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Energy distributions and effective temperatures in the packing of elastic sheets

S. Deboeuf, M. Adda-Bedia and A. Boudaoud
Laboratoire de Physique Statistique de l’Ecole Normale Supérieure,

CNRS UMR 8550, 24 rue Lhomond, 75005 Paris, France

The packing of elastic sheets is investigated in a quasi two-dimensional experimental setup: a sheet
is pulled through a rigid hole acting as a container, so that its configuration is mostly prescribed
by the cross-section of the sheet in the plane of the hole. The geometrical properties and energies
of the branches forming the cross-section are broadly distributed. The distributions of energy have
exponential tails yielding effective temperatures. Two sub-systems can be defined: in contact with
the container and within the bulk. While the geometrical properties differ between the sub-systems,
their energy distributions are identical, indicating that ‘thermal equilibration’ occurs.

PACS numbers: 64.70.qd 46.65.+g 68.55.-a, 46.32.+x,

The challenges raised by out-of-equilibrium systems are
exemplified by granular materials [1] and glasses [2, 3], fea-
turing complex energy landscapes and aging. Energy flow
and thermal equilibration in such systems can be charac-
terised by various effective temperatures [4, 5, 6]; however,
previous experimental studies [7, 8, 9, 10, 11, 12] only mea-
sured a temperature based on the ratio between fluctua-
tions and response of the system. Here we present exper-
iments on an singular and macroscopic out-of-equilibrium
system, namely the packing of elastic sheets into quasi
two-dimensional containers [13] and focus on the statisti-
cal properties of the configurations. We show that ther-
mal equilibration occurs within the system although its
geometrical properties are not uniform, enabling the def-
inition of effective temperatures from the distributions of
energy. Thus we obtain a macroscopic experimental sys-
tem that could be used to test out-of-equilibrium statis-
tical physics. Our results bear on the packing of flexible
structures such as elastic rods [14, 15, 16], crumpled pa-
per [17, 18, 19, 20], folded leaves in buds [21], chromatin
in cell nuclei [22] or DNA in viral capsids [15, 23].

At equilibrium, systems with a large number of degrees
of freedom are characterised by a single temperature T .
On the one hand, the energy of one degree of freedom
follows Boltzmann’s distribution, the mean energy being
proportional to T . On the other hand, T might be mea-
sured using the fluctuation-dissipation theorem (FDT), re-
lating fluctuations of an observable to its response to an
external field. Two main effective temperatures were in-
troduced for systems out of equilibrium. The approach of
Edwards [4] amounts to the replacement of T by an effec-
tive temperature in the distribution of energies; it can be
extended to intensive thermodynamic parameters associ-
ated with global conserved quantities [6, 24, 25, 26]. The
generalisation of the FDT [5] gives another effective tem-
perature, which can be measured [7, 8, 9, 10, 11, 12, 27].
In many models, Edwards’ and FDT temperatures are
equal [28, 29, 30, 31] or proportional [32]. An experi-
mental measurement of Edwards’ temperature seems to
be lacking as it is difficult to obtain energy distributions.
Here we make this possible by investigating the packing of
elastic sheets.

Fig. 1a represents the experimental set-up [13], in-
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FIG. 1: The experiment. a Schematic of the set-up showing
the radius of the sheet r, its thickness h, the radius of the hole
R and the control parameter Z; the force F is measured with
a dynamometer. b Thresholded picture of a horizontal cross-
section from set i of experiments. c Analysed cross-section,
showing the existence of multi-branches stacks delimited by
two junction points. The number of branches is indicated near
each stack. d 3D reconstruction assuming exact self-similarity
of shape.

spired by the study of single d-cones [33]. We use circu-
lar polyester (polyethylene terephtalate) sheets of Young’s
modulus measured as E = 5 GPa, density 1.4 g/cm3, var-
ious radii r ∼ 30 cm and thicknesses h ∼ 0.1 mm. At
each realisation, a sheet is pulled from its center through
a circular rigid hole of radius R ∼ 2 cm. The values of
the parameters (r, h, R) for each set of experiments are
given in Table I. The hole is machined through a Plex-
iglas plate and its edges are rounded to form a toroidal
convex shape, to avoid damaging the sheet. The center of
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set h(µm) r(cm) B(J) R(mm) Zm(cm) p #R

i 50 33 7 10−5 16.5 30 11% 33

ii 50 33 7 10−5 22.5 30 6% 16

iii 125 22 1 10−3 27 19 7% 16

TABLE I: Material parameters for the sheets used in experi-
ments: thickness h, radius r and bending stiffness B; control
parameters: hole radius R, maximal pulling distance Zm, and
packing ratio p = 2hZm/R2; number of realisations #R.

the sheet is pierced and fixed to a dynamometer by means
of a threaded mount of radius Rc = 0.8 cm. The sheet
is pulled at a velocity of 0.5 mm/s, so that the distance
Z, between the pulling point and the plane of the hole
is our main control parameter. The measurement of the
pulling force F during the compaction directly yields the

work injected in the system W =
∫ Z

0
Fdz.

The sheet might undergo two modes of deformation:
bending and stretching. As bending is favoured ener-
getically, a self-similar conical shape is expected [34], so
that one cross-section approximately prescribes the whole
shape of the sheet. A virtual cut across the sheet in the
plane of the hole yields a one-dimensional rod of length
2πZ, that grows within a disk of radius R as Z is in-
creased. The experiment allows isotropic confinement to
packing ratios p as high as 11%, where p = 2Zh/R2 is the
ratio of cross-sectional area of the sheet 2πZh to the area
of the hole πR2.

In principle, configurations can be visualised from be-
low. However this turns out to be inconvenient as parts of
the sheet assemble into thick bundles whereas the edge of
the sheet does not lie in a single plane. Therefore we re-
sort to a hot wire cutting tool to obtain cross-sections for
one value of the control parameter Zm (given in Table. I).
With great care, one obtains neat cuts without perturb-
ing the configuration. The cross-section is digitised with a
scanner at a resolution of 50 pixels per mm, which yields
5 pixels for the thickness of the thinner sheets. A thresh-
olding results in a binary image, from which empty spaces
of surface area larger than (10h)2 are kept, which removes
light noise from the raw image (Fig. 1b. The binary im-
age is skeletonized (reduced to a one pixel thick skeleton);
junction points are then defined as pixels with at least 3
neighbours. Two neighbouring junction points delimit a
stack of branches in close contact. The next step is to de-
termine the number of branches in each of the M stacks.
The conservation of the number of layers at each junction
point yields 2M/3 equations; the remaining M/3 equa-
tions are found from the thickness of the stacks in the
binary image as follows. The heating by the cutting tool
thickens (about twice) a stack nonlinearly, which was cali-
brated by separately cutting stacks of sheets. We keep the
M/3 stacks with the best estimation of the thickness as
given by the calibration. The solution of the linear M×M
system yields the number of branches in each stack. We
reopened a few configurations (5 per set of experiments)
and checked by counting the number of branches in each
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FIG. 2: Total elastic energy E (measured from the geometry)
and injected work W for the three sets of experiments: i (cir-
cles), ii (squares) and iii (diamonds). The straight lines are
fits to each set.

stack; we found no error for sets ii and iii, and an error of
±1 for a part of the thicker stacks (20%) in the more com-
pact set i; these errors are small thanks to the fact that the
number of layers is an integer. Thus, we obtain both the
geometry and the topology of the sheet (Fig.1c,d). When
repeating the experiment with the same experimental pa-
rameters, a whole variety of shapes is generated, which
calls for a statistical approach. We systematically per-
formed and analysed three sets of experiments (Table. I).

We first consider the global energetic quantities, injected
work W and elastic energy E. Assuming the shape of the
sheet to be exactly self-similar, a cross-section prescribes
the energy of the whole sheet. Using (ρ, θ) the polar coor-
dinates on the initially plane sheet, the branches, located
in the plane ρ ≃ Zm, have a local curvature κ(θ), and
correspond to an angular sector on the sheet, where the
curvature is c(ρ, θ) = Zmκ(θ)/ρ, assuming the hole to be
small R ≪ Zm. The bending energy E is

B

2

∫ r

Rc

∫ 2π

0

c2 ρdθ dρ =
BZm

2
ln

(

r

Rc

)
∫ 2πZm

0

κ2(t) dt (1)

where we introduced t = Zmθ, the curvilinear coordinate
in the hole cross-section. The logarithmic prefactor known
for d-cones [34] contains as cutoffs the radii of the mount
Rc, and of the sheet r. In actual experiments, the self-
similarity is not exact as some generators end below the
mount; however this only slightly affects the logarithmic
prefactor through the effective value of Rc. In order to
account for plastic softening of the sheets, the quadratic
κ2 dependence of the energy was replaced by a linear de-
pendance κc(2κ−κc) for curvatures greater than the plas-
tic threshold κc, measured as in [18] (κc = 0.54 mm−1,
0.24 mm−1 for h = 0.05 mm, 0.125 mm respectively).
Fig. 2 shows the correlation between the bending energy
E and the injected work W . It can be seen that the global
quantities E and W fluctuate over the realisations as the
system explores its configurational space. Energy dissi-
pation occurs by friction between layers or with the con-
tainer, and through discontinuous reorganisations when
increasing the confinement (see [16]). The fluctuations in
E and W can be ascribed to the differences in reorganisa-
tions according to realisations. E is roughly proportional
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FIG. 3: The statistics of the geometrical properties for the
three sets of experiments. a Length ℓ of branches and expo-
nential distributions (Eq. 2). Circles for set i, squares for ii and
diamonds for iii, empty for the periphery and full for the bulk.
For the periphery ρ(ℓ) is multiplied by 102 for clarity. Means
〈ℓ〉 = 3.3, 4.5 mm for set i; 4.6, 6.8 mm for set ii; and 9.6, 16
mm for set iii, for the bulk and the periphery, respectively. The
inset shows branches in the bulk (green) and at the periphery
(dark). c Mean curvature of branches κm (same symbols as in
b. For the bulk (main panel), the Gamma distribution (Eq. 3)
with the same mean and variance is plotted; its exponent is
α = 0.43, 0.51 and 0.62 and its mean is 〈κm〉 = 0.16, 0.12 and
0.08 mm−1, for sets i, ii and iii, respectively. For the periph-
ery (inset), the distribution are peaked at the curvature of the
containers (shown by vertical lines).

to W , with a prefactor a . 1, suggesting that our geomet-
rical estimation of the energy is consistent. (a < 1 because
of dissipation.)

In the following we detail the main statistical properties
measured over all realisations of a given set. Branches are
good candidates to be elementary particles of the system,
as elastic equilibrium imposes their shape given the bound-
ary conditions, whereas the interaction between neigh-
bouring branches is mediated by their extremities where
contact forces and friction come into play.

For reasons which will become clear below, we split the
system into two sub-systems (inset in Fig. 3b): branches
with/without an extremity in contact with the container,
which we will refer to as periphery and bulk, respectively.
The lengths ℓ of branches follow exponential distribu-
tions (Fig. 3b)

fE(ℓ) = 1/µ exp (−ℓ/µ) . (2)

It appears that the value of the mean length 〈ℓ〉 = µ is
larger for branches at the periphery than in the bulk, for

set 〈e〉 (mJ) χe (mJ) β−1 (mJ) 〈Nbr〉 〈E〉 (J)

i 6.5 39 31 490 2.5

ii 6.6 35 28 360 2.0

iii 37 90 86 110 3.6

TABLE II: Temperatures: 〈e〉 is the mean energy per elemen-
tary particle, i.e. per branch; χe and β−1 are given by the tail
of the distributions of energy in Fig. 4. Global quantities: total
number of branches 〈Nbr〉 and total energy 〈E〉 averaged over
all realizations.

each set of experiments. Next, we consider the absolute
value of the average curvature κm of each branch (Fig. 3c).
For the bulk, its distribution is well described by a Gamma
law with density

fα,χ
G

(κm) =
(κm/χ)α

Γ(α)κm

exp

(

−
κm

χ

)

, (3)

where Γ stands for Euler’s Gamma function. In contrast,
for the periphery, it is peaked at the value 1/R imposed
by the container. Thus, the geometrical properties of the
periphery and the bulk are significantly different.

However, the distribution of the energy of the branches
is the same for the two sub-systems as seen in Fig. 4. The
energy e of a branch corresponds to that of an angular
sector on the sheet and is calculated using equation 1,
with limits of integration t ∈ (0, ℓ). The distributions
of energy e are characterized by a power-law divergence
at small values and by exponential tails (Fig. 4). They
can be well described by Gamma laws fαe,χe

G
(e) (Eq. 3)

with intriguing values αe < 1, not trivialy interpretable
as a number of subsystems as usually the case for values
greater than 1 (see [19]). As many branches may be in the
same state (when in the same stack), we also compared
the distributions of energy to Bose-Einstein statistics

fBE(e) =
A

exp (βe) − 1
, (4)

with zero chemical potential (the number of particles is
unprescribed). The distributions of energy allow to define
effective temperatures for each set of experiments: the
mean energy per branch 〈e〉; and the characteristic energy
given by the exponential tails χe ≃ β−1. The effective
temperatures are ordered as 〈e〉 < χe for each set of ex-
periments (Table II); the sets of temperatures are close
for the two sets of experiments with the same thickness h.
Note that the ambient temperature kBT = 4 10−21 J is
negligible with respect to all temperatures defined here.

The identity of the distributions of energy between the
bulk and the periphery, even though the geometrical prop-
erties differ, is our central result. Energy has contribu-
tions from both length and curvature. These two geo-
metrical variables compensate so that the energy is sta-
tistically uniform. This means that thermal equilibration

occurs between the two sub-systems. This equilibration
justifies a description of the system in terms of statistical
physics. Besides, our system is obviously not ergodic, as
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FIG. 4: Probability density functions of the energy e of the branches (elementary particles) for the three sets of experiments: i
(a), ii (b) and iii (c). The distributions are given separately for the two sub-systems: bulk (full symbols) and periphery (open
symbols); the fact that they are the same means that thermal equilibration occurs between the two sub-systems. The lines are
Gamma distributions (continuous lines, Eq. 3) and Bose-Einstein distributions (dotted lines, Eq. 4) with the same mean and
variance as the energy e. Gamma distributions have exponents αe = 0.16, 0.23 and 0.41, and Bose-Einstein distributions have
prefactors A = 4.0, 5.1 and 3.0 J−1, for sets i, ii and iii, respectively. The insets are log-log plots of the same data.

it must be driven by injecting work in order to explore the
phase space. This driving has some similarities with the
slow shearing of colloidal glasses [27] or granular materi-
als [10, 29]; however, it is not stationary and restricts the
accessible phase space at each reconfiguration of the sheet.
As in other glassy systems, two different time scales char-
acterise the dynamics: a very slow one associated with the
driving and a quick one corresponding to the reconfigura-
tion to local mechanical equilibrium. Finally, further ex-
perimental and theoretical work is needed to explain our
observations. How universal are the distributions of en-
ergy? What controls the effective temperatures measured
here?

We are grateful to Guillaume Angot for his experimen-
tal help. This study was supported by the EU through
the NEST MechPlant project. LPS is associated with the
universities of Paris VI and VII.
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