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The quasistatic behavior of a simple 2D model of a cohesive powder under isotropic loads is
investigated by Discrete Element simulations. We ignore contact plasticity and focus on the effect
of geometry and collective rearrangements on the material behavior. The loose packing states, as
assembled and characterized in a previous numerical study [Gilabert, Roux and Castellanos, Phys.
Rev. E 75, 011303 (2007)], are observed, under growing confining pressure P , to undergo important
structural changes, while solid fraction Φ irreversibly increases (typically, from 0.4–0.5 to 0.75–
0.8). The system state goes through three stages, with different forms of the plastic consolidation
curve, i.e., Φ as a function of the growing reduced pressure P ∗ = Pa/F0, defined with adhesion
force F0 and grain diameter a. In the low-confinement regime (I), the system undergoes negligible
plastic compaction, and its structure is influenced by the assembling process. In regime II the
material state is independent of initial conditions, and the void ratio varies linearly with log P [i. e.
∆(1/Φ) = λ∆(log P ∗)], as described in the engineering literature. Plasticity index λ is reduced in
the presence of a small rolling resistance (RR). In the last stage of compaction (III), Φ approaches
an asymptotic, maximum solid fraction Φmax, as a power law, Φmax − Φ ∝ (P ∗)−α, with α ≃ 1,
and properties of cohesionless granular packs are gradually retrieved. Under consolidation, while the
range ξ of fractal density correlations decreases, force patterns reorganize from self-balanced clusters
to force chains, with correlative evolutions of force distributions, and elastic moduli increase by a
large amount. Plastic deformation events correspond to very small changes in the network topology,
while the denser regions tend to move like rigid bodies. Elastic properties are dominated by the
bending of thin junctions in loose systems. For growing RR those tend to reduce to particle chains,
the folding of which, rather than tensile ruptures, controls plastic compaction.

PACS numbers: 45.70.-n,81.40.Lm,61.43.Hv,83.10.Rs

I. INTRODUCTION

Cohesive granular materials are present in many nat-
ural or industrial processes, the understanding of which
requires studies of their rheology under small confining
pressures, when tensile intergranular forces play a major
role. In such cases cohesive materials exhibit specific fea-
tures that do not exist in cohesionless grain assemblies,
such as the ability to form stable structures at low den-
sity and the sensitivity to stress intensity, as opposed to
stress direction. Macroscopic constitutive laws and phe-
nomenological tools have been developed and used in sev-
eral engineering fields: mechanics of cohesive soils (clays
and silts) [1, 2, 3, 4], metallic powder processing [5],
modeling and treatment of ceramic powders [6, 7, 8, 9],
handling of xerographic toners [10]. One simple mate-
rial is the assembly of wet beads [11, 12, 13], in which
some microscopic observations are possible [12, 13]. How-
ever, wet grain packs are only slightly less dense than
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dry ones, and do not enable the study of loose structures
obtained with powders. In general, the behavior of ma-
terials under proportional load (oedometric or isotropic
compression) is characterized by the consolidation curve,
which describes the irreversible compaction under grow-
ing stress [1]. Density can increase by factors of 3 or 4
under growing load.

Although numerical simulations have been widely used
for several decades [14] to investigate microscopic mech-
anisms and classify mechanical properties of granular
systems, studies of cohesive materials are still far less
common, and almost exclusively limited to dense ma-
terials. Thus, the effects of capillary cohesion in wet
sand or bead packs have been simulated [15, 16], as
well as the compaction of ceramic and metallic pow-
ders [17, 18, 19, 20, 21, 22, 23] to states of very high
density, or the behavior in shear tests of 2D dense cohe-
sive packs with plastic deformation of contacts [24, 25].
Loose structures formed by particles packed under grav-
ity and stabilized thanks to adhesion have been simu-
lated [26]. Of particular relevance to the present study,
among the very scarce numerical studies of loose pack-
ings [27] stabilized by cohesion and of their collapsing
under growing loads, are the works by Bartels, Kadau,
Wolf et al. [28, 29, 30, 31] on the oedometric compres-
sion of granular assemblies with initial low densities. This
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research group studied a dynamical compression regime,
and observed a shock wave propagating through the sam-
ple. Shear flows of cohesive granular materials have also
been simulated [32, 33, 34, 35].

In a previous article [36], hereafter referred to as pa-
per I, we studied by numerical simulation the assembling
process, the structure and the force patterns of a model,
two-dimensional (2D) cohesive granular material in loose
equilibrium configurations. We now investigate the me-
chanical behavior of the same model granular material
in isotropic compression and pressure cycles, as well as
the evolution of various characteristics of intermediate
equilibrium states as plastic compaction proceeds.

As in paper I, we keep the external pressure as the
main control parameter. The adhesive strength F0 in
contacts sets a force scale in the material behavior, and
hence (in 2D) the reduced pressure, defined as

P ∗ =
aP

F0
, (1)

in which a is a typical grain diameter, is a crucial di-
mensionless state parameter. The main objective of the
present paper is the study of the process by which, as
pressure is increased, cohesion-dominated loose struc-
tures, for which P ∗ ≪ 1, get irreversibly compacted
as P ∗ increases until pressure dominates (P ∗ ≫ 1).
Such a compaction was numerically observed e.g., in
Ref. [31]. However, our approach produces homogeneous,
isotropic, equilibrium configurations under varying load
and is therefore apt to provide more detailed information
about the connections between macroscopic constitutive
laws and microstructural or micromechanical features.

The present paper is self-contained and can be under-
stood without reading paper I. A summarized description
of the material properties and of the initial configura-
tions (studied in paper I) is provided in Section II. The
macroscopic material response in isotropic compression,
with the possible influence of the initial state proper-
ties, is studied in Section III. Then, various microscopic
aspects of the consolidation process are investigated in
the sequel: density correlations (with their fractal behav-
ior over some length scale [36]) are investigated in Sec-
tion IV, force networks and force distributions are dealt
with in Section V, while Section VI focuses on elastic
moduli. Section VII discusses qualitatively some micro-
scopic aspects of the consolidation behavior. The final
section, part VIII, summarizes the results and suggests
directions for future work. Sections IV and V can, at
first, be read independently from each other. The same
remark applies to Sections VI and VII.

II. MODEL MATERIAL AND SIMULATION

PROCEDURES

A. Definitions and basic equations

The material and the simulation method are identical
to those of paper I [36], which the reader might refer to for
additional technical details, and for a physical discussion
of some of the model ingredients. For the sake of com-
pleteness, we however provide a summarized description
below. The contact law is an elaboration of the often
employed spring-dashpot model with Coulomb friction,
in which two additional ingredients are introduced: an
attractive force and, possibly, some resistance to rolling
at contacts. The model material is a 2D assembly of
disks with diameters uniformly distributed between a/2
and a, enclosed in a rectangular cell with periodic bound-
ary conditions in both directions. Both lengths L1, L2

defining the cell size and shape are variable, and sat-
isfy equations of motion designed to impose given values
of diagonal stress components σ1 = σ2 = P . Stresses
are controlled by a variant of the Parrinello-Rahman
method [37]. In equilibrium, both diagonal stress com-
ponents σα, (α = 1, 2), with the convention that tensile
stresses are negative, are given by the standard formula
(A is the sample surface area):

σα =
1

A

∑

1≤i<j≤N

F
(α)
ij r

(α)
ij . (2)

In (2), the r.h.s. sum runs over all interacting pairs i, j
among the N disks of the system, Fij is the force trans-
mitted from grain i to its neighbor j and vector rij points
from the center of i to the center of j (with the suitable
nearest image convention to account for periodicity). The
implementation of stress-controlled simulations is such
that the cell length Lα along direction α increases or
decreases if σα is larger (respectively: smaller) than its
prescribed value.

As usual in molecular dynamics applied to granular
materials (also known as the “discrete element method”)
particles have rigid body kinematics and their motion is
governed by Newton’s equations.

B. Interaction law

Grains interact with forces of elastic, adhesive, fric-
tional and viscous origins. The static part of the normal
component F ij

N of the force transmitted by grain i to its
neighbor j is a function of hij , the distance separating
disk perimeters. A negative hij means that the grains
overlap, in which case they repel each other with a nor-
mal elastic force F e,ij

N = −KNhij . This force vanishes
whenever hij > 0. (Overlap hij < 0 is, of course, a
numerical representation of the physical contact deflec-
tion). The repulsive elastic force is supplemented with an

attractive term F a,ij
N , equal to −F0 for contacting disks
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(hij < 0). F a,ij
N has a finite range D0, fixed to 10−3a,

and varies linearly between −F0 and zero as hij grows
from 0 to D0. F0 is the maximum tensile force a contact
might support without breaking off. The normal contact
law thus introduces a force scale, and a dimensionless pa-
rameter, the stiffness parameter, κ ≡ aKN/F0. κ charac-
terizes the amount of elastic deflection h0 under contact
force F0, relative to grain size a (h0/a = κ−1). κ is set
to a large value, κ = 105, so that the elastic deflections
in contacts remain so small that they can be neglected in
comparison to all other length scales in the problem (in-
cluding interstices between neighbors [38]). The packing
geometry can be regarded as that of an assembly of rigid
grains (as formally dealt with in the “contact dynamics”
simulation method used in [31]).

To the static contributions F e
N and F a

N to the normal
force we add a viscous damping term opposing the rel-
ative normal velocity of i and j when the disks touch
(hij < 0), corresponding to a constant, positive normal
coefficient of restitution eN in binary collisions if F0 is
set to zero. eN is set to a low value, eN = 0.015 in
our simulations. In the presence of attractive forces the
apparent restitution coefficient in a collision will depend
on the initial relative velocity. For small kinetic ener-
gies the particles will eventually stick to each other. The
minimum receding velocity for two particles of unit mass
(the unit mass is chosen equal to the mass of a disk of

diameter a) to separate is V ∗
√

2, with

V ∗ =
√

F0D0. (3)

The elastic tangential force in contact i, j, F ij
T , is to be

evaluated incrementally. In case of no tangential sliding,
it varies linearly with the relative tangential displacement
at the contact point, involving a tangential stiffness con-
stant, KT . In the case of sliding, which occurs when the
elastic law would cause F ij

T to pass one of the Coulomb

bounds ±µF e,ij
N , then F ij

T stays equal to ±F e,ij
N . The

relative tangential displacement at the contact point in-
volves displacements of disk centers and rotations. The
Coulomb condition introduces the friction coefficient, µ.
It should be pointed out that it applies to the elastic
repulsive part of the normal force only. Thus, a pair
of contacting grains with hij equal to F0/KN = h0, the
equilibrium distance, such that the sum of elastic and ad-
hesive terms vanishes, can transmit a tangential force FT

such that |FT | ≤ µF0. (The importance of this feature of
the contact law for collective properties macroscopic be-
havior of particle assemblies was stressed in paper I for
isotropic, static states, and in Ref. [34] in steady-state
shear flows). All simulations reported here were carried
out with µ = 0.5.

We studied the influence of rolling resistance (RR) at
contacts, which is modeled as in [39]. Two additional
parameters are necessary: a rolling spring constant, KR,
with dimension of a moment, expressing proportional-
ity between relative rotation and rolling moment (i. e.,
a torque concentrated at the contact point), as long as

the rolling friction threshold is not reached; and a rolling

friction coefficient, µR with the dimension of a length,
setting the maximum absolute value of the rolling mo-
ment ΓR to µRF e

N , proportional to the elastic part of the
normal force. The implementation of this rolling law is
analogous to that of the tangential one, with the rolling
moment and the relative rotation respectively replacing
the tangential force and the relative tangential displace-
ment. A contact for which the total normal force is equal
to zero in equilibrium, with F e

N = KNh0 = F0, may
transmit a rolling moment ΓR with |ΓR| ≤ µRF e

N . Since
point contacts do not transmit torques, the rolling resis-
tance stems from the irregularity of grain surface. Two
contacting grains touch each other, in general, by two
points (in 2D), which are separated by some microscopic
distance l that is characteristic of the particle shape. µR

should be proportional to l, and KR proportional to l2.
We set µR = µl and KR = KN l2, with, in most calcula-
tions with RR, l = a/100.

Table I summarizes the values of parameters used in
most simulations, in dimensionless form. Some calcula-

µ eN κ
KT

KN

D0

a

KR

KNa2

µR

a

0.5 0.015 105 1 10−3 10−4 0 or 0.005

TABLE I: Values of dimensionless model parameters used in
most simulations.

tions were also performed with larger RR (up to l = a,
µR = 0.5a).

C. Initial states

In paper I, two extreme cases were studied in the as-
sembling stage of cohesive packings under low P ∗. First,
an N -particle sample of hard-disk fluid is prepared at
solid fraction ΦI in a fixed cell. Then, in type 1 sys-
tems, velocities are set to zero and the external pres-
sure control is started, until an equilibrium is reached
under P ∗ = 0.01. The other procedure, by which type 2
samples are prepared, is meant to represent the opposite
situation, in which aggregation is much faster than com-
pression. Thus, while the cell size is fixed and the solid
fraction stays equal to ΦI , grains are attributed random
(Maxwell-distributed) velocities and left to interact and
aggregate until all N of them join to form one unique
cluster. The system is then equilibrated at P ∗ = 0, and
compressed to P ∗ = 0.01. To limit the influence of dy-
namical effects, the strain rate is requested not to exceed
a maximum value ǫ̇max during compression. We express
this condition with the natural inertial time associated
with the characteristic force F0: (m is the mass of a disk
of diameter a)

T0 =

√

am

F0
, (4)
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Sample type No cohesion Type 1 Type 2

N 1400 1400 1400 5600 10976

Number of samples 4 4 5 3 1

Lowest pressure P/KN = 10−5 P ∗ = 0.01 P ∗ = 0.01

Φ (no RR) 0.811 ± 0.001 0.723 ± 0.001 0.472 ± 0.008

Φ (RR) 0.805 ± 0.002 0.688 ± 0.001 0.524 ± 0.008

TABLE II: Set of granular samples used as initial equilibrated configurations in simulations of isotropic compression (with
material parameters of Table I).

defining a dimensionless inertia parameter

Ia = ǫ̇maxT0. (5)

Ia is set to 0.05 in our simulations. The main set of
samples of types 1 and 2 (the latter coinciding with “se-
ries A” in paper I), to which some non-cohesive ones
are added for comparison, is listed in Table II, in which
the number of available configurations of different sizes
is provided, along with solid fraction under the lowest
nonzero pressure. All configurations are prepared both
with (µR/a = 0.005) and without (µR/a = 0) RR, with
the parameters of Table I. The initial solid fraction is
ΦI = 0.36. Type 2 systems are also available under
P ∗ = 0, right at the end of the aggregation stage [36],
but we regard this intermediate stage as part of the initial
packing process and focus our study on higher pressures
(as apparent in Table II, the compression from zero pres-
sure to P ∗ = 0.01 involves a large density increase, and
important changes of the microstructure are reported in
paper I). Distant interactions between grain pairs sep-
arated by a gap smaller than D0 are scarce, and “rat-
tlers”, i.e., isolated, free grains with no interactions, are
absent in cohesive systems because of the initial aggre-
gation process. Coordination numbers under P ∗ = 0.01
are typically z ≃ 3.1 without RR, and z ≃ 3.0 with RR,
for both type 1 and type 2 cohesive samples. Additional
details about those equilibrium configurations under low
pressure can be found in paper I.

The assembling stage of type 2 systems also depends on
the initial velocities given to the grains before they form
aggregates (the “granular temperature” of the original
“granular gas”). The relevant dimensionless parameter
is the ratio of the initial mean quadratic velocity V0 to
the characteristic velocity V ∗ defined in (3). V0/V ∗ is set
to 9.5 for the main sample series of Table II. The value of
V0/V ∗ was shown in paper I to have a strong influence on
the initial coordination number z at P ∗ = 0 in samples
with RR: whereas z is larger than 3 for V0/V ∗ = 100, it
approaches 2 for small V0, of order V ∗/10, in which case
the loopless structures of geometric ballistic aggregation
models are retrieved. However, this effect is strongly re-
duced after the compression step to P ∗ = 0.01.

In the following, unless otherwise specified, all results
will pertain to the systems of Table II, and measurements
will be averaged over all available samples, error bars
on graphs extending to one sample to sample standard
deviation on each side of the mean value.

D. Simulation procedures

1. Equilibrium conditions

One of the specificities of our simulations of cohesive
packings under varying pressure is the approach, com-
puting cost permitting, of the quasistatic material re-
sponse, in which all configurations remain close to me-
chanical equilibrium. Equilibrium conditions have to be
stringent enough to enable an unambiguous identifica-
tion of the force-carrying contact network and a study
of its elastic properties. Due to the frequent occurrence
of small contact force values, this requires forces to bal-
ance with sufficient accuracy. We used similar criteria
as in paper I, which, in agreement with other studies on
cohesionless systems [38, 40], were observed to provide
adequately accurate force values. The tolerance levels on
force and torque balance equations is expressed in terms
of a typical intergranular force value F1 = max(F0, Pa).
A configuration is deemed equilibrated when (1) the net
force on each disk is lower than 10−5F1; (2) the total mo-
ment on each disk is lower than 10−5F1a; (3) the differ-
ence between imposed and measured stresses is less than
10−5F1/a; and (4) the kinetic energy per grain is less
than 5×10−8F1a. Those conditions being met, we could
check that, in the absence of external perturbations (and
of thermal motion), no remaining slow motion, creep or
aging phenomena were present in our systems: on waiting
longer, only a very slow decrease of the remaining kinetic
energy is observed. Furthermore, the computation of the
stiffness (or “dynamical”) matrix, see Sec. II D 3 provides
an additional stability check.

2. Compression

The sample series of Table II are subjected to a step-
wise compression cycle. In each compression step, ex-
ternal reduced pressure P ∗ is multiplied a constant fac-
tor 101/8 ≃ 1.334, and one waits until the new equilib-
rium configuration is reached, with the criteria stated in
Sec. II D 1. A condition of maximum strain rate is en-
forced, in order to approach the quasistatic compression
curve, as in the preparation process, on setting (see Eqs. 5
and 4) Ia = 0.05. Parameter Ia, on replacing, in its def-
inition, F0 by the force scale aP (in 2D) corresponding
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to the confining pressure is analogous to inertia param-
eter I used to assess dynamical effects in steady shear
flow [34, 35], or in the compression of non-cohesive gran-
ular packings [38, 41]. The compression program is pur-
sued until P ∗ reaches the maximum value 13.33, above
which negligible plastic collapse is observed. It should
be noted that, thanks to the high value of stiffness pa-
rameter κ (see Sec. II A), the typical contact deflection
aP/KN at this highest pressure level is still very small.
Then, the effect of decreasing P ∗ back from its highest
value to 0.01 is also simulated. As no large structural
changes occur on decompressing the system, larger pres-
sure jumps can be imposed on unloading.

The simulations are computationally costly, as in some
pressure steps equilibration times of order 100 T0 are re-
quired, while the time step for the integration of the equa-

tions of motion is a small fraction of
√

m/KN = T0/
√

κ.
This limits the size and the number of samples, and the
use of small strain rates. Some tests of statistical signifi-
cance and rate dependence of the results will be reported
in Section III.

3. Computation of elastic moduli

We observe that once samples are equilibrated accord-
ing to the conditions of Section II D 1, then the Coulomb
criterion |FT | ≤ µF e

N , as well as the rolling friction con-
dition |ΓR| ≤ µRF e

N are satisfied as strict inequalities in
all contacts. No contact is ready to yield in sliding, and
with RR no contact is ready to yield in rolling either.
This ensures that the response to small enough exter-
nal load increments about a well-equilibrated state will
be elastic and reversible. Elastic moduli express elastic
response, i.e., with no effect of tangential or rotational
sliding and no change in contact network topology and
geometry. To compute elastic moduli, we build the stiff-
ness matrix K of the contact structure (also taking into
account the distant interactions). K [36] is a square ma-
trix of order 3N +2 (the number of degrees of freedom in
the system), depending on stiffness coefficients KN (re-
placed by −F0/D0 for the rare distant attractive bonds),
KT , KR (with RR), and on network geometry. K is
symmetric, positive definite (once the free translational
motions of the whole sample as one rigid body are elim-
inated) – and thus the stability of equilibrium states is
checked. To compute elastic moduli, one solves a linear
system of equations:

K ·U = F
ext (6)

for the unknown displacement vector U, containing all
particle displacements and rotations, as well as strains
(ǫα)α=1, 2. The right-hand-side of (6) contains external
forces and torques applied to the grains, which are set to
zero, and stress increments (∆σα)α=1, 2 (the same proce-

dure is followed in [42] with 2D disk packings and in [43]
with 3D sphere packings). On setting ∆σ1 = 1, ∆σ2 = 0,

or vice-versa, one thus gets two separate measurements
of the compliance matrix in our (statistically) isotropic
systems, from which moduli C11 and C12 are deduced,
and hence the bulk modulus B = (C11 + C12)/2 and the
shear modulus G = (C11 − C12)/2.

III. MATERIAL BEHAVIOR UNDER

ISOTROPIC LOAD

A. Compression and pressure cycle with

non-cohesive material

Non-cohesive systems of Table II, initially obtained
by isotropic compression of a granular gas (like the 3D
sphere packings of e.g., Refs. [38] and [44]), are subjected
to a compression cycle, in which reduced pressure P/KN

increases from its initial value P0/KN = 10−5, up to
P1/KN = 1.33 × 10−3, and decreases back to 10−5.

Typical results for the density of systems with and
without RR are shown on Fig. 1. Changes of solid frac-

FIG. 1: (Color online) Φ versus P/KN in pressure cycle with
1400 disk samples with and without RR. Blue dashed lines
correspond to elastic response evaluated with the bulk mod-
ulus from initial and highest pressure states.

tion are very small (of order 10−3, i.e., of order P/KN

for the largest pressure), and nearly reversible (more
than 90% of the density increase is recovered on de-
compressing), as observed in Ref. [41] with 3D sphere
packings. The slight increase of bulk modulus as a func-
tion of Φ is due to the larger density of contacts under
higher pressures. One typical feature of frictional, co-
hesionless grain packs assembled by direct compression
is the existence of a non-negligible population of “rat-
tlers”, i.e., particles that transmit no force (as observed
e.g. in Ref. [38] in 3D, or Ref. [42] in 2D systems). The
fraction of rattlers x0 thus exceeds 20% of the grains
under P0 in systems with RR in the present case, and
reaches 17% without RR. x0 is reduced to 14% under
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P/KN = 10−3. The backbone (force-carrying structure)
is the set of non-rattler grains, characterized by coordi-
nation number z∗ = z/(1 − x0) [38]. z∗ increases with
P , as rattlers get captured by the backbone and gaps
separating neighboring grains close in compression.

Changes of x0 and z∗ are reversed on unloading (with
some moderate hysteresis effect). The increase of z∗ as a
function of P , above a minimum value z∗0 , which would
correspond to P = 0, is sometimes described by a power
law [45]. With such a fit we can estimate z∗0 , and we
obtain values close to 3 with RR and about 3.12 without
RR. z∗ varies by about 10% in the studied pressure in-
terval. As in other simulations [38, 46, 47], the minimum
coordination numbers stay above the “critical” value for
rigidity, which is equal to 3 without RR and to 2 with
RR [36].

Cohesionless systems under isotropic pressure cycles
thus behave nearly elastically in an isotropic pressure cy-
cle. As the pressure increases by more than 2 orders of
magnitude, while remaining in the rigid limit of κ ≫ 1,
only small and nearly reversible changes in density and
in other internal state variables are observed. (see [41]
for a more detailed discussion). A small level of RR has
little effect on density and material properties.

B. Compressing cohesive systems: general

observations

Once subjected to a pressure cycle, as specified in
Sec II D 2, the material prepared in initially loose states
(type 2 of Table II) behaves as shown in Figs 2, 3 and 4.
As the pressure increases, so does the density, and the
large pores present under low P ∗ gradually disappear.
The maximum packing fraction, Φ

max
= 0.774 ± 0.001

in that case, is quite reproducible. Φ
max

is smaller
than the solid fraction of cohesionless systems (for which
Φ > 0.805, see Fig. 1).

From the shape of Φ(P ∗) curves at growing P ∗, three
regimes can be distinguished. At first, in a range of
reduced pressure P ∗ of the order of the first nonzero
value (10−2), thereafter called regime I, Φ remain ap-
proximately constant: the contact network supports the
growing pressure without rearranging. Then, in a sec-
ond pressure interval which we shall refer to as regime II,
a fast compression is observed. Density variations slow
down in regime III, for P ∗ of order unity, as a maximum
solid fraction Φ

max
is approached. On reducing the pres-

sure, Φ then remains very close to Φ
max

: the compaction
is irreversible.

The consolidation curve is similar to the ones obtained
by numerical simulations in Refs. [29, 31], on impos-
ing uniaxial strains to loose packings prepared by an
anisotropic ballistic aggregation process, although our
study differs from these works in several respects (see
Section I). Refs. [29, 31] focus on regime III, and on dy-
namical compaction processes, with a shock wave prop-
agating through the sample. The variations of solid

FIG. 2: (Color online) Equilibrium configuration of a sam-
ple of 1400 disks with RR in initial state, under P ∗ = 0.01,
for which Φ = 0.5132. Line thicknesses encode normal force
intensities, red strokes depict compressive forces while tensile
ones are colored in green, and forces equal to zero in blue.

FIG. 3: (Color online) Sample of Fig. 2, with Φ = 0.6305,
equilibrated under P ∗ = 0.178 (different length and force
units).

fraction Φ versus P ∗ are shown in Fig. 5, for three sam-
ples of different sizes. Since all three curves are close to
one another, we conclude that the macroscopic behav-
ior is correctly captured in our simulations. Our results
for Φ(P ∗) also resemble experimental curves obtained on
different materials, such as metallic powders [5], or xero-
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FIG. 4: (Color online) Same sample as on Figs. 2 and 3,
under the maximum pressure P ∗ = 13.3. Solid fraction is
Φ = 0.7778.
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FIG. 5: Consolidation and decompression curves in 3 samples
(with RR) with different numbers of grains, as indicated.

graphic toner [10, 48], at least in regimes I and II. Poquil-
lon et al. [5], in particular, in an experimental study of a
metallic powder, explicitly distinguish three compaction
regimes, with the material elastically resisting compres-
sion in regime I, and then some plastic compaction, first
attributed to particle rearrangement, as we observe, and
later to contact plasticity. This latter effect, which is
not included in our model, is likely to explain the dif-
ference under high P ∗ between many experiments and
our results: experimental curves do not appear to ap-
proach an asymptotic density, but witness ongoing com-
paction up to the highest investigated pressure levels.
In the case of metallic powders [5], quite high pressures
are applied (hundreds of MPa), and, as revealed by di-
rect microscopic observations, particles fusing or sinter-

ing gradually form compact solids. For metal particles
with d=10 µm diameter, one can estimate the pressure
F0/d2 corresponding to P ∗ = 1 to be in the 0.1 MPa
range, so that the very large P ∗ values in the compaction
experiment reveal a different physical origin of density
increase. The stiffness parameter, κ, is also significantly
smaller in such experiments, with the consequence that
plastic phenomena cannot be ignored (for a definition and
discussion of κ in Hertzian sphere packings, see [41]).
Contact plasticity dominates in the numerical studies of
Martin et al. [18, 19, 20, 21], which focus on very high
densities (beyond the random close packing value), when
the material, due to sintering, turns into a porous com-
pact. Hence only the early stages of metal powder com-
paction, in which densities are quite low [5] correspond
to our simulations. In the case of the xerographic ton-
ers studied in [10, 48, 49], P ∗ = 1, as discussed in [36],
rather correspond to P ∼ 10 Pa. Nevertheless, the con-
tact behavior, as investigated by atomic force microscopy,
is likely to involve plastic effects [50, 51, 52, 53].

C. Regime I: role of the initial assembling process

As shown in [36] (paper I), and briefly recalled in
Sec. II C, assembling conditions have a considerable in-
fluence on packing density and microstructure under low
P ∗. It should be assessed to what extent those important
differences in the initial configurations affect the plastic
consolidation curve, and whether such a variability tends
to disappear once the material undergoes significant com-
paction. This issue is investigated in this section, in
which the effects of various features of the preparation
process are observed. The role of some micromechanical
parameters is also discussed.

1. Compaction and aggregation in the assembling stage

The most important feature of the assembling process
is the competition between compression and aggregation,
which leads to the difference between systems of type 1
and 2, as defined in [36] and recalled in Section II C. Type
1 samples reach a considerably higher densities from the
beginning, under low P ∗. Fig. 6 compares the subsequent
consolidation curves. As type 1 systems are initially con-
siderably denser, they are able to support larger pres-
sures before rearranging, hence a wider regime I plateau.
However, the pressure increase eventually reaches a high
enough value to induce further compaction, and the con-
solidation curve is then very close to that of type 2 sys-
tems (the difference is actually smaller than the sam-
ple to sample r.m.s. fluctuation). Within the accuracy
and statistical uncertainty of our simulations, the differ-
ence between initial states of types 1 and 2, although
large, thus appears to disappear eventually upon plasti-
cally compacting the material.
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FIG. 6: Consolidation curve in type 1 and type 2 samples.

2. Effects of first compression step and strain rate

In paper I [36] important changes between P ∗ = 0
and P ∗ = 0.01 in type 2 configurations were reported,
as solid fraction Φ increases from ΦI = 0.36 to about
0.5 (see Table II). One way to limit the effects of this
first compression step causes the most dramatic change
is to reduce the strain rate, setting parameter Ia to a
lower value. As shown on Fig. 7, displaying the con-
solidation curve obtained in N = 1400 systems with the
usual value Ia = 0.05 and with the smaller one Ia = 0.01,
lower inertial effects in the initial stage, while the equi-
librium configuration at P ∗ = 0.01 is prepared, result in
a lower density and tends to turn the initial plateau of
the Φ(P ∗) curve into a gentle ascending slope. Later
on, as consolidation proceeds, very similar curves are
obtained with both values of maximum dimensionless
strain rate Ia (Fig. 7), although the smaller error bars
(representing sample to sample r.m.s. fluctuations) wit-
ness smoother changes and better reproducibility for the
slower compression. It may thus be concluded that the
quasistatic consolidation curve is quite reasonably ap-
proached with the standard compression procedure de-
tailed in Section II D 2, for which Ia = 0.05.

3. Effect of initial agitation and influence of RR

The initial agitation velocity (or “granular temper-
ature”), as expressed by ratio V0/V ∗ in the aggrega-
tion stage strongly influences the coordination number.
Figs. 8 and 9 show how this initial influence affects the
beginning of consolidation curves and, once again, fades
out later on. Consolidation curves are shown in Fig. 8 for
two different values of V0/V ∗, one tenfold as large as the
standard value 9.5 used in the sample series of Table II,
and the other one smaller by a factor of 100. Fig. 9 shows
the effect of V0 on coordination number. An increase of
rolling resistance (with µR = 0.5 instead of 0.005), simi-
larly to a decrease of V0, stabilizes looser systems under
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FIG. 7: Consolidation curve with two different values of Ia.
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FIG. 8: Consolidation curve: effect of initial agitation level
in aggregation stage, and influence of RR parameter.

low P ∗, with smaller coordination numbers. However,
such a change in material properties does not only affect
the initial, regime I part of the consolidation curve; it
also alters the macroscopic mechanical behavior at larger
densities: the slope of the consolidation curve is lower for
larger RR.

4. Conclusion on initial states and regime I

Fragile tenuous structures due to aggregation are easily
perturbed and sensitive to many factors in low consoli-
dation states. In general, all perturbations favor some
kind of preconsolidation effect, inducing denser, better
coordinated structures. These effects are reduced in each
one of the following situations: (1) if one waits until large
aggregates form before applying a confining pressure; (2)
if the initial agitation velocity V0 is decreased; (3) for
slower compression processes, especially when the very
first non-vanishing pressure value is imposed; (4) with
larger RR levels. As the material is further compressed
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FIG. 9: Same as Fig. 8, for coordination number z as a func-
tion of P ∗.

in (nearly) quasistatic conditions, the same macroscopic
behavior is retrieved for given microscopic force laws [i.e.,
in cases (1) to (3)], irrespective of the initial perturba-
tions affecting the beginning of the consolidation process.
Though we did not vary the level of viscous dissipation
in normal collisions, lower values are expected to induce
larger inertial effects, similarly to a faster compression.
On the other hand, viscous forces slowing down the mo-
tion of grains relatively to a surrounding fluid (often an
important physical effect in fine powders) could reduce
the effects of the initial agitation.

Regime I, with no plastic strain, is also observed in
some experiments. For example, the response in uniaxial
compression (i.e., σ1 > 0, σ2 = σ3 = 0) of loose aggre-
gates of micrometer-sized silica beads assembled by bal-
listic deposition – in that case, an anisotropic process in
which particles are thrown onto a substrate – was studied
by Blum and Schräpler [54]. The deposit, with volume
fraction Φ ≃ 0.15, resists a stress of 500 Pa before plastic
compaction is observed, which corresponds to a “reduced
stress”, defined, in analogy with P ∗, as σ∗

1 ≡ σ1a
2/F0 of

order 10−2. In the simulations of Wolf et al. [31] some
finite initial pressure increment also has to be applied
before plastic collapse is observed.

D. Regimes II and III:

intrinsic consolidation behavior

Once the peculiarities of the sample preparation and
first compression stage are erased, we refer to the mate-
rial evolutionas the intrinsic consolidation behavior. In
order to compare the shape of the consolidation curve to
other observations more directly and quantitatively (and
also for a more fundamental reason to be stated further)
we subsequently describe it with 1/Φ, instead of Φ, as a
function of log P ∗. This conforms to its traditional pre-
sentation in the literature [1, 3, 4, 5, 10], which often uses
the void ratio, e = (1/Φ) − 1.

Once the regime I ends, we obtain linear variations of
e or 1/Φ with log P ∗:

1

Φ
=

1

Φ0
− λ ln

P ∗

P ∗
0

(7)

where P ∗
0 and the corresponding solid fraction Φ0 are the

coordinates of the point where the system behavior joins
the intrinsic consolidation curve in the available samples.
Parameter λ, known as the plasticity index, is observed
in our case to decrease as µR increases from zero (Fig. 8).
We have also observed that the value of this index is not
affected by the friction coefficient: in that sense, µ just
displaces the whole consolidation curve vertically [53].

As the maximum solid fraction Φ
max

is approached,
Eq. (7) is no longer valid, and the asymptotic regime is
better described with a power law, as in [31]:

1

Φ
=

1

Φ
max

+
A

(P ∗)α
, (8)

with a constant A and an exponent α (close to 1 in our
results). In order to describe the consolidation curve in
regimes II and III with a unique functional form, we use
the following relation:

1

Φ
=

1

Φ0
− λ ln

{

P ∗

P ∗
0

[

1 − exp

(

−
[

P ∗
1

P ∗

]α)]1/α
}

, (9)

which introduces additional parameters P ∗
1 and α, and

crosses over from Eq. (7), for P ∗ ≪ P ∗
1 , to Eq. (8), for

P ∗ ≫ P ∗
1 . Constant A in (8) is set to λ/(2α) on using (9)

for large P ∗ values, and P ∗
1 is directly related to Φ

max
:

ln
P ∗

1

P ∗
0

=
1

Φ0
− 1

Φ
max

.

Fig. 10 summarizes the definition and the role of all pa-
rameters of relation (9). A fit of our data to relation (9)

Region III
1/

max

ln(P
1
*)ln(P

0
*)

1/

ln(P*)

1/
0

Region I Region II

Region I:   1/
0
 ~ function(preparation) 

Region II:  1/
0
 -  ln(P*/P*

0
)

Region III: 1/
max

+ const (P*/P*
1
)-

FIG. 10: Schematic view of intrinsic consolidation curve with
regimes II and III, and role of parameters introduced in
Eq. (9).
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FIG. 11: (Color online) Consolidation data and fit to Eq. (9),
for systems with and without (small) RR.

is shown in Fig. 11. It should be noted that even a
small level of rolling resistance changes the plasticity in-
dex. Values of parameters are listed in Table III, where
we also included the fit parameters for the sample with
µR/a = 0.5 corresponding to the data of Figs. 8 and 9.

µR/a P ∗
0 Φ0 λ Φmax α

0 0.0237 0.469 0.349 ± 0.019 0.7808 0.91 ± 0.10

0.005 0.0316 0.515 0.194 ± 0.004 0.7745 1.08 ± 0.16

0.5 0.0178 0.382 0.25 ± 0.01 0.724 0.86 ± 0.24

TABLE III: Values of parameters λ, Φmax and α used to fit
the consolidation curve in systems of Table II, and in a sample
with larger RR, with Eq. (9). Correspondingly, P ∗

1 values are
0.271 ± 0.033 without RR, 0.900 ± 0.064 for µR/a = 0.005,
and 2.6 ± 0.4 for µR/a = 0.5.

As the consolidation curve in region II, defined by pa-
rameters λ and P ∗

0 , is observed not to depend on initial
conditions, our simulations support the following inter-
pretation: sooner or later in the process of quasistatic
isotropic compression, the system joins, in the P ∗ − Φ
plane, a certain locus, corresponding to compressive plas-
tic yielding. This locus, which acts as an attractor in
isotropic compression, is a straight line on using coor-
dinates lnP ∗ and 1/Φ. The value of P ∗

0 simply signals
where, depending on the preparation process, the yield
locus is reached. Table I gives the values of the parame-
ters defining the intrinsic curve, and of pressure P ∗

0 where
it is first reached in type 2 systems of Table II.

Consequently, in a system prepared at a lower density,
it should be possible to observe a wider interval of the in-
trinsic consolidation line. We could explicitly check this
property in the case of one sample with N = 5600, for
which the first nonzero equilibrium confining pressure in
the loading history is equal to 2 × 10−3 instead of 10−2.
This sample appears to have reached regime II sooner

(around P ∗
0 = 10−2, or possibly below). The correspond-

ing data points lie on the intrinsic consolidation curve
(or, at least, within a distance smaller than error bars)
identified on fitting the data of the main sample series,
which had a larger first compression step (to P ∗ = 10−2)
and a larger value of P ∗

0 (about 3 × 10−2). The yield
locus can thus be extrapolated to lower pressures and
densities, with the same plasticity index λ. On assem-
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FIG. 12: Comparison of data obtained on the one low P ∗
0

sample (open triangles), and Eq. (7) (continuous line) with
the parameters of Table III, as deduced from a fit of the data
(black triangles) from the more systematic simulation series
with larger P ∗

0 .

bling cohesive aggregates with arbitrarily low densities,
and on stabilizing them under very low initial pressures,
it is conceivable (although increasingly difficult in nu-
merical simulation because of the computational cost, as
well as in experiments, because of the system sensitivity
to perturbations) to create equilibrium structures with
smaller and smaller densities and to explore an increas-
ingly larger interval of the intrinsic consolidation curve
in the limit of P ∗

0 → 0. The corresponding solid fraction
Φ0 would then also tend to zero. This limit is compatible
with the functional form used in Eq. (7), while the use of
the alternative form [10, 49],

Φ − Φ0 = ν ln
P ∗

P ∗
0

,

would lead to contradictions in the limit of P ∗
0 → 0.

E. Unloading behavior

On the Φ versus P ∗ curves we have been showing so
far, that the unloading branch, down to P ∗ = 0.01, shows
very little density change. This property is actually sat-
isfied on decreasing the pressure from other configura-
tions in the compression process. Thus Fig. 13 shows
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FIG. 13: (Color online) Effect of different (isotropic) unload-
ing/reloading histories on solid fraction. The direct consoli-
dation curve with decompression from the highest pressure,
as shown in previous sections, is ABCDEE’ (path 4). On
unloading along lines BB’, CC’, DD’, the system does not
rearrange. Such paths are reversible and do not alter the ma-
terial state, since paths 4 (small black dots) and 5 (large, open
pink circles) superimpose in P ∗, Φ plane.

that, if P ∗ is reduced to the initial level 0.01 from differ-
ent states on the consolidation curve, density changes are
hardly noticeable, and Φ stays very close to the maximum
value reached at the largest imposed pressure P ∗

c in the
past. Furthermore, it is checked (in the case of sequence
4, drawn with open circles in Fig. 13) that the material
might be reloaded, with no notable density change until
pressure P ∗

c is reached. P ∗
c is known in soil mechanics as

the consolidation pressure, and a material in a state such
that P ∗ < P ∗

c is said to be overconsolidated. Upon in-
creasing the pressure beyond the consolidation value P ∗

c ,
the density irreversibly increases, and this compaction
is described by the same curve as in the absence of in-
termediate pressure cycle: the recompression curve from
C’ retraces back the same evolution from D to E. Thus
the material behavior conforms to the plasticity of clays
in isotropic compression [1]. All decompressing paths in
the P ∗, Φ plane, along which P ∗ < P ∗

c , are reversible.
More precisely, they are similar to the pressure cycles ap-
plied to cohesionless systems (Fig. 1), and they do not
depart much from the linear elastic response, as shown
on Fig. 14.

For the largest P ∗ values, adhesion forces are domi-
nated by the confining stress and are nearly negligible: on
setting F0 to zero in equilibrated systems under P ∗ > 10,
we could check that the granular assembly finds a new
equilibrium configuration with very small displacements
and hardly any change in the contact network.

FIG. 14: (Color online) Analog of Fig. 1, for the unloading
behavior of a sample with RR from P ∗ = 13.3 to P ∗ = 0.01.
Dotted lines correspond to the elastic response of the highest
pressure state and the final state (P ∗ = 0.01).

IV. CONSOLIDATION AND DENSITY

CORRELATIONS

The gradual collapse of the initially open structure of
loose systems, as visually apparent on Figs. 2, 3, and 4
and witnessed by the consolidation curve studied in Sec-
tion III, can be characterized by the density correlation
indicators introduced in paper I.

The initial aggregation process was shown in paper
I to result in a fractal structure of the density field
over intermediate scales, between the grain diameter and
some characteristic correlation length ξ. In the presence
of rolling resistance, even with the small value 0.005a
adopted for µR, the observed fractal dimension is com-
patible with the result of the ballistic aggregation model,
dF ≃ 1.55. The ballistic aggregation model is purely
geometric, and corresponds to the irreversible bonding
of particles or aggregates in each collision, with contacts
that are rigid in translation and rotation. This limit case,
for which the coordination number is equal to 2, is ap-
proached under low pressure [36] with large RR or small
V0/V ∗. Better coordinated systems obtained with small
RR and/or larger V0/V ∗ have the same fractal dimen-
sion. Systems with no RR, on the other hand, are closer
to dense objets with dF ≃ 1.9 [36].

The limitation of the fractal behavior by an upper
length scale ξ is a well-known geometric necessity in a
large system with finite particle packing fraction Φ, be-
cause (in 2D) a fractal structure of dimension dF < 2
within a square cell of edge length L exhibits an appar-
ent density proportional to LdF−2. In physically relevant
circumstances, systems with a finite packing fraction Φ
and a fractal structure over some distance range have a
finite correlation length ξ above which the average value
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of Φ is observed. One then has Φ ∝ ξdF −2 or

ξ ∝ Φ−1/(2−dF ), (10)

the prefactor being specific to the particular system stud-
ied. Systems with size L ≫ ξ can then be regarded as
homogeneous packings of fractal “blobs” of (linear) size ξ.
Such ideas are quite generally used, and were applied to
semi-dilute polymer solutions [55], to silica [56] or poly-
meric [57] gels, in computer simulations of aggregation
models [58], and to various complex, supramolecular ob-
jects like fat crystals [59] or asphaltene aggregates [60].

One may expect that the density increase caused by the
collapse, under growing load, of the tenuous structures
formed by cohesive packings corresponds to a decrease
in the fractal blob size ξ, while dimension dF still de-
scribes the scaling of density correlation at smaller scale.
One should then observe the scaling predicted in (10).
This implicitly assumes that the small scale structure of
the packing is not affected by the compaction process,
which essentially breaks long, thin junctions and fills the
largest pores. A clue in favor of such a scenario is pro-
vided by the results of Sec. III C, which suggest that the
same structure is obtained if the material is directly pre-
pared with some value of Φ, or if it is assembled first in
a looser state and then isotropically compressed, up to
solid fraction Φ.

To compute dF and ξ, we measure the “scattering in-
tensity” I(k), i.e. the Fourier transform of the density
autocorrelation function, as we briefly recall now (see pa-
per I for more details). Density field χ(r), taking values
1 within particles and 0 outside, is first discretized on a
regular mesh, then Fourier transformed, thereby obtain-
ing χ̂(k). We then evaluate I(k) = |χ̂(k)|2 /A, A being
the cell surface area. Invoking isotropy, it is a function
of k = ||k|| alone. I(k) should then vary proportionally
to k−dF for a ≪ 2π/k ≪ ξ, and reach some plateau for
k < 2π/ξ.

This approach was used in paper I, and yielded the
same fractal dimension, dF ≃ 1.52 in systems with RR,
under P ∗ = 0 (solid fraction ΦI = 0.36) and Φ = 0.01
(solid fraction Φ0 = 0.524±0.008), while ξ decreased from
ξI = 9.3 ± 0.4 to ξ0 = 5.1 ± 0.2. It should be noted that
these values are roughly compatible with relation (10) (as
(ξI/ξ0)

2−dF = 1.4± 0.1 is close to Φ0/ΦI = 1.46± 0.02).
Fig. 15 shows the scattering function for similar con-

solidation states shown in Fig 2 (P ∗ = 0.01), in Fig. 3
(P ∗ = 0.178), and for P ∗ = 1. These results are averaged
over the four largest samples (with RR) of Table II. In
spite of the error bars, I(k) exhibits the expected form, it
is approximately constant below some crossover wavevec-
tor 2π/ξ which increases with Φ, and then decreases, with
slope −dF on a logarithmic plot. Pressure P ∗ = 0.178 is
the largest one for which this latter feature is clearly ob-
served, and I(k) data corresponding to smaller pressures
are intermediate between P ∗ = 0.01 and P ∗ = 0.178
curves. The arrows on the plot signal the identified val-
ues of wavevector 2π/ξ, which values have been estimated
by means of the fit function for I(k) presented in paper I.
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FIG. 15: Scattering intensity per unit area versus wave vector
k. Results are averaged over the four largest samples (with
RR) of Table II.

The curve corresponding to P ∗ = 1 – a flat, low scatter-
ing signal – is typical of dense, homogeneous media with
no fractal range for density correlations.

In view of the small value of ξ reached in the loos-
est configurations (those with P ∗ = 0 studied in paper
I), relation (10) is difficult to test from density correla-
tion data. Another characteristic length scale for density
inhomogeneities, used in paper I, is the (mass) averaged
radius of gyration of pores. It may provide an alternative
definition of a blob size ξ′, proportional to ξ. We observed
ξ′ ≃ ξ at P ∗ = 0.01, In fact, this equality works well
under very low consolidations. However, under higher
confining pressures we have observed that the definition
of ξ′ gives lower values than ξ. Figure 16 is a plot of ξ′

as a function of pressure.
Despite the restricted fractal range, our observations

therefore confirm the validity of the “fractal blob” model,
with a constant dF and a correlation length ξ decreas-
ing as consolidation proceeds, until a final, homogeneous
structure similar to that of cohesionless packings (albeit
somewhat looser) is obtained. Other values of dF are
likely to be observed with other assembling processes
(such as e.g., diffusion-limited cluster aggregation).

Values of ξ and dF do not, however, entirely determine
the mechanical properties of the system. The response
of an aggregate to some mechanical perturbation should
depend on its connectivity which, as explicitly shown in
paper I, is independent of its fractal dimension (systems
with different µR and/or prepared with different values of
V0/V ∗ have the same dF , but very different coordination
numbers – see also Section III C 3).

Results concerning blob sizes in systems without RR,
for which dF ≃ 1.9 [36], are similar. Different stress
states and mechanical conditions might also produce
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FIG. 16: Average radius of gyration of pores, ξ′, versus P ∗.

other types of loose structures. As an example, in
the slow steady state shear flow of a very similar ma-
terial simulated in [35] under normal reduced pressure
P ∗ = 1.25×10−2 and shear stress σ12 ≃ 1.5P anisotropic
structures with Φ ≃ 0.6 were observed.

V. PROPERTIES OF EQUILIBRIUM FORCE

NETWORKS

A. Average normal force

Formula (2), as explained in Ref. [15] and in paper I,
leads to a simple relation between the average normal
force 〈FN 〉 in equilibrium, pressure P , solid fraction Φ
and coordination number z:

〈FN 〉 =
π〈d2〉P
zΦ〈d〉 =

7πaP

9zΦ
. (11)

We observed formula (11) (involving the first and sec-
ond moments of the diameter distribution) to be accurate
in all simulated states despite some approximations in-
volved [36]. However, as stressed in paper I, relation (11)
fails to estimate the typical contact forces in the network
under low P ∗. Those reach values of order F0 [16]. Nor-
mal forces of both signs (as visible on Fig 2 and Fig 3)
coexist and, to a large extent, compensate under low P ∗.

B. Coordination numbers

In initial low-pressure states, the coordination number,
z, as shown on Fig. 17, is nearly equally shared between
the contribution z+ of compressive bonds and z− of ten-
sile bonds. A small population (z0 per grain) of contacts

carry forces equal to zero (within the numerical toler-
ance for force equilibrium). Those contacts, in which the
normal deflection h takes the equilibrium value h0 for iso-
lated pairs [36], tend to be more numerous in the absence
of applied stress, if the aggregation process avoids the
building of hyperstatic (overbraced) structures. Their
number is quickly reduced once aggregates made under
P = 0 are subjected to some external stress and start
rearranging.

The population of contacts loaded in compression in-
creases along the consolidation curve until it dominates
at large P ∗. Upon unloading, the initial proportion of
tensile forces is first retrieved, and z− is eventually, un-
der low P ∗, larger than z+.

FIG. 17: Coordination numbers versus P ∗ in compression
cycle (a) without and (b) with RR. Both plots display, from
top to bottom, z, z+, z−, and z0. The error bars (not shown)
are about the size of symbols. Arrows close to the curves
indicate the compression branch of the pressure cycle.

The total coordination number increases very little in
the pressure cycle. Our observations thus contradict
some statements in the literature [61, 62] relating z to
Φ (even in cohesionless systems, Φ and z can vary inde-
pendently [38]). In the course of plastic collapse of loose
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structures, as the solid fraction increases by more than
50%, we observe the number of contacts to increase by
5% in systems without RR, and by 12% with RR. Such a
small variation of z in plastic compression contrasts with
the comparatively very fast change of z in the quasielas-
tic compression of cohesionless packings, as observed in
Section III A, in which z increases by more than 10% for
minute density increases.

As to the number of distant attractive interactions, i.e.
pairs of neighboring grains separated by a gap smaller
than D0 (contributing to z−), it is initially very low (typ-
ically 10 in a sample of 5600 particles), and then increases
with P ∗ but remains below 2% of the total number of in-
teractions.

C. Distribution of forces

Normal force distributions are (roughly) symmetric
about zero in initial states under low P ∗ [16], as shown
in Fig. 18. Under low P ∗, tangential forces of order F0

are also frequently observed [36], and the angle between
the total contact force F and the normal unit vector n is
not constrained by the Coulomb condition, which applies
to F + F0n rather than to F. This explains the typi-
cal patterns of self-balanced contact forces in small grain
clusters, where compressive and tensile forces of order F0

compensate locally, as might be observed on Fig. 2. The
Coulomb condition applying to F, on the other hand, fa-
vors alignments and “force chains”. Self-stressed small
clusters form spontaneously when the disks aggregate,
except for large RR and/or small V0/V ∗ [36].

As consolidation proceeds, under growing P ∗, normal
force distributions develop a wider positive (compressive)
side (Fig. 18), while the finite value for FN = −F0 is
characteristic of the failure of bonds in traction. Forces
eventually scale proportionally to P ∗ at large P ∗, like in
cohesionless systems [41, 42], as shown by Fig. 19. When
P ∗ reaches values of several unities, the force distribution
is similar to that of cohesionless packings, with an addi-
tional dwindling population of tensile contacts (Fig. 17).
Force distributions in systems with small RR are quite
similar to those shown in Figs. 18 and 19.

D. Forces in dense, overconsolidated states

Upon decompressing to low pressure levels, some larger
compressive forces (FN/F0 reaching 2 or 3) survive and
the distribution is not symmetric (Fig. 18). Such effects
of overconsolidation on contact forces are considerably
larger than in cohesionless granular materials [41]. As in
the case of cohesionless systems [41], we observed that
the decompression process tends to be affected by dy-
namical effects if it is too fast, and the overconsolida-
tion effects on force distributions tend to be erased if too
many contacts open in transient stages. The results per-
taining to overconsolidated states shown in Figs. 18, 17

FIG. 18: (Color online) Probability distribution function
P (FN) of static normal force in contacts, versus FN/F0, in
systems with no RR, for P ∗ = 0.01 (black), P ∗ = 0.178 (red),
P ∗ = 1 (blue), P ∗ = 2.37 (green). Distribution widens as
pressure increases as indicated by the arrow. P (FN ) is also
shown for P ∗ = 0.01 for the overconsolidated state (OCS) at
the end of the pressure cycle (pink dashed line).

FIG. 19: (Color online) Positive wing of probability distri-
bution function of rescaled normal forces, FN/P ∗, in systems
with no RR, under P ∗ = 2.37 (black crosses), P ∗ = 5.62 (red
square dots), P ∗ = 13.3 (blue triangles).

and 20 were obtained on simply reversing the stepwise
compression program with the parameters indicated in
Section II D 2 (i.e. with as many steps in decompression
as in compression).

This final force distribution is similar to the one re-
ported by Richefeu et al. [16] in simulations of packings of
wet spherical beads, in which cohesion is due to capillary
forces. After assembling the packing under a finite pres-
sure and then decompressing to P = 0, these authors ob-
serve that the particles tend to form small domains with
only compressive or only tensile forces. Fig. 20 reveals
quite similar patterns in overconsolidated states under
P ∗ = 0.01, with some predominance of the regions under
tension, while compressive forces tend to organize more
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FIG. 20: (Color online) Dense overconsolidated state of a
sample under P ∗ = 0.01 (with RR) at the end of the pressure
cycle. Color code as on Fig. 2, with distant attractive forces
(for which 0 < h < D0) in blue.

often in strong force chains. Tensile contacts are more
numerous than compressive ones after the pressure cycle
(Fig. 17).

To what extent overconsolidation effects on inner
states influence the mechanical properties of cohesive
granular materials (e.g., their response to shear stress)
would deserve to be investigated.

E. Effect of a large rolling resistance

As reported in the previous paragraphs, the small level
of rolling resistance used in most simulations reported
here (µR/a = 0.005) has no large effect on force distribu-
tions or force patterns. Yet, such a small RR significantly
affects plasticity index λ (see Table III) and changes frac-
tal dimension dF (Section IV).

In order to understand the mechanisms by which RR
affects macroscopic behavior and geometry, we investi-
gated the effects of a large RR (µR/a = 0.5) in a few
1400-disk configurations. Rolling resistance favors force
transmission along thin strands of particles, each of them
in contact with two neighbors (such structures are shown
in paper 1 [36, Fig. 20]). Single particle chains are eas-
ily disrupted if µR/a is small, but are quite frequent for
such RR levels. While single particle chains are easily dis-
rupted if µR/a is small, they become much more frequent
for large rolling resistance Thus coordination numbers
may approach 2 (see Fig. 9). The density and the length
of such particle chains are also witnessed by the propor-

tion x22 of the contacts that join 2-coordinated disks.
Such contacts are impossible in an equilibrium structure
without RR. x22 reaches 12% in large RR systems under
low pressure (for Φ in the 0.4 to 0.5 range), down to 1-
2% in the main sample series of Table II with small RR
(µR/a = 0.005). Thin, rigid strands of 2-coordinated
disks might, however, be decorated by a side arm act-
ing as a dead end for force transmission, and their me-
chanical role is thus only partially captured on simply
recording fraction x22. In the limit of z → 2, which is
approached under low pressure for large RR and/or low
velocity V0 in the assembling stage, the force network has
a vanishing number of loops and approaches isostaticity,
as discussed in paper I [36]. Consequently, as compared
to the case of small or no RR, systems with large RR
under P ∗ ≪ 1 exhibit narrower force distributions. For
P ∗ of order 10−2, normal forces above F0/5 or below
−F0/10 are extremely scarce (with probability distribu-
tion function P (FN ) in the 10−3 range). Furthermore,
with P ∗ ∼ 1, while compressive normal forces of order
F0 are frequently observed, P (FN ) remains below 10−2

for FN → −F0. This contrasts with the results shown on
Fig. 18: the proportion of contacts on the verge of ten-
sile rupture is much smaller in systems with large rolling
resistance.

VI. ELASTIC MODULI

Elastic moduli are used in experiments [63] and com-
puter simulations [43, 64] to express the response of gran-
ular materials to small load increments. Their measure-
ment, or that of wave velocities, is a non-destructive
probe of the packing structure. Thus, in the case of co-
hesionless bead packings, the simulations of [43] showed
that the moduli are sensitive to coordination number,
which can vary independently of the solid fraction, and
escapes direct observations [38]. In the present case of
possibly loose and poorly connected cohesive systems,
those moduli also approximately describe the parts of
the compression curves with no packing rearrangement
(Fig. 14), like in cohesionless systems (Fig. 1).

A. Elastic moduli of cohesionless packings

We first quickly describe the variations of elastic mod-
uli in the cohesionless systems of Table II, and their rela-
tions to microstructural or micromechanical parameters.
Fig. 21 is a plot of bulk and shear moduli versus pressure.
Values of moduli are very similar in systems without and
with RR, and vary very slowly with µR in the latter case.
Unlike with Hertzian contacts, local stiffness constants
KN , KT do not depend on forces. Consequently, the in-
crease of moduli with pressure is moderate. The results
of Fig. 21 are typical of cohesionless granular systems
with small coordination number [42, 43, 47]. The evolu-
tion of bulk modulus is correctly described by the simple
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FIG. 21: (Color online) Bulk and shear moduli of cohesion-
less systems (with RR), versus pressure in compression cy-
cle. Voigt and Reuss bounds are shown as (red) triangles and
(blue) round dots, respectively. Asterisks show values of B
obtained on taking a larger rolling stiffness, KR = 10−2KNa2

instead of KR = 10−4KNa2, with the same contact network.

estimation formulae recalled below in Sec. VI B, and it is
explained by the increase of coordination number. Shear
modulus G, on the other hand, is somewhat anomalously
low, witnessing the propensity of a rather poorly con-
nected contact network (z∗ ≃ 3.1 under P/KN = 10−5,
without RR) to rearrange under small stress increments,
if those are not proportional to the preexisting stresses.

The evolution of elastic moduli in the unloading part of
the pressure cycle (not shown on the figures, for clarity)
very nearly reverses the effect of the first compression.

B. Simple estimation formulae

Bulk and shear moduli are traditionally estimated by
the Voigt or mean field formula [44, 65], which gives up-
per bounds [43] BV , GV in terms of contact stiffness
constants and coordination number z, based on the as-
sumption that particle centers move like points of a ho-
mogeneously strained continuum. In the present case one
has:

BV =
zΦ

[

〈d2〉 + 〈d〉2
]

KN

4π〈d2〉 =
55zΦKN

112π

GV =
KN + KT

2KN
BV

(12)

On deriving (12), similar approximations are used as
for (11). The formulae are identical for systems with
or without RR, and since we chose KT = KN one has
also GV = BV .

For the bulk modulus, one may also write down a lower
bound BR, the Reuss estimate [43], based on the eval-
uation of the elastic energy with trial forces in a load
increment. The formula for BR involves moments of the

contact force distribution, specifically the following ratio:

Z̃2 =
〈F 2

N + KN

KT
F 2

T + KN

KR
Γ2〉

〈FN 〉2 , (13)

in which averages are taken over all contacts carrying
static normal force FN , tangential force FT and rolling
moment Γ (to be set to zero in the absence of RR). Us-
ing (11), one has

BR =
zΦ〈d〉2KN

2π〈d2〉Z̃2

=
27zΦKN

56πZ̃2

. (14)

This approximation of the bulk modulus becomes exact
when the force increments caused by an isotropic pressure
increase are proportional to the preexisting forces [43],
and hence it tends to be accurate in systems with small
degrees of force indeterminacy. The ratio of upper to
lower bounds for B given by Eqs. (12) and (14) is

55Z̃2/54, and the bulk modulus is therefore especially
well predicted when the force distribution is not too
wide [43], and ratio Z̃2 stays close to 1. Thus bulk moduli
are rather successfully estimated (see Fig. 21) by BR or
BV in the cohesionless case of Sections III A and VI A.
Force distributions have often been studied in cohesion-
less systems, in which they are strongly constrained by
the no-tension condition, and Z̃2 cannot reach large val-
ues (Z̃2 ≤ 1.5 in the present case).

C. Elastic moduli in cohesive packings

Elastic moduli as functions of P ∗ during consolidation
of cohesive systems are plotted in Fig. 22. Note the log-
arithmic scale used for elastic moduli (unlike in Fig. 21).
Both bulk and shear moduli are very low at small P ∗,
which cannot be simply explained by the factor zΦ ap-
pearing in estimates (12) and (14) (z values, see Fig. 17,
are similar to those of cohesionless systems while Φ is
twice as small at most). Those anomalously low moduli
witness the propensity of the system to rearrange under

isotropic as well as under deviatoric stress increments.
Moduli in samples with RR (Fig. 22b) have very similar
values as in the absence of RR, although this may be
partly coincidental, since they are quite sensitive to the
value of rolling stiffness KR.

On decompressing, the moduli (not shown in Fig. 22)
stay close to the value reached at the highest pressure.

Mean field estimates BV and GV are both too large by
factors of 30 to 50 in loose states. From (11) the average
normal force 〈FN 〉 vanishes as P ∗ tends to zero, while the
second moment is of order F 2

0 . Moreover, as tangential
forces are not limited by condition |FT | ≤ µFN , but by
|FT | ≤ µ(FN +F0) instead, their contribution to the elas-
tic energy is important (and so is that of rolling moments

in systems with RR). Coefficients Z̃2 thus reach values of
order 102 or 103 under low pressure, whence BV /BR ≫ 1
which is impossible in cohesionless systems. The Reuss
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FIG. 22: (Color online) Bulk and shear moduli of cohesive
systems (a) without and (b) with RR, versus (growing) pres-
sure. Same symbols and colors as in Fig. 21.

bound for B is first (in regime I) too small by a large
factor. Then, it seems to capture the evolution of the
bulk modulus in regimes II and III of the consolidation
behavior. Ratio B/BR is reduced to about 2 for P ∗ of
order 0.1, and slightly decreases as compression proceeds.
It should be recalled, though, that the Reuss formula es-
sentially relates the bulk modulus to another unknown
quantity, Z̃2.

D. Elastic moduli and force indeterminacy

The low value of the shear modulus in poorly coordi-
nated cohesionless packings under isotropic stresses (see
Fig. 21) has been observed [43, 47] and argued [66] to
stem from its tendency to vary proportionally to the de-
gree of force indeterminacy per unit area (or volume in
3D) when it is small. As the latter (without RR) is pro-
portional to (z∗ − 3)Φ(1 − x0), one should have

G∗ ≡ G

Φ(1 − x0)
∝ z∗ − 3. (15)

FIG. 23: (Color online) Elastic moduli (no RR) divided by
KNΦ(1 − x0), versus z∗, the coordination number without
rattlers. Data with error bars, fitted with the dashed straight
line, correspond to G in cohesionless systems. G and B in the
cohesive material are respectively shown as (red) crosses and
asterisks.

Fig. 23 shows our cohesionless packings to abide by this
law, as the linear variation of G∗ with z∗ would predict,
within uncertainties, its vanishing for z∗ = 3. However,
it is also obvious from Fig. 23 that the anomalous be-
havior of both moduli in loose, cohesive grain assemblies
are not simply explained by their low coordination num-
ber, except perhaps for the shear moduli of the densest
configurations (rightmost data points), which, after suffi-
cient plastic compaction, become similar to cohesionless
packings. A coordination number z∗ just above 3 (with-
out RR) characterizes a “barely rigid” contact network,
but such a global, average quantity does not account for
the specific heterogeneities of loose cohesive packings.

E. Contact forces in a small pressure increment

At the microscopic level the elastic response to a small
pressure increment ∆P determines contact force incre-
ments as visualized in Fig. 24. Very strong compres-
sive force chains appear, while large parts of the system
carry very small forces. On sorting the contacts by de-
creasing contribution to the elastic energy of the force
increments balancing ∆P , less than half of them (46%)
contribute 95% of the energy. This proportion increases
to about 65% in the densest configurations, to be com-
pared to 68–70% in cohesionless systems. The configu-
ration of Fig. 24, in a system with RR, has quite a few
dead ends, i.e., sets of grains that are connected to the
rest of the structure but do not belong to any percolating
loop for force (or current) transport through the whole
periodic cell. With RR, the force-carrying structure coin-
cides with the backbone in the sense of ordinary (scalar)
percolation theory. The force patterns of Fig. 24 dif-
fer from those of Fig. 2, in which the equilibrium forces,
prior to the application of ∆P are shown: some regions,
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FIG. 24: (Color online) Force increments associated with
elastic response in isotropic compression of system of Fig. 2.
Contacts are ordered by decreasing contribution to elastic en-
ergy, and only the first 46% contact forces corresponding to
95% of the energy are drawn (colors as on Figs. 2 to 4).

especially the isolated, self-stressed clusters where com-
pressions and tensions of order F0 equilibrate, carry large
forces but are bypassed in the transmission of the pres-
sure increment ∆P . Dead ends contain “islands” of self-
balanced forces resulting from the aggregation process,
as directly visible on Fig. 2, but they do not participate
in the transmission of stress increments and they do not
contribute to elastic moduli.

As consolidation proceeds, the repeated application of
pressure increments clearly favors force chains over local-
ized self-stressed clusters, and the force pattern adapts to
the external pressure. Hence a closer similarity between
the spatial distribution of equilibrium forces under pres-
sure P and that of force increments caused by a small
compression step ∆P , and a better performance of the
Reuss estimate.

F. Scaling with fractal blob size

The inability of the approaches used in cohesionless
systems to predict the elastic moduli of loose cohesive
packings can be attributed to their ignoring the peculiar
network geometry, which is the origin of the strong force
concentration shown in Fig. 24.

In view of the results of Section IV, it is tempting to
relate the elastic moduli to the variations of blob size ξ.
In scaling arguments about the density, the system can
be regarded as a densely packed assembly of somewhat

fuzzy ξ-sized objects, the blobs. To discuss elastic prop-
erties, the system is better represented as a network of
“superbonds” of length ξ, or effective beams (with which
the elongated structures carrying stress in Fig. 24 could
be identified). In such a network, the dominant defor-
mation mode is beam bending. The transverse deflection
δ in bending of a beam of length ξ, caused by a force
F , is proportional to ξ3F . Macroscopically, strains are
of order ǫ = δ/ξ, while F corresponds to stress σ by
F ∝ σξ in 2D. Consequently, the scaling of elastic mod-
uli σ/ǫ with length ξ should involve a factor ξ−3. (Some
possible corrections to exponent 3 are possible, although
the appropriate value in, e.g., the case of percolation net-
works of beams is very close to 3 [67, 68]). As ξ varies by
a factor of 3 or 4 within the scaling range (see Fig. 16),
relation B ∝ ξ−3 would predict an increase of moduli by
a factor of a few tens.

Although this can be regarded as a fair estimate (see
Fig. 22), it should be admitted that the fractal range is
very likely too restricted for such scaling laws to apply
without important corrections. With sufficiently large
rolling resistance, the “beams” can be reduced to single
particle chains, which, as we now show, enables simpler
analyses of their bending stiffness.

G. The case of a large rolling resistance

With large RR the prevalence of particle strands as
force-transmitting structures (Sec. VE) influences elas-
tic properties. As noted above, linear structures tend to
deform like bending beams, with a compliance propor-
tional to the third power of their length. In the case of
single linear strands, connections with contact properties
are easily made more explicit. Consider, e.g., a straight,
linear chain of n identical disks of radius R, with n − 1
contacts characterized by stiffness constants KN , KT and
KR. Then, in the elastic regime, all intermediate disks
can be suppressed and the interaction between the ex-
treme ones, numbers 1 and n along the chain, can be
replaced by an effective one between two disks of radius

(n − 1)R, and compliances 1/K
(n)
N , 1/K

(n)
T , and 1/K

(n)
R

for normal, tangential and rolling relative motion, with:
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(16)

For large n the tangential compliance is much larger than
the longitudinal and rolling ones, so that long chains be-
have as beams, which essentially deform in bending. The
local bending stiffness EI of the beam (i.e. the product
of the material Young modulus by the moment of inertia
of the beam section) corresponding to the chain of parti-
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cles in the continuous limit is EI = 2RKR. (This coeffi-
cient expresses the proportionality of bending moment to
rotation angle gradient). For n ≫ 1, the bending spring
constant 3EI/l3 (expressing the transverse force to trans-
verse deflection relationship) is correctly identified from

K
(n)
T given in (16), using the length l = 2(n− 1)R of the

straight n-particle strand.

Remarkably, the bending elasticity of small linear
strands of micrometer-sized colloidal particles bound by
adhesive forces has recently been measured by means of
optical tweezers [69]. Colloidal gels of polymer parti-
cles [70, 71, 72] should thus be modeled as cohesive par-
ticle assemblies with rather large RR level.

It is easy to check (consider e.g., two such chains join-
ing at their ends at some angle) that for all strand shapes
other than straight lines, the extremities will be coupled

by spring constants of order K
(n)
T for both longitudinal

(parallel to end-to-end vector) and transverse relative dis-
placements. Consequently, the macroscopic elastic mod-
uli should be proportional to rolling stiffness constant
KR. Fig. 25 shows that this proportionality is approx-
imately satisfied in the loosest states of a system with
rolling friction µR/a = 0.05, in which three different val-
ues of KR were used to evaluate the elastic response.
Elastic moduli of denser states, however, depart from

FIG. 25: (Color online) Bulk (filled symbols) and shear (open
symbols) moduli, normalized by KR, in low pressure states
of a sample for which µR/a = 0.05 and KR = 10−2KNa2

(black squares). Results obtained on evaluating moduli with
KR = 10−3KNa2 and with KR = 10−4KNa2 are respectively
shown as red triangles and blue circles.

this behavior. Therefore, the scaling of elastic moduli
with typical strand length (as suggested in Section VI F)
is limited to low consolidation states. With small or van-
ishing RR, single particle strands are replaced by thicker
junctions, which further restricts the consolidation pres-
sure range for which elasticity is dominated by beam
bending.

VII. PLASTIC CONSOLIDATION

MECHANISM: QUALITATIVE ASPECTS

Cohesionless granular assemblies, if subjected to stress
increments that are not proportional to initial stresses,
essentially deform because the contact network gets re-
peatedly broken and repaired [40, 73]. Macroscopic
strains, once they exceed the very small scales associated
with the response of given contact networks [40, 43], thus
result from a sequence of rearrangement events or micro-
scopic instabilities, during which the granular packing
loses its coherence and gains some finite amount of kinetic
energy, even for arbitrarily slow applied stress changes.
Collisions and appearance of new contacts stabilize the
packing at the end of each microscopic rearranging event.
This process gradually changes the topology of the con-
tact network, and produces specific evolution of its fabric
(orientation anisotropy).

The mechanism of plastic collapse in isotropic compres-
sion of loose cohesive assemblies with small or vanishing
RR in contacts, as observed in the present study, is sim-
ilar. Just like in cohesionless systems under shear [40],
we expect the frequency of occurrence of rearrangements,
along the loading path, to increase, and the correspond-
ing strain jumps to decrease, as the size of samples grows,
and thus the consolidation curve should be smooth in
the thermodynamic limit. Due to the specific geome-
try of loose systems, in which dense zones are weakly
connected through thin arms, better connected, solid-
like regions tend to move like rigid bodies, while frag-
ile junctions break and rearrange, so that initially large
holes gradually fill up. Fig. 26 illustrates this scenario.
Displacements are depicted as arrows, pointing from the
current positions to the ones reached in the next equilib-
rium configuration in the stepwise compression sequence.
The more densely packed, nearly rigid regions (marked
with dotted lines) are easily identified by direct visual
inspection. Fig. 26 also shows that the contact network
undergoes relatively small topological changes, as more
than 90% of contacts are conserved. The rate of con-
tact change, and the evolution of coordination number
with strain are significantly smaller than in cohesionless
systems undergoing, e.g., shear deformation. During the
compaction of loose samples the dense regions collide and
slide past one another, along thin sheared zones where
most of the broken contacts are found.

In the case of large RR, the peculiar microstructure
involving single particle chains might lead to a differ-
ent deformation mechanism. Unlike multiply connected
junctions, simple strands can yield in bending without
breaking: they fold at some contact, where the rolling
friction threshold is reached, thereby releasing bending
elasticity. This mechanism is observed in experiments
on single chains of colloidal particles [69, 71]. One thus
expects fewer contact losses in plastic compression.

To follow more closely the rearrangement sequences
in the course of compaction, it is appropriate to moni-
tor changes in the list of contacts during the motion be-
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FIG. 26: Equilibrium particle positions in 1400 disk sample
with small RR under P ∗ = 0.032. Particle displacements to
new configuration equilibrated under P ∗ = 0.042 are shown
as arrows (global density change ∆Φ = 0.05). Neighbor pairs
for which contact opens are filled in grey. All other contacts
(thin solid lines) are maintained. Dense regions moving ap-
proximately like rigid solids are circled within dotted lines.
Most lost contacts are situated near the boundaries of such
solid-like particle lumps.

tween two equilibrium configurations. As an example, let
us consider the evolution between equilibrated states as
P ∗ increases from 0.177 to 0.237, and compare two sam-
ples, one with small (µR/a = 0.005) and the other with
large (µR/a = 0.5) RR. Table IV gives the changes in
solid fraction and coordination number, and numbers of
maintained, destroyed and created contacts in this com-
pression step. Successive configurations separated by a
fixed time interval ∆t = 0.16T0 are compared and Fig. 27
plots the number of destroyed and created contacts as
functions of time. For the same strain increment, con-
tact losses, as a function of global strain, are significantly
less frequent in the sample with large RR. This fact is re-
flected both in the data of Table IV, where global changes
are recorded, between the initial and final states, and in
those of Fig. 27, where successive changes over time inter-
vals ∆t are detailed. As a consequence, while the coor-
dination number hardly changes during consolidation in
systems with small or vanishing RR (see Fig. 17), it grad-
ually increases from an initial value close to 2 to nearly 3
in systems with large RR (Fig. 9). The lesser importance
of tensile contact rupture in the plastic compression of as-
semblies with large RR is also witnessed by the normal
force distribution (Section VE): forces approaching −F0

are quite scarce, as opposed to the situation in samples

µR/a ∆Φ(%) ∆z(%) N (=) N (−) N (+)

0.005 3.2 0.14 2084 (94.9 %) 112 (5.1 %) 115 (5.2 %)

0.5 3.1 1.2 1679 (98.5 %) 26 (1.5 %) 46 (2.7 %)

TABLE IV: Relative changes of solid fraction, ∆Φ, and of co-
ordination number (∆z), and numbers of maintained (N (=)),

destroyed (N (−)) and created (N (+)) contacts in a 1400 disks
sample, with small or large RR, in the compression step be-
tween P ∗ = 0.177 and P ∗ = 0.237.

FIG. 27: (Color online) Evolution of the contact number
as a function of relative density increase. In sample with
µR/a = 0.005 the proportions x+ and x− of gained and of lost
contacts with respect to the previous recorded list are respec-
tively shown with red square dots and triangles – the latter
being connected with a dashed line. A similar code is used for
x+ and x− values in a sample with large RR (µR/a = 0.5),
but with open dots, and in black.

without RR (Fig. 18). With small RR, some single par-
ticle chains are also present, although shorter and less
numerous. The sensitivity of plasticity index λ to the
rolling friction is likely to be explained by different rup-
ture mechanisms, the importance of folding rearrange-
ments growing with the level of rolling resistance.

VIII. CONCLUSION

To summarize, we have used numerical simula-
tions to observe and characterize, at the macroscopic
and microstructural levels, the consolidation behavior,
in isotropic compression, of model cohesive powders.
Macroscopic constitutives laws for quasistatic loading,
unloading and elastic responses were shown to be reason-
ably well approached. The material behavior was inves-
tigated for a range of densities that is wider than in most
simulation studies of cohesive granular materials. The
consolidation process goes through three stages. In a first
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regime, which is sensitive to the assembling procedure, no
plastic collapse occurs, as the agitation in the assembling
process has stabilized a strong enough microstructure to
withstand a finite pressure increase. The normal force
distribution widens until a significant fraction of contacts
are on the verge of tensile rupture. The initial system ge-
ometry, which changes very little in regime I, is that of a
dense assembly of fractal blobs, with dimension dF taking
the universal value associated with the aggregation pro-
cess (here, ballistic) implemented in the sample prepara-
tion stage. The blob size ξ (at most, between 5 and 10
grain diameters in the present case) can be identified on
studying density correlations. The subsequent consolida-
tion behavior is remarkably independent on initial con-
ditions, which merely determine where the intrinsic con-
solidation curve in the Φ-P ∗ plane is first met. The same
curve is then followed whatever the initial conditions as
the material is further compressed. This behavior cor-
responds, at the microscopic level, to a gradual change
of the blob size. The curve in regime II has the same
shape as reported in the soil mechanics literature, and
the consolidation pressure is a plastic threshold below
which the material response is approximately elastic (like
the behavior of a cohesionless granular material under
isotropic load). Elastic moduli increase rapidly with con-
solidation pressure or density. The cases of small RR or
without RR should be distinguished from the situation of
strong rolling resistance, although, in both cases, the mi-
crostructure of loose packings might be viewed as denser,
better connected regions joined by thin arms. In the first
case, loose packings collapse when the tensile strength
of contacts is overcome by the externally imposed forces,
preferentially within the fragile junctions between adja-
cent denser blobs. Systems with strong RR, on the other
hand, contain single particle strands, which tend to fold
without breaking in plastic compaction. While small RR
systems gain very few contacts in the consolidation pro-
cess, the coordination number might increase from nearly
2 to 3 with large RR. Eventually, the material approaches
a limiting, maximum density (regime III), as the pack-
ing structure resembles that of a cohesionless system, for
P ∗ ≫ 1 (albeit, typically, somewhat looser). The ab-
sence of a similar upper limit of the density of cohesive
packings in experiments for large P ∗ is due to plastic
deformation of contacts.

The fractal blob size ξ, depending on solid fraction Φ,
is a central microstructural feature, based on which some
scaling laws for elastic properties can be attempted. It
is also tempting, beyond the qualitative description of
the microstructural changes associated with the consoli-
dation process, to try to predict the consolidation curve
from such geometric data. Yet scaling laws only apply to
a restricted part of the consolidation pressure interval.

Our results, in many respects, emphasize important
qualitative differences between cohesive and cohesionless
granular assemblies. The existence of stable loose struc-
tures and the consolidation phenomenon are the most
important differences in macroscopic behavior brought

about by cohesion. At the microstructural level, unlike
in cohesionless packings, the typical values of intergran-
ular forces, or the force distribution, are not as simply
estimated in cohesive systems, in which attractive and
repulsive contact forces of the order of tensile strength
F0 tend to compensate under low pressure. In particu-
lar, compression cycles stabilize self-balanced force net-
works with large compression forces. Unlike in granu-
lar packings devoid of cohesion, the coordination number
does not appear to be a significant state variable in co-
hesive systems with low RR, as it hardly changes along
the consolidation curve. With large rolling resistance, it
witnesses, however, the formation of loops under com-
pression. While cohesionless assemblies with low coordi-
nation number usually contain many rattlers, all parti-
cles in cohesive packings are connected to the same con-
tact structure, which is rigid, but comprises lots of “dead
ends” or “side arms”, which might bear self-balanced
forces but do not participate in the transmission of exter-
nal stresses. Some of these new features can be summed
up on remarking that loose powders are similar to gels
as much as to granular packings with no cohesion.

Our investigations should be pursued in several direc-
tions. On the theoretical side, the connections between
macroscopic properties and microstructure could be stud-
ied more quantitatively. The behavior of loose cohesive
packings under general stress states should be investi-
gated. Thus one may determine whether such constitu-
tive laws as the Cam-clay model [1] apply to the simu-
lated material. And finally, more quantitative agreement
with experiments and real materials should be sought.
In spite of some obvious steps (e.g., one should simulate
3D systems), this latter objective looks daunting. One
major difficulty is the importance of hydrodynamic ef-
fects at the assembling stage, when the microstructure
and the fractal dimension of aggregates are determined.
While we have bypassed this problem on implementing
ballistic aggregation, it is necessary to investigate the
behavior other possible kinds of aggregates, by dealing
with some tractable model for hydrodynamic forces. It
is hopefully possible to introduce some mechanics and in-
tergranular interactions within the models used with ge-
ometric aggregation rules (such as, e.g., diffusion-limited
cluster-cluster aggregation). Then, another difficulty is
that many parameters associated with the contact law
(such as friction coefficient, rolling friction, rolling stiff-
ness constant) should be identified for a real material to
be investigated at the grain level. In this respect, the
recent progress of experimental methods of microscopic
investigation seems quite promising, as formerly inacces-
sible parameters ruling interparticle contact mechanics
are now beginning to be measured in model materials,
thanks to particle-scale observation and micromanipula-
tion techniques [50, 51, 69, 71, 74].
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