procedure, i.e. to describe the set of p.m.’s ν which are defined by (6.4),
µ varying in the set of p.m.’s on ] −∞, 0] × [0,∞[.

2. It can be proved that if µ(dα, dβ) satisfies :

∫

]−∞,0]×[0,∞[
(β − α)µ(dα, dβ) < ∞, (6.5)

∫

]−∞,0]×[0,∞[
(β + α)µ(dα, dβ) = 0, (6.6)

2 aµ
(
] −∞, 0] × [a,∞[

)
=

∫

]−∞,0]×[0,∞[
(α + β)µ(dα, dβ). (6.7)

Then, the Rogers conditions (1.7) and (1.8) hold.
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3. The p.m. Qµ
0 is locally absolutely continuous with respect to the Wiener measure P0,

namely :

Qµ
0 (Λt) = E0[1ΛtM

µ
t ], Λt ∈ Ft (6.8)

where

Mµ
t =

∫

]−∞,0]×[0,∞[
Mα,β

t µ(dα, dβ), (6.9)

and (Mα,β
t )t≥0 is the P0-martingale introduced in Theorem 4.1. Moreover

Mµ
t = Γµ(It, St, Xt, t) (6.10)

where

Γµ(a, b, x, t) :=

∫

]−∞,0]×[0,∞[

1

sin
( πβ

β−α

) sin

(
π(β − x)

β − α

)
exp

{
π2t

2(β − α)2

}
(6.11)

×1{α≥a, β≤b} µ(dα, dβ).

Due to Girsanov’s theorem, it may be infered that Xt solves :

Xt = Bt +

∫ t

0

∂
∂x Γµ

Γµ
(Iu, Su, Xu, u) du (6.12)

where (Bt)t≥0 is a Qµ
0 -Brownian motion started at 0 and

∂

∂x
Γµ(a, b, x, t) = −π

∫

]−∞,0]×[0,∞[

1

(β − α) sin
( πβ

β−α

) cos

(
π(β − x)

β − α

)
(6.13)

× exp

{
π2t

2(β − α)2

}
1{α≥a, β≤b} µ(dα, dβ) (6.14)

Consequently, (It, St, Xt) is a non-homogeneous Markov process.

4. There exist p.m.’s µ satisfying (6.5)-(6.7). It is easy to show that these conditions hold
with

µ(dα, dβ) =

(
2c2

(β + c)3
1{β>0}dβ

)
µ1(dα) (6.15)

where µ1(dα) is a p.m. on ] −∞, 0], such that −
∫ 0

−∞
α µ1(dα) = c ∈]0,∞[.
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[1] J. Azéma and M. Yor. Le problème de Skorokhod: compléments à “Une solution sim-
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[6] J. Dieudonné. Calcul infinitésimal. Hermann, Paris, 1968.

[7] W. Feller. An introduction to probability theory and its applications. Vol. II. John Wiley
& Sons Inc., New York, 1966.
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