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A GEOMETRIC STUDY OF WASSERSTEIN SPACES:

EUCLIDEAN SPACES

by

Benôıt Kloeckner

Abstract. — In this article we consider Wasserstein spaces (with quadratic trans-
portation cost) as intrinsic metric spaces. We are interested in usual geometric prop-
erties: curvature, rank and isometry group, mostly in the case of Euclidean spaces.
Our most striking result is that the Wasserstein space of the line admits “exotic”
isometries, which do not preserve the shape of measures.
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1. Introduction

The concept of optimal transportation recently raised a growing interest in links
with the geometry of metric spaces. In particular the L2 Wasserstein space W2(X)
have been used by Von Renesse and Sturm [15], Sturm [17] and Lott and Villani [12]
to define certain curvature conditions on a metric space X . Many useful properties
are inherited from X by W2(X) (separability, completeness, geodesicness, some non-
negative curvature conditions) while some other are not, like local compacity.

2000 Mathematics Subject Classification. — 54E70, 28A33.
Key words and phrases. — Wasserstein distance, optimal transportation, isometries, rank.
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In this paper, we study the geometry of Wasserstein spaces as intrinsic spaces. We
are interested, for example, in the isometry group of W2(X), in its curvature and in
its rank (the greatest possible dimension of a Euclidean space that embeds in it). In
the case of the Wasserstein space of a Riemannian manifold, itself seen as an infinite-
dimensional Riemannian manifold, the Riemannian connection and curvature have
been computed by Lott [13]. See also [18] where Takatsu studies the subspace of
Gaussian measures in W2(R

n), and [1] where Ambrosio and Gigli are interested in the
second order analysis on W2(R

n), in particular its parallel transport.
The Wasserstein space W2(X) contains a copy of X , the image of the isometric

embedding

E : X → W2(X)

x 7→ δx

where δx is the Dirac mass at x. Moreover, given an isometry ϕ of X one defines an
isometry ϕ# of W2(X) by ϕ#(µ)(A) = µ(ϕ−1(A)). We thus get an embedding

# : IsomX → IsomW2(X)

These two elementary facts connect the geometry of W2(X) to that of X .
One could expect that # is onto, i.e. that all isometries of W2(X) are induced

by those of X itself. Elements of #(IsomX) are called trivial isometries. Let us
introduce a weaker property: a self-map Φ of W2(X) is said to preserve shapes if
for all µ ∈ W2(X), there is an isometry ϕ of X (that depends upon µ) such that
Φ(µ) = ϕ#(µ). An isometry that does not preserve shapes is said to be exotic.

Our main result is the surprising fact that W2(R) admits exotic isometries. More
precisely we prove the following.

Theorem 1.1. — The isometry group of W2(R) is a semidirect product

(1) Isom R ⋉ IsomR

Both factors decompose: IsomR = Z/2Z ⋉ R and the action defining the semidirect
product (1) is simply given by the usual action of the left Z/2Z factor on the right R

factor, that is (ε, v) · (η, t) = (η, εt) where Z/2Z is identified with {±1}.
In (1), the left factor is the image of # and the right factor consist in all isometries

that fix pointwise the set of Dirac masses. In the decomposition of the latter, the Z/2Z

factor is generated by a non-trivial involution that preserves shapes, while the R factor
is a flow of exotic isometries.

The main tool we use is the explicit description of the geodesic between two points
µ0, µ1 of W2(R) that follows from the fact that the unique optimal transportation
plan between µ0 and µ1 is the non-decreasing rearrangement. It implies that most
of the geodesics in W2(R) are not complete, and we rely on this fact to give a metric
characterization of Dirac masses and of linear combinations of two Dirac masses,
among all points of W2(X). We also use the fact that W2(R) has vanishing curvature
in the sense of Alexandrov.

Let us describe roughly the non-trivial isometries that fix pointwise the set of
Dirac masses. On the one hand, the non-trivial isometry generating the Z/2Z factor
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is defined as follows: a measure µ is mapped to its symmetric with respect to its
center of mass. On the other hand, the exotic isometric flow tends to put all the mass
on one side of the center of gravity (that must be preserved), close to it, and to send
a small bit of mass far away on the other side (so that the Wasserstein distance to the
center of mass is preserved). In particular, under this flow any measure µ converges
weakly (but of course not in W2(R)) to δx (where x is the center of mass of µ), see
Proposition 5.4.

The case of the line seems very special. For example, W2(R
n) admits non-trivial

isometries but all of them preserve shapes.

Theorem 1.2. — If n > 2, the isometry group of W2(R
n) is a semidirect product

(2) Isom(Rn) ⋉ O(n)

where the action of an element ψ ∈ Isom(Rn) on O(n) is the conjugacy by its linear

part ~ψ.
The left factor is the image of # and each element in the right factor fixes all Dirac

masses and preserves shapes.

The proof relies on Theorem 1.1, some elementary properties of L2 optimal trans-
portation in R

n and Radon’s Theorem [14].
We see that the quotient IsomW2(R

n)/ IsomR
n is compact if and only if n > 1.

The higher-dimensional Euclidean spaces are more rigid than the line for this problem,
and we expect most of the other metric spaces to be even more rigid in the sense that
# is onto.

Another consequence of the study of complete geodesics concerns the rank of

W2(R
n).

Theorem 1.3. — There is no isometric embedding of R
n+1 into W2(R

n).

It is simple to prove that despite Theorem 1.3, large pieces of R
n can be embedded

into W2(R), which has consequently infinite weak rank in a sense to be precised. As
a consequence, we get for example:

Proposition 1.4. — If X is any Polish geodesic metric space that contains a com-
plete geodesic, then W2(X) is not δ-hyperbolic.

This is not surprising, since it is well-known that the negative curvature assump-
tions tend not to be inherited from X by its Wasserstein space. An explicit example
is computed in [2] (Example 7.3.3); more generaly, if X contains a rhombus (four
distinct points x1, x2, x3, x4 so that d(xi, xi+1) is independent of the cyclic index i)
then W2(X) is not uniquely geodesic, and in particular not CAT(0), even if X itself
is strongly negatively curved.

Organization of the paper. — Sections 2 to 4 collect some properties needed in
the sequel. Theorem 1.1 is proved in Section 5, Theorem 1.2 in Section 6. Section
7 is devoted to the ranks of W2(R) and W2(R

n), and we end in Section 8 with some
open questions.
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2. The Wasserstein space

In this preliminary section we recall well-known general facts on W2(X). One can
refer to [19, 20] for further details and much more. Note that the denomination
“Wasserstein space” is debated and historically inaccurate. However, it is now the
most common denomination and thus an occurrence of the self-applying theorem of
Arnol’d according to which a mathematical result or object is usually attributed to
someone that had little to do with it.

2.1. Geodesic spaces. — Let X be a Polish (i.e. complete and separable metric)
space, and assume that X is geodesic, that is: between two points there is a rectifiable
curve whose length is the distance between the considered points. Note that we only
consider globally minimizing geodesics, and that a geodesic is always assumed to be
parametrized proportionally to arc length.

One defines the Wasserstein space of X as the set W2(X) of Borel probability
measures µ on X that satisfy

∫

X

d2(x0, x)µ(dx) < +∞

for some (hence all) point x0 ∈ X , equipped by the distance dW defined by:

d2
W

(µ0, µ1) = inf

∫

X×X

d2(x, y)Π(dxdy)

where the infimum is taken over all coupling Π of µ0, µ1. A coupling realizing this
infimum is said to be optimal, and there always exists an optimal coupling.

The idea behind this distance is linked to the Monge-Kantorovitch problem: given
a unit quantity of goods distributed inX according to µ0, what is the most economical
way to displace them so that they end up distributed according to µ1, when the cost to
move a unit of good from x to y is given by d2(x, y)? The minimal cost is d2

W
(µ0, µ1)

and a transportation plan achieving this minimum is an optimal coupling.
An optimal coupling is said to be deterministic if it can be written under the form

Π(dxdy) = µ(dx)1[y = Tx] where T : X → X is a measurable map and 1[A] is 1 if
A is satisfied and 0 otherwise. This means that the coupling does not split mass: all
the mass at point x is moved to the point Tx. One usually write Π = (Id×T )#µ. Of
course, for Π to be a coupling between µ and ν, the relation ν = T#µ must hold.

Under the assumptions we put on X , the metric space W2(X) is itself Polish and
geodesic. If moreover X is uniquely geodesic, then to each optimal coupling Π be-
tween µ0 and µ1 is associated a unique geodesic in W2(X) in the following way. Let
C([0, 1], X) be the set of continuous curves [0, 1] → X , let g : X ×X → C([0, 1], X)
be the application that maps (x, y) to the constant speed geodesic between these
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points, and for each t ∈ [0, 1] let e(t) : C([0, 1], X) → X be the map γ 7→ γ(t). Then
t 7→ e(t)#g#Π is a geodesic between µ0 and µ1. Informally, this means that we choose
randomly a couple (x, y) according to the joint law Π, then take the time t of the
geodesic g(x, y). This gives a random point in X , whose law is µt, the time t of the
geodesic in W2(X) associated to the optimal coupling Π. Moreover, all geodesics are
obtained that way.

Note that for most spaces X , the optimal coupling is not unique for all pairs of
probability measures, and W2(X) is therefore not uniquely geodesic even if X is.

One of our goal is to determine whether the Dirac measures can be detected inside

W2(X) by purely geometric properties, so that we can link the isometries of W2(X)
to those of X .

2.2. The line. — Given the distribution function

F : x 7→ µ(] −∞, x])

of a probability measure µ, one defines its left-continuous inverse:

F−1 : ]0, 1[ → R

m 7→ sup{x ∈ R;F (x) 6 m}

that is a non-decreasing, left-continuous function; lim0 F
−1 is the infimum of the

support of µ and lim1 F
−1 its supremum. A discontinuity of F−1 happens for each

interval that does not intersect the support of µ, and F−1 is constant on an interval
for each atom of µ.

m

x

Figure 1. Inverse distribution function of a combination of three Dirac masses

Let µ0 and µ1 be two points of W2(R), and let F0, F1 be their distribution functions.
Then the distance between µ0 and µ1 is given by

(3) d2(µ0, µ1) =

∫ 1

0

(

F−1
0 (m) − F−1

1 (m)
)2
dm

and there is a unique constant speed geodesic (µt)t∈[0,1], where µt has a distribution
function Ft defined by

(4) F−1
t = (1 − t)F−1

0 + tF−1
1
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This means that the best way to go from µ0 to µ1 is simply to rearrange increasingly
the mass, a consequence of the convexity of the cost function. For example, if µ0

and µ1 are uniform measures on [0, 1] and [ε, 1 + ε], then the optimal coupling is
deterministic given by the translation x 7→ x+ ε. That is: the best way to go from µ0

to µ1 is to shift every bit of mass by ε. If the cost function where linear, it would be
equivalent to leave the mass on [ε, 1] where it is and move the remainder from [0, ε] to
[1, 1+ ε]. If the cost function where concave, then the latter solution would be better
than the former.

m

x

Figure 2. A geodesic between two atomic measures: the mass moves with
speed proportional to the length of the arrows.

2.3. Higher dimensional Euclidean spaces. — The Monge-Kantorovich prob-
lem is far more intricate in R

n (n > 2) than in R. The major contributions of Knott
and Smith [11, 16] and Brenier [3, 4] give a quite satisfactory characterization of
optimal couplings and their unicity when the two considered measures µ and ν are
absolutely continuous (with respect to the Lebesgue measure). We shall not give
details of these works, for which we refer to [19, 20] again. Let us however consider
some toy cases, which will prove useful later on. Missing proofs can be found in [10],
Section 2.1.2.

We consider R
n endowed with its canonical inner product and norm, denoted by

| · |.

Translations. — Let Tv be the translation of vector v and assume that ν = (Tv)#µ.
Then the unique optimal coupling between µ and ν is deterministic, equal to (Id ×
Tv)#µ, and therefore dW (µ, ν) = |v|. This means that the only most economic way
to move the mass from µ to ν is to translate each bit of mass by the vector v. This is
a quite intuitive consequence of the convexity of the cost. In particular, the geodesic
between µ and ν can be extended for all times t ∈ R. This happens only in this case
as we shall see later on.

Dilations. — Let Dλ
x be the dilation of center x and ratio λ and assume that ν =

(Dλ
x)#µ. Then the unique optimal coupling between µ and ν is deterministic, equal
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to (Id ×Dλ
x)#µ. In particular,

dW (µ, ν) = |1 − λ2|
1
2 dW (µ, δx)

As a consequence, the geodesic between µ and ν is unique and made of homothetic
of µ, and can be extended only to a semi-infinite interval: it cannot be extended
beyond δx (unless µ is a Dirac mass itself).

Orthogonal measures. — Assume that µ and ν are supported on orthogonal affine
subspaces V and W of R

n. Then if Π is any coupling, assuming 0 ∈ V ∩W , we have
∫

Rn×Rn

|x− y|2Π(dxdy) =

∫

Rn×Rn

(|x|2 + |y|2)Π(dxdy)

=

∫

V

|x|2µ(dx) +

∫

W

|y|2ν(dy)

therefore the cost is the same whatever the coupling.

Balanced combinations of two Dirac masses. — Assume that µ = 1/2δx0
+ 1/2δy0

and ν = 1/2δx1
+ 1/2δy1

. A coupling between µ and ν is entirely determined by the
amount m ∈ [0, 1/2] of mass sent from x0 to x1. The cost of the coupling is

1

2
|x1 − y0|

2 +
1

2
|x0 − y1|

2 − 2m(y0 − x0) · (y1 − x1)

thus the optimal coupling is unique and deterministic if (y0−x0)·(y1−x1) 6= 0, given by
the map (x0, y0) 7→ (x1, y1) if (y0−x0)·(y1−x1) > 0 and by the map (x0, y0) 7→ (y1, x1)
if (y0 − x0) · (y1 − x1) < 0 (figure 3). Of course if (y0 − x0) · (y1 − x1) = 0, then all
coupling have the same cost and are therefore optimal.

Figure 3. Optimal coupling between balanced combinations of two Dirac
masses. Continuous arrows represent the vectors y0 −x0 and y1 −x1 while
dashed arrows represent the optimal coupling.

If the combinations are not balanced (the mass is not equally split between the two
point of the support), then the optimal coupling is easy to deduce from the preceding
computation. For example if (y0 − x0) · (y1 − x1) > 0 then as much mass as possible
must be sent from x0 to x1, and this determines the optimal coupling.

This example has a much more general impact than it might seem: it can be
generalized to the following (very) special case of the cyclical monotonicity (see for
example [20], Chapter 5) which will prove useful in the sequel.

Lemma 2.1. — If Π is an optimal coupling between any two probability measures on
R

n, then
(y0 − x0) · (y1 − x1) > 0
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holds whenever (x0, x1) and (y0, y1) are in the support of Π.

2.4. Spaces of nonpositive curvature. — In this paper we shall consider two cur-
vature conditions. The first one is a negative curvature condition, the δ-hyperbolicity
introduced by Gromov (see for example [5]). A geodesic space is said to be δ-
hyperbolic (where δ is a non-negative number) if in any triangle, any point of any of
the sides is at distance at most δ from one of the other two sides. For example, the
real hyperbolic space is δ-hyperbolic (the value of δ depending on the value of the
curvature), a tree is 0-hyperbolic and the euclidean spaces of dimension at least 2 are
not δ-hyperbolic for any δ.

The second condition is the classical non-positive sectional curvature condition
CAT(0), detailed in Section 4, that roughly means that triangles are thinner in X
than in the euclidean plane. Euclidean spaces, any Riemannian manifold having
non-positive sectional curvature are examples of locally CAT(0) spaces.

A geodesic CAT(0) Polish space X is also called a Hadamard space. A Hadamard
space is uniquely geodesic, and admits a natural boundary at infinity. The feature
that interests us most is the following classical result: if X is a Hadamard space,
given µ ∈ W2(X) there is a unique point x0 ∈ X , called the center of mass of µ, that
minimizes the quantity

∫

X
d2(x0, x)µ(dx). If X is R

n endowed with the canonical

scalar product, then the center of mass is of course
∫

Rn xµ(dx) but in the general
case, the lack of an affine structure on X prevents the use of such a formula.

We thus get a map P : W2(X) → X that maps any L2 probability measure to its
center of mass. Obviously, P is a left inverse to E and one can hope to use this map
to link closer the geometry of W2(X) to that of X . That’s why our questions, unlike
most of the classical ones in optimal transportation, might behave more nicely when
the curvature is non-positive than when it is non-negative.

3. Geodesics

The content of this section, although difficult to locate in the bibliography, is part
of the folklore and does not pretend to originality. We give proofs for the sake of
completeness.

3.1. Case of the line. — We now consider the geodesics of W2(R). Our first goal
is to determine on which maximal interval they can be extended.

Maximal extension. — Let µ0, µ1 be two points of W2(R) and F0, F1 their distribution
functions. Let (µt)t∈[0,1] be the geodesic between µ0 and µ1. Since W2(R) is uniquely
geodesic, there is a unique maximal interval on which γ can be extended into a
geodesic, denoted by I(µ0, µ1).

Lemma 3.1. — One has

I(µ0, µ1) = {t ∈ R;F−1
t is non-decreasing}

where F−1
t is defined by the formula (4). It is a closed interval. If one of its bound t0

is finite, then µt0 does not have bounded density with respect to the Lebesgue measure.
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Proof. — Any non-decreasing left continuous function is the inverse distribution func-
tion of some probability measure. If such a function is obtained by an affine combi-
nation of probabilities belonging to W2(R), then its probability measure belongs to

W2(R) too.
Moreover, an affine combination of two left continuous function is left continuous,

so that

I(µ0, µ1) = {t ∈ R;F−1
t is non-decreasing}.

The fact that I(µ0, µ1) is closed follows from the stability of non-decreasing func-
tions under pointwise convergence.

If the minimal slope

inf

{

F−1
t (m) − F−1

t (m′)

m−m′
; 0 < m < m′ < 1

}

is positive for some t, then it stays positive in a neighborhood of t. Thus, a finite bound
of I(µ0, µ1) must have zero minimal slope, and cannot have a bounded density.

A geodesic is said to be complete if it is defined for all times. We also consider
geodesic rays, defined on an interval [0, T ] or [0,+∞[ (in the latter case we say that
the ray is complete), and geodesic segments, defined on a closed interval.

It is easy to deduce a number of consequences from Lemma 3.1.

Proposition 3.2. — In W2(R):

(1) any geodesic ray issued from a Dirac mass can be extended to a complete ray,
(2) no geodesic ray issued from a Dirac mass can be extended for negative times,

except if all of its points are Dirac masses,
(3) up to normalizing the speed, the only complete geodesics are those obtained by

translating a point of W2(R):

µt(A) = µ0(A− t),

Proof. — The inverse distribution function of a Dirac mass δx is the constant function
F−1

0 with value x. Since it slopes

F−1
0 (m) − F−1

0 (m′)

m−m′
0 < m < m′ < 1

are all zero, for all positive times t the functions F−1
t defined by formula (4) for

any non-decreasing F−1
1 are non-decreasing. However, for t < 0 the F−1

t are not

non-decreasing if F−1
1 is not constant, we thus get (1) and (2).

Consider a point µ0 of W2(R) defined by an inverse distribution function F−1
0 , and

consider a complete geodesic (µt) issued from µ0. Let F−1
t be the inverse distribution

function of µt. Then, since µt is defined for all times t > 0, the slopes of F−1
1 must

be greater than those of F−1
0 :

F−1
0 (m) − F−1

0 (m′) 6 F−1
1 (m) − F−1

1 (m′) ∀m < m′

otherwise, when t increases, some slope of F−1
t will decrease linearly in t, thus be-

coming negative in finite time.
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But since µt is also defined for all t < 0, the slopes of F−1
1 must be lesser than

those of F−1
0 . They are therefore equal, and the two inverse distribution function are

equal up to an additive constant. The geodesic µt is the translation of µ0 and we
proved (3).

Convex hulls of totally atomic measures. — Define in W2(R) the following sets:

∆1 = {δx;x ∈ R}

∆n = {

n
∑

i=1

aiδxi
;xi ∈ R,

∑

ai = 1}

∆′
n+1 = ∆n+1 \ ∆n

Recall that if X is a Polish geodesic space and C is a subset of X , one says that
C is convex if every geodesic segment whose endpoints are in C lies entirely in C.
The convex hull of a subset Y is the least convex set C(Y ) that contains Y . It is
well defined since the intersection of two convex sets is a convex set, and is equal to
∪n∈NYn where Y0 = Y and Yn+1 is obtained by adding to Yn all points lying on a
geodesic whose endpoints are in Yn.

Since ∆1 is the image of the isometric embedding E : R → W2(R), it is a convex
set. This is not the case of ∆n is n > 1. In fact, we have the following.

Proposition 3.3. — If n > 1, any point µ of ∆n+1 lies on a geodesic segment with
endpoints in ∆n. Moreover, the endpoints can be chosen with the same center of mass
than that of µ.

Proof. — If µ ∈ ∆n the result is obvious. Assume µ =
∑

aiδxi
is in ∆′

n+1. We can
assume further that x1 < x2 < · · · < xn+1. Consider the measures

µ−1 =
∑

i<n−1

aiδxi
+ (an−1 + an)δxn−1

+ an+1δxn+1

µ1 =
∑

i<n−1

aiδxi
+ an−1δxn−1

+ (an + an+1)δxn+1
.

Then µ lies on the geodesic segment from µ−1 to µ1. To get a constant center of
mass, one considers the geodesic

µt =
∑

i≤n−1

aiδxi
+ anδxn+t + an+1δxn+1−αt

where α = an

an+1
.

In particular, we get the following noteworthy fact that will prove useful latter on.

Proposition 3.4. — The convex hull of ∆n is dense in W2(R) if n > 1.

Proof. — Follows from Proposition 3.3 since the set of totally atomic measures
⋃

n ∆n

is dense in W2(R).
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3.2. Complete geodesics in higher dimension. — In R
n, the optimal coupling

and thus the geodesics are not as explicit as in the case of the line. It is however
possible to determine which geodesic can be extended to all times in R.

Lemma 3.5. — Let µ = (µt)t∈I be a geodesic in W2(R
n) associated to an optimal

coupling Π between µ0 and µ1. Then for all times r and s in I and all pair of points
(x0, x1), (y0, y1) in the support of Π, the following hold:

|u|2 + (r + s)u · v + rs|v|2 > 0

where u = y0 − x0 and v = y1 − x1 − (y0 − x0).

Proof. — Let us introduce the following notations: for all pair of points a0, a1 ∈ R
n,

at = (1−t)a0+ta1 and Πr,s is the law of the random variable (Xr, Xs) where (X0, X1)
is any random variable of law Π. As we already said, Πr,s is an optimal coupling of
µr, µs whose corresponding geodesic is the restriction of (µt) to [r, s].

Since Πr,s is optimal, according to the cyclical monotonicity (see Lemma 2.1) one
has (yr − xr) · (ys − xs) > 0.

But with the above notations, one has yr − xr = u+ rv and ys − xs = u+ sv, and
we get the desired inequality.

Let us show why this Lemma implies that the only complete geodesics are those
obtained by translation. There are immediate consequences on the rank of W2(R

n),
see Theorem 1.3 and Section 7.

Proposition 3.6. — Let µ = (µt)t∈R be a geodesic in W2(R
n) defined for all times.

Then there is a vector u such that µt = (Ttu)#µ0.

This result holds even if n = 1, as stated in Proposition 3.2.

Proof. — It is sufficient to find a u such that µ1 = (Tu)#µ0, since then there is only
one geodesic from µ0 to µ1.

Consider any pair of points (x0, x1), (y0, y1) in the support of the coupling Π be-
tween µ0 and µ1 that defines the restriction of µ to [0, 1]. Define u = y0 − x0 and
v = y1 − x1 − (y0 − x0). If v 6= 0, then there are real numbers r < s such that
|u|2 + (r + s)u · v + rs|v|2 < 0. Then the coupling Πr,s between µr and µs that
defines the restriction of µ to [r, s], defined as above, cannot be optimal. This is a
contradiction with the assumption that µ is a geodesic.

Therefore, for all (x0, x1), (y0, y1) in the support of Π one has y0−x0 = y1−x1. This
amounts to say that Π is deterministic, given by a translation of vector u = y0−x0.

4. Curvature

Once again, this section mainly collects some facts that are already well-known but
shall be used on the sequel.

More details on the (sectional) curvature of metric spaces are available for example
in [6] or [9]. We shall consider the curvature of W2(R), in the sense of Alexandrov.
Given any three points x, y, z in a geodesic metric space X , there is up to congruence
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a unique comparison triangle x′, y′, z′ in R
2, that is a triangle that satisfies d(x, y) =

d(x′, y′), d(y, z) = d(y′, z′), and d(z, x) = d(z′, x′).
One says that X has non-positive curvature (in the sense of Alexandrov), or is

CAT(0), if for all x, y, z the distances between two points on sides of this triangle is
lesser than or equal to the distance between the corresponding points in the compar-
ison triangle, see figure 4.

Equivalently, X is CAT(0) if for any triangle x, y, z, any geodesic γ such that
γ(0) = x and γ(1) = y, and any t ∈ [0, 1], the following inequality holds:

(5) d2(y, γ(t)) 6 (1 − t)d2(y, γ(0)) + td2(y, γ(1)) − t(1 − t)tℓ(γ)2

where ℓ(γ) denotes the length of γ, that is d(x, z).

x

y

z
γ(t)

x′

y′

z′

Figure 4. The CAT(0) inequality: the dashed segment is shorter in the
triangle xyz than in the comparison triangle on the right.

One says that X has vanishing curvature if equality holds for all x, y, z, γ, t:

(6) d2(y, γ(t)) = (1 − t)d2(y, γ(0)) + td2(y, γ(1)) − t(1 − t)tℓ(γ)2

This is equivalent to the condition that for any triangle x, y, z in X and any point
γ(t) on any geodesic segment between x and z, the distance between y and γ(t) is
equal to the corresponding distance in the comparison triangle.

Proposition 4.1. — The space W2(R) has vanishing Alexandrov curvature.

Proof. — It follows from the expression (3) of the distance in W2(R): if we denote
by A,B,C the inverse distribution functions of the three considered points x, y, z ∈

W2(R), we get:

d2(y, γ(t)) =

∫ 1

0

(B − (1 − t)A− tC)
2

=

∫ 1

0

[

(1 − t)2(B −A)2 + t2(B − C)2

+2t(1 − t)(B −A)(B − C)
]
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and using that (1 − t)2 = (1 − t) − t(1 − t) and t2 = t− t(1 − t),

d2(y, γ(t)) = (1 − t)d2(y, x) + td2(y, z)− t(1 − t)

∫ 1

0

[

(B −A)2

+(B − C)2 − 2(B −A)(B − C)
]

= (1 − t)d2(y, x) + td2(y, z)− t(1 − t)d2(x, z).

We shall use the vanishing curvature of W2(R) by means of the following result,
where all subsets of X are assumed to be endowed with the induced metric (that need
therefore not be inner).

Proposition 4.2. — Let X be a Polish uniquely geodesic space with vanishing cur-
vature. If Y is a subset of X and C(Y ) is the convex hull of Y , then any isometry of

Y can be extended into an isometry of C(Y ).

Proof. — Let ϕ : Y → Y the isometry to be extended. Let x, y be any points lying
each on one geodesic segment γ, τ : [0, 1] → X whose endpoints are in Y . Consider the
unique geodesics γ′, τ ′ that satisfy γ′(0) = ϕ(γ(0)), γ′(1) = ϕ(γ(1)) τ ′(0) = ϕ(τ(0)),
τ ′(1) = ϕ(τ(1)) and the points x′, y′ lying on them so that d(x′, γ′(0)) = d(x, γ(0)),
d(x′, γ′(1)) = d(x, γ(1)), and the same for y′. This makes sense since, ϕ being an
isometry on Y , γ′ has the length of γ and τ ′ that of τ . We shall prove that d(x′, y′) =
d(x, y).

The vanishing of curvature implies that d(x′, τ ′(0)) = d(x, τ(0)): the triangles
γ(0), γ(1), τ(0) and γ′(0), γ′(1), τ ′(0) have the same comparison triangle. Similarly
d(x′, τ ′(1)) = d(x, τ(1)). Now x, τ(0), τ(1) and x′, τ ′(0), τ ′(1) have the same compar-
ison triangle, and the vanishing curvature assumption implies d(x′, y′) = d(x, y).

x′

γ′(1)

y′

x
γ(1)

y τ(1)

τ ′(0)

τ ′(1)

γ(0)

γ′(0)

τ(0)

Figure 5. All triangles being flat, the distance is the same between x′

and y′ and between x and y.

In particular, if x = y then x′ = y′. We can thus extend ϕ to the union of geodesic
segments whose endpoints are in Y by mapping any such x to the corresponding x′.
This is well-defined, and an isometry. Repeating this operation we can extend ϕ into
an isometry of C(Y ). But X being complete, the continuous extension of ϕ to C(Y )
is well-defined and an isometry.
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Note that the same result holds with the same proof when the curvature is constant
but non-zero.

Higher dimensional case. — Proposition 4.1 does not hold in W2(R
n). In effect, there

are pairs of geodesics that meet at both endpoints (take measures whose support lie
on orthogonal subspaces of R

n). Taking a third point in one of the two geodesics, one
gets a triangle in W2(R

n) whose comparison triangle has its three vertices on a line.
This implies that W2(R

n) is not CAT(0). The situation is in fact worse than that: in
any neighborhood U of any point of W2(R

n) one can find two different geodesics that
meet at their endpoints. One can say that this space has positive sectional curvature
at arbitrarily small scales.

5. Isometries: the case of the line

5.1. Existence and unicity of the non-trivial isometric flow. — In this sec-
tion, we prove Theorem 1.1.

Let us start with the following consequence of Proposition 3.2.

Lemma 5.1. — An isometry of W2(R) must globally preserve the sets ∆1 and ∆2.

Proof. — We shall exhibit some geometric properties that characterize the points of
∆1 and ∆2 and must be preserved by isometries.

First, according to Proposition 3.2, the points µ ∈ ∆1 are the only ones to satisfy:
every maximal geodesic ray starting at µ is complete. Since an isometry must map a
geodesic (ray, segment) to another, this property is preserved by isometries of W2(R).

Second, let us prove that the point µ ∈ ∆2 are the only ones that satisfy: any
geodesic µt such that µ = µ0 and that can be extended to a maximal interval [T,+∞)
with −∞ < T < 0, has its endpoint µT in ∆1.

This property is obviously satisfied by points of ∆1. It is also satisfied by every
points of ∆′

2. Indeed, denote by Ft the distribution function of µt and write µ =
aδx + (1 − a)δy where x < y. Then if µ1 does not write µ1 = aδx1

+ (1 − a)δy1
with

x1 < y1, either

– there are two reals b, c such that a < b < c < 1 and F−1
1 (b) < F−1

1 (c),
– there are two reals b, c such that 0 < b < c < a and F−1

1 (b) < F−1
1 (c), or

– µ1 is a Dirac mass.

In the first two cases, µt is not defined for t < 0, and in the third one, it is not defined
for t > 1. If µ1 does write µ1 = aδx1

+ (1 − a)δy1
, then either |y1 − x1| = |y − x|

and µt is defined for all t, or |y1 − x1| < |y − x| and µt is only defined until a finite
positive time, or |y1 − x1| > |y − x| and µt is defined from a finite negative time T
where µT ∈ ∆1.

Now if µ /∈ ∆2, its inverse distribution function F−1 takes three different values at
some points m1 < m2 < m3. Consider the geodesic between µ and the measure µ′

whose inverse distribution function F ′−1 coincide with F−1 on [m1,m2] but is defined
by

F ′−1(m) − F−1(m2) = 2(F−1(m) − F−1(m2))
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m

x

m1

m3m2

Figure 6. The geodesic between these inverse distributions is defined for
negative times, more precisely until it reaches the dashed line.

on [m2, 1) (see figure 6). Then this geodesic is defined for all positive times, but stops
at some nonpositive time T . Since F−1 takes different values at m2 and m3, one can
extend the geodesic for small negative times and T < 0. But the inverse distribution
function of the endpoint µT must take the same values than that of µ in m1 and m2,
thus µT /∈ ∆1.

Now we consider isometries of ∆2, to which all isometries of W2(R) shall be reduced.
Any point µ ∈ ∆′

2 writes under the form

µ = µ(x, σ, p) =
e−p

e−p + ep
δx−σep +

ep

e−p + ep
δx+σe−p

where x is its center of mass, σ is the distance between µ and its center of mass, and
p is any real number. In probabilistic terms, if µ is the law of a random variable then
x is its expected value and σ2 its variance.

Lemma 5.2. — An isometry of W2(R) that fixes each point of ∆1 must restrict to
∆′

2 to a map of the form:

Φ(ϕ) = µ(x, σ, p) 7→ µ(x, σ, ϕ(p))

for some ϕ ∈ Isom(R). Any such map is an isometry of ∆2.

Proof. — Let Φ be an isometry of W2(R) that fixes each point of ∆1.
A computation gives the following expression for the distance between two measures

in ∆′
2:

d2
W

(µ(x, σ, p), µ(y, ρ, q)) = (x − y)2 + σ2 + ρ2 − 2σρe|p−q|

Since Φ is an isometry, it preserves the center of mass and variance. The preceding
expression shows that it must preserve the euclidean distance between p and q for
any two measures µ(x, σ, e), µ(y, ρ, f), and that this condition is sufficient to make Φ
an isometry of ∆2.

Lemma 5.3. — Let ψ : x→ εx+ v and ϕ : p→ ηp+ t be isometries of R. Then

#(ψ)Φ(ϕ)#(ψ)−1(µ(x, σ, p)) = µ(x, σ, ηp+ εt)
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Proof. — It follows from a direct computation:

#(ψ)Φ(ϕ)#(ψ)−1(µ(x, σ, p)) = #(ψ)Φ(ϕ)(µ(εx − εv, σ, εp))

= #(ψ)(µ(εx − εv, σ, ηεp+ t))

= µ(x, σ, ηp + εt)

We are now able to prove our main result.

Proof of Theorem 1.1. — First Lemma 5.1 says that any isometry of W2(R) acts on
∆1 and ∆2.

Let L be #(IsomR) and R be the subset of IsomW2(R) consisting of isometries
that fix ∆1 pointwise. Then R is a normal subgroup of IsomW2(R).

Let Ψ be an isometry of W2(R). It acts isometrically on ∆1, thus there is an
isometry ψ of R such that #(ψ)Ψ ∈ R. In particular, IsomW2(R) = L R. Since
L ∩ R is reduced to the identity, we do have a semidirect product IsomW2(R) =
L ⋉ R.

According to Proposition 4.2, each map Φ(ϕ) : µ(x, σ, p) 7→ µ(x, σ, ϕ(p)) extends

into an isometry of C(∆2), which is W2(R) by Proposition 3.4. We still denote by
Φ(ϕ) this extension. Proposition 3.4 also shows that an isometry of W2(R) is entirely
determined by its action on ∆2. The description of R now follows from Lemma 5.2.

If σ denotes the symmetry around 0 ∈ R, then Φ(σ) maps a measure µ ∈ W2(R)
to its symmetric with respect to its center of mass, thus preserves shapes. Any other
ϕ ∈ Isom(R) is a translation or the composition of σ and a translation.

By the exotic isometry flow of IsomW2(R) we mean the flow of isometries Φt =
Φ(ϕt) obtained when ϕt : p → p + t is a translation. This flow does not preserve
shapes as is seen from its expression in ∆2.

At last, Lemma 5.3 gives the asserted description of the semidirect product.

5.2. Behaviour of the exotic isometry flow. — The definition of Φt is construc-
tive, but not very explicit outside ∆2. On ∆2, the flow tends to put most of the mass
on the right of the center of mass, very close to it, and send a smaller and smaller bit
of mass far away on the left.

The flow Φt preserves ∆3 as its elements are the only ones to lie on a geodesic
segment having both endpoints in ∆2. Similarly, elements of ∆n are the only ones to
lie on a geodesic segment having an endpoint in ∆2 and another in ∆n−1, therefore
Φt preserves ∆n for all n.

Direct computations enable one to find formulas for Φt on ∆n, but the expressions
one gets are not so nice. For example, if µ = 1

3δx1
+ 1

3δx2
+ 1

3δx3
where x1 6 x2 6 x3,
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Center of mass

Figure 7. Image of a point of ∆2 by Φ2 (dashed) and Φ3 (dotted).

then

Φt(µ) =
1

1 + 2t2
δx1+

1
3
(1−t)(x3−x1)+

1
3
(1−t)(x2−x1)

+
3
2 t

2

(

1 + 1
2 t

2
)

(1 + 2t2)
δx1+

1
3
(1−t)(x3−x1)+

1
3
(1+t−1+t)(x2−x1)

+
1
2 t

2

1 + 1
2 t

2
δx1+

1
3
(1+2t−1)(x3−x1)+

1
3
(1−t−1)(x2−x1)

In order to get some intuition about Φt, let us prove the following.

Proposition 5.4. — Let µ be any point of W2(R) and x its center of mass. If t goes
to ±∞, then Φt(µ) converges weakly to δx.

Proof. — We shall only consider the case when t → +∞ since the other one is sym-
metric. Let us start with a lemma.

Lemma 5.5. — If γt and νt are in W2(R) and both converge weakly to δx when t
goes to +∞, and if µt is in the geodesic segment between γt and νt for all t, then µt

converges weakly to δx when t goes to +∞.

Proof. — It is a direct consequence of the form of geodesics: if γt and νt both charge
an interval [x− η, x+ η] with a mass at least 1− ε, then µt must charge this interval
with a mass at least 1 − 2ε.

Now we are able to prove the proposition on larger and larger subsets of W2(R).
First, it is obvious on ∆2. If it holds on ∆n, the preceding Lemma together with
Proposition 3.3 implies that it holds on ∆n+1. To prove it on the whole of W2(R), the
density of the subset of

⋃

n ∆n consisting of measures having center of mass x, and a
diagonal process are sufficient.
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6. Isometries: the higher-dimensional case

To show that the exotic isometry flow of W2(R) is exceptional, let us consider the
higher-dimensional case : there are isometries of W2(R

n) that fix pointwise the set of
Dirac masses, but there are not so many and they preserve shapes.

6.1. Existence of non-trivial isometries. — We start with the existence of non-
trivial isometries, that however preserves shapes.

Proposition 6.1. — If ϕ is a linear isometry of R
n, then the map

Φ(ϕ) : µ 7→ ϕ#(µ− g) + g

where g denotes both the center of mass of µ and the corresponding translation, is an
isometry of W2(R

n) (see figure 8).

Figure 8. Example of a non-trivial isometry that preserves shapes.

Note that we need ϕ to be linear, thus we do not get as many non-trivial isometries
as in W2(R). Moreover, all isometries constructed this way preserve shapes.

Proof. — We only need to check the case of absolutely continuous measures µ, ν since
they form a dense subset of W2(R

n). In that case, there is a unique optimal coupling
that is deterministic, given by a map T : R

n → R
n such that T#(µ) = ν. Denote by

g and h the centers of mass of µ and ν. Let us show that there is a good coupling
between µ′ = Φ(ϕ)(µ) and ν′ = Φ(ϕ)(ν).

Let T ′ be the map defined by

T ′(ϕ(x− g) + g) = ϕ(Tx− h) + h
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By construction T ′
#(µ′) = ν′. Moreover the cost of the coupling (Id × T ′)#µ

′ is

A =

∫

Rn

|ϕ(x− g) + g − ϕ(Tx− h) − h|2µ(dx)

=

∫

Rn

(

|Tx− x|2 + 2|g − h|2 + 2(x− Tx) · (h− g) + 2ϕ(x− Tx) · (g − h)

+2ϕ(h− g) · (g − h)
)

µ(dx)

= d2
W

(µ, ν) + 2|g − h|2 + 2(g − h) · (h− g) + 2ϕ(g − h) · (g − h)

+2ϕ(h− g) · (g − h)

= d2
W

(µ, ν)

This shows that µ′ and ν′ are at distance at most dW (µ, ν). Applying the same
reasoning to Φ(ϕ)−1, we get that dW (µ′, ν′) = dW (µ, ν) and Φ(ϕ) is an isometry.

6.2. Semidirect product decomposition. — The Dirac masses are the only mea-
sures such that any geodesic issued from them can be extended for all times (given
any other measure, the geodesic pointing to any Dirac mass cannot be extended past
it, see in Section 2.3 the paragraph on dilations). As a consequence, an isometry of

W2(R
n) must globally preserve the set of Dirac masses

As in the case of the line, if we let L = #Isom(Rn) and R be the set of isometries
of W2(R

n) that fix each Dirac mass, then IsomW2(R
n) = L ⋉ R. We proved above

that R contains a copy of O(n), and is in particular non-trivial.
Moreover, if one conjugates a Φ(ϕ) by some #(ψ), where ϕ ∈ O(n) and ψ ∈

IsomR
n, one gets the map Φ(~ψϕ~ψ−1) (it is sufficient to check this on some measure µ

in the easy cases when ψ is a translation or fixes the center of mass of µ). Therefore,
the action of L on O(n) ⊂ R in the semidirect product is as asserted in Theorem
1.2.

To deduce Theorem 1.2, we are thus left with proving that an isometry that fixes
pointwise all Dirac masses must be of the form Φ(ϕ) for some ϕ ∈ O(n).

6.3. Measures supported on subspaces. — The following lemma will be used
to prove that isometries of W2(R

n) must preserve the property of being supported on
a proper subspace.

Lemma 6.2. — Let µ, ν ∈ W2(R
n), denote by g, h their centers of mass and let

σ = dW (µ, δg) and ρ = dW (ν, δh). The equality

(7) d2
W

(µ, ν) = d2(g, h) + σ2 + ρ2

holds if and only if there are two orthogonal affine subspaces L and M such that
µ ∈ W2(L) and ν ∈ W2(M).
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Proof. — Let us first prove that d2(g, h) + σ2 + ρ2 is the cost B of the independent
coupling Π = µ⊗ ν:

B :=

∫

Rn×Rn

d2(x, y)Π(dxdy)

=

∫

Rn×Rn

|(x− g) − (y − h) + (g − h)|2Π(dxdy)

= σ2 + ρ2 + d2(g, h) − 2
(

∫

Rn

(x− g)µ(dx)
)

·
(

∫

Rn

(y − h)ν(dy)
)

+2(g − h) ·
(

∫

Rn

(x − g)µ(dx)
)

− 2(g − h) ·
(

∫

Rn

(y − h)ν(dy)
)

= σ2 + ρ2 + d2(g, h)

since by definition g =
∫

xµ(dx) and h =
∫

yµ(dy).
As a consequence, (7) holds if and only if the independent coupling is optimal.
If µ has two point x, y in its support and ν has two points z, t in its support such

that (xy) is not orthogonal to (zt), then either (x−y)·(z−t) < 0 or (x−y)·(t−z) < 0.
Then by cyclical monotonicity (see Lemma 2.1) the support of an optimal coupling
cannot contain (x, z) and (y, t) (in the first case) or (z, x) and (y, t) (in the second
case) and thus cannot be the independent coupling.

As a consequence, (7) holds if and only if µ and ν are supported on two orthogonal
affine subspaces.

Lemma 6.3. — Isometries of W2(R
n) send hyperplane supported-measures on hy-

perplane supported measures. Moreover, if two measures are supported on parallel
hyperplanes, then their images by any isometry are supported by parallel hyperplanes

Proof. — Let µ ∈ W2(R
n) be supported by some hyperplane H and Φ be an isometry

of W2(R
n). Let ν be any measure that is supported on a line orthogonal to H , and

that is not a Dirac mass. Then (7) holds (whith the same notation as above).
Let µ′ and ν′ denote the images of µ and ν by Φ. We know that Φ must map δg

and δh to Dirac masses δg′ and δh′ . Since the center of mass of an element of W2(R
n)

is uniquely defined as its projection on the set of Dirac masses, g′ is the center of
mass of µ′ and h′ is that of ν′. We get, denoting by σ′ and ρ′ the distances of µ′ and
ν′ to their centers of mass,

d2
W

(µ′, ν′) = d2
W

(µ, ν)

= d2(g, h) + σ2 + ρ2

= d2(g′, h′) + σ′2 + ρ′2

which implies that µ′ and ν′ are supported on orthogonal subspaces L and M of R
n.

Since ν′ is not a Dirac mass, M is not a point and L is contained in some hyperplane
H ′.

Moreover, if µ1 is another measure supported on a hyperplane parallel to H , then
its image µ′

1 is supported on some subspace orthogonal to M . It follows that we can
find a hyperplane parallel to H ′ that contains the support of µ′

1.
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We are know equipped to end the proof of Theorem 1.2 by induction on the di-
mension.

6.4. Non-existence of exotic isometries: case of the plane. — Given a line
L ⊂ R

2, denote by W2(L) the subset of W2(R
2) consisting of all measures whose

support is a subset of L. An optimal coupling between two points of W2(L) must
have its support in L×L, thus W2(L) endowed with the restriction of the distance of

W2(R
2) is isometric to W2(R). More precisely, given any isometry ψ : R → L, we get

an isometry ψ# : W2(R) → W2(L).
Lemma 6.3 ensures that any isometry Φ maps a line-supported measure to a line-

supported measure, and that the various measures in W2(L) are mapped to measures
supported on parallel lines.

We assume from now on that Φ fixes each Dirac mass and, up to composing it with
some Φ(ϕ), that it preserves globally W2(L) for some L (the axis R × {0} say). We
can moreover assume that its restriction to W2(L) is a Φt for some t.

Lemma 6.4. — Let Φ be an isometry of W2(R
2) that fixes Dirac masses, preserves

globally W2(L) and such that its restriction to this subspace is the time t of the exotic
isometric flow.

Then t must be 0 and up to composing with some Φ(ϕ), we can assume that Φ
preserves W2(M) for all line M .

Proof. — We identify a measure µ ∈ W2(R) with its image by the usual embedding
that identifies R with the axis L. We denote by θL the rotate of L by an angle θ
around the origin.

Denote by µ(x, σ, p, θ) the combination of two Dirac masses that is the image of
µ(x, σ, p) if θ = 0, and its rotate around x by an angle θ otherwise. If θ 6 π/2, one
gets

(8) d2
W

(µ(0, 1, p, 0), µ(0, 1, q, θ)) = 2 − 2e|p−q| cos θ

This shows in particular that the measures supported on θL and with center of
mass 0 must be mapped to measures supported on ±θL. Up to composing with
Φ(ϕ) where ϕ is the orthogonal symmetry with respect to L, we can assume that
the measures supported on π

3L and with center of mass 0 are mapped to measures
supported on π

3L.
Then the measures supported on θL and with center of mass 0 must be mapped

to measures supported on a line that crosses L and π
3L with angles ±θ and ±(θ− π

3 ).
They are therefore mapped to measures supported on θL.

Using the same argument and Lemma 6.3, we get that Φ must preserve W2(M) for
all lines M .

Moreover, from equation (8) we deduce that if the restriction of Φ to W2(L) is the
time t of the exotic isometric flow, then for all θ < π/2 its restriction to θL also is.
But applying the same reasoning to π

3L and 2π
3 L, then to 2π

3 L and πL = L we see
that the restriction of Φ to W2(L) with the reversed orientation must be the time t of
the exotic isometric flow. This implies t = −t thus t = 0.

The case n = 2 of Theorem 1.2 is now reduced to the following.
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Lemma 6.5. — If an isometry Φ of W2(R
2) fixes pointwise the set of line-supported

measures, then it must be the identity.

Proof. — This is a consequence of Radon’s theorem, which asserts that a function
(compactly supported and smooth, say) in R

n is characterized by its integrals along
all hyperplanes [14] (also see [8]).

Given µ ∈ W2(R
2), one can determine by purely metric means its orthogonal

projection on any fixed line L: it is its metric projection, that is the unique ν supported
on L that minimizes the distance dW (µ, ν).

Now if µ has smooth density and is compactly supported, then the integral of its
density along any line L is exactly the density at point M ∩ L of its projection onto
any line M orthogonal to L.

Therefore, Φ must fix every measure µ ∈ W2(R
2) that has a smooth density and is

compactly supported. They form a dense set of W2(R
2) thus Φ must be the identity.

6.5. Non-existence of exotic isometries: general case. — We end the proof
of Theorem 1.2 by an induction on the dimension. There is nothing new compared
to the case of the plane, so we stay sketchy.

Let Φ be an isometry of W2(R
n) that fixes pointwise the Dirac masses. It must

map every hyperplane-supported measure to a hyperplane-supported measure. Using
a non-trivial isometry, we can assume that for some hyperplane L, Φ globally preserves
the set W2(L) of measures supported on L. Thanks to the induction hypothesis, we can
compose Φ with another non-trivial isometry to ensure that Φ fixes W2(L) pointwise.

Let µ be a measure supported on some hyperplaneM 6= L. Let M ′ be a hyperplane
supporting Φ(µ). Then as in the case of the plane, it is easy to show that the dihedral
angle of (L,M) equals that of (L,M ′). Moreover, all measures supported on L ∩M
are fixed by Φ, and we conclude that M ′ = M (up to composition with Φ(ϕ) where
ϕ is the orthogonal symmetry with respect to L).

The same argument shows that Φ preserves W2(M) for all hyperplanes M .
A measure supported on M is determined, if its dihedral angle with L different

from π/2, by its orthogonal projection onto L. since Φ fixes W2(L) pointwise, it
must fix W2(M) pointwise as well. When M is orthogonal to L, the use of a third
hyperplane not orthogonal to M nor L yields the same conclusion.

Now that we know that Φ fixes every hyperplane-supported measure, we can use
the Radon Theorem to conclude that it is the identity.

7. Ranks

One usually defines the rank of a metric space X as the supremum of the set of
positive integers k such that there is an isometric embedding of R

k into X .
As a consequence of Proposition 3.6, we get the following result announced in the

introduction.

Theorem 7.1. — The space W2(R
n) has rank n.
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Proof. — An isometric embedding e : R
n+1 → W2(R

n) must map a geodesic to a
geodesic, since they are precisely those curves γ satisfying

d(γ(t), γ(s)) = v|t− s|

for some constant v. The union of complete geodesics through any point µ in the
image of e would contain a copy of R

n+1, but Proposition 3.6 shows that this union
is isometric to R

n.

However, one can define less restrictive notions of rank as follows.

Definition 7.2. — Let X be a Polish space. The semi-global rank of X is defined
as the supremum of the set of positive integers k such that for all r ∈ R

+, there is an
isometric embedding of the ball of radius r of R

k into X .
The loose rank of X is defined as the supremum of the set of positive integers k

such that there is a quasi-isometric embedding of Z
k into X .

Let us recall that a map f : Y → X is said to be a quasi-isometric embedding if
there are constants C > 1, D > 0 such that for all y, z ∈ Y the following holds :

C−1d(y, z) −D 6 d(f(y), f(z)) 6 Cd(y, z) +D.

The notion of loose rank is relevant in a large class of metric spaces, including
discrete spaces (the Gordian space [7], or the Cayley graph of a finitely presented
group for example). We chose not to call it “coarse rank” due to the previous use of
this term by Kapovich, Kleiner and Leeb.

The semi-global rank is motivated by the following simple result.

Proposition 7.3. — A geodesic space X that has semi-global rank at least 2 is not
δ-hyperbolic.

Proof. — Since X contains euclidean disks of arbitrary radius, it also contains eu-
clidean equilateral triangles of arbitrary diameter. In such a triangle, the maximal
distance between a point of an edge and the other edges is proportional to the diam-
eter, thus is unbounded in X .

Proposition 7.4. — The semi-global rank and the loose rank of W2(R) are infinite.

Proof. — Consider the subset R
k
6 = {(x1, . . . , xk);x1 6 x2 6 · · · 6 xk} of R

k. It is a
closed, convex cone.

Moreover the map

R
k
6 → W2(R)

(x1, . . . , xk) 7→
∑ 1

k
δxi

is an isometric embedding.
Since R

k
6 contains arbitrarily large balls, W2(R) must have infinite semi-global

rank.
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Moreover, since R
k
6 is a convex cone of non-empty interior, it contains a circular

cone. Such a circular cone is conjugate by a linear (and thus bi-Lipschitz) map to the
cone

C = {x2
1 =

∑

i>2

x2
i }.

Now the vertical projection from {x1 = 0} to C is bi-Lipschitz. There is therefore a
bi-Lipschitz embedding of R

k−1 in W2(R) and, a fortiori, a quasi-isometric embedding
of Z

k−1. Therefore W2(R) has infinite loose rank.

7.1. Ranks of other spaces. — The ranks of W2(R) have an influence on those
of many spaces due to the following lemma.

Lemma 7.5. — If X and Y are Polish geodesic spaces, any isometric embedding
ϕ : X → Y induces an isometric embedding ϕ# : W2(X) → W2(Y ).

As usual, ϕ# is defined by: ϕ#µ(A) = µ(ϕ−1(A)) for all measurable A ⊂ Y .

Proof. — Since ϕ is isometric, for any µ ∈ W2(X), ϕ#µ is in W2(Y ). Moreover any
optimal transportation plan in X is mapped to an optimal transportation plan in
Y (note that a coupling between two measures with support in ϕ(X) must have its
support contained in ϕ(X) × ϕ(X)). Integrating the equality d(ϕ(x), ϕ(y)) = d(x, y)
yields the desired result.

Corollary 7.6. — If X is a Polish geodesic space that contains a complete geodesic,
then W2(X) has infinite semi-global rank and infinite loose rank. As a consequence,

W2(X) is not δ-hyperbolic.

Proof. — Follows from the preceding Lemma, Proposition 7.4 and Proposition 7.3.

This obviously applies to W2(R
n).

One could hope that in Hadamard spaces, the projection to the center of mass

P : W2(X) → X

could give a higher bound on the rank of W2(X) by means of that of X . However,
P need not map a geodesic on a geodesic. For example, if one consider on the real
hyperbolic plane RH2 the measures µt = 1/2δp +1/2δγ(t) where p is a fixed point and

γ(t) is a geodesic, then µt is a geodesic of W2(RH2) that is mapped by P to a curve
with the same endpoints than γ, but is different from it. Therefore, it cannot be a
geodesic.

8. Open problems

Since the higher-dimensional Euclidean spaces are more rigid (has few non-trivial
isometries) than the line, we expect other spaces to be even more rigid.
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p

γ(t)

P (µt)

Figure 9. The projection P maps a geodesic of W2(RH2) to a non-geodesic
curve (dashed) in RH2.

Question 1. — Does it exists a Polish (or Hadamard) spaceX 6= R such that W2(X)
admits exotic isometries?

Does it exists a Polish (or Hadamard) space X 6= R
n such that W2(X) admits

non-trivial isometries?

In any Hadamard space X , isometries of W2(X) must preserve the set of Dirac
masses (the proof is the same than in R), and this fact could help get a grip on the
problem in this case.

For general spaces, even the following seems not obvious.

Question 2. — Does it exists a Polish space X whose Wasserstein space W2(X)
possess an isometry that does not preserve the set of Dirac masses ?

Last, when X is Hadamard, one could hope to use the projection P to link the
rank of W2(X) to the loose rank of X .

Question 3. — If X is a Hadamard space, is the loose rank of X an upper bound
for the rank of W2(X) ?
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