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Large p-groups actions with |G| g 2 ≥ 4 (p 2 -1) 2

Let k be an algebraically closed field of characteristic p > 0 and C a connected nonsingular projective curve over k with genus g ≥ 2. Let (C, G) be a "big action" , i.e. a pair (C, G) where G is a p-subgroup of the k-automorphism group of C such that |G| g > 2 p p-1 . We first study finiteness results on the values taken by the quotient |G| g 2 when (C, G) runs over the big actions satisfying |G| g 2 ≥ M , for a given positive real M > 0. Then, we exhibit a classification and a parametrization of such big actions when M = 4 (p 2 -1) 2 .

1 Introduction.

Setting. Let k be an algebraically closed field of positive characteristic p > 0 and C a connected nonsingular projective curve over k, with genus g ≥ 2. As in characteristic zero, the k-automorphism group of the curve C, Aut k (C), is a finite group whose order is bounded from above by a polynomial in g (cf.

). The difference is due to the appearance of wild ramification. More precisely, let G be a subgroup of Aut k (C). If the order of G is prime to p, then the Hurwitz bound still holds, i.e. |G| ≤ 84 (g -1). Now, if G is a p-Sylow subgroup of Aut k (C), Nakajima (cf. [Na87]) proves that |G| can be larger according to the value of the p-rank γ of the curve C. Indeed, if γ > 0, then |G| ≤ 2 p p-1 g, whereas for γ = 0, |G| ≤ max{g, 4 p (p-1) 2 g 2 } , knowing that the quadratic upper bound 4 p (p-1) 2 g 2 can really be attained. Following Nakajima's work, Lehr and Matignon explore the "big actions", that is to say the pairs (C, G) where G is a p-subgroup of Aut k (C) such that |G| g > 2 p p-1

). In this case, the ramification locus of the cover π : C → C/G is located at one point of C, say ∞. In [MR08], we display necessary conditions on G 2 , the second ramification group of G at ∞ in lower notation, for (C, G) to be a big action. In particular, we show that G 2 coincides with the derived subgroup G ′ of G.

Motivation and purpose. The aim of this paper is to pursue the classification of big actions as initiated in [START_REF] Lehr | Automorphism groups for p-cyclic covers of the affine line[END_REF]. Indeed, when searching for a classification of big actions, it naturally occurs that the quotient |G| g 2 has a "sieve" effect. Lehr and Matignon first prove that the big actions such that |G| g 2 ≥ 4 (p-1) 2 correspond to the p-cyclic étale covers of the affine line parametrized by an Artin-Schreier equation:

W p -W = f (X) := X S(X) + c X ∈ k[X],
where S(X) runs over the additive polynomials of k[X]. In [START_REF] Matignon | On smooth curves endowed with a large automorphism p-group in characteristic p[END_REF], we show that the big actions satisfying |G| g 2 ≥ 4 (p 2 -1) 2 correspond to the étale covers of the affine line with Galois group G ′ ≃ (Z/pZ) n , with n ≤ 3. This motivated the study of big actions with a p-elementary abelian G ′ , say G ′ ≃ (Z/pZ) n , which is the main topic of [START_REF] Rocher | Large p-groups actions with a p-elementary abelian second ramification group[END_REF] where we generalize the structure theorem obtained in the p-cyclic case. Namely, we prove that when G ′ ≃ (Z/pZ) n with n ≥ 1, then the function field of the curve is parametrized by n Artin Schreier equations:

W p i -W i = f i (X) ∈ k[X]
where each function f i can be written as a linear combination over k of products of at most i + 1 additive polynomials. In this paper, we display the parametrization of the functions f i 's in the case of big actions satisfying |G| g 2 ≥ 4 (p 2 -1) 2 . In what follows, this condition is called condition ( * ).

Outline ot the paper. The paper falls into two main parts. The first one is focused on finiteness results for big actions (C, G) satisfying |G| g 2 ≥ M for a given positive real M > 0, called big actions satisfying G M , whereas the second part is dedicated to the classification of such big actions when M = 4 (p 2 -1) 2 . More precisely, we prove in section 4 that, for a given M > 0, the order of G ′ only takes a finite number of values for (C, G) a big action satisfying G M . When exploring similar finiteness results for g and |G|, we are lead to a purely group-theoretic discussion around the inclusion

F ratt(G ′ ) ⊂ [G ′ , G],
where F ratt(G ′ ) means the Frattini subgroup of G ′ and [G ′ , G] denotes the commutator subgroup of G ′ and G (cf. section 4). When the inclusion is strict, |G| and g also take a finite number of values for (C, G) satisfying G M . This is no more true when F ratt(G ′ ) = [G ′ , G]. In this case, we can only conclude that, for p > 2, the quotient |G| g 2 takes a finite number of values for (C, G) satisfying G M with an abelian G ′ . Note that we do not know yet examples of big actions with a non-abelian G ′ . Another central question to is the link between the subgroups G of Aut k (C) such that (C, G) is a big action and a p-Sylow subgroup of Aut k (C) containing G (section 3). Among other things, we prove that they have the same derived subgroup. This, together with the fact that the order of G ′ takes a finite number of values for big actions satisfying G M , implies, on the one hand, that the order of G ′ is a key criterion to classify big actions and, on the other hand, that we can concentrate on p-Sylow subgroups of A. In section 5, we eventually display the classification and the parametrization of big actions (C, G) under condition ( * ) according to the order of G ′ . Pursuing the preceding discussion, we have to distinguish the cases [G ′ , G] = F ratt(G ′ )(= {e}) and [G ′ , G] F ratt(G ′ )(= {e}).

Notation and preliminary remarks. Let k be an algebraically closed field of characteristic p > 0. We denote by F the Frobenius endomorphism for a k-algebra. Then, ℘ means the Frobenius operator minus identity. We denote by k{F } the k-subspace of k[X] generated by the polynomials F i (X), with i ∈ N. It is a ring under the composition. Furthermore, for all α in k, F α = α p F . The elements of k{F } are the additive polynomials, i.e. the polynomials P (X) of k[X] such that for all α and β in k, P (α + β) = P (α) + P (β). Moreover, a separable polynomial is additive if and only if the set of its roots is a subgroup of k (see [START_REF] Goss | Basic structures of function field arithmetic[END_REF] chap. 1).

Let f (X) be a polynomial of k[X]. Then, there is a unique polynomial red(f )(X) in k[X], called the reduced representative of f , which is p-power free, i.e. red(f )(X) ∈ (i,p)=1 k X i , and such that red(f )(X) = f (X) mod ℘(k[X]). We say that the polynomial f is reduced mod ℘(k[X]) if and only if it coincides with its reduced representative red(f ). The equation W p -W = f (X) defines a p-cyclic étale cover of the affine line that we denote by C f . Conversely, any p-cyclic étale cover of the affine line Spec k[X] corresponds to a curve C f where f is a polynomial of k[X] (see [START_REF] Milne | Etale cohomology[END_REF] III.4.12, p. 127). By Artin-Schreier theory, the covers C f and C red(f ) define the same p-cyclic covers of the affine line. The curve C f is irreducible if and only if red(f ) = 0.

Throughout the text, C denotes a connected nonsingular projective curve over k, with genus g ≥ 2. We denote by A := Aut k C the k-automorphism group of the curve C and by S(A) p any p-Sylow subgroup of A. For any point P ∈ C and any i ≥ -1, we denote by A P,i the i-th ramification group of A at P in lower notation, namely A P,i := {σ ∈ A, v P (σ(t P ) -t P ) ≥ i + 1} where t P denotes a uniformizing parameter at P and v P means the order function at P .

2 The setting: generalities about big actions.

Definition 2.1. Let C be a connected nonsingular projective curve over k, with genus g ≥ 2. Let G be a subgroup of A. We say that the pair (C, G) is a big action if G is a finite p-group such that

|G| g > 2 p p -1
To precise the background of this work, we first recall basic properties of big actions established in [START_REF] Lehr | Automorphism groups for p-cyclic covers of the affine line[END_REF] and [START_REF] Matignon | On smooth curves endowed with a large automorphism p-group in characteristic p[END_REF].

Recall 2.2. Assume that (C, G) is a big action. Then, there is a point of C (say ∞) such that G is the wild inertia subgroup of G at ∞: G 1 . Moreover, the quotient C/G is isomorphic to the projective line P 1 k and the ramification locus (respectively branch locus) of the cover π : C → C/G is the point ∞ (respectively π(∞)). For all i ≥ 0, we denote by G i the i-th lower ramification group of G at ∞:

G i := {σ ∈ G, v ∞ (σ(t ∞ ) -t ∞ ) ≥ i + 1}
where t ∞ denotes a uniformizing parameter at ∞ and v ∞ means the order function at ∞. 1. Then, G 2 is non trivial and it is strictly included in G 1 .

2. The quotient curve C/G 2 is isomorphic to the projective line P 1 k .

3. The quotient group G/G 2 acts as a group of translations of the affine line C/G 2 -{∞} = Spec k[X], through X → X + y, where y runs over a subgroup V of k. Then, V is an F psubvector space of k. We denote by v its dimension. This gives the following exact sequence: [START_REF] Matignon | On smooth curves endowed with a large automorphism p-group in characteristic p[END_REF] Thm. 2.6.4). Let (C, G) be a big action. Then,

0 -→ G 2 -→ G = G 1 π -→ V ≃ (Z/ p Z) v -→ 0 where π : G → V g → g(X) -X Recall 2.3. ([
G 2 = G ′ = F ratt(G)
where G ′ means the commutator subgroup of G and F ratt(G) = G ′ G p the Frattini subgroup of G.

To conclude this first section, we introduce new definitions used in our future classification.

Definition 2.4. Let C be a connected nonsingular projective curve over k, with genus g ≥ 2. Let G be a subgroup of A. Let M > 0 be a positive real. We say that:

1. G satisfies G(C) (or (C, G) satisfies G) if (C, G) is a big action. 2. G satisfies G M (C) (or (C, G) satisfies G M ) if (C, G) is a big action with |G| g 2 ≥ M. 3. If (C, G) satisfies G M with M = 4 (p 2 -1) 2 , we say that (C, G) satisfies condition ( * ).
Remark 2.5. There exists big actions (C, G) satisfying G M if and only if M ≤ 4 p (p-1) 2 (see [START_REF] Stichtenoth | Über die Automorphismengruppe eines algebraischen Funktionkorpers von Primzahlcharakteristik I, II[END_REF]).

3 A study on p-Sylow subgroups of Aut k (C) inducing big actions.

In this section, we more specifically concentrate on the p-Sylow subgroup(s) of A satisfying G(C) (resp. G M (C)).

Remark 3.1. Let C be a connected nonsingular projective curve over k, with genus g ≥ 2. Assume that there exists a subgroup G ⊂ A satisfying G(C).

1. Then, every p-Sylow subgroup of A satisfies G(C).

2. Moreover, A has a unique p-Sylow subgroup except in the three following cases (cf. [START_REF] Hansen | Deligne-Lusztig varieties and group codes. Coding theory and algebraic geometry[END_REF] and [START_REF] Giulietti | On large automorphism groups of algebraic curves in positive characteristic[END_REF]):

(a) The Hermitian curve

C H : W q + W = X 1+q
with p ≥ 2, q = p s , s ≥ 1. Then, g = 1 2 (q 2 -q) and A ≃ P SU (3, q) or A ≃ P GU (3, q). It follows that |A| = q 3 (q 2 -1) (q 3 + 1), so

|S(A)p| g = 2q 2 q-1 > 2 p p-1 and |S(A)p| g 2 = 4 q (q-1) 2 , where S(A) p denotes any p-Sylow subgroup of A. Thus, (C H , S(A) p ) is a big action with G ′ = G 2 ≃ (Z/pZ) s . It satisfies condition ( * ) if and only if 1 ≤ s ≤ 3.
(b) The Deligne-Lusztig curve arising from the Suzuki group

C S : W q + W = X q0 (X q + X)
with p = 2, q 0 = 2 s , s ≥ 1 and q = 2 2s+1 . In this case, g = q 0 (q -1) and A ≃ Sz(q) the Suzuki group. It follows that |A| = q 2 (q -1) (q 2 + 1), so

|S(A)p| g = q 2 q0(q-1) > 2 p p-1
and

|S(A)p| g 2 = q 2 q 2 0 (q-1) 2 < 4 (p 2 -1) 2 , for all s ≥ 1. Thus, (C S , S(A) p ) is a big action with G ′ = G 2 ≃ (Z/pZ) 2s+1 but it never satisfies condition ( * ).
(c) The Deligne-Lusztig curve arising from the Ree group C R : W q 1 -W 1 = X q0 (X q + X) and W q 2 -W 2 = X 2q0 (X q + X) with p = 3, q 0 = 3 s , s ≥ 1 and q = 3 2s+1 . Then, g = 3 2 q 0 (q-1) (q+q 0 +1) and A ≃ Ree(q) the Ree group. It follows that |A| = q 3 (q -1) (q 3 + 1), so

|S(A)p| g = 2q 3 3q0(q-1)(q+q0+1) > 2 p p-1 and |S(A)p| g 2 = 4q 3 9q 2 0 (q-1) 2 (q+q0+1) 2 < 4 (p 2 -1) 2 for all s ≥ 1. Thus, (C R , S(A) p )) is a big action with G ′ = G 2 ≃ (Z/pZ) 2(2s+1) but it never satisfies condition ( * ).
In each of these three cases, the group A is simple, so it has more than one p-Sylow subgroups. Now, fix C a connected nonsingular projective curve over k, with genus g ≥ 2. We highlight the link between the groups G satisfying G(C) (resp. G M (C)) and the p-Sylow subgroup(s) of A.

Proposition 3.2. Let C be a connected nonsingular projective curve over k, with genus g ≥ 2.

1. Let G satisfy G(C).

(a) Then, there exists a point of C, say ∞, such that G is included in A ∞,1 . For all i ≥ 0, we denote by

G i the i-th ramification group of G at ∞ in lower notation. Then, A ∞,1 satisfies G(C) and A ∞,2 = G 2 , i.e. (A ∞,1 ) ′ = G ′
. Thus, we obtain the following diagram:

0 -→ A ∞,2 -→ A ∞,1 π -→ W ⊂ k -→ 0 || ∪ ∪ 0 -→ G 2 -→ G = G 1 π -→ V -→ 0 In particular, G = π -1 (V ) where V is an F p -subvector space of W . (b) A ∞,1 is a p-Sylow subgroup of A. Moreover, except in the three special cases mentionned in Remark 3.1, A ∞,1 is the unique p-Sylow subgroup of A. (c) Let M be a positive real such that G satisfies G M (C). Then, A ∞,1 also satifies G M (C).
2. Conversely, let ∞ be a point of the curve C such that A ∞,1 satisfies G(C). Consider V an F p -vector space of W , defined as above, and put G := π -1 (V ).

(a) Then, the group G satisfies G(C) if and only if Remark 3.3. Except in the three special cases mentionned in Remark 3.1, the point ∞ of C defined in Proposition 3.2 is uniquely determined. In particular, except for the three special cases, if P is a point of C such that A P,1 satisfies G(C), then P = ∞. Lemma 4.1. Let M > 0 be a positive real such that (C, G) is a big action satisfying G M . Then, the order of G ′ is bounded as follows:

|W | ≥ |V | > 2 p p -1 g |A ∞,2 | (b) Let M be a positive real such that A ∞,1 satisfies G M (C). Then, G satisfies G M (C) if and only if |W | ≥ |V | ≥ M g 2 |A ∞,

As a conclusion, if

G satisfyies G(C) (resp. G M (C)) and if A ∞,1 is a (actually "the", in most cases) p-Sylow subgroup of A containing G, then A ∞,1 also satisfies G(C) (resp. G M (C))
p ≤ |G ′ | ≤ 4 p (p -1) 2 2 + M + 2 √ 1 + M M 2
Thus, |G ′ | only takes a finite number of values for (C, G) a big action satisfying G M .

Proof: We first recall that G ′ = G 2 is a non-trivial p-group (see e.g. [START_REF] Lehr | Automorphism groups for p-cyclic covers of the affine line[END_REF] Prop. 8.5). Now, let i 0 ≥ 2 be the integer such that the lower ramification filtration of G at ∞ reads:

G = G 0 = G 1 G 2 = • • • = G i0 G i0+1 = • • • Put |G 2 /G i0+1 | = p m , with m ≥ 1, and B m := 4 M |G2/Gi 0 +1| (|G2/Gi 0 +1|-1) 2 = 4 M p m (p m -1) 2 . By [LM05] (Thm. 8.6), M ≤ |G| g 2 implies 1 < |G 2 | ≤ 4 M |G2/Gi 0 +1| 2 (|G2/Gi 0 +1|-1) 2 = p m B m . From |G 2 | = p m |G i0+1 |, we infer 1 ≤ |G i0+1 | ≤ B m . Since (B m
) m≥1 is a decreasing sequence which tends to 0 as m grows large, we conclude that m is bounded. More precisely, m < m 0 where m 0 is the smallest integer such that B m0 < 1. As M ≤ 4 p (p-1) 2 ≤ 8 (see Remark 2.5), computation shows that

B m < 1 ⇔ p m > φ(M ) := 2+M+2 √ 1+M M . As (B m ) m≥1 is decreasing, |G 2 | ≤ p m B m ≤ φ 1 (M ) B 1 = φ(M ) M 4 p (p -1) 2
The claim follows.

We deduce that, for big actions (C, G) satisfying G M , an upper bound on |V | induces an upper bound on the genus g of C.

Corollary 4.2. Let M > 0 be a positive real such that (C, G) is a big action satisfying G M . Then,

g < |G ′ | |V | 2 p ≤ 2 p -1 2 + M + 2 √ 1 + M M 2 |V |
This raises the following question. Let (C, G) be a big action satisfying G M ; in which cases is |V | (and then g) bounded from above? In other words, in which cases, does the quotient |G| g take a finite number of values when (C, G) satisfy G M ? We begin with preliminary results on big actions leading to a purely group-theoretic discussion leading to compare the Frattini subgroup of G ′ with the commutator subgroup of G ′ and G. 

∀ i ∈ {1, • • • , n}, W p i -W i = f i (X) = X S i (X) + c i X ∈ k[X]
where S i is an additive polynomial of k[X] with degree s i ≥ 1 in F and

s 1 ≤ s 2 • • • ≤ s n . Moreover, V ⊂ ∩ 1≤i≤n Z(Ad fi )
where Ad fi denotes the palindromic polynomial related to f i as defined in [START_REF] Rocher | Large p-groups actions with a p-elementary abelian second ramification group[END_REF] (Prop. 2.13)

Proof: The hypothesis first requires G ′ = G 2 to be abelian. Now, assume that G 2 has exponent strictly greater than p. Then, there exists a surjective map φ : Corollary 4.5. Let (C, G) be a big action. Let F := F ratt(G ′ ) be the Frattini subgroup of G ′ . 1. Then, F is trivial if and only if G ′ is an elementary abelian p-group.

G 2 → Z/p 2 Z. So H := Kerφ G 2 ⊂ Z(G)

We have the following inclusions

: F ⊂ [G ′ , G] G ′ .
3. The pair (C/F, G/F ) is a big action. Moreover, its second ramification group (G/F ) 2 = (G/F ) ′ = G 2 /F is p-elementary abelian.

4. Let M be a positive real. If (C, G) satisfies G M , then (C/F, G/F ) also satisfies G M .

Proof: 

1. As G ′ is a p-group, F = (G ′ ) ′ (G ′ ) p ,
F ⊂ [G ′ , G]. As G ′ /[G ′ , G] is abelian , (G ′ ) ′ ⊂ [G ′ , G]. As G ′ /[G ′ , G] has exponent p, (G ′ ) p ⊂ [G ′ , G]. The claim follows. 3. Since F G ′ = G 2 is normal in G, we deduce from [MR08] (Lemma 2.4
) that the pair (C/F, G/F ) is a big action with second ramification group: (G/F ) 2 = G 2 /F = (G/F ) ′ . Furthermore, as G 2 is a p-group, G 2 /F is an elementary abelian p-group (see above).

4. This derives from [START_REF] Lehr | Automorphism groups for p-cyclic covers of the affine line[END_REF] (Prop. 8.5 (ii)). This leads us to discuss according to whether

F ratt(G ′ ) [G ′ , G] or F ratt(G ′ ) = [G ′ , G].

Case

: F ratt(G ′ ) [G ′ , G]
We start with the special case {e} = F ratt(G ′ ) [G ′ , G], i.e. G ′ is p-elementary abelian and G ′ ⊂ Z(G). 

|V | ≤ 4 M |G 2 | (p -1) 2 ≤ 16 p (p -1) 4 2 + M + 2 √ 1 + M M 3
(1)

and p -1 2 |V | ≤ g < 32 p (p -1) 5 (2 + M + 2 √ 1 + M ) 2 M 5
(2)

Thus, under these conditions, g, |V | and so the quotient |G| g only take a finite number of values.

Proof: Write G ′ = G 2 ≃ (Z/pZ) n , with n ≥ 1. As G 2 ⊂ Z(G), [ Ro08a 
] (Prop. 2.13) ensures the existence of a smaller integer j 0 ≥ 1 such that f j0+1 (X) cannot be written as c X + XS(X), with S in k{F }. If j 0 ≥ 2, it follows that, for all y in V , the coefficients of the matrix L(y) satisfy ℓ j,i (y) = 0 for all 2 ≤ i ≤ j 0 and 1 ≤ j ≤ i -1. Moreover, the matricial multiplication proves that, for all i in {1, • • • , j 0 }, the functions ℓ i,j0+1 are nonzero linear forms from V to F p . Put W := 1≤i≤j0 ker ℓ i,j0+1 . Let C fj 0 +1 be the curve parametrized by W p -W = f j0+1 (X). It defines an étale cover of the affine line with group Γ 0 ≃ Z/pZ. Since, for all y in W,

f i0+1 (X +y) = f i0+1 (X) mod ℘(k[X]
), the group of translations of the affine line: {X → X + y, y ∈ W} can be extended to a p-group of automorphisms of the curve C fj 0 +1 , say Γ, with the following exact sequence:

0 -→ Γ 0 ≃ Z/p Z -→ Γ -→ W -→ 0
The pair (C fj 0 +1 , Γ) is not a big action. Otherwise, its second ramification group would be p-cyclic, which contradicts the form of the function f j0+1 (X), as compared with [START_REF] Matignon | On smooth curves endowed with a large automorphism p-group in characteristic p[END_REF] (Prop. 2.5). Thus,

|Γ| gC f j 0 +1 = 2 p p-1 |W| (mj 0 +1-1) ≤ 2 p p-1 . The inequality |V | p j 0 ≤ |W| ≤ (m j0+1 -1
) combined with the formula given in [START_REF] Rocher | Large p-groups actions with a p-elementary abelian second ramification group[END_REF] (Cor. 2.7) yields a lower bound on the genus, namely:

g = p -1 2 n i=1 p i-1 (m i -1) ≥ p -1 2 p j0 (m j0+1 -1) ≥ p -1 2 |V |. It follows that M ≤ |G| g 2 = |G2| |V | g 2 ≤ 4 |G2| (p-1) 2 |V | .
Using Lemma 4.1, we gather inequality (1). Inequality (2) then derives from Corollary 4.2.

The following corollary generalizes the finiteness result of Proposition 4.6 to all big actions satisfying 

G M such that F ratt(G ′ ) [G ′ , G]. Corollary 4.7. Let M > 0 be a positive real such that (C, G) is a big action satisfying G M . Suppose that F ratt(G ′ ) [G ′ , G].
(G/F ) 2 = G 2 /F is p-elementary abelian. From F [G 2 : G], we gather {e} [G 2 /F : G/F ], which implies (G/F ) 2 = (G/F ) ′ ⊂ Z(G/F ).
We deduce that |V | is bounded from above as in Proposition 4.6. The claim follows.

Case

: F ratt(G ′ ) = [G ′ , G] It remains to investigate the case where F ratt(G ′ ) = [G ′ , G]. In particular, this equality is satisfied when G ′ is included in the center of G and so is p-elementary abelian (cf. Lemma 3.3), i.e. {e} = F ratt(G ′ ) = [G ′ , G].
The finiteness result on g obtained in the preceding section is no more true in this case, as illustrated by the remark below.

Remark 4.8. For any integer s ≥ 1, Proposition 2.5 in [START_REF] Matignon | On smooth curves endowed with a large automorphism p-group in characteristic p[END_REF] exhibits an example of big actions

(C, G) with C : W p -W = X S(X) where S is an additive polynomial of k[X] with degree p s . In this case, g = p-1 2 p s , V = Z(Ad f ) ≃ (Z/pZ) 2s and G ′ = G 2 ≃ Z/pZ ⊂ Z(G). It follows that |G| g 2 = 4 p (p-1) 2 . So, for all M ≤ 4 p (p-1) 2 , (C, G) satisfies G M , with {e} = F ratt(G ′ ) = [G ′ , G], whereas g = p-1
2 p s grows arbitrary large with s. Therefore, in this case, neither g nor |V | are bounded. Nevertheless, the following section shows that, under these conditions, the quotient |G| g 2 take a finite number of values.

Case

: F ratt(G ′ ) = [G ′ , G] = {e}. Proposition 4.9. Let M > 0 be a positive real such that (C, G) is a big action satisfying G M . Assume that [G ′ , G] = F ratt(G ′ ) = {e}. Let s 1 be the integer in Lemma 4.3. Then, p 2s 1 g 2 and |V | p 2s 1
are bounded as follows:

p 2s1 g 2 ≤ (p -1) 2 4 p M 3 2 + M + 2 √ 1 + M (3)
and

1 ≤ |V | p 2s1 ≤ (p -1) 4 16 p M 3 2 + M + 2 √ 1 + M (4)
Thus, the quotient |G| g 2 takes a finite number of values.

Proof: Write G ′ = G 2 ≃ (Z/pZ) n , with n ≥ 1. Lemma 4.1 first implies that p n can only take a finite number of values. Moreover, as recalled in Lemma 4.3, V ⊂ n i=1 Z(Ad fi ) and |G| = |G 2 ||V | ≤ p n+2 s1
. We compute the genus by means of [START_REF] Rocher | Large p-groups actions with a p-elementary abelian second ramification group[END_REF] (Cor. 2.7):

g = p -1 2 n i=1 p i-1 (m i -1) = p -1 2 p s1 ( n i=1 p i-1 p si-s1 ) It follows that: 0 < M ≤ |G| g 2 ≤ 4 p n (p-1) 2 ( n i=1 p i-1 p s i -s 1 ) 2 This implies ( n i=1 p i-1 p si-s1 ) 2 ≤ 4 p n M (p-1) 2 . As p n is bounded from above, the set {s i -s 1 , i ∈ [1, n]} ⊂ N is
also bounded, and then finite. More precisely, we gather that

g 2 p 2s1 = (p -1) 2 4 ( n i=1 p i-1 p si-s1 ) 2 ) ≤ p n M Combined with Lemma 4.1, this gives inequality (3). Besides, from M ≤ |G| g 2 = |V | p n g 2 , we infer that 1 |V | ≤ p n M g 2 , which involves: 1 ≤ p 2s1 |V | ≤ p 2 s1 p n M g 2 = 4 p n M (p -1) 2 ( n i=1 p i-1 p si-s1 ) 2 ≤ 4 p n M (p -1) 2
This, together with Lemma 4.1, yields inequality (4). In particular, the set { p 2s 1

|V | } ⊂ N is bounded, and then finite, as well as the set

{ |V | p 2s 1 }. Therefore, the quotient |G| g 2 = p n |V | p 2s 1 p 2s 1
g 2 can only take a finite number of values.

The last remaining case is

F ratt(G ′ ) = [G ′ , G] = {e}. 4.4.2 Case: F ratt(G ′ ) = [G ′ , G] = {e}.
As shown below, this case can only occur for G ′ (= G 2 ) non abelian. Note that we do not know yet examples of big actions with a non abelian

G ′ (= G 2 ). Theorem 4.10. Assume that p > 2. Let (C, G) be a big action with F ratt(G ′ ) = [G ′ , G] = {e}. Then, G ′ (= G 2 ) is non abelian.
We deduce the following Corollary 4.11. Assume that p > 2. Let M > 0 be a positive real. Let (C, G) be a big action satisfying G M with G ′ abelian. Then, |G| g 2 only takes a finite number of values.

Remark 4.12. Theorem 4.10 is no more true for p = 2. A counterexample is given by [START_REF] Matignon | On smooth curves endowed with a large automorphism p-group in characteristic p[END_REF] (Prop. 6.9) applied with p = 2. Indeed, when keeping the notations of [MR08] (Prop. 6.9), take q = p e with p = 2, e = 2s -1 and s ≥ 2.

Put K = F q (X). Let L := F q (X, W 1 , V 1 , W 2 ) be the extension of K parametrized by W 2 2s-1 1 -W 1 = X 2 s-1 (X 2 2s-1 -X) V 2 2s-1 1 -V 1 = X 2 s-2 (X 2 2s-1 -X) [W 1 , W 2 ] 2 -[W 1 , W 2 ] = [X 1+2 s , 0] -[X 1+2 s-1 , 0]
Let G be the p-group of F q -automorphisms of L constructed as in [START_REF] Matignon | On smooth curves endowed with a large automorphism p-group in characteristic p[END_REF] (Prop. 6.9.3). Then, the formula established for g L in [MR08] (Prop. 6.9.4) shows that the pair (C, G) is a big action as soon as s ≥ 4. In this case,

G ′ = G 2 ≃ Z/2 2 Z × (Z/2Z) 6s-4 (cf.
[MR08] Prop. 6.7.2). As the functions X 2 s-1 (X 2 2s-1 -X) and X 2 s-2 (X 2 2s-1 -X) are products of two additive polynomials, it follows from next proof (cf. point 6) that

[G ′ , G] = F ratt(G ′ ) = {e}.
Proof of Theorem 4.10:

1. Preliminary remarks: the link with Theorem 5.1 in [START_REF] Matignon | On smooth curves endowed with a large automorphism p-group in characteristic p[END_REF].

(a) One first remarks that Theorem 4.10 implies Theorem 5.1 in [START_REF] Matignon | On smooth curves endowed with a large automorphism p-group in characteristic p[END_REF]. The latter states that there is no big action (C, G) with G 2 cyclic of exponent strictly greater than p. Indeed, assume that there exists one. Then,

G ′ = G 2 is abelian and F ratt(G ′ ) = (G ′ ) p = {e}.
To contradicts Theorem 4.10, it remains to show that

F := F ratt(G ′ ) = [G ′ , G]. From Corollary 4.5, we infer that (C/F, G/F ) is a big action whose second ramification group G 2 /F is cyclic of order p. Then, (G/F ) ′ = (G/F ) 2 = G 2 /F ⊂ Z(G/F ) (cf. [MR08] Prop. 2.5 and [Ro08a] Prop. 2.13). It follows that F ratt((G/F ) ′ ) = [(G/F ) ′ , G/F ] = {e}. As F ⊂ G ′ , this imposes F = [G ′ , G].
Then, Theorem 4.10 contradicts the fact that G ′ = G 2 is abelian.

(b) The object of Theorem 4.10 is to prove that there exists no big action (C, G) with G ′ = G 2 abelian of exponent strictly greater than p such that F ratt

(G ′ ) = [G ′ , G].
The proof follows the same canvas as the proof of [MR08] (Thm. 5.1). Nevertheless, to refine the arguments, we use the formalism related to the ring filtration of k[X] linked with the additive polynomials as introduced in [Ro08a] (cf. section 3). More precisely, we recall that, for any t ≥ 1, we define Σ t as the k-subvector space of k[X] generated by 1 and the products of at most t additive polynomials of k[X] (cf. [Ro08a] Def. 3.1). In what follows, we assume that there exists a big action (C, G) with G ′ = G 2 abelian of exponent strictly greater than p such that F ratt

(G ′ ) = [G ′ , G]. 2. One can suppose that G ′ = G 2 ≃ Z/p 2 Z × (Z/pZ) r , with r ≥ 1. Indeed, write G ′ /(G ′ ) p 2 ≃ (Z/p 2 Z) a × (Z/pZ) b . By assumption, a ≥ 1. Using [Su82] (Chap.2, Thm. 19), one can find an index p-subgroup of (G ′ ) p , normal in G, such that (G ′ ) p 2 ⊂ H (G ′ ) p G ′ = G 2 . Then, we infer from [MR08] (Lemma 2.4) that (C/H, G/H) is a big action with second ramification group (G/H) ′ = (G/H) 2 = G 2 /H ≃ (Z/p 2 Z) × (Z/pZ) a+b-1 . Furthermore, as G ′ is abelian, F ratt(G ′ ) = (G ′ ) p (resp. F ratt((G/H) ′ ) = ((G/H) ′ ) p ). From H ⊂ (G ′ ) p with H normal in G and F ratt(G ′ ) = [G ′ , G], we gather that F ratt((G/H) ′ ) = (G ′ ) p /H = F ratt(G ′ )/H = [(G/H) ′ , G/H].

Notation.

In what follows, we denote by L := k(C) the function field of C and by k(X) := L G2 the subfield of L fixed by G 2 . Following Artin-Schreier-Witt theory as already used in [START_REF] Matignon | On smooth curves endowed with a large automorphism p-group in characteristic p[END_REF] (proof of Thm. 5.1, point 2), we introduce the W 2 (F p )-module

A := ℘(W 2 (L)) ∩ W 2 (k[X]) ℘(W 2 (k[X]))
where W 2 (L) means the ring of Witt vectors of length 2 with coordinates in L and ℘ = F -id.

One can prove that A is isomorphic to the dual of G 2 with respect to the Artin-Schreier-Witt pairing (cf. [START_REF] Bourbaki | Algèbre commutative. Eléments de Mathématiques[END_REF] Chap. IX, ex. 19). Moreover, as a Z-module, A is generated by the classes mod ℘(k[X]) of (f 0 (X), g 0 (X)) and {(0,

f i (X))} 1≤i≤r in W 2 (k[X]
). In other words, L = k(X, W i , V 0 ) 0≤i≤r is parametrized by the following system of Artin-Schreier-Witt equations:

℘([W 0 , V 0 ]) = [f 0 (X), g 0 (X)] ∈ W 2 (k[X]) and ∀ i ∈ {1, • • • , r}, ℘(W i ) = f i (X) ∈ k[X]
An exercise left to the reader shows that one can choose g 0 (X) and each f i (X), with 0

≤ i ≤ r, reduced mod ℘(k[X]).
4. We prove that f 0 ∈ Σ 2 .

As a Z-module, p A is generated by the class of (0, f 0 (X)) in A. By the Artin-Schreier-Witt pairing, p A corresponds to the kernel G 2 [p] of the map:

G 2 → G 2 g → g p Thus, G 2 [p] G 2 is a normal subgroup of G. Then, it follows from [MR08] (Lemma 2.4) that the pair (C/G 2 [p], G/G 2 [p]
) is a big action parametrized by W p -W = f 0 (X) and with second ramification group

G 2 /G 2 [p] ≃ Z/pZ. Then, f 0 (X) = X S(X) + c X ∈ k[X] (cf. [MR08] Prop. 2.5
), where S is an additive polynomial of k{F } with degree s ≥ 1 in F .

The embedding problem.

For any y ∈ V , the classes mod ℘(k[X]) of (f 0 (X + y), g 0 (X + y)) and {(0, f i (X + y))} 1≤i≤r induces a new generating system of A. As in [START_REF] Matignon | On smooth curves endowed with a large automorphism p-group in characteristic p[END_REF] (proof of Thm 5.1, point 3), this is expressed by the following equation:

∀ y ∈ V, (f 0 (X + y), g 0 (X + y)) = (f 0 (X), g 0 (X) + r i=0 ℓ i (y) f i (X)) mod ℘(W 2 (k[X])) (5)
where, for all i in {0, • • • , r}, ℓ i is a linear form from V to F p . On the second coordinate, (5) reads:

∀ y ∈ V, ∆ y (g 0 ) := g 0 (X + y) -g 0 (X) = r i=0 ℓ i (y) f i (X) + c mod ℘(k[X]) (6) 
where

c = p-1 i=1 (-1) i i y p-i X i+p s+1 + lower degree terms in X (7)
For more details on calculation, we refer to [START_REF] Matignon | On smooth curves endowed with a large automorphism p-group in characteristic p[END_REF] (proof of Thm 5.1, point 3 and Lemma 5.2).

6. We prove that

f i lies in Σ 2 , for all i in {0, • • • , r}, if and only if F ratt(G ′ ) = [G ′ , G].
Put F := F ratt(G ′ ). We deduce from Corollary 4.5 that (C/F, G/F ) is a big action whose second ramification group (G/F ) ′ = (G/F ) 2 = G 2 /F is p-elementary abelian. The function field of the curve C/F is now parametrized by the Artin-Schreier equations:

∀ i ∈ {0, • • • , r}, ℘(W i ) = f i (X) ∈ k[X] As F ⊂ [G ′ , G] (cf. Lemma 4.5), F = [G ′ , G] = [G 2 : G] ⇔ {e} = [G 2 /F, G/F ] = [(G/F ) ′ , G/F ] ⇔ (G/F ) ′ ⊂ Z(G/F )
By [START_REF] Rocher | Large p-groups actions with a p-elementary abelian second ramification group[END_REF] (Prop.2.13), this occurs if and only if for all i in {0,

• • • , r}, f i (X) = X S i (X) + c i X ∈ Σ 2 .
7. We prove that g 0 does not belong to Σ p . We first notice that the right-hand side of (6) does not belong to Σ p-1 : indeed, the monomial

X p-1+p s+1 ∈ Σ p -Σ p-1 occurs once in c but not in r i=0 ℓ i (y) f i (X) which lies in Σ 2 ⊂ Σ p-1
, for p ≥ 3. Now, assume that g 0 ∈ Σ p . Then, by [START_REF] Rocher | Large p-groups actions with a p-elementary abelian second ramification group[END_REF] (Lemma 3.9), the left-hand side of (6), namely ∆ y (g 0 ), lies in Σ p-1 , hence a contradiction. Therefore, one can define an integer a such that X a is the monomial of g 0 (X) with highest degree among those that do not belong to Σ p . Note that since g 0 is reduced mod ℘(k[X]), a = 0 mod p.

8. We prove that a -1 ≥ p -1 + p s+1 .

We have already seen that the monomial X p-1+p s+1 occurs in the right hand side of (6). In the left-hand side of (6), X p-1+p s+1 is produced by monomials

X b of g 0 with b > p -1 + p s+1 . If b > a, X b ∈ Σ p , so ∆ y (X b ) ∈ Σ p-1
, which is not the case of X p-1+p s+1 . It follows that X p-1+p s+1 comes from monomials X b with a ≥ b > p-1+p s+1 . Hence the expected inequality. 9. We prove that p divides a -1. Assume that p does not divide a -1. In this case, the monomial X a-1 is reduced mod ℘(k[X]) and (6) reads as follows:

∀ y ∈ V, c a (g 0 ) a y X a-1 + S p-1 (X) + R a-2 (X) = c + r i=0 ℓ i (y) f i (X) mod ℘ (k[X])
where c a (g 0 ) = 0 denotes the coefficient of X a in g 0 , S p-1 (X) is a polynomial in Σ p-1 produced by monomials X b of g 0 with b > a and R a-2 (X) is a polynomial of k[X] with degree lower than a -2 produced by monomials X b of g 0 with b ≤ a. We first notice that X a-1 does not occur in S p-1 (X). Otherwise, X a-1 ∈ Σ p-1 and X a = X a-1 X ∈ Σ p , hence a contradiction. Likewise, X a-1 does not occur in

r i=0 ℓ i (y) f i (X) ∈ Σ 2 . Otherwise, X a = X a-1 X ∈ Σ 3 ⊂ Σ p , as p ≥ 3. It follows that X a-1 occurs in c, which requires a -1 ≤ deg b = p -1 + p s+1 .
Then, the previous point implies a -1 = p -1 + p s+1 , which contradicts a = 0 mod p. Thus, p divides a -1. So, we can write a = 1 + λ p t , with t > 0, λ prime to p and λ ≥ 2 because of the definition of a. We also define j 0 := a -p t = 1 + (λ -1) p t . 10. We search for the coefficient of the monomial X j0 in the left-hand side of (6).

Since p does not divide j 0 , the monomial X j0 is reduced mod ℘(k[X]). In the left-hand side of (6), namely ∆ y (g 0 ) mod ℘(k[X]), the monomial X j0 comes from monomials of g 0 (X) of the form: X b , with b ≥ j 0 + 1. However, as seen above, the monomials X b with b > a produce in ∆ y (g 0 ) elements that belong to Σ p-1 , whereas X j0 ∈ Σ p-1 . Otherwise, X a = X j0 X p t ∈ Σ p , which contradicts the definition of a. So we only have to consider the monomials X b of g 0 (X) with b ∈ {j 0 + 1, • • • , a}. Then, the same arguments as those used in [START_REF] Matignon | On smooth curves endowed with a large automorphism p-group in characteristic p[END_REF] (proof of Thm. 5.1, point 6) allow to conclude that the coefficient of X j0 in the left-hand side of (6) is T (y) where T (Y ) denotes a polynomial of k[X] with degree p t .

11. We identify with the coefficient of X j0 in the right-hand side of (6) and gather a contradiction.

As mentionned above, the monomial X j0 does not occur in r i=0 ℓ i (y) f i (X) ∈ Σ 2 ⊂ Σ p-1 , for p ≥ 3. Assume that the monomial X j0 appears in c, which implies that j 0 ≤ p -1 + p s+1 . Using the same arguments as in [START_REF] Matignon | On smooth curves endowed with a large automorphism p-group in characteristic p[END_REF] (proof of Thm. 5.1, point 7), we gather that j 0 = 1 + (λ -1) p t = 1 + p s+1 . Then, X j0 lies in Σ 2 , which leads to the same contradiction as above. Therefore, the monomial X j0 does not occur in the right-hand side of (6). Then, T (y) = 0 for all y in V , which means that |V | ≤ p t . Call C 0 the curve whose function field is parametrized by ℘([W 0 , V 0 ]) = [f 0 (X), g 0 (X)]. The same calculation as in [START_REF] Matignon | On smooth curves endowed with a large automorphism p-group in characteristic p[END_REF] (proof of Theorem 5.1, point 7) shows that g C0 ≥ p t+1 (p -1). Furthermore, g ≥ p r g C0 (see e.g. [START_REF] Lehr | Automorphism groups for p-cyclic covers of the affine line[END_REF] Prop. 8.5, formula (8)). As |G| = |G 2 ||V | ≤ p 2+r+t , it follows that |G| g = p p-1 < 2 p p-1 , hence a contradiction.

Classification of big actions under condition ( * ).

We now pursue the classification of big actions initiated by Lehr and Matignon who characterize big actions (C, G) satisfying |G| g 2 ≥ 4 (p-1) 2 (cf. [START_REF] Lehr | Automorphism groups for p-cyclic covers of the affine line[END_REF]). In this section, we exhibit a parametrization for big actions (C, G) satisfying condition ( * ), namely:

|G| g 2 ≥ 4 (p 2 -1) 2 ( * )
As proved in [START_REF] Matignon | On smooth curves endowed with a large automorphism p-group in characteristic p[END_REF] (Prop. 4.1 and Prop. 4.2), this condition requires G ′ (= G 2 ) to be an elementary abelian p-group with order dividing p 3 . Since G 2 cannot be trivial (cf. [MR08] Prop. 2.2), this leaves three possibilities. This motivates the following Definition 5.1. Let (C, G) be abig action. Let i ≥ 1 be an integer. We say that

1. (C, G) satisfies G * if (C, G) satisfies condition ( * ) 2. (C, G) satisfies G p i * if (C, G) satisfies G * with G ′ ≃ (Z/pZ) i .
5.1 Preliminaries: big actions with a p-elementary abelian G ′ (= G 2 ).

To start with, we fix the notations and recall some necessary results on big actions with a pelementary abelian G 2 drawn from [START_REF] Rocher | Large p-groups actions with a p-elementary abelian second ramification group[END_REF].

Recall 5.2. Let (C, G) be a big action such that G ′ (= G 2 ) ≃ (Z/pZ) n , n ≥ 1. Write the exact sequence: 0 -→ G 2 ≃ (Z/pZ) n -→ G π -→ V ≃ (Z/pZ) v -→ 0 
1. We denote by L be the function field of the curve C and by k(X) := L G2 the subfield of L fixed by G 2 . Then, the extension L/k(X) can be parametrized by n Artin-Schreier equations:

W p i -W i = f i (X) ∈ k[X] with 1 ≤ i ≤ n. Following [Ro08a] (Def. 2.
3), one can choose an "adapted basis" {f 1 (X), • • • , f n (X)} with some specific properties:

(a) For all i ∈ {1, • • • , n}, each function f i is assumed to be reduced mod ℘(k[X]) (b) For all i ∈ {1, • • • , n}, put m i := deg f i . Then, m 1 ≤ m 2 ≤ • • • ≤ m n . (c) ∀ (λ 1 , • • • λ n ) ∈ F n p not all zeros, deg ( n i=1 λ i f i (X)) = max i∈{1,••• ,n} {deg λ i f i (X)}.
In this case, the genus of the curve C is given by the following formula (cf. [START_REF] Rocher | Large p-groups actions with a p-elementary abelian second ramification group[END_REF] Cor. 2.7):

g = p -1 2 n i=1 p i-1 (m i -1) (8) 2. Now, consider the F p -subvector space of k[X] generated by the classes of {f 1 (X), • • • , f n (X)} mod ℘(k[X]): A := ℘(L) ∩ k[X] ℘(k[X])
Recall that A is isomorphic to the dual of G 2 with respect to the Artin-Schreier pairing (cf.

[Ro08a] section 2.1). As seen in [Ro08a] (section 2.2), V acts on G 2 via conjugation. This induces a representation φ: V → Aut(G 2 ). The representation ρ : V → Aut(A), which is dual with respect to the Artin-Schreier pairing, expresses the action of V on A by translation. More precisely, for all y in V , the automorphism ρ(y) is defined as follows:

ρ(y) : A → A f (X) → f (X + y)
where f (X) means the class in A of f (X) ∈ k[X] For all y in V , the matrix of the automorphism ρ(y) in the adapted basis fixed for A is an upper triangular matrix of Gl n (F p ) with identity on the diagonal, namely

L(y) :=       1 ℓ 1,2 (y) ℓ 1,3 (y) • • • ℓ 1,n (y) 0 1 ℓ 2,3 (y) • • • ℓ 2,n (y) 0 0 • • • • • • ℓ i,n (y) 0 0 0 1 ℓ n-1,n (y) 0 0 0 0 1       ∈ Gl n (F p )
where, for all i in {1, • • • , n -1}, ℓ i,i+1 is a nonzero linear form from V to F p (see [START_REF] Rocher | Large p-groups actions with a p-elementary abelian second ramification group[END_REF] section 2.4). In other words,

∀ y ∈ V, f 1 (X + y) -f 1 (X) = 0 mod ℘(k[X]) ∀ i ∈ {2, • • • , n}, ∀ y ∈ V, f i (X + y) -f i (X) = i-1 j=1 ℓ j,i (y) f j (X) mod ℘(k[X]) (9) 
For all map ℓ, we write ℓ = 0 if ℓ is identically zero and ℓ = 0 otherwise.

3. The case of a trivial representation can be charactrized as follows (see [START_REF] Rocher | Large p-groups actions with a p-elementary abelian second ramification group[END_REF] Prop. 2.13). Indeed, the following assertions are equivalent:

(a) The representation ρ is trivial, i.e.

∀ i ∈ {1, • • • , n}, ∀ y ∈ V, f i (X + y) -f i (X) = 0 mod ℘(k[X]) (b) The commutator subgroup of G ′ and G is trivial, i.e. G ′ ⊂ Z(G). (c) For all i in {1, • • • , n}, f i (X) = X S i (X) + c i X ∈ k[X]
where each S i ∈ k{F } is an additive polynomial with degree s i ≥ 1 in F . So, write S i (F ) = si j=0 a i,j F j with a i,si = 0. Then, one defines an additive polynomial related to f i , called the "palindromic polynomial" of f i :

Ad fi := 1 a p s i i,si F si ( si j=0 a i,j F j + F -j a i,j ) In this case, V ⊂ n i=1 Z(Ad fi )
Since, under condition ( * ), G ′ is p-elementary abelian, we deduce from point (b) that the case of a trivial representation corresponds to the case {e}

= F ratt(G ′ ) = [G ′ , G].
4. To conclude, we recall that for all t ≥ 1, Σ t means the k-subvector space of k[X] generated by 1 and the products of at most t additive polynomials of k[X] (cf. [Ro08a] Def. 3.1). As proved in [START_REF] Rocher | Large p-groups actions with a p-elementary abelian second ramification group[END_REF] (Thm. 3.13), for all i in {1, • • • , n}, f i lies in Σ i+1 .

5.2 First case: big actions satisfying G p * .

Proposition 5.3. We keep the notations of section 5.1.

(C, G) is a big action with G 2 ≃ Z/pZ if and only if C is birational to a curve C f parametrized by W p -W = f (X) = X S(X) ∈ k[X],
where S is a (monic) additive polynomial with degree s ≥ 1 in F .

2.

In what follows, we assume that C is birational to a curve C f as described in the first point.

(a) If s ≥ 2, A ∞,1 is the unique p-Sylow subgroup of A, where ∞ denotes the point of C corresponding to X = ∞.

(b) If s = 1, there exists r := p 3 + 1 points of C: P 0 := ∞, P 1 , • • • , P r such that (A Pi,1 ) 0≤i≤r are the p-Sylow subgroups of A. In this case, for all i in {1, • • • , r}, there exists σ i ∈ A such that σ i (P i ) = ∞.

In both cases, A ∞,1 is an extraspecial group (see [START_REF] Suzuki | Group theory. II. Grundlehren der Mathematischen Wissenschaften[END_REF] Def. 4.14) with exponent p (resp. p 2 ) if p > 2 (resp. p = 2) and order p 2s+1 . More precisely, A ∞,1 is a central extension of its center Z(A ∞,1 ) = (A ∞,1 ) ′ by the elementary abelian p-group Z(Ad f ), i.e.

0 -→ Z(A ∞,1 ) = (A ∞,1 ) ′ ≃ Z/pZ -→ A ∞,1 π -→ Z(Ad f ) ≃ (Z/pZ) 2s -→ 0
Furthermore, (C, A ∞,1 ), and so each (C, A Pi,1 ), with 1 ≤ i ≤ r, are big actions satisfying G p * .

3. Let V be a subvector space of Z(Ad f ) with dimension v over F p . Then, (C, π -1 (V )) is also a big action satisfying G p * if and only if

if p = 2, 2s ≥ v ≥ max{s + 1, 2s -3} if p = 2, 2s ≥ v ≥ max{s + 1, 2s -4}
We collect the different possibilities in the table below:

case v s V G 1- 2s s ≥ 1 † Z(Ad f ) † A † ∞,1 2 2s -1 s ≥ 2 index p subgroup of Z(Ad f ) index p subgroup of A ∞,1 3 2s -2 s ≥ 3 index p 2 subgroup of Z(Ad f ) index p 2 subgroup of A ∞,1 4 2s -3 s ≥ 4 index p 3 subgroup of Z(Ad f ) index p 3 subgroup of A ∞,1 5 (p=2) 2s -4 s ≥ 5 index p 4 subgroup of Z(Ad f ) index p 4 subgroup of A ∞,1 case |G|/g |G|/g 2 1 2 p p-1 p s 4 (p 2 -1) 2 (p + 1) 2 p 2 2 p p-1 p s-1 4 (p 2 -1) 2 (p + 1) 2 3 2 p p-1 p s-2 4 (p 2 -1) 2 (p+1) 2 p 4 2 p p-1 p s-3 4 (p 2 -1) 2 (p+1) 2 p 2 5 (p=2) 2 p p-1 p s-4 4 (p 2 -1) 2 (p+1) 2
p 3 † Note: In the case s = 1, this result is true up to conjugation by σ i as defined in Proposition 5.3.

Proof:

1 3. This essentially derives from Proposition 3.2 which implies (p+1) 2 ≥ p 2s-v-1 . If 2s-v -1 ≥ 3, it implies p 2 + 2 p + 1 ≥ p 3 , which is impossible for p > 2. Accordingly, if p > 2, we obtain 2s -v -1 ≤ 2, which means v ≥ 2s -3. If p = 2, (p + 1) 2 ≥ p 2s-v-1 is satisfied if and only if 2s -v -1 ≤ 3, i.e. v ≥ 2s -4. The claim follows.

Remark 5.4. Note that, for p > 2, the solutions can be parametrized by s algebraically independent variables over F p , namely the s coefficients of S assumed monic after an homothety on the variable X. Note that s ∼ log g.

5.

3 Second case: big actions satisfying G p 2 * .

Case

: [G ′ , G] = F ratt(G ′ ) = {e}.
Proposition 5.5. Let (C, G) be a big action satisfying G p 2 * . Assume that [G ′ , G] = {e} and keep the notations of section 5.1.

1. The pair (C, A ∞,1 ) is a big action satisfying G p 2 * . Moreover, A ∞,1 is a special group (see [START_REF] Suzuki | Group theory. II. Grundlehren der Mathematischen Wissenschaften[END_REF] Def. 4.14) with exponent p (resp. p 2 ) (for p > 2 (resp. p = 2) and order p 2+2 s1 . More precisely, A ∞,1 is a central extension of its center Z(A ∞,1 ) = (A ∞,1 ) ′ by the elementary abelian p-group Z(Ad f1 ), i.e.

0 -→ Z(A ∞,1 ) = (A ∞,1 ) ′ ≃ (Z/pZ) 2 -→ A ∞,1 π -→ Z(Ad f1 ) ≃ (Z/pZ) 2s1 -→ 0 2. Furthermore, s 2 = s 1 or s 2 = s 1 + 1. (a) If s 2 = s 1 , G = π -1 (V ), where V is a subvector space of Z(Ad f1 ) with dimension v over F p such that 2 s 1 -2 ≤ v ≤ 2 s 1 . Then, A ∞,1 is a p-Sylow subgroup of A. It is normal except if C is birationnal to the Hermitian curve: W q -W = X 1+q with q = p 2 . (b) If s 2 = s 1 + 1, V = Z(Ad f1 ) and G = A ∞,1 is the unique p-Sylow subgroup of A.
The different possibilities are listed in the table below:

case s 1 s 2 v V G (a)-1 s ≥ 2 s 2s Z(Ad f1 ) = Z(Ad f2 ) A ∞,1 (a)-2 s ≥ 2 s 2s -1 index p subgroup of Z(Ad f1 ) index p subgroup of A ∞,1 (a)-3 s ≥ 3 s 2s -2 index p 2 subgroup of Z(Ad f1 ) index p 2 subgroup of A ∞,1 (b) s ≥ 3 s + 1 2s Z(Ad f1 ) A ∞,1 case |G|/g |G|/g 2 (a)-1 2 p p-1 p 1+s 1+p 4 (p 2 -1) 2 p 2 (a)-2 2 p p-1 p s 1+p 4 (p 2 -1) 2 p (a)-3 2 p p-1 p s-1 1+p 4 (p 2 -1) 2 (b) 2 p p-1 p 1+s 1+p 4 (p 2 -1) 2 p 2 (p+1) 2 (1+p 2 ) 2 Proof:
1. Use Proposition 3.2 to prove that the pair (C, A ∞,1 ) is a big action satisfying G p 2 * with the following exact sequence:

0 -→ A ∞,2 -→ A ∞,1 π -→ Z(Ad f1 ) ≃ (Z/ p Z) 2 s1 -→ 0 The proof to show that A ∞,1 is a special group, i.e. satisfies Z(A ∞,1 ) = (A ∞,1 ) ′ = F ratt(A ∞,1 ) ≃ (Z/pZ) 2 ,
is the same that the one exposed in [START_REF] Rocher | Large p-groups actions with a p-elementary abelian second ramification group[END_REF] (Prop. 4.3.3). Nevertheless, one has to choose H an index p-subgroup of G 2 such that C/H is the curve parametrized by

W p 1 -W 1 = f 1 (X).
2. Assume that s 2 -s 1 ≥ 2. Then, |G| = p 2+v ≤ p 2+2 s1 and g = p-1 2 p s1 (1 + p 1+s2-s1 ) ≥ p-1

2 p s1 (1 + p 3 ). So, |G| g 2 ≤ 4 (p 2 -1) 2 (1+p) 2 p 2 (1+p 3 ) 2 < 4 (p 2 -1) 2 ,
which contradicts condition ( * ). So, 0 ≤ s 2 -s 1 ≤ 1. In each case, the description of A ∞,1 and G derive from Proposition 3.2 combined with Remark 3.1.

To go further in the description of the functions f ′ i s in each case, we introduce two additive polynomials V and T defined as follows:

∀ i ∈ {1, 2}, V := y∈V (X -y) divides T := gcd{Ad f1 , Ad f2 } divides Ad fi
In what follows, we work in the Ore ring k{F } and write the additive polynomials as polynomials in F .

case deg F V deg F T deg F (Ad f1 ) deg F (Ad f2 ) T (a)-1 2s 2s 2s 2s V = T = Ad f1 = Ad f2 (a)-2-i 2s -1 2s 2s 2s V divides T = Ad f1 = Ad f2 (a)-2-ii 2s -1 2s -1 2s 2s V = T divides Ad f1 (a)-3-i 2s -2 2s 2s 2s V divides T = Ad f1 = Ad f2 (a)-3-ii 2s -2 2s -1 2s 2s V divides T divides Ad f1 (a)-3-iii 2s -2 2s -2 2s 2s V = T divides Ad f1 (b) 2s 2s 2s 2s + 2 V = T = Ad f1 divides Ad f2
The three cases where Ad f1 = Ad f2 can be parametrized in the same way as in [START_REF] Rocher | Large p-groups actions with a p-elementary abelian second ramification group[END_REF] (Prop. 4.2).

case

S 1 or Ad f1 S 2 or Ad f2 (a)-1 S 1 = s/d j=0 α jd F jd , α s = 1 S 2 = γ S 1 , γ ∈ F p d -F p , d ≥ 2 (a)-2-i S 1 = s/d j=0 α jd F jd , α s = 1 S 2 = γ S 1 , γ ∈ F p d -F p , d ≥ 2 (a)-2-ii Ad f1 = (α 1 F + β 1 I) T, α 1 = 0 Ad f2 = (α 2 F + β 2 I) T, α 2 = 0 (a)-3-i S 1 = s/d j=0 α jd F jd , α s = 1 S 2 = γ S 1 , γ ∈ F p d -F p , d ≥ 2 (a)-3-ii Ad f1 = (α 1 F + β 1 I) T, α 1 = 0 Ad f2 = (α 2 F + β 2 I) T, α 2 = 0 (a)-3-iii Ad f1 = (α 1 F 2 + β 1 F + δ 1 I) T, α 1 = 0 Ad f2 = (α 2 F 2 + β 2 F + δ 2 I) T, α 2 = 0 (b) Ad f1 = v∈V (X -v) Ad f2 = (α 2 F 2 + β 2 F + δ 2 I) Ad f1 , α 2 = 0
We display the parametrization of the functions f i 's in the case (a)-2-ii for the smallest values of s, namely s = 2 and s = 3.

Cas (a)-2-ii with s = 2 for p > 2.

f 1 f 1 (X) = X 1+p 2 + a 1+p X 1+p + 1 2 a 2 X 2 a 1+p a 1+p ∈ k a 2 a 2 ∈ k f 2 f 2 (X) = b p 2 1+p 2 X 1+p 2 + b 1+p X 1+p + b 2 X 2 + b 1 X b 1+p 2 b 1+p 2 ∈ Z(w p 2 X p 3 + w p , (-a p 2 + a p 1+p w p 2 -w p 2 +p 3 ) X p 2 + (a 1+p -w p 2 ) X p -w -1 X) with b 1+p 2 ∈ F p 2 . w w ∈ Z(X 1+p+p 2 +p 3 -a p 1+p X 1+p+p 2 + a p 2 X 1+p -a 1+p X + 1) b 1+p b 1+p = w p 2 (b p 2 1+p 2 -b 1+p 2 ) p + b p 1+p 2 a 1+p b 2 2 b 2 = w p (b p 2 1+p 2 -b 1+p 2 ) (a 1+p -w p 2 ) + b 1+p 2 2 b 1 b 1 ∈ k Case (a)-2-ii with s = 3 for p > 2. f 1 f 1 (X) = X 1+p 3 + a 1+p 2 X 1+p 2 + a 1+p X 1+p + 1 2 a 2 X 2 a 1+p 2 a 1+p 2 ∈ k a 1+p a 1+p ∈ k a 2 a 2 ∈ k f 2 f 2 (X) = b p 3 1+p 3 X 1+p 3 + b 1+p 2 X 1+p 2 + b 1+p X 1+p + b 2 X 2 + b 1 X w w ∈ Z(X 1+p+p 2 +p 3 +p 4 +p 5 -a p 2 1+p 2 X 1+p+p 2 +p 3 +p 4 +a p 2 1+p X 1+p+p 2 +p 3 -a p 2 2 X 1+p+p 2 + a p 1+p X 1+p -a 1+p 2 X + 1) b 1+p 3 b 1+p 3 ∈ Z(P 1 ) ∩ Z(P 2 ) -F p 3 with P 1 (X) = w p 3 +1 X p 5 + (1 -w a 1+p 2 )X p 3 + (w a 1+p 2 -w p 3 +1 ) X p 2 -X with P 2 (X) = w p 2 (a 1+p 2 -w p 3 ) X p 4 + w p (-a p 2 + a p 1+p w p 2 -a p 1+p 2 w p 2 +p 3 + w p 2 +p 3 +p 4 ) X p 3 +(a 1+p + w p 2 +p 3 -a 1+p 2 w p2 ) X p +(-a 1+p + a p 2 w p -a p 1+p w p+p 2 + a p 1+p 2 w p+p 2 +p 3 -w p+p 2 +p 3 +p 4 ) X b 1+p 2 b 1+p 2 = w p 3 (b p 3 1+p 3 -b 1+p 3 ) p 2 + b p 2 1+p 3 a 1+p 2 b 1+p b 1+p = w p 2 (b p 3 1+p 3 -b 1+p 3 ) p (a 1+p 2 -w p 3 ) + b p 1+p 3 a 1+p b 2 2 b 2 = w p (b p 3 1+p 3 -b 1+p 3 ) (a 1+p -a 1+p 2 w p 2 + w p 2 +p 3 ) + b 1+p 3 a 2 b 1 b 1 ∈ k
The calculation of the case s = 3 already raises a problem as the parameter b 1+p 3 has to lie in the set of zeroes of two polynomials.

For the remaining last two cases (a)-3-iii and (b), we merely display examples of realization so as to prove the effectiveness of these cases.

An example of realization for the case (a)-3-iii.

T T = F 2s-2 + I V V = Z(F 2s-2 + I) Ad f1 Ad f1 = (F 2 + I) T f 1 f 1 (X) = X 1+p s + X 1+p s-2 Ad f2 Ad f2 = (F 2 + F + I) T f 2 f 2 (X) = X 1+p s + X 1+p s-1 + X 1+p s-2
An example of realization for the case (b).

f 1 f 1 (X) = X 1+p s f 2 f 2 (X) = α 2 X 1+p s+1 + β 2 X 1+p s + δ 2 X 1+p s-1 α 2 α 2 ∈ F p 2s β 2 β 2 ∈ F p s δ 2 δ 2 ∈ F p 2s 5.3.2 Case: [G ′ , G] F ratt(G ′ ) = {e}.
Proposition 5.6. Let (C, G) be a big action satisfying G p 2 * such that [G ′ , G] = {e}. We keep the notations introduced in section 5.1.

(a) Then

, G = A ∞,1 is the unique p-Sylow subgroup of A. (b) For all i in {1, 2}, f i ∈ Σ i+1 -Σ i and m i = 1 + i p s , with p ≥ 3 and s ∈ {1, 2}. (c) Moreover, v = s + 1. More precisely, y ∈ V if and only if ℓ 1,2 (y) p -ℓ 1,2 (y) = 0 .
2. There exists a coordinate X for the projective line C/G 2 such that the functions f i 's are parametrized as follows:

(a) If s = 1, p > 3 p = 3 f 1 f 1 (X) = X 1+p + a 2 X 2 f 1 (X) = X 4 + a 2 X V V = Z(Ad f1 ) = Z(X p 2 + 2 a p 2 X p + X) V = Z(Ad f1 ) = Z(X 9 + 2 a 3 2 X 3 + X) f 2 f 2 (X) = b 1+2 p X 1+2 p + b 2+p X 2+p + b 3 X 3 + b 1 X f 2 (X) = b 7 X 7 + b 5 X 5 + b 1 X b 1+2 p b 1+2 p ∈ k × b 16 7 = 1 a 2 2 a p 2 = -b -p 1+2 p (b p 2 1+2 p + b 1+2 p ) ⇔ b 1+2 p ∈ V 2 a 3 2 = -b 6 7 -b -2 7 b 2+p b 2+p = -b p 1+2 p b 5 = -b 3 7 b 3 3 b p 3 = b -p 1+2 p (b 2 p 2 1+2 p -b 2 1+2 p ) b 1 b 1 ∈ k b 1 ∈ k ℓ 1,2 ℓ 1,2 (y) = 2 (b 1+2 p y p -b p 1+2 p y) ℓ 1,2 (y) = 2 (b 7 y 3 -b 3 7 y)
Therefore, for p > 3, the solutions are parametrized by 2 algebraically independent variables over F p , namely b 1+2 p ∈ k × and b 1 ∈ k. For p = 3, as the monomial X 3 can be reduced mod ℘(k[X]), the parameter b 1+2 p satisfies an additional algebraic relation: b 16 7 = 1. Then, b 7 takes a finite number of values.

In both cases (p = 3 or p > 3),

|G| g = 2 p p -1 p 2 1 + 2 p and |G| g 2 = 4 (p 2 -1) 2 p 2 (p + 1) 2 (1 + 2 p) 2 (b) If s = 2 and p > 3, f 1 f 1 (X) = X 1+p 2 + a 1+p X 1+p + a 2 X 2 Ad f1 X p 4 + a p 2 1+p X p 3 + 2 a p 2 2 X p 2 + a p 1+p X p + X f 2 f 2 (X) = b 1+2 p 2 X 1+2 p 2 + b 1+p+p 2 X 1+p+p 2 + b 2+p 2 X 2+p 2 + b 1+p 2 X 1+p 2 + b 1+2 p X 1+2 p +b 2+p X 2+p + b 1+p X 1+p + b 3 X 3 + b 2 X 2 + b 1 X b 1+2 p b 1+2 p ∈ k × b 2+p 2 b 2+p 2 ∈ k × b 1+p+p 2 b p 1+p+p 2 = -2 b p 1+2 p (b p 2+p 2 b -p 2 1+2 p + b p-1 2+p 2 ) ℓ 1,2 ∀ y ∈ V, ℓ 1,2 (y) = 2 b 1+2 p y p 2 + b 1+p+p 2 y p + 2 b 2+p 2 y V V is an index p-subgroup of Z(Ad f1 ) V = Z(2 b p 1+2 p X p 3 + (b p 1+p+p 2 -2 b 1+2 p ) X p 2 + (2b p 2+p 2 -b 1+p+p 2 )X p -2b 2+p 2 X) a 1+p a p 2 1+p = -b p-p 2 1+2 p -b p 1+2 p b -1 2+p 2 -b p 2 2+p 2 b -p 3 1+2 p -b p 2 -p 2+p 2 a 2 2 a p 2 2 = b p 2 2+p 2 b -p 2 1+2 p + b 1+2 p b -1 2+p 2 + b p 2+p 2 b p-2 p 2 1+2 p + 2 b p-1 2+p 2 b p-p 2 1+2 p + b p 1+2 p b p-2 2+p 2 b 1+2 p b p 2 1+2 p = -b 2 p-p 2 1+2 p -b 2 p 1+2 p b -1 2+p 2 + b 2 p 2 2+p 2 b p 2 -2 p 3 1+2 p + 2 b 2 p 2 -p 2+p 2 b p 2 -p 3 1+2 p + b p 2 1+2 p b 2 p 2 -2 p 2+p 2 b 2+p b p 2 2+p = b p 2+p 2 b 2 p-2 p 2 1+2 p + 2 b p-1 2+p 2 b 2 p-p 2 1+2 p + b 2 p 1+2 p b p-2 2+p 2 -b 2 p 2 2+p 2 b -p 3 1+2 p -b 2 p 2 -p 2+p 2 b 3 3 b p 2 3 = b 2 p 2 2+p 2 b -p 2 1+2 p -b 2 p 2+p 2 b 2 p-3p 2 1+2 p -3 b 2 p-2 2+p 2 b 2 p-p 2 1+2 p -3 b 2 p-1 2+p 2 b 2 p-2 p 2 1+2 p -b 2 p 1+2 p b 2 p-3 2+p 2 + b 2 1+2 p b -1 2+p 2 b 1+p 2 b 1+p 2 ∈ Z(b p 2 2+p 2 b -p 3 1+2 p X p 3 -(b p 2 2+p 2 b -p 3 1+2 p + b p-p 2 1+2 p + b p 2 -p 2+p 2 ) X p 2 + (b p-p 2 1+2 p + b p 1+2 p b -1 2+p 2 + b p 2 -p 2+p 2 ) X p -b p 1+2 p b -1 2+p 2 X) b 1+p b p 2 1+p = -(b p-p 2 1+2 p + b p 2 2+p 2 b -p 3 1+2 p + b p 2 -p 2+p 2 ) b p 2 1+p 2 -b p 1+2 p b -1 2+p 2 b 1+p 2 b 2 2 b p 2 2 = (b p 2+p 2 b p-2 p 2 1+2 p + b p-1 2+p 2 b p-p 2 -p 1+2 p + b p 2 2+p 2 b -p 2 1+2 p )b p 2 1+p 2 + (b p 1+2 p b p-2 2+p 2 + b p-1 2+p 2 b p-p 2 1+2 p + b 1+2 p b -1 2+p 2 ) b 1+p 2 b 1 b 1 ∈ k
Therefore, for p > 3, the solutions can be parametrized by 3 algebraically independent variables over

F p , namely b 1+2 p 2 ∈ k × , b 2+p 2 ∈ k × and b 1 ∈ k.
One also finds a fourth parameter b 1+p 2 which runs over an F p -subvector space of k, namely the set of zeroes of an additive separable polynomial whose coefficients are rational functions in b 1+2 p 2 and b 2+p 2 . So, for given b 1+2 p and b 2+p 2 , the parameter b 1+p 2 takes a finite number of values. In both cases (p = 3 or p > 3),

For p = 3, f 1 (X) = X 10 + a 4 X 4 + a 2 X 2 f 2 (X) = b 19 X 19 + b 13 X 13 + b 11 X 11 + b 10 X 10 + b 7 X 7 + b 5 X 5 + b 4 X 4 + b 2 X 2 + b 1 X with a 4 ,
|G| g = 2 p p -1 p 2 1 + 2 p and |G| g 2 = 4 (p 2 -1) 2 p (p + 1) 2 (1 + 2 p) 2
Remark 5.7. One can now answer the second problem raised in [START_REF] Rocher | Large p-groups actions with a p-elementary abelian second ramification group[END_REF] (section 6). Indeed, one notices that the family obtained for s = 2 is larger than the one obtained after the additive base change: X = Z p + c Z, c ∈ k -{0} (see [START_REF] Matignon | On smooth curves endowed with a large automorphism p-group in characteristic p[END_REF] Prop. 3.1) applied to the case s = 1. Indeed, such a base change does not produce any monomial Z 1+p 2 in f 2 (Z).

A few special cases. 1. When s = 1 and p > 3, the special case a 2 = 0 corresponds to the parametrization of the extension K m S /K given by Auer (cf . [Au99] Prop. 8.9 or [MR08] section 6), namely f 1 (X) = a X 1+p with a p + a = 0, a = 0.

f 2 (X) = a 2 X 2 p (X -X p 2 ). 2. When s = 2, the special case b 1+p 2 ∈ F p leads to b 1+p = b 1+p 2 a 1+p and b 2 = b 1+p 2 a 2 . So, one can replace f 2 by f 2 (X) -b 1+p 2 f 1 (X)
, which eliminates the monomials X 1+p 2 , X 1+p and X 2 .

Proof of Proposition 5.6:

1. As ℓ 1,2 = 0, the group G satisfies the third condition of [Ro08a] (Prop. 5.2). Then, the equality G = A ∞,1 derives from [Ro08a] (Cor. 5.7). The unicity of the p-Sylow subgroup is explained in Remark 3.1. The second and third assertions come from [Ro08a] (Thm. 5.6). Moreover, the description of V displayed in (c) is due to[Ro08a] (Prop 2.9.2). It remains to show that s = 1 or s = 2. Using formula (8), we compute g = (p-1) 2

(p s + p (m 2 -1)) = (p-1) 2 p s (1 + 2 p).
As |G| = p 3+s , condition ( * ) requires:

4 (p 2 -1) 2 ≤ |G| g 2 = 4 (p 2 -1) 2 (p+1) 2 p s-3 (1+2 p) 2 . It follows that 3 -s > 0, i.e. 1 ≤ s ≤ 2.
2. We merely explain the case s = 1. One can find a coordinate X of the projective line

C/G 2 such that f 1 (X) = X S 1 (X) = X (X p + a 2 X) (cf. [Ro08a]
Cor. 2.12). Then,

Ad f1 = F 2 + 2 a p 2 F + I (cf. [Ro08a] Prop. 2.13). As V ⊂ Z(Ad f1 ) and dim Fp Z(Ad f1 ) = 2 = s + 1 = v, we deduce that V = Z(Ad f1 ). As f 2 ∈ Σ 3 -Σ 2 with deg f 2 = 1 + 2 p s
and as the functions f i 's are supposed to be reduced mod ℘(k[X]), equation (9) reads:

∀ y ∈ V, f 2 (X + y) -f 2 (X) = ℓ 1,2 (y) f 1 (X) mod ℘(k[X]) with f 1 (X) = X 1+p + a 2 X 2 and f 2 (X) = b 1+2 p X 1+2 p + b 2+p X 2+p + b 1+p X 1+p + b 3 X 3 + b 2 X 2 + b 1 X for p > 3 (resp. f 2 (X) = b 1+2 p X 1+2 p + b 2+p X 2+p + b 1+p X 1+p + b 2 X 2 + b 1 X for p = 3)
Then, calculation gives the relations gathered in the table. In particular, we find:

f 2 (X) = b 1+2 p X 1+2 p + b 2+p X 2+p + b 3 X 3 + b 1 X + b 1+p f 1 (X) with b 1+p ∈ F p .
Since we are working in the F p -space generated by f 1 (X) and f 2 (X), we can replace f 2 (X) with f 2 (X) -b 1+p f 1 (X), hence the expected formula. We solve the case s = 2 in the same way.

5.4 Third case: big actions satisfying G p 3 * .

Preliminaries.

The idea is to use, as often as possible, the results obtained in the preceding section.

Remark 5.8. Let (C, G) be a big action with G ′ (= G 2 ) ≃ (Z/pZ) 3 . We keep the notations introduced in section 5.1.

1. Let C 1,2 be the curve parametrized by the two equations: W p i -W i = f i (X), with i ∈ {1, 2}, and let K 1,2 := k(C 1,2 ) be the function field of this curve. Then, K 1,2 /k(X) is a Galois extension with group Γ 1,2 ≃ (Z/pZ) 2 . Moreover, the group of translations by V : {X → X + y, y ∈ V } extends to an automorphism p-group of C 1,2 say G 1,2 , with the following exact sequence:

0 -→ Γ 1,2 -→ G 1,2 -→ V -→ 0
Let A 1,2 be the F p -subvector space of A generated by the classes of f 1 (X) and f 2 (X). Let H 1,2 G 2 be the orthogonal of A 1,2 with respect to the Artin-Schreier pairing. Then, C 1,2 = C/H 1,2 and G 1,2 = G/H 1,2 . Furthermore, as A 1,2 is stable under the action of ρ, its dual H 1,2 is stable by the dual representation φ, i.e. by conjugation by the elements of G (see section 5.1). It follows that H 1,2 G 2 is a normal subgroup in G. So, by [START_REF] Matignon | On smooth curves endowed with a large automorphism p-group in characteristic p[END_REF] (Lemma 2.4), the pair (C 1,2 , G 1,2 ) is a big action with second ramification group isomorphic to (Z/pZ) 2 . 2. Likewise, if ℓ 2,3 = 0, the F p -subvector space of A generated by the classes of f 1 (X) and f 3 (X) is also stable by ρ (see matrix L(y) in section 5.1). So, the two equations: W p i -W i = f i (X), with i ∈ {1, 3}, also parametrize a big action, say (C 1,3 , G 1,3 ), with second ramification group isomorphic to (Z/pZ) 2 .

3. Similarly, if ℓ 1,2 = ℓ 1,3 = 0, the F p -subvector space of A generated by the classes of f 2 (X) and f 3 (X) is stable by ρ (see matrix L(y) in section 5.1). So, the two equations: W p i -W i = f i (X), with i ∈ {2, 3}, also parametrize a big action, say (C 2,3 , G 2,3 ), with second ramification group isomorphic to (Z/pZ) 2 . Lemma 5.9. Let (C, G) be a big action satisfying G p 3 * . Let (C 1,2 , G 1,2 ) be defined as in Remark 5.8. We keep the notations introduced in section 5.1. 1. Then, (C 1,2 , G 1,2 ) is a big action satisfying G p 2 * .

2. If ℓ 1,2 = 0, then m 1 = m 2 = 1 + p s , with s ≥ 2.

3. If ℓ 1,2 = 0, then m 1 = 1 + p s , m 2 = 1 + 2 p s , with s ∈ {1, 2} and p ≥ 3. In this case, v = s + 1.

Proof:

1. Use Remark 5.8 and [START_REF] Lehr | Automorphism groups for p-cyclic covers of the affine line[END_REF] (Prop. 8.5 (ii)) to see that condition ( * ) is still satisfied.

2. We deduce from Proposition 5.5 that m 1 = 1+p s1 and m 2 = 1+p s2 with s 2 = s 1 or s 2 = s 1 +1. Assume that s 2 = s 1 + 1. Then, m 3 ≥ m 2 = 1 + p s1+1 . We compute the genus by means of (8): g = p-1 2 (p s1 + p 1+s2 + p 2 (m 3 -1)) ≥ p-1 2 p s1 (1 + p 2 + p 3 ). Besides, by [START_REF] Matignon | On smooth curves endowed with a large automorphism p-group in characteristic p[END_REF] (Thm. 2.6), V ⊂ Z(Ad f1 ), so |G| = p 3+v ≤ p 3+2s1 . Thus,

|G| g 2 ≤ 4 (p 2 -1) 2 p 3 (p+1) 2 (1+p 2 +p 3 ) 2 < 4 (p 2 -1) 2 , which contradicts condition ( * ). It follows that s 2 = s 1 ≥ 2.
3. Apply Proposition 5.6 to (C 12 , G 12 ).

Remark 5.10. Let (C, G) be a big action satisfying G p 3 * . Assume that ℓ 1,2 = ℓ 1,3 = 0. Then, the results of Lemma 5.9 also hold for the big action (C 2,3 , G 2,3 ) as defined in Remark 5.8. Lemma 5.11. Let (C, G) be a big action satisfying G p 3 * . We keep the notations introduced in section 5.1. Assume that ℓ 2,3 = 0. Let (C 1,3 , G 1,3 ) be defined as in Remark 5.8. 1. Then, (C 1,3 , G 1,3 ) is a big action satisfying G p 2 * .

2. If ℓ 1,3 = 0, then ℓ 1,2 = 0 and m 1 = m 2 = m 3 = 1 + p s with s ≥ 2. In this case, v = 2 s.

3. If ℓ 1,3 = 0, then m 1 = 1 + p s , m 3 = 1 + 2 p s , with s ∈ {1, 2} and p ≥ 3. In this case, v = s + 1.

Proof:

1. Use Remark 5.8 and [LM05] (Prop. 8.5 (ii)).

2. As ℓ 1,3 = 0, we deduce from Proposition 5.5 that m 1 = 1 + p s and m 3 = 1 + p s3 with s 3 = s or s 3 = s + 1.

(a) We show that ℓ 1,2 = 0. Assume that ℓ 1,2 = 0. Then, Lemma 5.9 applied to (C 1,2 , G 1,2 ) implies m 2 = 1 + 2 p s with s ∈ {1, 2} and p ≥ 3. Moreover, v = s + 1. As m 2 ≤ m 3 , there are two possibilities: i. s = 1 and s 3 = s + 1 = 2., i.e. m 1 = 1 + p, m 2 = 1 + 2 p, m 3 = 1 + p 2 and v = 2. Then, |G| g 2 = 4 (p 2 -1) 2 p 3 (p+1) 2 (1+2 p+p 3 ) 2 < 4 (p 2 -1) 2 , which contradicts condition ( * ). ii. s = 2 and s 3 = s + 1 = 3. i.e. m 1 = 1 + p 2 , m 2 = 1 + 2 p 2 , m 3 = 1 + p 3 and v = 3.

Then, |G| g 2 = 4 (p 2 -1) 2 p 2 (p+1) 2 (1+2 p+p 3 ) 2 < 4 (p 2 -1) 2 , which also contradicts condition ( * ). As a consequence, ℓ 1,2 = 0. (b) We deduce that m 1 = m 2 = 1 + p s with s ≥ 2.

Lemma 5.9 applied to (C 1,2 , G 1,2 ) implies m 1 = m 2 = 1 + p s with s ≥ 2. In particular,

g = p-1 2 p s (1 + p + p 2+s3-s ) and |G| g 2 = 4 (p 2 -1) 2 p 3+v-2s (p+1) 2 (1+p+p 2+s 3 -s ) 2 . (c) We show that v = 2 s 3 and conclude that s 3 = s. Assume that v ≤ 2 s 3 -3. Then, |G| g 2 < 4 (p 2 -1) 2 p 2s 3 -2s (p+1) 2 p 4+2s 3 -2s < 4 (p 2 -1) 2 which contradicts condition ( * ). Therefore, 2 s 3 -2 ≤ v ≤ 2 s ≤ 2 s 3 . Assume that v ≤ 2 s 3 -3. Then, |G| g 2 < 4 (p 2 -1) 2 p 2s 3 -2s (p+1) 2 p 4+2s 3 -2s < 4 (p 2 -1) 2 which contradicts condition ( * ). Assume that v = 2 s 3 -1. So, v is odd and 2 s 3 -2 < v ≤ 2s ≤ 2 s 3 implies s 3 = s and v = 2s -1. Then, |G| g 2 = 4 (p 2 -1) 2 p 2 (p+1) 2 (1+p+p 2 ) 2 < 4 (p 2 -1) 2 , which is excluded. Now, assume that v = 2 s 3 -2. Then, 2 s 3 -2 = v ≤ 2s ≤ 2 s 3 implies s 3 = s or s 3 = s + 1. In the first case, v = 2s -2 and |G| g 2 = 4 (p 2 -1) 2 p (p+1) 2 (1+p+p 2 ) 2 < 4 (p 2 -1) 2 . In the second case, v = 2s and |G| g 2 = 4 (p 2 -1) 2 p 3 (p+1) 2 (1+p+p 3 ) 2 < 4 (p 2 -1) 2 .
In both cases, we obtain a contradiction. We gather that v = 2 s 3 . Applying [START_REF] Rocher | Large p-groups actions with a p-elementary abelian second ramification group[END_REF] (Prop. 4.2), we conclude that s = s 3 . 3. Apply Proposition 5.6 to (C 13 , G 13 ).

Case

: [G ′ , G] = F ratt(G ′ ) = {e}.
Proposition 5.12. Let (C, G) be a big action satisfying G p 3 * such that [G ′ , G] = {e}. We keep the notations introduced in section 5.1.

1. Then, G = A ∞,1 is a special group of exponent p (resp. p 2 ) for p > 2 (resp. p = 2) and order p 3+2 s1 . More precisely, G is a central extension of its center Z(G) = G ′ by the elementary abelian p-group V = Z(Ad f1 ) = Z(Ad f2 ) = Z(Ad f3 ):

0 -→ Z(G) = G ′ ≃ (Z/pZ) 3 -→ G π -→ Z(Ad f1 ) = Z(Ad f2 ) = Z(Ad f3 ) ≃ (Z/pZ) 2s1 -→ 0 
Furthermore, G is a p-Sylow subgroup of A, which is normal except when C is birational to the Hermitian curve: W q -W = X 1+q , with q = p 3 .

2. There exists a coordinate X for the projective line C/G 2 , s ≥ 2, d ≥ 2 dividing s, and

γ 2 , γ 3 in F p d -F p linearly independent over F p , b 1 ∈ k, c 1 ∈ k such that: f 1 f 1 (X) = X S 1 (X) with S 1 (F ) = s/d j=0 a jd F jd ∈ k{F } a s = 1 f 2 f 2 (X) = X S 2 (X) + b 1 X with S 2 = γ 2 S 1 f 3 f 3 (X) = X S 3 (X) + c 1 X with S 3 = γ 3 S 1 V V = Z(Ad f1 ) = Z(Ad f2 ) = Z(Ad f3 )
Therefore, the solutions can be parametrized by s + 4 algebraically independent variables over F p , namely the s coefficients of S, γ

2 ∈ F p d -F p , γ 3 ∈ F p d -F p , b 1 ∈ k and c 1 ∈ k. Moreover, |G| g = 2 p p -1 p s 1 + p + p 2 and |G| g 2 = 4 (p 2 -1) 2 p 3 (p + 1) 2 (1 + p + p 2 ) 2 Proof: As ℓ 1,2 = ℓ 2,3 = ℓ 1,3 = 0, the second point of Lemma 5.11 first implies v = 2 s 3 . Applying [Ro08a] (Prop. 4.2), we gather that s 1 = s 2 = s 3 , that V = Z(Ad f1 ) = Z(Ad f2 ) = Z(Ad f3
) and we get the expected formulas for the functions f ′ i s. Moreover, it follows from [Ro08a] (Prop. 4.3 and Rem. 4.5) that G = A ∞,1 is a special group. The unicity of the p-Sylow subgroup is discussed in Remark 3.1.

Case

: [G ′ , G] F ratt(G ′ ) = {e}.
Lemma 5.13. Let (C, G) be a big action satisfying G p 3 * such that [G ′ , G] = {e}. We keep the notations introduced in section 5.1. Then, one cannot have ℓ 1,2 = ℓ 2,3 = 0.

Proof: Assume that ℓ 1,2 = 0 and ℓ 2,3 = 0. Since the representation ρ is non trivial, ℓ 1,3 = 0. The second point of Lemma 5.9 shows that m 1 = m 2 = 1 + p s with s ≥ 2. The third point of Lemma 5.11 implies that m 3 = 1 + 2 p s with p ≥ 3 and s ∈ {1, 2}. Moreover, v = s + 1. As s ≥ 2, we obtain:

|G| g 2 = 4 (p 2 -1) 2 (p+1) 2 p 2 (1+p+2 p 2 ) 2 < 4 (p 2 -1) 2 , hence a contradiction. As a conclusion, either ℓ 1,2 = 0 or ℓ 2,3 = 0.
As a consequence, there are 3 cases to study: ℓ 1,2 = 0 and ℓ 2,3 = 0 (cf. Proposition 5.14). ℓ 1,2 = 0 or ℓ 2,3 = 0 (cf. Proposition 5.15). ℓ 1,2 = 0 or ℓ 2,3 = 0 (cf. Proposition 5.16).

Proposition 5.14. Let (C, G) be a big action satisfying G p 3 * such that [G ′ , G] = {e}. We keep the notations introduced in section 5.1. Assume that ℓ 1,2 = 0 and ℓ 2,3 = 0.

1. Then, p ≥ 5 and there exists a coordinate X for the projective line C/G 2 such that the functions f i 's can be parametrized as follows:

f 1 f 1 (X) = X 1+p + a 2 X 2 V V = Z(Ad f1 ) = Z(X p 2 + 2 a p 2 X p + X) f 2 f 2 (X) = b 1+2 p X 1+2 p + b 2+p X 2+p + b 3 X 3 + b 1 X b 1+2 p b 1+2 p ∈ k × a 2 2 a p 2 = -b -p 1+2 p (b 1+2 p + b p 2 1+2 p ) ⇔ b 1+2 p ∈ V V V = Z(X p 2 -b -p 1+2 p (b 1+2 p + b p 2 1+2 p ) X p + X) b 2+p b 2+p = -b p 1+2 p b 3 3 b p 3 = b -p 1+2 p (b 2 p 2 1+2 p -b 2 1+2 p ) b 1 b 1 ∈ k ℓ 1,2 ℓ 1,2 (y) = 2 (b 1+2 p y p -b p 1+2 p y) f 3 f 3 (X) = c 1+2 p X 1+2 p + c 2+p X 2+p + c 3 X 3 + c 1 X c 1+2 p c 1+2 p ∈ k × c 1+2 p c 1+2 p ∈ V , c 1+2 p and b 1+2 p F p -independent c 2+p c 2+p = -c p 1+2 p c 3 3 c p 3 = -c -p 1+2 p (c 2 p 2 1+2 p + c 2 1+2 p ) c 1 c 1 ∈ k ℓ 1,3 ℓ 1,3 (y) = 2 (c 1+2 p y p -c p 1+2 p y) ℓ 2,3 ℓ 2,3 (y) = 0
Therefore, the solutions are parametrized by 4 algebraically independent variables over

F p , namely b 1+2 p ∈ k × , c 1+2 p ∈ k × , b 1 ∈ k and c 1 ∈ k. Moreover, |G| g = 2 p p -1 p 3 1 + 2 p + 2 p 2 and |G| g 2 = 4 (p 2 -1) 2 p 3 (p + 1) 2 (1 + 2 p + 2 p 2 ) 2 2. In this case, G = A ∞,1 is the unique p-Sylow subgroup of A.

Proof:

1. Lemma 5.9 first shows that m 1 = 1 + p s , m 2 = 1 + 2 p s , with p ≥ 3 and s ∈ {1, 2}. Moreover, v = s + 1. As ℓ 1,2 = 0 and ℓ 2,3 = 0, the second point of Lemma 5.11 imposes ℓ 1,3 = 0. Then, Lemma 5.11 shows that m

3 = 1 + 2 p s . If s = 2, m 1 = 1 + p 2 , m 2 = m 3 = 1 + 2 p 3 and v = 3. So |G| g 2 = 4 (p 2 -1) 2 p 2 (p+1) 2 (1+2 p+2 p 2 ) 2 < 4 (p 2 -1) 2 , which contradicts condition ( * ). It follows that s = 1. In this case, m 1 = 1 + p, m 2 = m 3 = 1 + 2 p, v = 2 and |G| g 2 = 4 (p 2 -1) 2 p 3 (p+1) 2 (1+2 p+2 p 2 ) 2 . Therefore, condition ( 
* ) is satisfied as soon as p ≥ 5. The parametrization of the functions f i 's then derives from Proposition 5.6. Furthermore, the third condition (cf. Recall 4.2.1-c) imposed on the degree of the functions f i 's requires that the parameters b 1+2 p and c 1+2 p are linearly independent over F p .

The equality

G = A ∞,1 derives from the maximality of V = Z(Ad f1 ) (see Proposition 3.2).
The unicity of the p-Sylow subgroup is due to Remark 3.1.

Proposition 5.15. Let (C, G) be a big action satisfying G p 3 * such that [G ′ , G] = {e}. We keep the notations introduced in section 5.1. Assume that ℓ 1,2 = 0 and ℓ 2,3 = 0.

1. Then, p ≥ 5 and there exists a coordinate X for the projective line C/G 2 such that the functions f i 's can be parametrized as follows:

f 1 f 1 (X) = X 1+p 2 + a 2 X 2 f 2 f 2 (X) = γ 2 ( X 1+p 2 + a 2 X 2 ) + b 1 X b 1 b 1 ∈ k γ 2 γ 2 ∈ F p 2 -F p V V = Z(Ad f1 ) = Z(Ad f2 ) = Z(X p 4 + 2 a p 2 2 X p 2 + X) First case: b 1 = 0 f 3 f 3 (X) = c 1+2 p 2 X 1+2 p 2 + c 2+p 2 X 2+p 2 + c 1+p 2 X 1+p 2 +c 1+p X 1+p + c 3 X 3 + c 2 X 2 + c 1 X c 1+2 p 2 c 1+2 p 2 ∈ k × a 2 2 a p 2 2 = -c -p 2 1+2 p 2 (c p 4 1+2 p 2 + c 1+2 p 2 ) ⇔ c 1+2 p 2 ∈ V V V = Z(X p 2 -c -p 1+2 p 2 (c 1+2 p 2 + c p 2 1+2 p 2 ) X p + X) c 2+p 2 c 2+p 2 = -c p 2 1+2 p 2 c 3 3 c p 2 3 = -c p 2 1+2 p 2 (3 c 2 p 4 1+2 p 2 + 4 c 1+p 4 1+2 p 2 + c 2 1+2 p 2 ) e := c 1+p 2 -c p 2
1+p 2 e ∈ Z ((c p 7 -p 3 1+2 p 2 + 1 + c p-p 5 1+2 p 2 + c p 7 +p-p 5 -p 3 1+2 p 2 ) X 1+p 4 -X 1+p 2 -X p 2 -X -1) +(c p 7 -p 3 1+2 p 2 + 1 + c p-p 5 1+2 p 2 + c p 7 +p-p 5 -p 3 1+2 p 2

) (c 1+p 2 -c p 2 1+p 2 ) p 3 +p 2 +p-1 c 1 c 1 ∈ k Therefore, the solutions can be parametrized by 3 algebraically independent variables over F p , namely c 1+2 p 2 ∈ k × , c 1 ∈ k and γ 2 ∈ F p 2 -F p . One also finds a fourth parameter e := c 1+p 2 -c p 2 1+p 2 which runs over the set of zeroes of a polynomial whose coefficients are rational functions in c 1+2 p 2 . So, for a given c 1+2 p 2 , the parameter e takes a finite number of values.

Second case: b 1 = 0 2. Moreover, G = A ∞,1 is the unique p-Sylow subgroup of A.

f 3 f 3 (X) = c 1+2 p 2 X 1+2 p 2 + c 2+p 2 X 2+p 2 + c 3 X 3 c 1+2 p 2 c 1+2 p 2 ∈ k × a 2 2 a p 2 2 = -c -p 2 1+2 p 2 (c p 4 1+2 p 2 + c 1+2 p 2 ) ⇔ c 1+2 p 2 ∈ V V V = Z(X

Proof:

1. (a) We describe f 1 , f 2 and V .

Lemma 5.9 first implies that m 1 = m 2 = 1 + p s , with s ≥ 2. More precisely, we deduce from Proposition 5.5 that f 1 (X) = X S 1 (X) and f 2 (X) = γ 2 X S 1 (X) + b 1 X, where S 1 is a monic additive polynomial with degree s in F , b 1 ∈ k and γ 2 ∈ F p d -F p with d an integer dividing s. Moreover, v = 2 s and V = Z(Ad f1 ) = Z(Ad f2 ).

(b) We show that ℓ 1,3 = 0. Indeed, assume that ℓ 1,3 = 0. Then, we deduce from Remark 5.10 that m 3 = 1 + 2 p s , with s ∈ {2, 3} and p ≥ 3. Moreover, v = s + 1. As s = 1, it follows that s = 2 and (k) We gather the parametrization of f 1 , f 2 and V .

As s = d = 2, f 1 reads f 1 (X) = X S 1 (X) with S 1 (F ) = s/d j a jd F jd = a 0 I + F 2 , since S 1 is assumed to be monic. Then, f 1 (X) = X (X p 2 + a 2 X 2 ) and f 2 (X) = γ 2 X (X p 2 + a 2 X 2 ) + b 1 X with a 2 ∈ k, b 1 ∈ k and γ 2 ∈ F p 2 -F p . In this case, V = Z(Ad f1 ) = Z(X p 4 + +2 a p 2 2 X p 2 + X) (l) We show that f 3 ∈ Σ 4 but f 3 ∈ Σ 4 -Σ 3 . By [START_REF] Rocher | Large p-groups actions with a p-elementary abelian second ramification group[END_REF] (Thm. 3.13), f 3 ∈ Σ 4 . We now show that f 3 does not have any monomial in Σ 4 -Σ 3 . Indeed, as m 3 = 1 + 2 p 2 , the possible monomials of f 3 in Σ 4 -Σ 3 are X 1+2 p+p 2 , X 2+p+p 2 , X 3+p 2 , X 1+3 p , X 2+2 p , X 3+p and X 4 . Now, equate the coefficients of the monomial X 1+p+p 2 ∈ Σ 3 in each side of (10). In the left-hand side, i.e. in ∆ y (f 3 ) mod ℘(k[X]), X 1+p+p 2 is produced by monomials X b of f 3 that belong to Σ 4 -Σ 3 and satisfy b > 1 + p + p 2 . This leaves only two possibilities: X 1+2 p+p 2 and X 2+p+p 2 . In the righthand side of (10), X 1+p+p 2 ∈ Σ 3 -Σ 2 does not occur since ℓ 1,3 (y) f 1 (X) + ℓ 2,3 (y) f 2 (X) lies in Σ 2 . It follows that, for all y in V , 2 c 2+p+p 2 y p + 2 c 1+2 p+p 2 y = 0, where c t denotes the coefficient of the monomial X t in f 3 . As v = dim Fp V = 4, we deduce that c 2+p+p 2 = c 1+2 p+p 2 = 0. We go on this way and equate successively the coefficients of X 2+p 2 , X 1+2 p , X 2+p and X 3 to prove that f 3 does not contain any monomial in Σ 4 -Σ 3 . Therefore, f 3 reads as follows:

f 3 (X) = c 1+2 p 2 X 1+2 p 2 + c 1+p+p 2 X 1+p+p 2 + c 2+p 2 X 2+p 2 + c 1+p 2 X 1+p 2 + c 1+2 p 2 X 1+2 p + c 2+p X 2+p + c 1+p X 1+p + c 3 X 3 + c 2 X 2 + c 1 X (m)
We determine f 3 . We finally have to solve (10) with f 1 , f 2 and f 3 as described above. Calculation show that c 1+p+p 2 = c 1+2 p 2 = c 2+p = 0 and that the coefficients a 2 , c 2+p 2 and c 3 can be expressed as rational functions in c 1+2 p 2 (see formulas in the table given in the proposition). To conclude, one has to distinguish the cases b 1 = 0 and b 1 = 0. In the first case, b 1 , c 1+p and c 2 can be expressed as rational functions in c 1+p 2 whereas e := c 1+p 2 -c p 2 1+p 2 belongs to the set of zeroes of a polynomial whose coefficients are rational functions in c 1+2 p 2 (see table ). When b 1 = 0, then c 1+p = 0, c 1 = c 1+p 2 a 2 and c 1+p 2 ∈ F p 2 . It follows that f 3 (X) = c 1+2 p 2 X 1+2 p 2 + c 2+p 2 X 2+p 2 + c 3 X 3 + c 1 X + c 1+p 2 f 1 (X). As γ 2 ∈ F p 2 -F p , {1, γ 2 } is a basis of F p 2 over F p . Write ǫ = ǫ 1 + ǫ 2 γ 2 , with ǫ 1 and ǫ 2 in F p . By replacing f 3 with f 3 -(ǫ 1 f 1 + ǫ 2 f 2 ), one obtains the expected formula.

2. The equality G = A ∞,1 derives from the maximality of V = Z(Ad f1 ) (see Proposition 3.2).

The unicity of the p-Sylow subgroup is due to Remark 3.1.

The last case: ℓ 1,2 = 0 and ℓ 2,3 = 0, generalizes the results obtained in [Ro08a] (section 6.2).

Proposition 5.16. Let (C, G) be a big action satisfying G p 3 * such that [G ′ , G] = {e}. We keep the notations introduced in section 5.1. Assume that ℓ 1,2 = 0 and ℓ 2,3 = 0.

1. Then, p ≥ 11 and there exists a coordinate X for the projective line C/G 2 such that the functions f i 's can be parametrized as follows:

2. The equality G = A ∞,1 derives from [START_REF] Matignon | On smooth curves endowed with a large automorphism p-group in characteristic p[END_REF] (Cor. 5.7). The unicity of the p-Sylow subgroup comes from Remark 3.1. The description of the center is due to [START_REF] Matignon | On smooth curves endowed with a large automorphism p-group in characteristic p[END_REF] (Prop. 6.15).

  2 | Proof: The first assertion (1.a) derives from [LM05] (Prop 8.5) and [MR08] (Cor. 2.10). The second point (1.b) comes from [MR08] (Rem 2.11) together with Remark 3.1. The other claims are obtained via calculation.
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 2 Preliminaries to a group-theoretic discussion.
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 3 Let (C, G) be a big action. If G ′ ⊂ Z(G), then G ′ (= G 2 ) is p-elementary abelian, say G ′ ≃ (Z/pZ) n , with n ≥ 1. In this case, the function field L = k(C) is parametrized by n equations:
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 6 Let M > 0 be a positive real such that (C, G) is a big action satisfying G M . Suppose that {e} = F ratt(G ′ ) [G ′ , G]. Then, |V | and g are bounded as follows:

  Then, |V | and g are bounded as in Proposition 4.6. So the quotients |G| g and |G| g 2 only take a finite number of values. Proof: Put F := F ratt(G ′ ). Corollary 4.5 asserts that the pair (C/F, G/F ) is a big action satisfying G M whose second ramification group:

  . See [LM05] (Thm. 1.1 I) 2. See Remark 3.1, [LM05] (Thm. 3.1) and [MR08] (Prop. 2.5).

  a 2 , b 13 , b 7 , b 5 , b 3 and b 2 satisfying the same relations as above. But, this time, the parameters b 19 and b 11 are linked through an algebraic relation, namely:

b 1 b p 5 -p 4 +p 3 -p 2 1 = -e p 3
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|G| g 2

 2 = 4 (p 2 -1) 2 p 2 (p+1) 2 (1+p+2 p 2 ) 2 < 4 (p 2 -1) 2 ,which contradicts condition ( * ).

  G/H) is a big action with second ramification group (G/H) 2 = G 2 /H. From H = [G 2 : G],we gather that G 2 /H ⊂ Z(G/H). Therefore, we deduce from Lemma 4.3 that (G/H) 2 is p-elementary abelian.

	3. As H	G ′ = G 2 is normal in G, it follows from [MR08] (Lemma 2.4 and Thm. 2.6) that
	the pair (C/H,
	is a normal subgroup of G. It follows from [MR08] (Lemma 2.4) that the pair (C/H, G/H)
	is a big action with second ramification group (G/H) 2 ≃ Z/p 2 Z. This contradicts [MR08] (Thm. 5.1). The last part of the lemma comes from [Ro08a] (Prop. 2.13).
	Corollary 4.4. Let (C, G) be a big action. Let H := [G ′ , G] be the commutator subgroup of G ′ and
	G.	
	1. Then, H is trivial if and only if G ′ ⊂ Z(G).
	2. The group H is strictly included in G ′ .
	3. The pair (C/H, G/H) is a big action. Moreover, its second ramification group (G/H) 2 = (G/H) ′ = G 2 /H ⊂ Z(G/H) is p-elementary abelian.
	Proof:	
	1. The first assertion is clear.
	2. As G ′ is normal in G, then H ⊂ G ′ . Assume that G ′ = H. Then, the lower central series of G is stationnary, which contradicts the fact that the p-group G is nilpotent (see e.g. [Su86]
	Chap.4). So H G ′ .

  where (G ′ ) ′ means the derived subgroup of G ′ and (G ′ ) p

	the subgroup generated by the p powers of elements of G ′ (cf. [LGMK02] Prop. 1.2.4). This
	proves that if G ′ is p-elementary abelian, then F is trivial. The converse derives from the fact
	that G ′ /F is p-elementary abelian (cf. [LGMK02] Prop. 1.2.4).
	2. Using Corollary 4.4, the only inclusion that remains to show is
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(c) We show that f 3 ∈ Σ 2 .

If f 3 ∈ Σ 2 , the representation ρ is trivial, hence a contradiction. Therefore, f 3 ∈ Σ 2 and one can define an integer a ≤ m 3 such that X a is the monomial of f 3 with highest degree among those that do not belong to Σ 2 . Since f 3 is assumed to be reduced mod ℘(k[X]), then a = 0 mod p.

(d) We show that p divides a -1. Consider the equation:

where ℓ 1,3 and ℓ 2,3 are non zero linear forms from V to F p . The monomials of f 3 with degree strictly lower than a belong to Σ 2 . So they give linear contributions in ∆ y (f 3 ) mod ℘(k[X]) (cf. [Ro08a] Lemma 3.9). Assume that p does not divide a -1. Then, for all y in V , equation (10) gives the following equality mod ℘(k[X]):

which is another contradiction. So, a -1 = 1 + p s and by equating the corresponding coefficients in (10), one gets: a y = ℓ 1,3 (y) + γ 2 ℓ 2,3 (y), for all y in V . So, V ⊂ F p + γ 2 F p and v ≤ 2. As v = 2 s, we deduce that s = 1, which is a contradiction. Thus, p divides a -1 and one can write a = 1 + λ p t with t ≥ 1 and λ ≥ 2, because of the definition of a.

We also define j 0 := a -p t .

(e) We show that v ≥ t + 1. By [START_REF] Rocher | Large p-groups actions with a p-elementary abelian second ramification group[END_REF] (Lemma 3.11),

(f) We show that j 0 = 1 + p s . If j 0 < 1 + p s , we gather the same contradiction as the one found in [START_REF] Rocher | Large p-groups actions with a p-elementary abelian second ramification group[END_REF] [proof of Theorem 5.6, point 4, with i = 2]. Now, assume that j 0 > 1 + p s . As in [START_REF] Matignon | On smooth curves endowed with a large automorphism p-group in characteristic p[END_REF] [proof of Theorem 5.1, point 6], we prove that the coefficient of X j0 in the left-hand side of (10) is T (y), where T is a polynomial of k[X] with degree p t . If j 0 > 1 + p s , then T (y) = 0, for all y in V . This implies V ⊂ Z(T ) and v ≤ t, which contradicts the previous point.

(g) We show that either v = t + 1 or v = t + 2.

We have already seen that v ≥ t. As j 0 = 1 + p s , we equate the corresponding coefficients in (10) and obtain T (y) = ℓ 1,3 (y) + γ 2 ℓ 2,3 (y), for all y in V . As ℓ 1,3 (y) ∈ F p and ℓ 2,3 (y) ∈ F p , we get T (y) p -T (y) = ℓ 2,3 (y) (γ p 2 -γ 2 ), with γ 2 ∈ F p . Then, for all y in V , R(y) := T (y) p -T (y)

Assume that m 3 > a. Then, by definition of a, m 3 = 1 + p s3 with s 3 ≥ s. Note that s 3 ≥ s + 1. Otherwise, m 3 = 1 + p s = j 0 < a. On the one hand, |G| = p 3+v = p 3+2s . On the other hand,

We already know that s ≥ 2 and v = 2 s ≥ 4. So, |G| = p 3+v ≤ p 7 . Assume that s ≥ 3. Then, as t ≥ 1, we get:

which is a contradiction. So s = 2 and v = 4. We have previously mentionned that γ 2 ∈ F p d -F p , where d is an integer dividing s. As s = 2, the only possibility is d = 2.

(j) We deduce that t = s = 2, so m 3 = 1 + 2 p 2 and p ≥ 5.

We have seen v = t + 1 or v = t + 2, with t ≥ 1. As v = 4, there are two possibilities either t = 2 or t = 3. If t = 3, |G| = p 7 and g = p-1

and condition ( * ) requires p ≥ 5.

Therefore, the solutions can be parametrized by 3 algebraically independent variables over 2. G = A ∞,1 is the unique p-Sylow subgroup of A. Furthermore, Z(G) is cyclic of order p.

Proof:

1. In this case, the group G satisfies the third condition of [Ro08a] (Prop. 5.2). So, we deduce from [Ro08a] (Thm. 5.6) that m 1 = 1 + p s , m 2 = 1 + 2 p s , m 3 = 1 + 3 p s with p ≥ 5 and v = s + 1. Furthermore, it follows from Lemma 5.9 that s ∈ {1, 2}. Assume that s = 2. Then,

(1+2 p+3 p 2 ) 2 and condition ( * ) is satisfied as soon as p ≥ 11. Then, we deduce from Proposition 5.6 the parametrization of f 1 , V and f 2 mentionned in the table. Besides, we deduce from [Ro08a] (Thm. 5.6) that f 3 is in Σ 4 -Σ 3 with m 3 = 1 + 3 p. This means that f 3 reads as follows:

We determine the expressions of the coefficient by solving the equation:

with ℓ 1,2 (y) = ℓ 2,3 (y) = 2 (b 1+2 p y p -b p 1+2 p y) (cf. [START_REF] Rocher | Large p-groups actions with a p-elementary abelian second ramification group[END_REF], Prop. 5.4.1). The results are gathered in the table above.