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A GEOMETRIC STUDY OF THE WASSERSTEIN

SPACE OF THE LINE

BENOÎT KLOECKNER

1. Introduction

The concept of optimal transportation raised recently a growing in-
terest in link with the geometry of metric spaces. In particular the L2

Wasserstein space W 2(X) have been used in [6] and [8, 9] to define cer-
tain curvature conditions on a metric space X. Many useful properties
are inherited from X by W 2(X) (separability, completeness, geodesic-
ness, some non-negative curvature conditions) while some other are
not, like the local compacity.

In this paper, we aim at starting a geometric study of Wasserstein
spaces as intrinsic spaces. We are interested, for example, in the isom-
etry group of W 2(X), in its curvature and in its rank (the greatest
possible dimension of a Euclidean space that embeds in it).

We shall concentrate on the case where X is the real line for several
reason. First, it is arguably the simplest geodesic space, thus a natural
choice to start our study. Second, it has some very specific features
which play a rôle in our main result (for example, we shall see that
W 2(R) is one of the very few CAT(0) Wasserstein spaces). Last, since
any complete simple geodesic in a metric space is isometric to the line,
one can hope to deduce information on many Wasserstein spaces from
the study of W 2(R).

The Wasserstein space W 2(X) contains an isometric embedding of
X: x 7→ δx where δx is the Dirac mass at x. Moreover any isometry of X
acts isometrically on W 2(X) in a natural way: φ(µ)(A) = µ(φ−1(A)),
giving an embedding Isom X → Isom W 2(X). These two elementary
facts enable to connect the geometry of W 2(X) to that of X.

Our main result concerns the isometries of W 2(R). One could ex-
pect that the embedding Isom X → Isom W 2(X) is onto, i.e. that all
isometries of W 2(R) are induced by those of R itself. Surprisingly this
happens to be false at least for the line.

Theorem 1.1 — The isometry group of W 2(R) is a semidirect product

Isom(R) ⋊ R
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where the right factor is an isometric flow that fixes each Dirac mass.

The main tool we use is the explicit description of the geodesic be-
tween two points µ0, µ1 of W 2(R) that follows from the fact that the
unique optimal transportation plan between µ0 and µ1 is the non-
decreasing rearrangement. It implies that most of the geodesics in
W 2(R) are not complete, and we rely on this fact to give a metric char-
acterization of Dirac masses and of linear combinations of two Dirac
masses, among all points of W 2(X). We also use the fact that W 2(R)
has vanishing curvature in the sense of Alexandrov.

This “exotic” isometric flow tends to put all the mass on one side of
the center of gravity (that must be preserved), close to it, and to send
a small bit of mass far away on the other side (so that the Wasserstein
distance to the center of mass is preserved). In particular, under this
flow any measure µ converges weakly to δx (where x is the center of
mass of µ), see Proposition 5.3.

Another consequence of the study of maximal geodesics concerns the
rank of W 2(R).

Theorem 1.2 — There is no isometric, totally geodesic embedding of
R

2 into W2(R).

It is simple to prove that despite Theorem 1.2, large pieces of R
n can

be embedded into W 2(R), which has consequently infinite weak ranks
in a sense to be precised. As a consequence, we get for example:

Proposition 1.3 — If X is any Polish geodesic metric space that
contains a complete geodesic, then W 2(X) is not δ-hyperbolic.

This is not surprising, since it is well-known that the negative cur-
vature assumptions tend not to be inherited from X by its Wasser-
stein space. For example, if X contains a lozenge (four distinct points
x1, x2, x3, x4 so that d(xi, xi + 1) is independent of the cyclic index i)
then W 2(X) is not uniquely geodesic, and in particular not CAT(0),
even if X itself is strongly negatively curved.

Organization of the paper. We start in Section 2 by some recalls
and notations. Section 3 is devoted to the study of maximal extensions
of geodesic segments and convex hulls. Section 4 is devoted to the cur-
vature of W 2(R) and to an extension theorem that follows. In section
5 we prove Theorem 1.1 and describe the unique non trivial isometric
flow on W 2(R). We turn to the study of ranks in Section 6, and end
with several open problems in Section 7.
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2. The wasserstein space

In this preliminary section we recall general facts on W 2(X). One
can refer to [10] for further details and much more.

2.1. Geodesic spaces. Let X be a Polish (i.e. complete separable)
space, and assume that X is geodesic, that is: between two points there
is a rectifiable curve whose length is the distance between the consid-
ered points. Note that we only consider globally minimizing geodesics,
and that a geodesic is always assumed to be parametrized proportion-
ally to arc length.

One defines the Wasserstein space of X as the set W 2(X) of Borel
probability measures µ on X that satisfy

∫

X

d2(x0, x)µ(dx) < +∞

for some (hence all) point x0 ∈ X, equipped by the distance dW defined
by:

d2
W (µ0, µ1) = inf

∫

X×X

d2(x, y)Π(dx, dy)

where the infimum is taken over all coupling Π of µ0, µ1. A coupling
realizing this infimum is said to be optimal, and there always exists an
optimal coupling.

The idea behind this distance is linked to the Monge-Kantorovitch
problem: given a unit quantity of goods distributed in X according to
µ0, what is the most economical way to displace them so that they end
up distributed according to µ1, when the cost to move a unit of good
from x to y is given by d2(x, y)? The minimal cost is d2

W (µ0, µ1) and a
transportation plan achieving this minimum is an optimal coupling.

Under the assumptions we put on X, the metric space W 2(X) is itself
Polish and geodesic. If moreover X is uniquely geodesic, then to each
optimal coupling Π between µ0 and µ1 is associated a unique geodesic
in W 2(X) in the following way. Let C([0, 1], X) be the set of continuous
curves [0, 1] → X, let g : X ×X → C([0, 1], X) be the application that
maps (x, y) to the unit speed geodesic between these points, and for
each t ∈ [0, 1] let et : C([0, 1], X) → X be the map γ 7→ γ(t). Then
t 7→ et

♯g♯Π is a geodesic between µ0 and µ1. Informally, this means that
we choose randomly a couple (x, y) according to the joint law Π, then
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take the time t of the geodesic g(x, y). This gives a random point in
X, whose law is µt, the time t of the geodesic in W 2(X) associated to
the optimal coupling Π.

Note that for most spaces X, the optimal coupling between two prob-
ability measures is not unique, and W 2(X) is therefore not uniquely
geodesic even if X is.

Let us name the isometric and totally geodesic embedding of X into
W 2(X):

I : x 7→ δx

where δx is the Dirac mass at point x. One of our goal is to determine
wether the Dirac measures can be detected inside W 2(X) by purely
geometric properties, so that we can link the isometries of W 2(X) to
those of X.

2.2. The line. Given the distribution function

F : x 7→ µ(] −∞, x])

of a probability measure µ, one defines its left-continuous inverse:

F−1 :]0, 1[ → R

m 7→ sup{x ∈ R ; F (x) ≤ m}

that is a non-decreasing, left-continuous function; lim0 F−1 is the infi-
mum of the support of µ and lim1 F−1 its supremum. A discontinuity
of F−1 happens for each interval that does not intersect the support of
µ, and F−1 is constant on an interval for each atom of µ.

m

x

Figure 1. Inverse distribution function of a combina-
tion of three Dirac masses

Let µ0 and µ1 be two points of W2(R), and let F0, F1 be their repar-
tition functions. Then the distance between µ0 and µ1 is given by
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(1) d2(µ0, µ1) =

∫ 1

0

(

F−1
0 (m) − F−1

1 (m)
)2

dm

and there is a unique constant speed geodesic (µt)t∈[0,1], where µt has
a distribution function Ft defined by

(2) F−1
t = (1 − t)F−1

0 + tF−1
1

This means that the best way to go from µ0 to µ1 is simply to rear-
range increasingly the mass, a consequence of the convexity of the cost
function. For example, if µ0 and µ1 where uniform measures on [0, 1]
and [ε, 1 + ε], then the optimal coupling is deterministic given by the
translation x 7→ x + ε. That is: the best way to go from µ0 to µ1 is
to shift every bit of mass by ε. If the cost function where linear, it
would be equivalent to leave the mass on [ε, 1] in place and move the
remainder from [0, ε] to [1, 1 + ε]. If the cost function where concave,
then the latter solution would be better than the former.

m

x

Figure 2. A geodesic between two atomic measures:
the mass moves with speed proportional to the length of
the arrows.

2.3. Spaces of nonpositive curvature. We shall consider two cur-
vature conditions. The first one is a negative curvature condition, the
δ-hyperbolicity introduced by Gromov. A geodesic space is said to
be δ-hyperbolic (where δ is a non-negative number) if in any triangle,
any point of any of the sides is at distance at most δ from one of the
other two sides. For example, the real hyperbolic space is δ-hyperbolic
(the value of δ depending on the value of the curvature), a tree is 0-
hyperbolic and the euclidean spaces of dimension at least 2 are not
δ-hyperbolic for any δ.

The second condition is the classical non-positive curvature condi-
tion CAT(0), detailed in Section 4, that roughly means that triangles
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are thinner in X than in the euclidean plane. Euclidean spaces, any
Riemannian manifold having non-positive sectional curvature are ex-
amples of CAT(0) spaces.

A geodesic Polish space X is said to be a Hadamard space if it is
simply connected and CAT(0). A Hadamard space is uniquely geodesic,
and admits a natural boundary at infinity. The feature that interests
us most is the following classical result: if X is a Hadamard space,
given µ ∈ W 2(X) there is a unique point x0 ∈ X, called the center of
mass of µ, that minimizes the quantity

∫

X
d2(x0, x)µ(dx). If X = R

n

endowed with the canonical scalar product, then the center of mass
is of course

∫

Rn xµ(dx) but in the general case, the lack of an affine
structure on X prevents to use this last formula.

We thus get a map P : W 2(X) → X that maps any L2 probability
measure to its center of mass. Obviously, P is a left inverse to I and
one can hope to use this map to link closer the geometry of W 2(X) to
that of X. That’s why our questions, unlike most of the classical ones
in optimal transportation, might behave nicer when the curvature is
non-positive than when it is non-negative.

3. Geodesics

3.1. Maximal extension of geodesics. We now consider the geo-
desics of W 2(R) to determine on which maximal interval they can be
extended.

Let µ0, µ1 be two points of W 2(R) and F0, F1 their distribution
functions. Let (µt)t∈[0,1] be the geodesic between µ0 and µ1. Since
W 2(R) is uniquely geodesic, there is a unique maximal interval on
which γ can be extended into a geodesic, denoted by ι(µ0, µ1).

Lemma 3.1 — One has

ι(µ0, µ1) = {t ∈ R ; F−1
t is non-decreasing}

where F−1
t is defined by the formula (2). It is a closed interval. If one

of its bound t0 is finite, then µt0 has a point of infinite density with
respect to the Lebesgue measure.

Proof. Any non-decreasing left continuous function is the inverse dis-
tribution function of some probability measure. If such a function is
obtained by an affine combination of probabilities belonging to W 2(R),
then its probability measure belongs to W 2(R) too.

Moreover, an affine combination of two left continuous function is
left continuous, so that

ι(µ0, µ1) = {t ∈ R ; F−1
t is non-decreasing}.
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The fact that ι(µ0, µ1) is closed follows from the stability of non-
decreasingness under pointwise convergence.

If the minimal slope

inf

{

F−1
t (m) − F−1

t (m′)

m − m′
; 0 < m < m′ < 1

}

is positive for some t, then it stays positive in a neighborhood of t.
Thus, a finite bound of I(µ0, µ1) must have zero minimal slope, which
corresponds to a point of infinite density. �

A geodesic is said to be complete if it is defined for all times. We
also consider geodesic rays, defined on an interval [0, T ] or [0, T [ where
T can be +∞ (in which case we say that the ray is complete), and
geodesic segments, defined on a closed interval.

It is easy to deduce a number of consequences from Lemma 3.1.

Lemma 3.2 — In W 2(R):

(1) any geodesic ray issued from a Dirac mass can be extend to a
complete ray,

(2) no geodesic ray issued from a Dirac mass can be extended for
negative times, except if all of its points are Dirac masses,

(3) up to normalizing the speed, the only complete geodesics are
those obtained by translating a point of W 2(R):

µt(A) = µ0(A − t),

Proof. The inverse distribution function of a Dirac mass δx is the con-
stant function F−1

0 with value x. Since it slopes

F−1
0 (m) − F−1

0 (m′)

m − m′
0 < m < m′ < 1

are all zero, for all positive times t the functions F−1
t defined by formula

(2) for any non-decreasing F−1
1 are non-decreasing. However, for t < 0

the F−1
t are not non-decreasing if F−1

1 is not constant, we thus get (1)
and (2).

Consider a point µ0 of W 2(R) defined by an inverse distribution
function F−1

0 , and consider a complete geodesic (µt) issued from µ0.
Let F−1

t be the inverse distribution function of µt. Then, since µt is
defined for all times t > 0, the slopes of F−1

1 must be greater than
those of F−1

0 :

F−1
0 (m) − F−1

0 (m′) ≤ F−1
1 (m) − F−1

1 (m′) ∀m < m′

otherwise, when t increases, some slope of F−1
t will decrease linearly in

t, thus vanishing in finite time.
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But since µt is also defined for all t < 0, the slopes of F−1
1 must

be lesser than those of F−1
0 . They are therefore equal, and the two

inverse distribution function are equal up to an additive constant. The
geodesic µt is the translation of µ0 and we proved (3). �

3.2. Convex hulls of totally atomic measures. Define in W 2(R)
the following sets:

∆1 = {δx ; x ∈ R}

∆n = {

n
∑

i=1

aiδxi
; xi ∈ R,

∑

ai = 1}

∆′
n+1 = ∆n+1 \ ∆n

Then ∆1 is simply the image of the natural embedding R → W 2(R).
In particular, it is a convex set. This is not the case of ∆n is n > 1. In
fact, we have the following.

Lemma 3.3 — If n > 1, any point µ of ∆n+1 lies on a geodesic segment
with endpoints in ∆n. Moreover, the endpoints can be chosen with the
same center of mass than that of µ.

Proof. If µ ∈ ∆n the result is obvious. Assume µ =
∑

aiδxi
is in ∆′

n+1.
We can assume further that x1 < x2 < · · · < xn+1. Consider the
measures

µ−1 =
∑

i<n−1

aiδxi
+ (an−1 + an)δxn−1

+ an+1δxn+1

µ1 =
∑

i<n−1

aiδxi
+ an−1δxn−1

+ (an + an+1)δxn+1
.

Then µ lies on the geodesic segment from µ−1 to µ1. To get a constant
center of mass, one considers the geodesic

µt =
∑

i<n−1

aiδxi
+ an−1δxn−1+t + anδxn−αt

where α = an−1

an

. �

If X is a Polish geodesic space and C is a subset of X, one says that
C is convex if every geodesic segment whose endpoints are in C lies
entirely in C. The convex hull of a subset Y is the least convex set
C(Y ) that contains Y . It is well defined since the intersection of two
convex sets is a convex set.

Lemma 3.3 provides the following noteworthy fact that will prove
useful latter on.

Lemma 3.4 — The convex hull of ∆n is dense in W 2(R) if n > 1.
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Proof. Follows from Lemma 3.3 since the set of totally atomic measures
⋃

n ∆n is dense in W 2(R). �

4. Curvature

More details on the (sectional) curvature of metric spaces are avail-
able for example in [3] or [5]. We shall consider the curvature of W 2(R),
in the sense of Alexandrov. Given any three points x, y, z in a geodesic
metric space X, there is in R

2 up to congruence a unique compari-
son triangle x′, y′, z′, that is a triangle that satisfies d(x, y) = d(x′, y′),
d(y, z) = d(y′, z′), and d(z, x) = d(z′, x′).

One says that X has non-positive curvature (in the sense of Alexan-
drov), or is CAT(0), if for all x, y, z the distances between two points
on sides of this triangle is lesser than or equal the distance of corre-
sponding points in the comparison triangle.

Equivalently, X is CAT(0) if for any triangle x, y, z, any geodesic
γ such that γ(0) = x and γ(1) = y, and any t ∈ [0, 1], the following
inequality holds:

(3) d2(y, γ(t)) ≤ (1 − t)d2(y, γ(0)) + td2(y, γ(1)) − t(1 − t)tℓ(γ)2

where ℓ(γ) denotes the length of γ, that is d(x, z).

x

y

z
γ(t)

x′

y′

z′

Figure 3. The CAT(0) inequality: the dashed segment
is shorter in the triangle xyz than in the comparison
triangle on the right.

One says that X has vanishing curvature (in the sense of Alexandrov)
if equality holds for all x, y, z, γ, t:

(4) d2(y, γ(t)) = (1 − t)d2(y, γ(0)) + td2(y, γ(1)) − t(1 − t)tℓ(γ)2

This is equivalent to the condition that for any triangle x, y, z in
X and any point γ(t) on any geodesic segment between x and z, the
distance between y and γ(t) is equal to the corresponding distance in
the comparison triangle.

Proposition 4.1 — The space W 2(R) has vanishing curvature in the
sense of Alexandrov.
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Proof. It follows from the expression (1) of the distance in W 2(R): if
we denote by A, B, C the inverse distribution functions of the three
considered points x, y, z ∈ W 2(R), we get:

d2(y, γ(t)) =

∫ 1

0

(B − (1 − t)A − tC)2

=

∫ 1

0

[

(1 − t)2(B − A)2 + t2(B − C)2

+2t(1 − t)(B − A)(B − C)
]

and using that (1 − t)2 = (1 − t) − t(1 − t) and t2 = t − t(1 − t),

d2(y, γ(t)) = (1 − t)d2(y, x) + td2(y, z) − t(1 − t)

∫ 1

0

[

(B − A)2

+(B − C)2 − 2(B − A)(B − C)
]

= (1 − t)d2(y, x) + td2(y, z) − t(1 − t)d2(x, z).

�

We shall use the vanishing curvature of W 2(R) by means of the
following result, where all subsets of X are assumed to be endowed
with the induced metric (that need therefore not be inner).

Proposition 4.2 — Let X be a Polish uniquely geodesic space with
vanishing curvature. If Y is a subset of X and C(Y ) is the convex
hull of Y , then any isometry of Y can be extended into an isometry of
C(Y ).

Proof. Let φ : Y → Y the isometry to be extended. Let x, y be any
points lying each on one geodesic segment γ, τ : [0, 1] → X whose
endpoints are in Y . Consider the unique geodesics γ′, τ ′ that satisfy
γ′(0) = φ(γ(0)), γ′(1) = φ(γ(1)) τ ′(0) = φ(τ(0)), τ ′(1) = φ(τ(1))
and the points x′, y′ lying on them so that d(x′, γ′(0)) = d(x, γ(0)),
d(x′, γ′(1)) = d(x, γ(1)), and the same for y′. This makes sense since,
φ being an isometry on Y , γ′ has the length of γ and τ ′ that of τ . We
shall prove that d(x′, y′) = d(x, y).

The vanishing of curvature implies that d(x′, τ ′(0)) = d(x, τ(0)): the
triangles γ(0), γ(1), τ(0) and γ′(0), γ′(1), τ ′(0) have the same compari-
son triangle. Similarly d(x′, τ ′(1)) = d(x, τ(1)). Now x, τ(0), τ(1) and
x′, τ ′(0), τ ′(1) have the same comparison triangle, and the vanishing
curvature assumption implies d(x′, y′) = d(x, y).

In particular, if x = y then x′ = y′. We can thus extend φ to the
union of geodesic segments whose endpoints are in Y by mapping any
such x to the corresponding x′. This is well-defined, and an isometry.
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x′

γ′(1)

y′

x
γ(1)

y τ(1)

τ ′(0)

τ ′(1)

γ(0)

γ′(0)

τ(0)

Figure 4. All triangles being flat, the distance is the
same between x′ and y′ and between x and y.

Repeating this operation we can extend φ into an isometry of C(Y ).

But X being complete, the continuous extension of φ to C(Y ) is well-
defined and an isometry. �

Note that the same result holds with the same proof when the cur-
vature is constant but non-zero.

5. Isometries

5.1. Existence and unicity of the non-trivial isometric flow. In
this section, we prove Theorem 1.1.

Let us start with the following consequence of Lemma 3.2.

Lemma 5.1 — An isometry of W 2(R) must globally preserve the sets
∆1 and ∆2.

Proof. We shall exhibit some geometric properties that characterize the
points of ∆1 and ∆2 and must be preserved by isometries.

First, according to Lemma 3.2, the points µ ∈ ∆1 are the only ones
to satisfy : every geodesic ray starting at µ is complete. Since an
isometry must map a geodesic (ray, segment) to another, this property
is preserved by isometries of W 2(R).

Second, let us prove that the point µ ∈ ∆2 are the only ones that
satisfy: any geodesic µt such that µ = µ0, that can be extended to a
maximal interval [−T, +∞) with −∞ < T < 0, has its endpoint µT in
∆1.

This property is obviously satisfied by points of ∆1. It is also satisfied
by every points of ∆′

2. Indeed, write µ = aδx + bδy where x < y. Then
if µ1 does not write µ1 = aδx1

+ bδy1
with x1 < y1, either µt is not

defined for t > 1 or it is not defined for t < 0. If µ1 does write
µ1 = aδx1

+ bδy1
, then either |y1 − x1| = |y − x| and µt is defined for

all t, or |y1 − x1| < |y − x| and µt is only defined until a finite positive
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m

x

m1

m3m2

Figure 5. The geodesic between these inverse distribu-
tions is defined for negative times, more precisely until
it reaches the dashed line.

time, or |y1 −x1| > |y−x| and µt is defined from a finite negative time
T where µT ∈ ∆1.

Now if µ /∈ ∆2, its inverse distribution function F−1 takes three
different values at some points m1 < m2 < m3. Consider the geodesic
between µ and the measure µ′ whose inverse distribution function F ′−1

coincide with F−1 on [m1, m2] but is defined by

F ′−1(m) − F−1(m2) = 2(F−1(m) − F−1(m2))

on [m2, 1). Then this geodesic is defined for all positive times, but
stops at some nonpositive time T . Since F−1 takes different values at
m2 and m3, one can extend the geodesic for small negative times and
T < 0. But the inverse distribution function of the endpoint µT must
take the same values than that of µ in m1 and m2, thus µT /∈ ∆1. �

Up to composing with an isometry of R, one is reduced to consider
the isometries of W 2(R) that fix each Dirac mass.

Any point µ ∈ ∆′
2 writes under the form

µ = µ(x, σ, e) =
1

1 + e2
δx−σe +

e2

1 + e2
δx+σ/e

where x is its center of mass, σ is the distance between µ and its center
of mass, and e > 0.

Lemma 5.2 — An isometry of W 2(R) that fixes each point of ∆1 must
restrict to ∆′

2 to a map of the form:

Φt = µ(x, σ, e) 7→ µ(x, σ, te)

for some t ∈ (0, +∞). Any such map is an isometry of ∆2.

Proof. Let Φ be an isometry of W 2(R) that fixes each point of ∆1.
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A computation gives the following expression for the distance be-
tween two measures in ∆′

2:

d2(µ(x, σ, e), µ(y, ρ, f)) = (x − y)2 + σ2 + ρ2 − 2σρ
f

e

whenever e ≥ f .
Since Φ is an isometry, it preserves the center of mass and variance.

The preceding expression shows that it must preserve the ratio e/f
for any two measures µ(x, σ, e), µ(y, ρ, f), and that this condition is
sufficient to make Φ an isometry of ∆2. �

Now Theorem 1.1 follows from Lemma 5.2, Proposition 4.2 and
Lemma 3.4: any map µ(x, σ, e) 7→ µ(x, σ, te) with t > 0 extends into an

isometry of C(∆2) = W 2(R). Any isometry of W 2(R) can be assumed,
by composition with an element of Isom(R), to fix ∆1 pointwise and
then, by composition with an element of this isometric flow, to fix ∆2

pointwise. Then it must be the identity on the convex hull of ∆2, thus
on W 2(R).

5.2. Behaviour of the non-trivial isometric flow. The definition
of Φt is constructive, but not very explicit outside ∆2. On ∆2, the flow
tends to put most of the mass on the right of the center of mass, very
close to it, and send a smaller and smaller bit of mass far away on the
left.

Center of mass

Figure 6. Image of a point of ∆2 by Φ2 (dashed) and Φ3 (dotted).

The flow Φt preserves ∆3 as its elements are the only ones to lie on a
geodesic segment having both endpoints in ∆2. Similarly, elements of
∆n are the only ones to lie on a geodesic segment having an endpoint
in ∆2 and another in ∆n−1, therefore Φt preserves ∆n for all n.

Computations enable one to find formulas for Φt on ∆n, but the
expressions one gets are not so nice. For example, if µ = 1

3
δx1

+ 1
3
δx2

+
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1
3
δx3

where x1 ≤ x2 ≤ x3, then

Φt(µ) =
1

1 + 2t2
δx1+

1

3
(1−t)(x3−x1)+

1

3
(1−t)(x2−x1)

+
3
2
t2

(

1 + 1
2
t2

)

(1 + 2t2)
δx1+ 1

3
(1−t)(x3−x1)+ 1

3
(1+t−1+t)(x2−x1)

+
1
2
t2

1 + 1
2
t2

δx1+ 1

3
(1+2t−1)(x3−x1)+

1

3
(1−t−1)(x2−x1)

In order to get some intuition about Φt, let us prove the following.

Proposition 5.3 — Let µ be any point of W 2(R) and x be its center
of mass. If t goes to 0 or +∞, then Φt(µ) converges weakly to δx.

Proof. We shall only consider the case when t → +∞ since the other
one is symmetric. Let us start with a lemma.

Lemma 5.4 — If γt and νt are in W 2(R) and both converge weakly to
δx when t goes to +∞, and if µt is in the geodesic segment between γt

and νt for all t, then µt converges weakly to δx when t goes to +∞.

Proof. It is a direct consequence of the form of geodesics: if γt and νt

both charge an interval [x − η, x + η] with a mass at least 1 − ε, then
µt must charge this interval with a mass at least 1 − 2ε. �

Now we are able to prove the proposition on larger and larger subsets
of W 2(R). First, it is obvious on ∆2. If it holds on ∆n, the preceding
Lemma together with Lemma 3.3 implies that it holds on ∆n+1. To
prove it on the whole of W 2(R), the density of the subset of

⋃

n ∆n

consisting of measures having center of mass x, and a diagonal process
are sufficient. �

6. Ranks

One usually defines the rank of a metric space X as the supremum
of the set of positive integers k such that there is an isometric, totally
geodesic embedding of R

k into X. We say that an embedding is totally
geodesic if any geodesic of the domain is mapped on a geodesic of the
range.

6.1. Ranks of W 2(R). As a consequence of Lemma 3.2, we get the
following result announced in the introduction.

Theorem 6.1 — The space W 2(R) has rank 1.
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Proof. The image of an isometric, totally geodesic embedding of R
2

would contain two different, crossing, complete geodesics, which is pre-
vented by Lemma 3.2. �

However, one can define less restrictive notions of rank as follows.

Definition 6.2 — Let X be a Polish space.
The semi-global rank of X is defined as the supremum of the set

of positive integers k such that for all r ∈ R
+, there is an isometric,

totally geodesic embedding of the ball of radius r of R
k into X.

The loose rank of X is defined as the supremum of the set of positive
integers k such that there is a quasi-isometric embedding of Z

k into X.

The notion of loose rank is relevant in a large class of metric spaces,
including discrete spaces (the Gordian space [4], or the Cayley graph of
a finitely presented group for example). We chose not to call it “coarse
rank” due to the previous use of this term by Kapovich, Kleiner and
Leeb.

The semi-global rank is motivated by the following simple result.

Proposition 6.3 — A geodesic space X that has semi-global rank at
least 2 is not δ-hyperbolic.

Proof. Since X contains euclidean disks of arbitrary radius, it also con-
tains euclidean equilateral triangles of arbitrary diameter. In such a
triangle, the maximal distance between a point of an edge and the other
edges is proportional to the diameter, thus is unbounded in X. �

Consider the subset R
k
≤ = {(x1, . . . , xk) ; x1 ≤ x2 ≤, · · · ≤ xk} of R

k.
It is a closed, convex cone.

Lemma 6.4 — The map

R
k
≤ → W 2(R)

(x1, . . . , xk) 7→
∑ 1

k
δxi

is an isometric, totally geodesic embedding.

Proof. Straightforward. �

Corollary 6.5 — The space W 2(R) has infinite semi-global rank and
infinite loose rank.

Proof. Since R
k
≤ contains arbitrarily large balls, the preceding Lemma

implies that W 2(R) has infinite semi-global rank.
Moreover, since R

k
≤ is a convex cone of non-empty interior, it contains

a circular cone. Such a circular cone is conjugate by a linear (and thus



16 BENOÎT KLOECKNER

bi-Lipschitz) map to the cone

C = {x2
1 =

∑

i≥2

x2
i }.

Now the vertical projection from {x1 = 0} to C is bi-Lipschitz. There
is therefore a bi-Lipschitz embedding of R

k−1 in W 2(R) and, a fortiori,
a quasi-isometric embedding of Z

k−1. Therefore W 2(R) has infinite
loose rank. �

6.2. Ranks of other spaces. The ranks of W 2(R) have an influence
on those of many spaces due to the following lemma.

Lemma 6.6 — If X and Y are Polish geodesic spaces, any isometric
and totally geodesic embedding φ : X → Y induces an isometric and
totally geodesic embedding φ♯ : W 2(X) → W 2(Y ) : µ 7→ µ(φ·).

Proof. Since φ is isometric, for any µ ∈ W 2(X), φ♯µ is in W 2(Y ).
Moreover any optimal transport in X is mapped to an optimal trans-
port in Y (note that a coupling between two measures with support
in φ(X) must have its support contained in φ(X) × φ(X)). Since φ is
totally geodesic, and due to the way geodesics in W 2(X) are obtained
from geodesics and an optimal transport, φ♯ is a totally geodesic em-
bedding. �

Corollary 6.7 — If X is a Polish geodesic space that contains a
complete geodesic, then W 2(X) has infinite semi-global rank and infi-
nite loose rank. As a consequence, W 2(X) is not δ-hyperbolic.

Proof. Follows from the preceding Lemma, Corollary 6.5 and Proposi-
tion 6.3. �

One could hope that in Hadamard spaces, the projection to the cen-
ter of mass

P : W 2(X) → X

could give a higher bound on the rank of W 2(X) by means of that of
X. However, P need not map a geodesic on a geodesic. For example,
if one consider on the real hyperbolic plane RH2 the measures µt =
1/2δp + 1/2δγ(t) where p is a fixed point and γ(t) is a geodesic, then
µt is a geodesic of W 2(RH2) that is mapped to a curve with the same
endpoints than γ, that can thus not be a geodesic.
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p

γ(t)

P (µt)

Figure 7. The projection P maps a geodesic of
W 2(RH2) to a non-geodesic curve (dashed) in RH2.

7. Open problems

Theorem 1.1 might not hold in R
n, since the optimal transportation

plan is far more intricate in higher dimension (see [1, 2, 7]). However
in any Hadamard space X, isometries of W 2(X) must preserve the set
of Dirac masses (the proof is the same than in R), and this fact could
help get a grip on the problem.

Question 1 — Given a Hadamard space X (for example R
n), does

there exist isometries of W 2(X) that are not induced by an isometry of
X ?

This question can of course be asked for any Polish space, but this
might be more difficult. Even the following seems not obvious.

Question 2 — Does there exist a Polish space X whose Wasserstein
space W 2(X) possess an isometry that does not preserve the set of Dirac
masses ?

Last, when X is Hadamard, one could hope to use the projection P
to link the rank of W 2(X) to the loose rank of X.

Question 3 — If X is a Hadamard space, is the loose rank of X an
upper bound for the rank of W 2(X) ?
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[7] L. Rüschendorf and S. T. Rachev. A characterization of random variables with

minimum L2-distance. J. Multivariate Anal., 32(1):48–54, 1990.
[8] Karl-Theodor Sturm. On the geometry of metric measure spaces. I. Acta Math.,

196(1):65–131, 2006.
[9] Karl-Theodor Sturm. On the geometry of metric measure spaces. II. Acta

Math., 196(1):133–177, 2006.
[10] Cédric Villani. Optimal transport, old and new. Springer.


