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Computer simulation of model cohesive powders:

Plastic consolidation, structural changes and elasticity under isotropic loads.
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The quasistatic behavior of a simple 2D model of a cohesive powder under isotropic loads is inves-
tigated by Discrete Elements Methods simulations. We ignore contact plasticity and focus on the
effect of geometry and collective rearrangements on the material behavior. The loose packing states,
as assembled and characterized in a previous numerical study [Gilabert, Roux and Castellanos, Phys.
Rev. E75, 011303 (2007)], are observed, under growing confining pressure P , to undergo important
structural changes, while solid fraction Φ irreversibly increases (typically, from 0.4–0.5 to 0.75–0.8).
The system state goes through three stages, with different forms of the plastic consolidation curve,
Φ(P ∗), which is a function of the growing reduced pressure P ∗ = Pa/F0, defined with adhesion
force F0 and grain diameter a. In the low-confinement regime (I), the system undergoes negligible
plastic compaction, and its structure is influenced by the assembling process. In regime II the ma-
terial state is independent of initial conditions, and the void ratio varies linearly with log P [i. e.
∆(1/Φ) = λ∆(log P ∗)], as described in the engineering literature. Plasticity index λ decreases as
a function of contact rolling resistance (RR). In the last stage of compaction (III), Φ approaches
an asymptotic, maximum solid fraction Φmax, as a power law, Φmax − Φ ∝ (P ∗)−α, with α ≃ 1,
and properties of cohesionless granular packs are gradually retrieved. Under consolidation, while the
range ξ of fractal density correlations decreases, force patterns reorganize from self-balanced clusters
to force chains, with correlative evolutions of force distributions, and elastic moduli increase by a
large amount. Plastic deformation events correspond to very small changes in the network topology,
while the denser regions tend to move like rigid bodies. Elastic properties are dominated by the
bending of thin junctions in loose systems. For growing RR those tend to reduce to particle chains,
the folding of which, rather than tensile ruptures, controls plastic compaction.

PACS numbers: 45.70.-n,81.40.Lm,61.43.Hv,83.10.Rs

I. INTRODUCTION

Cohesive granular materials are present in many nat-
ural or industrial processes, the understanding of which
requires studies of their rheology under small confining
pressures, when tensile intergranular forces play a ma-
jor role. In such cases cohesive materials exhibit specific
features that do not exist in cohesionless grain assem-
blies, such as the ability to form stable structures at low
density and the sensitivity to stress intensity, as opposed
to stress direction. Macroscopic constitutive laws and
phenomenological tools have been developed and used
in several engineering fields: mechanics of cohesive soils
(clays and silts) [1, 2, 3, 4], metallic powder process-
ing [5], handling of xerographic toners [6]. One simple
material is the assembly of wet beads [7, 8, 9], in which
some microscopic observations are possible [8, 9]. How-
ever, wet grain packs are only slightly less dense than
dry ones, and do not enable the study of loose structures
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obtained with powders. In general, the behavior of ma-
terials under proportional load (oedometric or isotropic
compression) is characterized by the consolidation curve,
which describes the irreversible compaction under grow-
ing stress [1]. Density can increase by factors of 3 or 4
under growing load.

Although numerical simulations have been widely used
for several decades [10] to investigate microscopic mech-
anisms and classify mechanical properties of granular
systems, studies of cohesive materials are still far less
common, and almost exclusively limited to dense mate-
rials. Thus, the effects of capillary cohesion in wet sand
or bead packs have been simulated [11, 12], as well as
the compaction of metallic powders [13, 14, 15, 16] to
states of very high density, or the behavior in shear tests
of 2D dense cohesive packs with plastic deformation of
contacts [17, 18]. Loose structures formed by particles
packed under gravity and stabilized thanks to adhesion
have been simulated [19]. Of particular relevance to the
present study, among the very scarce numerical studies
of loose packings [20] stabilized by cohesion and of their
collapsing under growing loads, are the works by Bar-
tels, Kadau, Wolf et al. [21, 22, 23, 24] on the oedomet-
ric compression of granular assemblies with initial low
densities. This research group studied a dynamical com-
pression regime, and observed a shock wave propagating
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through the sample. Shear flows of cohesive granular
materials have also been simulated [25, 26, 27, 28].

In a previous article [29], hereafter referred to as pa-
per I, we studied by numerical simulation the assembling
process, the structure and the force patterns of a model,
two-dimensional (2D) cohesive granular material in loose
equilibrium configurations. We now investigate the me-
chanical behavior of the same model granular material
in isotropic compression and pressure cycles, as well as
the evolution of various characteristics of intermediate
equilibrium states as plastic compaction proceeds.

As in paper I, we keep the external pressure as the
main control parameter. The adhesive strength F0 in
contacts sets a force scale in the material behavior, and
hence (in 2D) the reduced pressure, defined as

P ∗ =
aP

F0
, (1)

in which a is a typical grain diameter, is a crucial di-
mensionless state parameter. The main objective of the
present paper is the study of the process by which, as
pressure is increased, cohesion-dominated loose struc-
tures, for which P ∗ ≪ 1, get irreversibly compacted
as P ∗ increases until pressure dominates (P ∗ ≫ 1).
Such a compaction was numerically observed e.g., in
Ref. [24]. However, our approach produces homogeneous,
isotropic, equilibrium configurations under varying load
and is therefore apt to provide more detailed information
about the connections between macroscopic constitutive
laws and microstructural or micromechanical features.

The simulations reported in paper I revealed the im-
portance of the initial aggregation process taking place in
a gas-like state prior to the application of an external con-
fining pressure. The compression of the “granular gas” of
isolated particles must be very slow and aggregates need
to form in order to stabilize very loose systems, even un-
der low reduced pressure P ∗. This is the most notable as-
pect of the variability of initial states that were obtained
in paper I – others being coordination numbers and self-
balanced force patterns depending on initial “granular
temperature”. On compressing those different configura-
tions, will the final maximum density states differ under
large P ∗? Another result of paper I is that loose sys-
tems have a fractal structure, with the fractal dimension
dF ≃ 1.55 of 2D ballistic aggregation in the presence of
rolling resistance in the contacts, over some length scale
ξ. How do such properties evolve under compression ?

Such questions are addressed in the present paper,
which is self-contained and can be understood without
reading paper I, although some details about the model
and the initial equilibrium states of low density will not
be repeated. A summarized description of the material
properties and of the initial configurations, the assem-
bling process which is studied in paper I, is provided
in Section II. The macroscopic material response in
isotropic compression, with the possible influence of the
initial state properties, is studied in Section III. The ge-
ometry and the density correlations, which were shown

in paper I to exhibit fractal behavior over some distance
range, are studied in Section IV. Force networks, force
distributions and elastic moduli are dealt with in Sec-
tion V. Section VI discusses qualitatively some micro-
scopic aspects of the consolidation behavior. Finally, in
section VII we state the conclusion, pointing out briefly
the next direction for future work.

II. MODEL MATERIAL AND SIMULATION

PROCEDURES

A. Definitions and basic equations

The material and the simulation method are identical
to those of paper I [29], which the reader might refer to for
additional technical details, and for a physical discussion
of some of the model ingredients. For the sake of com-
pleteness, we however provide a summarized description
below. The contact law is an elaboration of the often
employed spring-dashpot model with Coulomb friction,
in which two additional ingredients are introduced: an
attractive force and, possibly, some resistance to rolling
at contacts. The model material is a 2D assembly of
disks with diameters uniformly distributed between a/2
and a, enclosed in a rectangular cell with periodic bound-
ary conditions in both directions. Both lengths L1, L2

defining the cell size and shape are variable, and sat-
isfy equations of motion designed to impose given values
of diagonal stress components σ1 = σ2 = P . Stresses
are controlled by a variant of the Parrinello-Rahman
method [30]. In equilibrium, both diagonal stress com-
ponents σα, (α = 1, 2), with the convention that tensile
stresses are negative, are given by the standard formula
(A is the sample surface area):

σα =
1

A

∑

1≤i<j≤N

F
(α)
ij r

(α)
ij . (2)

In (2), the r.h.s. sum runs over all interacting pairs i, j
among the N disks of the system, Fij is the force trans-
mitted from grain i to its neighbor j and vector rij points
from the center of i to the center of j (with the suitable
nearest image convention to account for periodicity). The
implementation of stress-controlled simulations is such
that the cell length Lα along direction α increases or
decreases if σα is larger (respectively: smaller) than its
prescribed value.

As usual in molecular dynamics applied to granular
materials (also known as the “discrete element method”)
particles have rigid body kinematics and their motion is
governed by Newton’s equations.

B. Interaction law

Grains interact with forces of elastic, adhesive, fric-
tional and viscous origins. The static part of the normal



3

component Nij of the force transmitted by grain i to its
neighbor j is a function of hij , the distance separating
disk perimeters. A negative hij means that the grains
overlap, in which case they repel each other with a nor-
mal elastic force F e,ij

N = −KNhij . This force vanishes
whenever hij > 0. (Overlap hij < 0 is, of course, a
numerical representation of the physical contact deflec-
tion). The repulsive elastic force is supplemented with an

attractive term F a,ij
N , equal to −F0 for contacting disks

(hij < 0). F a,ij
N has a finite range D0, fixed to 10−3a,

and varies linearly between −F0 and zero as hij grows
from 0 to D0. F0 is the maximum tensile force a contact
might support without breaking off. The normal contact
law thus introduces a force scale, and a dimensionless pa-
rameter, the stiffness parameter, κ ≡ aKN/F0. κ charac-
terizes the amount of elastic deflection h0 under contact
force F0, relative to grain size a (h0/a = κ−1). κ is set
to a large value, κ = 105, so that the elastic deflections
in contacts remain so small that they can be neglected in
comparison to all other length scales in the problem (in-
cluding interstices between neighbors [31]). The packing
geometry can be regarded as that of an assembly of rigid
grains (as formally dealt with in the “contact dynamics”
simulation method used in [24]).

To the static contributions F e
N and F a

N to the normal
force we add a viscous damping term opposing the rel-
ative normal velocity of i and j when the disks touch
(hij < 0), corresponding to a constant, positive normal
coefficient of restitution eN in binary collisions if F0 is
set to zero. eN is set to a low value, eN = 0.015 in
our simulations. In the presence of attractive forces the
apparent restitution coefficient in a collision will depend
on the initial relative velocity. For small kinetic ener-
gies the particles will eventually stick to each other. The
minimum receding velocity for two particles of unit mass
(the unit mass is chosen equal to the mass of a disk of

diameter a) to separate is V ∗
√

2, with

V ∗ =
√

F0D0. (3)

The elastic tangential force in contact i, j, F ij
T , is to be

evaluated incrementally. In case of no tangential sliding,
it varies linearly with the relative tangential displacement
at the contact point, involving a tangential stiffness con-
stant, KT . In the case of sliding, which occurs when the
elastic law would cause Tij to pass one of the Coulomb

bounds ±µF e,ij
N , then Tij stays equal to ±F e,ij

N . The
relative tangential displacement at the contact point in-
volves displacements of disk centers and rotations. The
Coulomb condition introduces the friction coefficient, µ.
It should be pointed out that it applies to the elastic
repulsive part of the normal force only. Thus, a pair
of contacting grains with hij equal to F0/KN = h0, the
equilibrium distance, such that the sum of elastic and ad-
hesive terms vanishes, can transmit a tangential force T
such that |FT | ≤ µF0. (The importance of this feature of
the contact law for collective properties macroscopic be-
havior of particle assemblies was stressed in paper I for

isotropic, static states, and in Ref. [27] in steady-state
shear flows). All simulations reported here were carried
out with µ = 0.5.

We studied the influence of rolling resistance (RR) at
contacts, which is modeled as in [32]. Two additional
parameters are necessary: a rolling spring constant, KR,
with dimension of a moment, expressing proportional-
ity between relative rotation and rolling moment (i. e.,
a torque concentrated at the contact point), as long as
the rolling friction threshold is not reached; and a rolling

friction coefficient, µR with the dimension of a length,
setting the maximum absolute value of the rolling mo-
ment ΓR to µRF e

N , proportional to the elastic part of the
normal force. The implementation of this rolling law is
analogous to that of the tangential one, with the rolling
moment and the relative rotation respectively replacing
the tangential force and the relative tangential displace-
ment. A contact for which the total normal force is equal
to zero in equilibrium, with F e

N = KNh0 = F0, may
transmit a rolling moment ΓR with |ΓR| ≤ µRF e

N . Since
point contacts do not transmit torques, the rolling resis-
tance stems from the irregularity of grain surface. Two
contacting grains touch each other, in general, by two
points (in 2D), which are separated by some microscopic
distance l that is characteristic of the particle shape. µR

should be proportional to l, and KR proportional to l2.
We set µR = µl and KR = KN l2, with, in most calcula-
tions with RR, l = a/100.

Table I summarizes the values of parameters used in
most simulations, in dimensionless form. Some calcula-

µ eN κ
KT

KN

D0

a

KR

KNa2

µR

a

0.5 0.015 105 1 10−3 10−4 0 or 0.005

TABLE I: Values of dimensionless model parameters used in
most simulations.

tions were also performed with larger RR (up to l = a,
µR = 0.5a).

C. Initial states

In paper I, two extreme cases were studied in the as-
sembling stage of cohesive packings under low P∗. First,
an N -particle sample of hard-disk fluid is prepared at
solid fraction ΦI in a fixed cell. Then, in type 1 sys-
tems, velocities are set to zero and the external pres-
sure control is started, until en equilibrium is reached
under P ∗ = 0.01. The other procedure, by which type 2
samples are prepared, is meant to represent the opposite
situation, in which aggregation is much faster than com-
pression. Thus, while the cell size is fixed and the solid
fraction stays equal to ΦI , grains are attributed random
(Maxwell-distributed) velocities and left to interact and
aggregate until all N of them join to form one unique
cluster. The system is then equilibrated at P ∗ = 0, and
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Sample type No cohesion Type 1 Type 2

N 1400 1400 1400 5600 10976

Number of samples 4 4 5 3 1

Lowest pressure P/KN = 10−5 P ∗ = 0.01 P ∗ = 0.01

Φ (no RR) 0.811 ± 0.001 0.723 ± 0.001 0.472 ± 0.008

Φ (RR) 0.805 ± 0.002 0.688 ± 0.001 0.524 ± 0.008

TABLE II: Set of granular samples used as initial equilibrated configurations in simulations of isotropic compression (with
material parameters of Table I).

compressed to P ∗ = 0.01. To limit the influence of dy-
namical effects, the strain rate is requested not to exceed
a maximum value ǫ̇max during compression. We express
this condition with the natural inertial time associated
with the characteristic force F0: (m is the mass of a disk
of diameter a)

T0 =

√

am

F0
, (4)

defining a dimensionless inertia parameter

Ia = ǫ̇maxT0. (5)

Ia is set to 0.05 in our simulations. The main set of
samples of types 1 and 2 (the latter coinciding with “se-
ries A” in paper I), to which some non-cohesive ones
are added for comparison, is listed in Table II, in which
the number of available configurations of different sizes
is provided, along with solid fraction under the lowest
nonzero pressure. All configurations are prepared both
with (µR/a = 0.005) and without (µR/a = 0) RR, with
the parameters of Table I. The initial solid fraction is
ΦI = 0.36. Type 2 systems are also available under
P ∗ = 0, right at the end of the aggregation stage [29],
but we regard this intermediate stage as part of the initial
packing process and focus our study on higher pressures
(as apparent in Table II, the compression from zero pres-
sure to P ∗ = 0.01 involves a large density increase, and
important changes of the microstructure are reported in
paper I). Distant interactions between grain pairs sep-
arated by a gap smaller than D0 are scarce, and “rat-
tlers”, i.e., isolated, free grains with no interactions, are
absent in cohesive systems because of the initial aggre-
gation process. Coordination numbers under P ∗ = 0.01
are typically z ≃ 3.1 without RR, and z ≃ 3.0 with RR,
for both type 1 and type 2 cohesive samples. Additional
details about those equilibrium configurations under low
pressure can be found in paper I.

The assembling stage of type 2 systems also depends on
the initial velocities given to the grains before they form
aggregates (the “granular temperature” of the original
“granular gas”). The relevant dimensionless parameter
is the ratio of the initial mean quadratic velocity V0 to
the characteristic velocity V ∗ defined in (3). V0/V ∗ is set
to 9.5 for the main sample series of Table II. The value of
V0/V ∗ was shown in paper I to have a strong influence on
the initial coordination number z at P ∗ = 0 in samples

with RR: whereas z is larger than 3 for V0/V ∗ = 100, it
approaches 2 for small V0, of order V ∗/10, in which case
the loopless structures of geometric ballistic aggregation
models are retrieved. However, this effect is strongly re-
duced after the compression step to P ∗ = 0.01.

In the following, unless otherwise specified, all results
will pertain to the systems of Table II, and measurements
will be averaged over all available samples, error bars
on graphs extending to one sample to sample standard
deviation on each side of the mean value.

D. Simulation procedures

1. Equilibrium conditions

One of the specificities of our simulations of cohesive
packings under varying pressure is the approach, comput-
ing cost permitting, of the quasistatic material response,
in which all configurations remain close to mechanical
equilibrium. Equilibrium conditions have to be stringent
enough to enable an unambiguous identification of the
force-carrying contact network and a study of its elas-
tic properties. Due to the frequent occurrence of small
contact force values, this requires forces to balance with
sufficient accuracy. We used similar criteria as in paper
I, which, in agreement with other studies on cohesionless
systems [31, 33], were observed to provide force values
with sufficient accuracy. The tolerance levels on force
and torque balance equations is expressed in terms of
a typical intergranular force value F1 = max(F0, Pa).
A configuration is deemed equilibrated when (1) the net
force on each disk is lower than 10−5F1; (2) the total
moment on each disk is lower than 10−5F1a; (3) the dif-
ference between imposed and measured stresses is less
than 10−5F1/a; and (4) the kinetic energy per grain is
less than 5 × 10−8F1a.

2. Compression

The sample series of Table II are subjected to a step-
wise compression cycle. In each compression step, ex-
ternal reduced pressure P ∗ is multiplied a constant fac-
tor 101/8 ≃ 1.334, and one waits until the new equilib-
rium configuration is reached, with the criteria stated in
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Sec. II D 1. A condition of maximum strain rate is en-
forced, in order to approach the quasistatic compression
curve, as in the preparation process, on setting (see Eqs. 5
and 4) Ia = 0.05. Parameter Ia, on replacing, in its def-
inition, F0 by the force scale aP (in 2D) corresponding
to the confining pressure is analogous to inertia param-
eter I used to assess dynamical effects in steady shear
flow [27, 28], or in the compression of non-cohesive gran-
ular packings [31, 34]. The compression program is pur-
sued until P ∗ reaches the maximum value 13.33, above
which negligible plastic collapse is observed. It should
be noted that, thanks to the high value of stiffness pa-
rameter κ (see Sec. II A), the typical contact deflection
aP/KN at this highest pressure level is still very small.
Then, the effect of decreasing P ∗ back from its highest
value to 0.01 is also simulated. As no large structural
changes occur on decompressing the system, larger pres-
sure jumps can be imposed on unloading.

The simulations are computationally costly, as in some
pressure steps equilibration times of order 100T0 are re-
quired, while the time step for the integration of the equa-

tions of motion is a small fraction of

√

m

KN
=

T0√
κ

. This

limits the size and the number of samples, and the use of
small strain rates. Some tests of statistical significance
and rate dependence of the results will be reported in
Section III.

As to non-cohesive samples, they are compressed from
P/KN = 10−5 to P/KN = 1.334 × 10−3 and back.

3. Computation of elastic moduli

We observe that once samples are equilibrated accord-
ing to the conditions of Section II D 1, then the Coulomb
criterion |T | ≤ µF e

N , as well as the rolling friction con-
dition |ΓR| ≤ µRF e

N are satisfied as strict inequalities in
all contacts. No contact is ready to yield in sliding, and
with RR no contact is ready to yield in rolling either.
This ensures that the response to small enough exter-
nal load increments about a well-equilibrated state will
be elastic and reversible. Elastic moduli express elastic
response, i.e., with no effect of tangential or rotational
sliding and no change in contact network topology and
geometry. To compute elastic moduli, we build the stiff-
ness matrix K of the contact structure (also taking into
account the distant interactions). As recalled in the ap-
pendix of paper I, K is a square matrix of order 3N + 2,
the number of degrees of freedom in the system, contain-
ing stiffness coefficients KN , KT , KR (with RR), and also
−F0/D0 for the rare distant attractive bonds, as well as
the coefficients of the rigidity matrix associated with the
network geometry. K is symmetric, positive definite in
a situation of stable equilibrium (once the free transla-
tional motions of the whole grain assembly as one rigid
body are eliminated). To compute elastic moduli, one
has to solve a linear system of equations of the form

K ·U = F
ext (6)

for the unknown displacement vector U, containing all
particle displacements and rotations, as well as strains
(ǫα)α=1, 2. The right-hand-side of (6) contains external
forces and torques applied to the grains, which are set to
zero, as well as stress increments (∆σα)α=1, 2 (the same

procedure is followed in [35] with 2D disk packings and
in [36] with 3D sphere packings). On setting ∆σ1 = 1,
∆σ2 = 0, or vice-versa, one thus gets two separate mea-
surements of the compliance matrix in our (statistically)
isotropic systems, from which moduli C11 and C12 are de-
duced, and hence the bulk modulus B = (C11 + C12)/2
and the shear modulus G = (C11 − C12)/2.

III. MATERIAL BEHAVIOR UNDER

ISOTROPIC LOAD

A. Compression and pressure cycle with

non-cohesive material

Non-cohesive systems of Table II, initially assembled
on isotropically compressing a granular gas (a method
used for 3D sphere packings in e.g. Refs. [37] and [31]),
are subjected to a compression cycle, in which reduced
pressure κ−1 increases from its initial value P0/KN =
10−5, up to P1/KN = 1.33 × 10−3, and decreases back
to 10−5.

Typical results for the density of systems with and
without RR are shown on Fig. 1. Changes of solid frac-

FIG. 1: (Color online) Φ versus P/KN in pressure cycle with
1400 disk samples with and without RR. Blue dashed lines
correspond to elastic response evaluated with the bulk mod-
ulus from initial and highest pressure states.

tion Φ which increase from its initial value Φ0 to a max-
imum Φ1, and then decreases back, are very small (of
order 10−3, i.e., of order κ−1 for the lowest values of
κ), and nearly reversible (more than 90% of increment
Φ1 − Φ0 is recovered on decompressing), as observed in
Ref. [34] with 3D sphere packings. The predictions of lin-
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ear elasticity about a reference state under pressure Pr,
with solid fraction Φr and bulk modulus Br given by

Φ − Φr = Φr
P − Pr

Br
, (7)

provide a satisfactory approximation of the compression
curve (Fig. 1) if applied with the lowest or the highest
pressure states as reference.

The slight increase of bulk modulus as a function of Φ
is due to the larger density of contacts under higher pres-
sures, as reported in Section III A. One typical feature
of frictional, cohesionless grain packs assembled by direct
compression is the existence of a non-negligible popula-
tion of “rattlers”, i.e., particles that transmit no force (as
observed e.g. in Ref. [31] in 3D, or Ref. [35] in 2D sys-
tems). The fraction of rattlers x0 thus exceeds 20% of the
grains under P0 in systems with RR in the present case,
and reaches 17% without RR. x0 is reduced to 14% under
P/KN = 10−3. The backbone (force-carrying structure)
is the set of non-rattler grains, characterized by coordi-
nation number z∗ = z/(1 − x0) [31]. z∗ increases with
P , as rattlers get captured by the backbone and gaps
separating neighboring grains close in compression.

Changes of x0 and z∗ are reversed on unloading (with
some moderate hysteresis effect). The increase of z∗ as a
function of P , above a minimum value z∗0 , which would
correspond to P = 0, is sometimes described by a power
law [38], as

z∗ = z∗0 + K

(

P

KN

)β

. (8)

Such a fit can be used to describe our data in noncohesive
samples. With RR we obtain z∗0 values close to 3 (z∗0 =
3.031 ± 0.005 for the loading curve, z∗0 = 3.066 ± 0.006
for the unloading one), while β increases from 0.34 ±
0.01 to about 0.47 from the loading (K = 3.5 ± 0.2)
to the unloading branch (K = 7.6 ± 0.9). Without RR,
parameters of (8) are z∗0 = 3.123±0.006, β = 0.42±0.02,
K = 4.9 ± 0.6 under growing P , z∗0 = 3.115 ± 0.004,
β = 0.49±0.02 and K = 7.9±0.8 on unloading. Thus z∗

vary by about 10% in the studied pressure interval. As in
other simulations [31, 39, 40], the minimum coordination
numbers stay above the “critical” value for rigidity, which
is equal to 3 without RR and to 2 with RR [29].

In conclusion, cohesionless systems under isotropic
pressure cycles behave nearly elastically in an isotropic
pressure cycle. As the pressure increases by more than 2
orders of magnitude, while remaining in the rigid limit of
κ ≫ 1, only small and nearly reversible changes in den-
sity and in other internal state variables are observed. (It
should be recalled that this reversibility is only approx-
imate, and that an irreversible decrease of coordination
number is obtained in a compression cycle for systems
initially prepared with a large z [34]). A small level of
RR has little effect on density and material properties.

B. Compressing cohesive systems: general

observations

Once subjected to a pressure cycle, as specified in
Sec II D 2, the material prepared in initially loose states
(type 2 of Table II) behaves as shown in Figs 2, 3 and 4.
As the pressure increases, so does the density, and the
large pores present under low P ∗ gradually disappear.
The maximum packing fraction, Φ

max
= 0.774 ± 0.001

FIG. 2: (Color online) Equilibrium configuration of a sam-
ple of 1400 disks with RR in initial state, under P ∗ = 0.01,
for which Φ = 0.5132. Line thicknesses encode normal force
intensities, red strokes depict compressive forces while tensile
ones are colored in green, and forces equal to zero in blue.

in that case, is quite reproducible. Φ
max

is smaller
than the solid fraction of cohesionless systems (for which
Φ > 0.805, see Fig. 1).

From the shape of Φ(P ∗) curves at growing P ∗, three
regimes can be distinguished. At first, in a range of
reduced pressure P ∗ of the order of the first nonzero
value (10−2), thereafter called regime I, Φ remain ap-
proximately constant: the contact network supports the
growing pressure without rearranging. Then, in a sec-
ond pressure interval which we shall refer to as regime II,
a fast compression is observed. Density variations slow
down in regime III, for P ∗ of order unity, as a maximum
solid fraction Φ

max
is approached. On reducing the pres-

sure, Φ then remains very close to Φ
max

: the compaction
is irreversible.

The consolidation curve is similar to the ones obtained
by numerical simulations in Refs. [22, 24], on impos-
ing uniaxial strains to loose packings prepared by an
anisotropic ballistic aggregation process, although our
study differs from these works in several respects (see
Section I). Refs. [22, 24] focus on regime III, and on dy-
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namical compaction processes, with a shock wave prop-
agating through the sample. The variations of solid

FIG. 3: (Color online) Sample of Fig. 2, with Φ = 0.6305,
equilibrated under P ∗ = 0.178 (different length and force
units).

FIG. 4: (Color online) Same sample as on Figs. 2 and 3,
under the maximum pressure P ∗ = 13.3. Solid fraction is
Φ = 0.7778.

fraction Φ versus P ∗ are shown in Fig. 5, for three sam-
ples of different sizes. Since all three curves are close to
one another, we conclude that the macroscopic behav-
ior is correctly captured in our simulations. Our results
for Φ(P ∗) also resemble experimental curves obtained on
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FIG. 5: Consolidation and decompression curves in 3 samples
(with RR) with different numbers of grains, as indicated.

different materials, such as metallic powders [5], or xero-
graphic toner [6, 41], at least in regimes I and II. Poquil-
lon et al. [5], in particular, in an experimental study of a
metallic powder, explicitly distinguish three compaction
regimes, with the material elastically resisting compres-
sion in regime I, and then some plastic compaction, first
attributed to particle rearrangement, as we observe, and
later to contact plasticity. This latter effect, which is
not included in our model, is likely to explain the dif-
ference under high P ∗ between many experiments and
our results: experimental curves do not appear to ap-
proach an asymptotic density, but witness ongoing com-
paction up to the highest investigated pressure levels.
In the case of metallic powders [5], quite high pressures
are applied (hundreds of MPa), and, as revealed by di-
rect microscopic observations, particles fusing or sinter-
ing gradually form compact solid. For metal particles
with d=10 µm diameter, one can estimate the pressure
F0/d2 corresponding to P ∗ = 1 to be in the 0.1 MPa
range, so that the very large P ∗ values in the compaction
experiment reveal a different physical origin of density
increase. The stiffness parameter κ, is also significantly
smaller in such experiments, with the consequence that
plastic phenomena cannot be ignored (for a definition and
discussion of κ in Hertzian sphere packings, see [34]).
Contact plasticity dominates in the numerical studies
of Martin et al. [13, 14, 15, 16], which focus on very
high densities (beyond the random close packing value),
when the material, due to sintering, turns into a porous
compact. Hence only the early stages of metal powder
compaction, in which densities are quite low [5] corre-
spond to our simulations. In the case of xerographic
toners, as investigated in the experiments reported in
[6, 41, 42], P ∗ = 1, as discussed in [29], rather corre-
spond to P ∼ 10 Pa. Nevertheless, the contact behavior,
as investigated by atomic force microscopy, is likely to
involve plastic effects [43, 44, 45].
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C. Regime I: role of the initial assembling process

As shown in [29] (paper I), and briefly recalled in
Sec. II C, assembling conditions have a considerable in-
fluence on packing density and microstructure under low
P ∗. It should be assessed to what extent those important
differences in the initial configurations affect the plastic
consolidation curve, and whether such a variability tends
to disappear once the material undergoes significant com-
paction. This issue is investigated in this section, in
which the effects of various features of the preparation
process are observed. The role of some micromechanical
parameters is also discussed.

1. Compaction and aggregation in the assembling stage

The most important feature of the assembling process
is the competition between compression and aggregation,
which leads to the difference between systems of type 1
and 2, as defined in [29] and recalled in Section II C. Type
1 samples reach a considerably higher densities from the
beginning, under low P ∗. Fig. 6 compares the subse-
quent consolidation curves. As type 1 systems are ini-
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FIG. 6: Consolidation curve in type 1 and type 2 samples.

tially considerably denser, they are able to support larger
pressures before rearranging, hence they have a wider
regime I plateau. However, the pressure increase eventu-
ally reaches a high enough value to induce further com-
paction, and the consolidation curve is then very close to
that of type 2 systems (the difference is actually smaller
than the sample to sample r.m.s. fluctuation). Within
the accuracy and statistical uncertainty of our simula-
tions, the difference between initial states of types 1 and
2, although large, thus appears to disappear eventually
upon plastically compacting the material.

2. Effects of first compression step and strain rate

In paper I [29] important changes between P ∗ = 0
and P ∗ = 0.01 in type 2 configurations were reported:
this first compression step (in which Φ increases from
ΦI = 0.36 to about 0.5, see Table II) causes the most
dramatic change in the internal state of the system. One
way to limit its effects is to reduce the strain rate, set-
ting parameter Ia to a lower value. As shown on Fig. 7,
displaying the consolidation curve obtained in N = 1400
systems with the usual value Ia = 0.05 and with the
smaller one Ia = 0.01, lower inertial effects in the initial
stage, while the equilibrium configuration at P ∗ = 0.01 is
prepared, result in a lower density and tends to turn the
initial plateau of the Φ(P ∗) curve into a gentle ascending
slope. Later on, as consolidation proceeds, very similar
curves are obtained with both values of maximum dimen-
sionless strain rate Ia (Fig. 7), although the smaller error
bars (representing sample to sample r.m.s. fluctuations)
witness smoother changes and better reproducibility for
the slower compression. It may thus be concluded that
the quasistatic consolidation curve is quite reasonably
approached with the standard compression procedure de-
tailed in Section II D 2, for which Ia = 0.05.
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FIG. 7: Consolidation curve with two different values of Ia.

3. Effect of initial agitation and influence of RR

The initial agitation velocity (or “granular temper-
ature”), as expressed by ratio V0/V ∗ in the aggrega-
tion stage strongly influences the coordination number.
Figs. 8 and 9 show how this initial influence affects the
beginning of consolidation curves and, once again, fades
out later on. Consolidation curves are shown in Fig. 8 for
two different values of V0/V ∗, one tenfold larger than the
standard value 9.5 used in the sample series of Table II,
and the other one smaller by a factor of 100. Fig. 9 shows
the effect of V0 on coordination number. An increase of
rolling resistance (with µR = 0.5 instead of 0.005), simi-
larly to a decrease of V0, stabilizes looser systems under
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FIG. 8: Consolidation curve: effect of initial agitation level
in aggregation stage, and influence of RR parameter.
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FIG. 9: Same as Fig. 8, for coordination number z as a func-
tion of P ∗.

low P ∗, with smaller coordination numbers. However,
such a change in material properties does not only affect
the initial, regime I part of the consolidation curve; it
also alters the macroscopic mechanical behavior at larger
densities: the slope of the consolidation curve is lower for
larger RR.

4. Conclusion on initial states and regime I

Fragile tenuous structures due to aggregation are easily
perturbed and sensitive to many factors in low consoli-
dation states. In general, all perturbations favor some
kind of preconsolidation effect, inducing denser, better
coordinated structures. These effects are reduced in each
one of the following situations: (1) if one waits until large
aggregates form before applying a confining pressure; (2)
if the initial agitation velocity V0 is decreased; (3) for
slower compression processes, especially when the very
first non-vanishing pressure value is imposed; (4) with

larger RR levels. As the material is further compressed
in (nearly) quasistatic conditions, the same macroscopic
behavior is retrieved for given microscopic force laws [i.e.,
in cases (1) to (3)], irrespective of the initial perturba-
tions affecting the beginning of the consolidation process.
Although we did not vary restitution coefficient eN gov-
erning energy dissipation in normal collisions, it is very
likely that if increased, will induce larger inertial effects,
similarly to a faster compression. On the other hand, vis-
cous forces slowing down the motion of grains relatively
to a surrounding fluid (often an important physical effect
in fine powders) could reduce the effects of the initial ag-
itation.

A regime I, with no plastic strain, is also observed in
some experiments. For example, the response in uniaxial
compression (i.e., σ1 > 0, σ2 = σ3 = 0) of loose aggre-
gates of micrometer-sized silica beads assembled by bal-
listic deposition – in that case, an anisotropic process in
which particles are thrown onto a substrate – was studied
by Blum and Schräpler [46]. The deposit, with volume
fraction Φ ≃ 0.15, resists a stress of 500 Pa before plastic
compaction is observed, which corresponds to a “reduced
stress”, defined, in analogy with P ∗, as σ∗

1 ≡ σ1a
2/F0 of

order 10−2. In the simulations of Wolf et al. [24] (in the
case of dynamic, oedometric compression) also some fi-
nite initial pressure increment has to be applied before
plastic collapse is observed.

D. Regimes II and III:

intrinsic consolidation behavior

Once the peculiarities of the sample preparation and
first compression stage are erased, we refer to the mate-
rial evolution, as the intrinsic consolidation behavior. In
order to compare the shape of the consolidation curve to
other observations more directly and quantitatively (and
also for a more fundamental reason to be stated further)
we subsequently describe it with 1/Φ, instead of Φ, as a
function of log P ∗. This conforms to its traditional pre-
sentation in the literature [1, 3, 4, 5, 6], which often uses
the void ratio, e = (1/Φ) − 1.

Once the regime I ends, we obtain linear variations of
e or 1/Φ with log P ∗:

1

Φ
=

1

Φ0
− λ ln

P ∗

P ∗
0

(9)

where P ∗
0 and the corresponding solid fraction Φ0 are the

coordinates of the point where the system behavior joins
the intrinsic consolidation curve in the available samples.
The parameter λ, known as the plasticity index, is ob-
served in our case to decrease as a function of µR (Fig. 8).
We have also observed that the value of this index is not
affected by the friction coefficient: in that sense, µ just
displaces the whole consolidation curve vertically [47].

As the maximum solid fraction Φ
max

is approached,
Eq. (9) is no longer valid, and the asymptotic regime is
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better described with a power law, as in [24]:

1

Φ
=

1

Φ
max

+
A

(P ∗)α
, (10)

with a constant A and an exponent α (close to 1 in our
results). In order to describe the consolidation curve in
regimes II and III with a unique functional form, we use
the following relation:

1

Φ
=

1

Φ0
− λ ln

{

P ∗

P ∗
0

[

1 − exp

(

−
[

P ∗
1

P ∗

]α)]1/α
}

, (11)

which introduces additional parameters P ∗
1 and α, and

crosses over from Eq. (9), for P ∗ ≪ P ∗
1 , to Eq. (10),

for P ∗ ≫ P ∗
1 . Constant A in (10) is set to λ/(2α) on

using (11) for large P ∗ values, and P ∗
1 is directly related

to Φ
max

:

ln
P ∗

1

P ∗
0

=
1

Φ0
− 1

Φ
max

.

Fig. 10 summarizes the definition and the role of all pa-
rameters of relation (11). A fit of our data to relation (11)

Region III
1/

max

Log(P
1
)Log(P

0
)

1/

Log(P)

1/
0

Region I Region II

Region I:    1/ 0 ~ function(preparation) 
Region II:   1/ 0 -  Log(P/P0)

Region III:  1/ max + const (P/P1)
 - 

FIG. 10: Schematic view of intrinsic consolidation curve with
regimes II and III, and role of parameters introduced in
Eq. (11).

is shown in Fig. 11. It should be noted that even a
small level of rolling resistance changes the plasticity in-
dex. Values of parameters are listed in Table III, where
we also included the fit parameters for the sample with
µR/a = 0.5 corresponding to the data of Figs. 8 and 9.

As the consolidation curve in region II, defined by pa-
rameters λ and P ∗

0 , is observed not to depend on initial
conditions, our simulations support the following inter-
pretation: sooner or later in the process of quasistatic
isotropic compression, the system joins, in the P ∗ − Φ
plane, a certain locus, corresponding to compressive plas-
tic yielding. This locus, which acts as an attractor in
isotropic compression, is a straight line on using coor-
dinates lnP ∗ and 1/Φ. The value of P ∗

0 simply signals
where, depending on the preparation process, the yield
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FIG. 11: (Color online) Consolidation data and fit to Eq. (11),
for systems with and without (small) RR.

µR/a P ∗
0 Φ0 λ Φmax α

0 0.0237 0.469 0.349 ± 0.019 0.7808 0.91 ± 0.10

0.005 0.0316 0.515 0.194 ± 0.004 0.7745 1.08 ± 0.16

0.5 0.0178 0.382 0.25 ± 0.01 0.724 0.86 ± 0.24

TABLE III: Values of parameters λ, Φmax and α used to fit
the consolidation curve in systems of Table II, and in a sample
with larger RR, with Eq. (11). Correspondingly, P ∗

1 values are
0.271 ± 0.033 without RR, 0.900 ± 0.064 for µR/a = 0.005,
and 2.6 ± 0.4 for µR/a = 0.5.

locus is reached. Table I gives the values of 5 parameters,
though one is redundant for the determination of this in-
trinsic curve (indeed Φ

max
is obtained as a result of the

fitting).

Consequently, in a system prepared at a lower density,
it should be possible to observe a wider interval of the in-
trinsic consolidation line. We could explicitly check this
property in the case of one sample with N = 5600, for
which the first nonzero equilibrium confining pressure in
the loading history is equal to 2 × 10−3 instead of 10−2.
This sample appears to have reached regime II sooner
(around P ∗

0 = 10−2, or possibly below). The correspond-
ing data points lie on the intrinsic consolidation curve
(or, at least, within a distance smaller than error bars)
identified on fitting the data of the main sample series,
which had a larger first compression step (to P ∗ = 10−2)
and a larger value of P ∗

0 (about 3 × 10−2). The yield
locus can thus be extrapolated to lower pressures and
densities, with the same plasticity index λ. On assem-
bling cohesive aggregates with arbitrarily low densities,
and on stabilizing them under very low initial pressures,
it is conceivable (although increasingly difficult in nu-
merical simulation because of the computational cost, as
well as in experiments, because of the system sensitivity
to perturbations) to create equilibrium structures with
smaller and smaller densities and to explore an increas-
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FIG. 12: Comparison of data obtained on the one low P ∗
0

sample (open triangles), and Eq. (9) (continuous line) with
the parameters of Table III, as deduced from a fit of the data
(black triangles) from the more systematic simulation series
with larger P ∗

0 .

ingly larger interval of the intrinsic consolidation curve
in the limit of P ∗

0 → 0. The corresponding solid fraction
Φ0 would then also tend to zero. This limit is compatible
with the functional form used in Eq. (9), while the use of
the alternative form [6, 42],

Φ − Φ0 = ν ln
P ∗

P ∗
0

,

would lead to contradictions in the limit of P ∗
0 → 0.

E. Unloading behavior

On the Φ versus P ∗ curves we have been showing so
far, that the unloading branch, down to P ∗ = 0.01, shows
very little density change. This property is actually sat-
isfied on decreasing the pressure from other configura-
tions in the compression process. Thus Fig. 13 shows
that, if P ∗ is reduced to the initial level 0.01 from differ-
ent states on the consolidation curve, density changes are
hardly noticeable, and Φ stays very close to the maximum
value reached at the largest imposed pressure P ∗

c in the
past. Furthermore, it is checked (in the case of sequence
4, drawn with open circles in Fig. 13) that the material
might be reloaded, with no notable density change until
pressure P ∗

c is reached. P ∗
c is known in soil mechanics as

the consolidation pressure, and a material in a state such
that P ∗ < P ∗

c is said to be overconsolidated. Upon in-
creasing the pressure beyond the consolidation value P ∗

c ,
the density irreversibly increases, and this compaction
is described by the same curve as in the absence of in-
termediate pressure cycle: the recompression curve from
C’ retraces back the same evolution from D to E. Thus
the material behavior conforms to the plasticity of clays
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FIG. 13: (Color online) Effect of different (isotropic) unload-
ing/reloading histories on solid fraction. The direct consoli-
dation curve with decompression from the highest pressure,
as shown in previous sections, is ABCDEE’ (path 4). On
unloading along lines BB’, CC’, DD’, the system does not
rearrange. Such paths are reversible and do not alter the ma-
terial state, since paths 4 (small black dots) and 5 (large, open
pink circles) superimpose in P ∗, Φ plane.

in isotropic compression [1]. All decompressing paths in
the P ∗, Φ plane, along which P ∗ < P ∗

c , are reversible.
More precisely, they are similar to the pressure cycles ap-
plied to cohesionless systems (Fig. 1), and they do not
depart much from the linear elastic response, as shown
on Fig. 14.

FIG. 14: (Color online) Analog of Fig. 1, for the unloading
behavior of a sample with RR from P ∗ = 13.3 to P ∗ = 0.01.
Dotted lines correspond to Eq. (7), applied with highest pres-
sure state and with final state (P ∗ = 0.01) as references.

For the largest P ∗ values, adhesion forces are dom-
inated by the confining stress and are nearly negligi-
ble: on setting F0 to zero in equilibrated systems under
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P ∗ > 10, we could check that the granular assembly finds
a new equilibrium configuration with very small displace-
ments and hardly any change in the contact network.
The system, then rendered cohesionless, can be unloaded
to small pressures, without notable plastic compression.
This results in a configuration of packing fraction close
to Φ

max
, and hence lower than in the systems assembled

without cohesion. This suggests a method to prepare
relatively loose, cohesionless configurations in the labo-
ratory, as follows. First, one may compress a wet gran-
ular packing, in which adhesion is caused by capillary
forces in intergranular menisci (so that F0 ∼ γa, γ de-
noting the surface tension of the wetting fluid), up to
some pressure P much larger than F0/a2 (in 3D). Then,
cohesive forces can be suppressed, either on evaporating
the liquid, or on saturating the pores with it. The pres-
sure on the resulting cohesionless granular pack might
then be decreased or increased with essentially elastic
density changes (as shown in Section III A). The final
configurations are then looser than the ones obtained on
directly assembling and compressing cohesionless grains.
Such an assembling method, known as moist tamping, is
commonly used in soil mechanics laboratories to prepare
sand samples in loose configurations [48].

IV. GEOMETRIC CHARACTERIZATION OF

PRESSURE DEPENDENT STRUCTURES

The gradual collapse of the initially open structure of
loose systems, as visually apparent on Figs. 2, 3, and 4
and witnessed by the consolidation curve studied in Sec-
tion III, can be characterized by the density correlation
indicators introduced in paper I.

The initial aggregation process was shown in paper
I to result in a fractal structure of the density field
over intermediate scales, between the grain diameter and
some characteristic correlation length ξ. In the presence
of rolling resistance, even with the small value 0.005a
adopted for µR, the observed fractal dimension is com-
patible with the result of the ballistic aggregation model,
dF ≃ 1.55. The ballistic aggregation model is purely
geometric, and corresponds to the irreversible bonding
of particles or aggregates in each collision, with contacts
that are rigid in translation and rotation. This limit case,
for which the coordination number is equal to 2, is ap-
proached under low pressure [29] with large RR or small
V0/V ∗. Better coordinated systems obtained with small
RR and/or larger V0/V ∗ have the same fractal dimen-
sion. Systems with no RR, on the other hand, are closer
to dense objets with dF ≃ 1.9 [29].

The limitation of the fractal behavior by an upper
length scale ξ is a well-known geometric necessity in a
large system with finite particle packing fraction Φ, be-
cause (in 2D) a fractal structure of dimension dF < 2
within a square cell of edge length L exhibits an appar-
ent density proportional to LdF −2. In physically relevant
circumstances, systems with a finite packing fraction Φ

and a fractal structure over some distance range have a
finite correlation length ξ above which the average value
of Φ is observed. One then has Φ ∝ ξdF −2 or

ξ ∝ Φ−1/(2−dF ), (12)

the prefactor being specific to the particular system stud-
ied. Systems with size L ≫ ξ can then be regarded as
homogeneous packings of fractal “blobs” of (linear) size ξ.
Such ideas are quite generally used, and were applied to
semi-dilute polymer solutions [49], to silica [50] or poly-
meric [51] gels, in computer simulations of aggregation
models [52], and to various complex, supramolecular ob-
jects like fat crystals [53] or asphaltene aggregates [54].

One may expect that the density increase caused by the
collapse, under growing load, of the tenuous structures
formed by cohesive packings corresponds to a decrease
in the fractal blob size ξ, while dimension dF still de-
scribes the scaling of density correlation at smaller scale.
One should then observe the scaling predicted in (12).
This implicitly assumes that the small scale structure of
the packing is not affected by the compaction process,
which essentially breaks long, thin junctions and fills the
largest pores. A clue in favor of such a scenario is pro-
vided by the results of Sec. III C, which suggest that the
same structure is obtained if the material is directly pre-
pared with some value of Φ, or if it is assembled first in
a looser state and then isotropically compressed, up to
solid fraction Φ.

To compute dF and ξ, we measure the “scattering in-
tensity” I(k), i.e. the Fourier transform of the density
autocorrelation function, as we briefly recall now (see pa-
per I for more details). Density field χ(r), taking values
1 within particles and 0 outside, is first discretized on a
regular mesh, then Fourier transformed, thereby obtain-
ing χ̂(k). We then evaluate I(k) = |χ̂(k)|2 /A, A being
the cell surface area. Invoking isotropy, it is a function
of k = ||k|| alone. I(k) should then vary proportionally
to k−dF for a ≪ 2π/k ≪ ξ, and reach some plateau for
k < 2π/ξ.

This approach was used in paper I, and yielded the
same fractal dimension, dF ≃ 1.52 in systems with RR,
under P ∗ = 0 (solid fraction ΦI = 0.36) and Φ = 0.01
(solid fraction Φ0 = 0.524±0.008), while ξ decreased from
ξI = 9.3 ± 0.4 to ξ0 = 5.1 ± 0.2. It should be noted that
these values are roughly compatible with relation (12) (as
(ξI/ξ0)

2−dF = 1.4± 0.1 is close to Φ0/ΦI = 1.46± 0.02).
Fig. 15 shows the scattering function for similar con-

solidation states shown in Fig 2 (P ∗ = 0.01), in Fig. 3
(P ∗ = 0.178), and for P ∗ = 1. These results are averaged
over the four largest samples (with RR) of Table II. In
spite of the error bars, I(k) exhibits the expected form, it
is approximately constant below some crossover wavevec-
tor 2π/ξ which increases with Φ, and then decreases, with
slope −dF on a logarithmic plot. Pressure P ∗ = 0.178 is
the largest one for which this latter feature is clearly ob-
served, and I(k) data corresponding to smaller pressures
are intermediate between P ∗ = 0.01 and P ∗ = 0.178
curves. The arrows on the plot signal the identified val-
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FIG. 15: Scattering intensity per unit area versus wave vector
k. Results are averaged over the four largest samples (with
RR) of Table II.

ues of wavevector 2π/ξ, which values have been estimated
by means of the fit function for I(k) presented in paper I.
The curve corresponding to P ∗ = 1 – a flat, low scatter-
ing signal – is typical of dense, homogeneous media with
no fractal range for density correlations.

In view of the small value of ξ reached in the loos-
est configurations (those with P ∗ = 0 studied in paper
I), relation (12) is difficult to test from density correla-
tion data. Another characteristic length scale for density
inhomogeneities, used in paper I, is the (mass) averaged
radius of gyration of pores. It may provide an alternative
definition of a blob size ξ′, proportional to ξ. We observed
ξ′ ≃ ξ at P ∗ = 0.01, In fact, this equality works well
under very low consolidations. However, under higher
confining pressures we have observed that the definition
of ξ′ gives lower values than ξ.

Figure 16 shows this blob size ξ′ as a function of pres-
sure.

Despite the restricted fractal range, our observations
therefore confirm the validity of the “fractal blob” model,
with a constant dF and a correlation length ξ decreas-
ing as consolidation proceeds, until a final, homogeneous
structure similar to that of cohesionless packings (albeit
somewhat looser) is obtained. Other values of dF are
likely to be observed with other assembling processes
(such as e.g., diffusion-limited cluster aggregation).

Values of ξ and dF do not, however, entirely determine
the mechanical properties of the system. The response
of an aggregate to some mechanical perturbation should
depend on its connectivity which, as explicitly shown in
paper I, is independent of its fractal dimension (systems
with different µR and/or prepared with different values of
V0/V ∗ have the same dF , but very different coordination
numbers – see also Section III C 3).
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FIG. 16: Average radius of gyration of pores, ξ′, versus P ∗.

Results concerning blob sizes in systems without RR,
for which dF ≃ 1.9 [29], are similar. Different stress
states and mechanical conditions might also produce
other types of loose structures. As an example, in
the slow steady state shear flow of a very similar ma-
terial simulated in [28] under normal reduced pressure
P ∗ = 1.25×10−2 and shear stress σ12 ≃ 1.5P anisotropic
structures with Φ ≃ 0.6 were observed.

V. PROPERTIES OF EQUILIBRIUM FORCE

NETWORKS

A. Equilibrium forces

1. Average normal force

Formula (2), as explained in Ref. [11] and in paper I,
leads to a simple relation between the average normal
force 〈FN 〉 in equilibrium, pressure P , solid fraction Φ
and coordination number z:

〈FN 〉 =
π〈d2〉P
zΦ〈d〉 =

7πaP

9zΦ
. (13)

We observed formula (13) (involving the first and sec-
ond moments of the diameter distribution) to be accurate
in all simulated states despite some approximations in-
volved [29]. However, as stressed in paper I, relation (13)
fails to estimate the typical contact forces in the network
under low P ∗. Those reach values of order F0 [12]. Nor-
mal forces of both signs (as visible on Fig 2 and Fig 3)
coexist and, to a large extent, compensate under low P ∗.
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2. Coordination numbers

In initial low-pressure states, the coordination number,
z, as shown on Fig. 17, is nearly equally shared between
the contribution z+ of compressive bonds and z− of ten-
sile bonds. A small population (z0 per grain) of contacts
carry forces equal to zero (within the numerical toler-
ance for force equilibrium). Those contacts, in which the
normal deflection h takes the equilibrium value h0 for iso-
lated pairs [29], tend to be more numerous in the absence
of applied stress, if the aggregation process avoids the
building of hyperstatic (overbraced) structures. Their
number is quickly reduced once aggregates made under
P = 0 are subjected to some external stress and start
rearranging.

The population of contacts loaded in compression in-
creases along the consolidation curve until it dominates
at large P ∗. Upon unloading, the initial proportion of
tensile forces is first retrieved, and z− is eventually, un-
der low P ∗, larger than z+.

FIG. 17: Coordination numbers versus P ∗ in compression
cycle (a) without and (b) with RR. Both plots display, from
top to bottom, z, z+, z−, and z0. The error bars (not shown)
are about the size of symbols. Arrows close to the curves
indicate the compression branch of the pressure cycle.

The total coordination number increases very little in
the pressure cycle. Our observations thus contradict
some statements in the literature [55, 56] relating z to
Φ (even in cohesionless systems, Φ and z can vary inde-
pendently [31]). In the course of plastic collapse of loose
structures, as the solid fraction increases by more than
50%, we observe the number of contacts to increase by
5% in systems without RR, and by 12% with RR. Such a
small variation of z in plastic compression contrasts with
the comparatively very fast change of z in the quasielas-
tic compression of cohesionless packings, as observed in
Section III A, in which z increases by more than 10% for
minute density increases.

As to the number of distant attractive interactions, i.e.
pairs of neighboring grains separated by a gap smaller
than D0 (contributing to z−), it is initially very low (typ-
ically 10 in a sample of 5600 particles), and then increases
with P ∗ but remains below 2% of the total number of in-
teractions.

3. Distribution of forces

Normal force distributions are (roughly) symmetric
about zero in initial states under low P ∗ [12], as shown
in Fig. 18. Under low P ∗, tangential forces of order F0

are also frequently observed [29], and the angle between
the total contact force F and the normal unit vector n is
not constrained by the Coulomb condition, which applies
to F + F0n rather than to F. This explains the typi-
cal patterns of self-balanced contact forces in small grain
clusters, where compressive and tensile forces of order F0

compensate locally, as might be observed on Fig. 2. The
Coulomb condition applying to F, on the other hand, fa-
vors alignments and “force chains”. Self-stressed small
clusters form spontaneously when the disks aggregate,
except for large RR and/or small V0/V ∗ [29].

As consolidation proceeds, under growing P ∗, normal
force distributions develop a wider positive (compressive)
side (Fig. 18), while the finite value for N = −F0 is
characteristic of the failure of bonds in traction. Forces
eventually scale proportionally to P ∗ at large P ∗, like in
cohesionless systems [34, 35], as shown by Fig. 19. When
P ∗ reaches values of several unities, the force distribution
is similar to that of cohesionless packings, with an addi-
tional dwindling population of tensile contacts (Fig. 17).
Force distributions in systems with RR are quite similar
to those shown in Figs. 18 and 19.

4. Forces in dense, overconsolidated states

Upon decompressing to low pressure levels, some larger
compressive forces (FN/F0 reaching 2 or 3) survive and
the distribution is not symmetric (Fig. 18). Such effects
of overconsolidation on contact forces are considerably
larger than in cohesionless granular materials [34]. As in
the case of cohesionless systems [34], we observed that



15

FIG. 18: (Color online) Probability distribution function
P (N) of static normal force in contacts, versus N/F0, in sys-
tems with no RR, for P ∗ = 0.01 (black), P ∗ = 0.178 (red),
P ∗ = 1 (blue), P ∗ = 2.37 (green). Distribution widens as
pressure increases as indicated by the arrow. P (N) is also
shown for P ∗ = 0.01 for the overconsolidated state (OCS) at
the end of the pressure cycle (pink dashed line).

FIG. 19: (Color online) Positive wing of probability distri-
bution function of rescaled normal forces, N/P ∗, in systems
with no RR, under P ∗ = 2.37 (black crosses), P ∗ = 5.62 (red
square dots), P ∗ = 13.3 (blue triangles).

the decompression process tends to be affected by dy-
namical effects if it is too fast, and the overconsolida-
tion effects on force distributions tend to be erased if too
many contacts open in transient stages. The results per-
taining to overconsolidated states shown in Figs. 18, 17
and 20 were obtained on simply reversing the stepwise
compression program with the parameters indicated in
Section II D 2 (i.e. with as many steps in decompression
as in compression).

This final force distribution is similar to the one re-
ported by Richefeu et al. [12] in simulations of packings of
wet spherical beads, in which cohesion is due to capillary
forces. After assembling the packing under a finite pres-
sure and then decompressing to P = 0, these authors ob-

FIG. 20: (Color online) Dense overconsolidated state of a
sample under P ∗ = 0.01 (with RR) at the end of the pressure
cycle. Color code as on Fig. 2, with distant attractive forces
(for which 0 < h < D0) in blue.

serve that the particles tend to form small domains with
only compressive or only tensile forces. Fig. 20 reveals
quite similar patterns in overconsolidated states under
P ∗ = 0.01, with some predominance of the regions under
tension, while compressive forces tend to organize more
often in strong force chains. Tensile contacts are more
numerous than compressive ones after the pressure cycle
(Fig. 17).

To what extent overconsolidation effects on inner
states influence the mechanical properties of cohesive
granular materials (e.g., their response to shear stress)
would deserve to be investigated.

B. Elastic moduli

Elastic moduli are used in experiments [57] and com-
puter simulations [36, 58] to express the response of gran-
ular materials to small load increments. Their measure-
ment, or that of wave velocities, is a non-destructive
probe of the packing structure. Thus, in the case of co-
hesionless bead packings, the simulations of [36] showed
that the moduli are sensitive to coordination number,
which can vary independently of the solid fraction, and
escapes direct observations [31].

In the present case of possibly loose and poorly con-
nected cohesive systems, those moduli approximately de-
scribe the parts of the compression curves with no pack-
ing rearrangement (Fig. 14), like in cohesionless systems
(Fig. 1).
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1. Elastic moduli of cohesionless packings

We first quickly describe the variations of elastic mod-
uli in the cohesionless systems of Table II, and how they
can be related to their microstructural or micromechani-
cal parameters. Fig. 21 is a plot of bulk and shear moduli
versus pressure. Moduli should be proportional to con-

FIG. 21: (Color online) Bulk and shear moduli of cohesionless
systems (a) without and (b) with RR, versus pressure in com-
pression cycle. Voigt and Reuss bounds are shown as (red)
triangles and (blue) round dots, respectively. Asterisks on
plot (b) show values of B obtained on taking a larger rolling
stiffness, KR = 10−2KNa2 instead of KR = 10−4KNa2.

tact stiffness KN with no RR (as we set KT = KN).
Unlike with Hertzian contacts, local stiffness constants
KN , KT do not depend on forces. Consequently, the in-
crease of moduli with pressure is moderate. The results
of Fig. 21(a) are typical of cohesionless granular systems
with small coordination number [35, 36, 40]. The evolu-
tion of bulk modulus is correctly described by the simple
estimation formulae recalled below in Sec. VB 2, and it is
explained by the increase of coordination number. Shear
modulus G, on the other hand, is somewhat anomalously
low, witnessing the propensity of a rather poorly con-
nected contact network (z∗ ≃ 3.1 under P/KN = 10−5,
without RR) to rearrange under small stress increments,

if those are not proportional to the preexisting stresses.
The evolution of elastic moduli in the unloading part of

the pressure cycle (not shown on the figures, for clarity)
very nearly reverses the effect of the first compression.

Fig. 21(b) shows that systems with small RR have
similar elastic properties, although slightly influenced by
rolling stiffness KR.

2. Simple estimation formulae

Bulk and shear moduli are traditionally estimated by
the Voigt or mean field formula [37, 59], which give up-
per bounds [36] BV , GV in terms of contact stiffness
constants and coordination number z, based on the as-
sumption that particle centers move like points of a ho-
mogeneously strained continuum. In the present case one
has:

BV =
zΦ

[

〈d2〉 + 〈d〉2
]

KN

4π〈d2〉 =
55zΦKN

112π

GV =
KN + KT

2KN
BV

(14)

On deriving (14), similar approximations are used as
for (13). The formulae are identical for systems with
or without RR, and since we chose KT = KN one has
also GV = BV .

For the bulk modulus, one may also write down a lower
bound BR, the Reuss estimate [36], based on the eval-
uation of the elastic energy with trial forces in a load
increment. The formula for BR involves moments of the
contact force distribution, specifically the following ratio:

Z̃2 =
〈F 2

N + KN

KT
F 2

T + KN

KR
Γ2〉

〈FN 〉2 , (15)

in which averages are taken over all contacts carrying
static normal force FN , tangential force FT and rolling
moment Γ (to be set to zero in the absence of RR). Us-
ing (13), one has

BR =
zΦ〈d〉2KN

2π〈d2〉Z̃2

=
27zΦKN

56πZ̃2

. (16)

This approximation of the bulk modulus becomes exact
when the force increments caused by an isotropic pressure
increase are proportional to the preexisting forces [36],
and hence it tends to be accurate in systems with small
degrees of force indeterminacy. The ratio of upper to
lower bounds of the interval for B given by Eqs. (14)

and (16) is 55Z̃2/54, and the bulk modulus is therefore
especially well predicted when the force distribution is
not too wide [36], and ratio Z̃2 stays close to 1. Thus bulk
moduli are rather successfully estimated (see Fig. 21)
by BR or BV in the cohesionless case of Sections III A
and VB 1. Force distributions have often been studied
in cohesionless systems, in which they are strongly con-
strained by the no-tension condition. Z̃2 cannot reach
large values (it is smaller than 1.35 in the present case).
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3. Elastic moduli in cohesive packings

Elastic moduli as functions of P ∗ during consolidation
of cohesive systems are plotted in Fig. 22. Note the log-

FIG. 22: (Color online) Bulk and shear moduli of cohesive
systems (a) without and (b) with RR, versus (growing) pres-
sure. Same symbols and colors as in Fig. 21.

arithmic scale used for elastic moduli (unlike in Fig. 21).
Both bulk and shear moduli are very low at small P ∗,
which cannot be simply explained by the factor zΦ ap-
pearing in simple estimates (14) and (16) (z values, see
Fig. 17, are similar to those of cohesionless systems while
Φ is twice as small at most). Those anomalously low
moduli witness the propensity of the system to rearrange
under isotropic as well as under deviatoric stress incre-

ments.
On decompressing, the moduli (not shown in Fig. 22)

stay close to the value reached at the consolidation pres-
sure.

Moduli in samples with RR (Fig. 22b) have very similar
values as in the absence of RR, although this may be
partly coincidental, since they are quite sensitive to the
value of rolling stiffness KR.

The mean field estimates BV , GV are both too large
by factors of 30 to 50 in loose states. By (13) the average
normal force 〈FN 〉 vanishes as P ∗ tends to zero, while the

second moment is of order F 2
0 . Moreover, as tangential

forces FT are not limited by µFN (but by µ(FN + F0)
instead), their contribution to the elastic energy is im-
portant (and so is that of rolling moments in systems

with RR). Hence coefficients Z̃2 reach values of order 102

or 103 in low pressure states, and the ratio BV /BR is

very large, unlike in cohesionless systems for which Z̃2 is
of order 1. The Reuss bound for B is first (in regime I)
too small by a large factor. Then, it seems to capture
the evolution of the bulk modulus in regimes II and III
of the consolidation behavior: it increases nearly parallel
to the evolution of B. Ratio B/BR is reduced to ∼ 2
for P ∗ of order 0.1, and slightly decreases as compression
proceeds. It should be recalled, though, that the Reuss
formula essentially relates the bulk modulus to another
unknown quantity, Z̃2.

4. Elastic moduli and force indeterminacy

FIG. 23: (Color online) Elastic moduli (no RR) divided by
Φ(1 − x0), versus z∗. We recall that z∗ is the coordination
number without rattlers. Data with error bars correspond to
G in cohesionless systems, for which the dashed line is a linear
fit. G and B in the cohesive material are respectively shown
as (red) crosses and asterisks.

The low value of the shear modulus in poorly coordi-
nated cohesionless packings under isotropic stresses (see
Fig. 21) has been observed [36, 40] and argued [60] to
stem from its tendency to vary proportionally to the
degree of force indeterminacy per unit volume (or area
in 2D), as the latter approaches zero. The force inde-
terminacy per unit area without RR is proportional to
(z∗ − 3)Φ(1 − x0), and thus one should have

G∗ ≡ G

Φ(1 − x0)
∝ z∗ − 3. (17)

Fig. 23 shows that our cohesionless packings abide by this
law, as the linear variation of G∗ with z∗ would predict,
within uncertainties, its vanishing for z∗ = 3. However,
it is also obvious from Fig. 23 that the anomalous behav-
ior of both moduli in loose, cohesive grain assemblies are



18

not simply explained by the low coordination number,
except perhaps for the shear moduli of the densest con-
figurations (rightmost data points), which, after sufficient
plastic compaction, become similar to cohesionless pack-
ings. The coordination number, when it is close enough
to 3 (without RR) is characteristic of “barely rigid” con-
tact networks, but it is a global, average quantity and
does not account for the specific heterogeneities of loose
cohesive packings.

5. Response to a small pressure increment

We now briefly discuss the response of contact forces
in a small pressure increment ∆P probing the elastic be-
havior. Corresponding contact force increments are vi-
sualized in Fig. 24. Very strong compressive force chains

FIG. 24: (Color online) Distribution of force increments asso-
ciated with elastic response in isotropic compression of system
of Fig. 2. Contacts are ordered by decreasing contribution to
elastic energy, and only the first 46% contact forces corre-
sponding to 95% of the energy are drawn (colors as on Figs. 2
to 4).

appear, while large parts of the system carry very small
forces. On sorting the contacts by decreasing contribu-
tion to the elastic energy of the force increments balanc-
ing ∆P , less than half of them (46%) contribute 95% of
the energy. This proportion increases to about 65% in
the densest configurations, to be compared to 68–70% in
cohesionless systems. In fact, the configuration of Fig. 24,
in a system with RR, has quite a few dead ends, i. e. sets
of grains that are connected to the rest of the structure
but do not belong to any percolating loop for force (or
current) transport through the whole periodic cell. With

RR, the force-carrying structure coincides with the back-
bone in the sense of ordinary (scalar) percolation theory.
The force patterns of Fig. 24 differ from those of Fig. 2,
in which the equilibrium forces, prior to the application
of ∆P are shown: some regions, especially the isolated,
self-stressed clusters where compressions and tensions of
order F0 equilibrate, carry large forces but are bypassed
in the transmission of the pressure increment ∆P . Dead
ends may contain “islands” of self-balanced forces result-
ing from the aggregation process, as a direct visual in-
spection of Fig. 2 reveals, but they do not participate
in the transmission of stress increments and they do not
contribute to elastic moduli.

In the course of the consolidation process, the re-
peated application of pressure increments clearly favors
force chains over localized self-stressed clusters, and the
force pattern adapts to the external pressure. This cor-
responds to a closer similarity between the spatial distri-
bution of equilibrium forces under pressure P on the one
hand, and that of force increments caused by a small com-
pression step ∆P , on the other hand. Hence the better
performance of the Reuss approximation scheme relating
the bulk modulus to the force distribution – although
both quantities are difficult to predict.

6. Scaling with fractal blob size

The inability of the approaches used in cohesionless
systems to predict the elastic moduli of loose cohesive
packings can be attributed to their ignoring the peculiar
network geometry, which is the origin of the strong force
concentration shown in Fig. 24.

In view of the results of Section IV, it is tempting to
relate the elastic moduli to the variations of blob size ξ.
In scaling arguments about the density, the system can
be regarded as a densely packed assembly of somewhat
fuzzy ξ-sized objects, the blobs. To discuss elastic prop-
erties, the system is better represented as a network of
“superbonds” of length ξ, or effective beams (with which
the elongated structures carrying stress in Fig. 24 could
be identified). In such a network, the dominant defor-
mation mode is beam bending. The transverse deflection
δ in bending of a beam of length ξ, caused by a force
F , is proportional to ξ3F . Macroscopically, strains are
of order ǫ = δ/ξ, while F corresponds to stress σ by
F ∝ σξ in 2D. Consequently, the scaling of elastic mod-
uli σ/ǫ with length ξ should involve a factor ξ−3. (Some
possible corrections to exponent 3 are possible, although
the appropriate value in, e.g., the case of percolation net-
works of beams is very close to 3 [61, 62]). As ξ varies by
a factor of 3 or 4 within the scaling range (see Fig. 16),
relation B ∝ ξ−3 would predict an increase of moduli by
a factor of a few tens.

Although this can be regarded as a fair estimate (see
Fig. 22), it should be admitted that the fractal range is
very likely too restricted for such scaling laws to apply
without important corrections. With sufficiently large
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rolling resistance, the “beams” can be reduced to single
particle chains. Their bending stiffness is then simpler to
analyze. Such cases are discussed below in Section VC.

C. The role of rolling resistance

As reported in the previous paragraphs, the small level
of rolling resistance used in most simulations reported
here (µR = 5 · 10−3) has no notable effect on force dis-
tributions or moduli. Yet, such a small RR significantly
affects plasticity index λ (see Table III) and fractal di-
mension dF , which changes from 1.9 without RR to about
1.5 (Section IV).

Rolling resistance favors force transmission along thin
strands of particles, each of them in contact with two
neighbors. In order to understand the mechanisms by
which RR affects macroscopic behavior and geometry,
we investigated the effects of a large RR in one 1400-
disk configurations. While single particle chains are eas-

FIG. 25: (Color online) Configuration of loose sample with
large RR under P ∗ = 0.01.

ily disrupted if µR/a is small, they become much more
frequent for large rolling resistance, as shown in Fig. 25
(corresponding to rolling friction µR/a = 0.5). Thus co-
ordination numbers may approach 2 (see Fig. 9). The
density and the length of such particle chains is also wit-
nessed by the proportion x22 of the contacts that join
2-coordinated disks. Such contacts are impossible in an
equilibrium structure without RR. x22 reaches 12% in
large RR systems under low pressure (for Φ in the 0.4
to 0.5 range), down to 1-2% in the main sample series of
Table II with small RR (µR/ = 0.05). Thin, rigid strands
of 2-coordinated disks might, however, be decorated by
a side arm acting as a dead end for force transmission

(many examples can be seen in Fig. 25),and their me-
chanical role is thus only partially captured on simply
recording fraction x22. In the limit of z → 2, which is
approached under low pressure for large RR and/or low
velocity V0 in the assembling stage, the force network has
a vanishing number of loops and approaches isostaticity,
as discussed in paper I [29]. Consequently, as opposed to
systems with small or no RR, force values are narrowly
distributed for P ∗ ≪ 1. For P ∗ of order 10−2, normal
forces above F0/5 or below −F0/10 are extremely scarce
(with probability distribution function P (N) in the 10−3

range). Furthermore, with P ∗ ∼ 1, while compressive
normal forces of order F0 are frequently observed, P (N)
remains below 10−2 for N → −F0. This contrasts with
the results shown on Fig. 18: the proportion of contacts
on the verge of tensile rupture is much smaller in systems
with large rolling resistance.

The prevalence of particle strands as force-
transmitting structures should influence elastic prop-
erties. As noted in Section VB 6, linear structures
tend to deform like bending beams, with a compliance
proportional to the third power of their length. In the
case of single linear strands, connections with contact
properties are easily made more explicit. Consider, e.g.,
a straight, linear chain of n identical disks of radius R,
with n − 1 contacts characterized by stiffness constants
KN , KT and KR. Then, in the elastic regime, all
intermediate disks can be suppressed and the interaction
between the extreme ones, numbers 1 and n along the
chain, can be replaced by an effective one between
two disks of radius (n − 1)R, and effective compliances

1/K
(n)
N , 1/K

(n)
T , and 1/K

(n)
R for normal, tangential and

rolling relative motion, given by:







































1

K
(n)
N

=
n − 1

KN

1

K
(n)
T

=
n − 1

KT
+

(n − 1)(4n2 − 11n + 6)R2

3KR

1

K
(n)
R

=
n − 1

KR

(18)

For large n the tangential compliance is much larger than
the longitudinal and rolling ones, so that long chains be-
have as beams, which essentially deform in bending. The
local bending stiffness EI of the beam (i.e. the product
of the material Young modulus by the moment of inertia
of the beam section) corresponding to the chain of parti-
cles in the continuous limit is EI = 2RKR. (This coeffi-
cient expresses the proportionality of bending moment to
rotation angle gradient). For n ≫ 1, the bending spring
constant 3EI/l3 (expressing the transverse force to trans-
verse deflection relationship) is correctly identified from

K
(n)
T given in (18), using the length l = 2(n− 1)R of the

straight n-particle strand.
Remarkably, the bending elasticity of small linear

strands of micrometer-sized colloidal particles bound by
adhesive forces has recently been measured by means of



20

optical tweezers [63]. Colloidal gels of polymer parti-
cles [64, 65, 66] should thus be modeled as cohesive par-
ticle assemblies with rather large RR level.

It is easy to check (just, for instance, by considering
two such chains joining at their ends at some angle) that
for all strand shapes other than straight lines, the ex-
tremities will be coupled by spring constants of order

K
(n)
T for both longitudinal (parallel to end-to-end vec-

tor) and transverse relative displacements. Consequently,
the macroscopic elastic moduli should be proportional to
rolling stiffness constant KR. Fig. 26 shows that this
proportionality is approximately satisfied in the loosest
states of a system with rolling friction µR/a = 0.05, in
which three different values of KR were used to evalu-
ate the elastic response. Elastic moduli of denser states,

FIG. 26: (Color online) Bulk (filled symbols) and shear (open
symbols) moduli, normalized by KR, in low pressure states
of a sample for which µR/a = 0.05 and KR = 10−2KNa2

(black squares). Results obtained on evaluating moduli with
KR = 10−3KNa2 and with KR = 10−4KNa2 are respectively
shown as red triangles and blue circles.

however, depart from this behavior. Consequently, the
scaling of elastic moduli with typical strand length (as
suggested in Section VB 6) is limited to low consolida-
tion states.

With small or vanishing RR, single particle strands
are replaced by thicker junctions, which further restricts
the consolidation pressure range for which elasticity is
dominated by beam bending.

VI. PLASTIC CONSOLIDATION MECHANISM:

QUALITATIVE ASPECTS

Cohesionless granular assemblies, if subjected to stress
increments that are not proportional to initial stresses,
essentially deform because the contact network gets re-
peatedly broken and repaired [33, 67]. Macroscopic
strains, once they exceed the very small scales associated
with the response of given contact networks [33, 36], thus
result from a sequence of rearrangement events or micro-

scopic instabilities, during which the granular packing
loses its coherence and gains some finite amount of kinetic
energy, even for arbitrarily slow applied stress changes.
Collisions and appearance of new contacts stabilize the
packing at the end of each microscopic rearranging event.
This process gradually changes the topology of the con-
tact network, and produces specific evolution of its fabric
(orientation anisotropy).

The mechanism of plastic collapse in isotropic compres-
sion of loose cohesive assemblies with small or vanishing
RR in contacts, as observed in the present study, is sim-
ilar. Just like in cohesionless systems [33], we expect
the frequency of occurrence of rearrangements, along the
loading path, to increase, and the corresponding strain
jumps to decrease, as the size of samples grows, and
thus the consolidation curve should be smooth in the
thermodynamic limit. Due to the specific geometry of
loose systems, in which dense zones are weakly connected
through thin arms, better connected, solid-like regions
tend to move like rigid bodies, while fragile junctions
break and rearrange, so that initially large holes grad-
ually fill up. Fig. 27 is an illustration of such a sce-
nario. Displacements are depicted as arrows, pointing
from the current positions to the ones reached in the next
equilibrium configuration in the stepwise compression se-
quence. The affine term, corresponding to the overall
cell shrinking deformation as Φ is increased by 0.05, only
contribute a small part of the displacement field (typ-
ically 0.17%). Consequently, although this affine con-
tribution is subtracted out from particle displacements
on the figure, more densely packed, nearly rigid regions
(marked with dotted lines) are easily identified by di-
rect visual inspection. Fig. 27 shows that the contact
network undergoes relatively small topological changes.
More than 90% of contacts are conserved in this config-
urational change. The rate of contact change, and the
evolution of coordination number with strain are signif-
icantly smaller than in cohesionless systems undergoing,
e.g., shear deformation. During the compaction of loose
samples those dense regions collide and slide past one an-
other, along thin sheared zones where most of the broken
contacts are found.

In the case of large RR, the peculiar microstructure
involving single particle chains might lead to a slightly
different deformation mechanism: unlike multiply con-
nected junctions, simple strands can yield in bending
without breaking: they fold at some contact, where the
rolling friction threshold is reached, thereby releasing
bending elasticity. This mechanism has directly been ob-
served in experiments on single chains of colloidal parti-
cles [63, 65]. One might thus expect fewer contact losses
in plastic compression.

To follow more closely the rearrangement sequences
in the course of compaction, it is appropriate to moni-
tor changes in the list of contacts in the motion between
two equilibrium configurations. As an example, let us
consider the evolution between equilibrated states as P ∗

increases from 0.177 to 0.237, and compare two samples,
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FIG. 27: Equilibrium particle positions in 1400 disk sample
with small RR under P ∗ = 0.032. Particle displacements to
new configuration equilibrated under P ∗ = 0.042 are shown
as arrows (global density change ∆Φ = 0.05). Neighbor pairs
for which contact opens are filled in grey. All other contacts
(thin solid lines) are maintained. Dense regions moving ap-
proximately like rigid solids are circled within dotted lines.
Most lost contacts are situated near the boundaries of such
solid-like particle lumps. Although within some of these par-
ticle lumps some rigid sub-zones can be appreciated, as the
structure evolves, their velocity fields converge to a unique
direction moving as a whole.

one with small (µR/a = 0.005) and the other with large
(µR/a = 0.5) RR. Table IV gives the changes in solid
fraction and coordination number, and numbers of main-
tained, destroyed and created contacts in this compres-
sion step. Successive configurations separated by a fixed
time interval ∆t = 0.16T0 are compared and Fig.28 plots
the number of destroyed and created contacts as func-
tions of time. For the same strain increment, contact
losses, as a function of global strain, are significantly less
frequent in the sample with large RR. This fact is re-
flected both in the data of Table IV, where global changes
are recorded, between the initial and final states, and in
those of Fig. 28, where successive changes over time inter-
vals ∆t are detailed. As a consequence, while the coor-
dination number hardly changes during consolidation in
systems with small or vanishing RR (see Fig. 17), it grad-
ually increases from an initial value close to 2 to nearly 3
in systems with large RR (Fig. 9). The lesser importance
of tensile contact rupture in the plastic compression of as-
semblies with large RR is also witnessed by the normal
force distribution (Section VC): forces approaching −F0

are quite scarce, as opposed to the situation in samples

µR/a ∆Φ(%) ∆z(%) N (=) N (−) N (+)

0.005 3.2 0.14 2084 (94.9 %) 112 (5.1 %) 115 (5.2 %)

0.5 3.1 1.2 1679 (98.5 %) 26 (1.5 %) 46 (2.7 %)

TABLE IV: Relative changes of solid fraction, ∆Φ, and of co-
ordination number (∆z), and numbers of maintained (N (=)),

destroyed (N (−)) and created (N (+)) contacts in a 1400 disks
sample, with small or large RR, in the compression step be-
tween P ∗ = 0.177 and P ∗ = 0.237.

FIG. 28: (Color online) Evolution of the contact number as a
function of relative density increase. In sample with µR/a =
5 · 10−3 the proportions x+ and x− of gained and of lost
contacts with respect to previous recorded list are respectively
shown with red square dots and triangles – the latter being
connected with a dashed line. A similar code is used for x+

and x− values in a sample with large RR (µR/a = 0.5), but
with open dots, and in black.

without RR (Fig. 18). With small RR, some single par-
ticle chains are also present, although shorter and less
numerous. The sensitivity of plasticity index λ to the
rolling friction is likely to be explained by different rup-
ture mechanisms, the importance of folding rearrange-
ments growing with the level of rolling resistance.

VII. CONCLUSION

To summarize, we have used numerical simula-
tions to observe and characterize, at the macroscopic
and microstructural levels, the consolidation behavior,
in isotropic compression, of model cohesive powders.
Macroscopic constitutives laws for quasistatic loading,
unloading and elastic responses were shown to be reason-
ably well approached. The material behavior was inves-
tigated for a range of densities that is wider than in most
simulation studies of cohesive granular materials. The
consolidation process goes through three stages. In a first
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regime, which is sensitive to the assembling procedure, no
plastic collapse occurs, as the agitation in the assembling
process has stabilized a strong enough microstructure to
withstand a finite pressure increase. The normal force
distribution widens until a significant fraction of contacts
are on the verge of tensile rupture. The initial system ge-
ometry, which changes very little in regime I, is that of a
dense assembly of fractal blobs, with dimension dF taking
the universal value associated with the aggregation pro-
cess (here, ballistic) implemented in the sample prepara-
tion stage. The blob size ξ (at most, between 5 and 10
grain diameters in the present case) can be identified on
studying density correlations. The subsequent consolida-
tion behavior is remarkably independent on initial con-
ditions, which merely determine where the intrinsic con-
solidation curve in the Φ-P ∗ plane is first met. The same
curve is then followed whatever the initial conditions as
the material is further compressed. This behavior cor-
responds, at the microscopic level, to a gradual change
of the blob size. The curve in regime II has the same
shape as reported in the soil mechanics literature, and
the consolidation pressure is a plastic threshold below
which the material response is approximately elastic (like
the behavior of a cohesionless granular material under
isotropic load). Elastic moduli increase rapidly with con-
solidation pressure or density. The cases of small RR or
without RR should be distinguished from the situation of
strong rolling resistance, although, in both cases, the mi-
crostructure of loose packings might be viewed as denser,
better connected regions joined by thin arms. In the first
case, loose packings collapse when the tensile strength
of contacts is overcome by the externally imposed forces,
preferentially within the fragile junctions between adja-
cent denser blobs. Systems with strong RR, on the other
hand, contain single particle strands, which tend to fold
without breaking in plastic compaction. While small RR
systems gain very few contacts in the consolidation pro-
cess, the coordination number might increase from nearly
2 to 3 with large RR. Eventually, the material approaches
a limiting, maximum density (regime III), as the pack-
ing structure resembles that of a cohesionless system, for
P ∗ ≫ 1 (albeit, typically, somewhat looser). The ab-
sence of a similar upper limit of the density of cohesive
packings in experiments for large P ∗ is due to plastic de-
formation of contacts. For large P ∗ cohesion forces are
negligible, hence a procedure to produce loose packings
by removing cohesive forces under large enough confining
pressure.

The fractal blob size ξ, depending on solid fraction Φ,
is a central microstructural feature, based on which some
scaling laws for elastic properties can be attempted. It
is also tempting, beyond the qualitative description of
the microstructural changes associated with the consoli-
dation process, to try to predict the consolidation curve
from such geometric data. Yet scaling laws appear to ap-
ply only to a restricted part of the consolidation pressure
interval.

Our results, in many respects, emphasize important

qualitative differences between cohesive and cohesionless
granular assemblies. The existence of stable loose struc-
tures and the consolidation phenomenon are the most
important differences in macroscopic behavior brought
about by cohesion. At the microstructural level, unlike
in cohesionless packings, the typical values of intergran-
ular forces, or the force distribution, are not as simply
estimated in cohesive systems, in which attractive and
repulsive contact forces of the order of tensile strength
F0 tend to compensate under low pressure. In particu-
lar, compression cycles stabilize self-balanced force net-
works with large compression forces. Unlike in granu-
lar packings devoid of cohesion, the coordination number
does not appear to be a significant state variable in co-
hesive systems with low RR, as it hardly changes along
the consolidation curve. With large rolling resistance, it
witnesses, however, the formation of loops under com-
pression. While cohesionless assemblies with low coordi-
nation number usually contain many rattlers, all parti-
cles in cohesive packings are connected to the same con-
tact structure, which is rigid, but comprises lots of “dead
ends” or “side arms”, which might bear self-balanced
forces but do not participate in the transmission of exter-
nal stresses. Some of these new features can be summed
up on remarking that loose powders are similar to gels
as much as to granular packings with no cohesion.

Our investigations should be pursued in several direc-
tions. On the theoretical side, the connections between
macroscopic properties and microstructure could be stud-
ied quantitatively. The behavior of loose cohesive pack-
ings under general stress states should be investigated.
Thus one may determine whether such constitutive laws
as the Cam-clay model [1] apply to the simulated ma-
terial. And finally, more quantitative agreement with
experiments and real materials should be sought. In
spite of some obvious steps (e.g., one should simulate
3D systems), this latter objective looks daunting. One
major difficulty is the importance of hydrodynamic ef-
fects at the assembling stage, when the microstructure
and the fractal dimension of aggregates are determined.
While we have bypassed this problem on implementing
ballistic aggregation, it is necessary to investigate the
behavior other possible kinds of aggregates, by dealing
with some tractable model for hydrodynamic effects. It
is hopefully possible to introduce some mechanics and in-
tergranular interactions within the models used with ge-
ometric aggregation rules (such as, e.g., diffusion-limited
cluster-cluster aggregation). Then, another difficulty is
that many parameters associated with the contact law
(such as friction coefficient, rolling friction, rolling stiff-
ness constant) should be identified for a real material
to be investigated at the grain level. In this respect, the
recent progress in microscopic observation and manipula-
tion techniques seems quite promising, as formerly inac-
cessible parameters ruling interparticle contact mechan-
ics are now beginning to be measured in model materials,
thanks to particle-scale microscopy and micromanipula-
tion techniques [43, 44, 63, 65, 68].
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[8] T. Gröger, U. Tüzün, and D. M. Heyes, Powder Technol-

ogy 133, 203 (2003).
[9] Z. Fournier, D. Geromichalos, S. Herminhaus, M. M. Ko-

honen, F. Mugele, M. Scheel, B. Schulz, C. Schier, R. See-
mann, and A. Skudelny, Journal of Physics Condensed
Matter 17, 5477 (2005).

[10] P. A. Cundall and O. D. L. Strack, Géotechnique 29, 47
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