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Abstract. This reading guide aims to provide the reader with an easy access to the study
of universality in the field of cellular automata. To fulfill this goal, the approach taken here
is organized in three parts: a detailed chronology of seminal papers, a discussion of the
definition and main properties of universal cellular automata, and a broad bibliography.

Introduction

The idea and construction of a universal cellular automaton is as old as the formal study
of the object itself, starting with the work of von Neumann [82] on self-reproduction in the
1940s, using cellular automata under suggestions by Ulam. Following the work of Turing,
a Turing-universal cellular automaton is an automaton encompassing the whole computa-
tional power of the class of Turing machines, or by so-called Church-Turing thesis the class
of recursive functions. To encode complex behaviors in a cellular automaton’s dynamics, one
can describe how to encode any computing device of a universal class of machines (Turing
machine, tag systems, etc) and use classical tools of computability theory to shape wanted
behaviors of the object. This is basically what von Neumann did. He designed a cellular
automaton able to encode any Turing machine, the machine being moreover equipped with
a construction arm controlled by the machine’s head.

But Turing-universality is not the only reasonable kind of universality one might expect
from cellular automata. It is quite unnatural to consider a universality of highly parallel
potentially infinite devices as cellular automata by simulation of the dynamics of sequential
finite machines — indeed, as we will discuss, to give a both widely acceptable yet precise
definition of Turing-universality is a very difficult and unfulfilled challenge. As the study
of cellular automata shifted both to dimension 1 and to the study of its dynamics, another
kind of universality emerged. An intrinsically universal cellular automaton is an automaton
able to properly simulate the behavior of any other cellular automaton on any type of
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Figure 1: Partial space-time diagram of the (Z2,+) rule

configuration (might it be infinite). It turns out that most of the historical constructions
in dimension 2 and more, whereas designed as Turing-universal are Intrinsically Universal
by the simple fact that they are designed to encode any boolean circuit.

A formal definition of universality might not seem so important. In fact, when building
a precise cellular automaton from scratch to be universal, a definition is often implicit: the
obtained behavior is the one engineered by the designer. The definition turns out to be
more required when proceeding by analysis: given a cellular automaton rule, is it universal?

The present reading guide is constructed as follows. Section 1 Cellular Automata (p.
103) gives the definitions and notations used for cellular automata, configurations, and
dynamics. Section 2 Chronology (p. 105) is an annotated chronology of seminal papers
preparing to and concerning universality and universal cellular automata. Section 3 To-
wards Formal Definitions (p. 108) discusses the right definition of universalities in cellular
automata. Section 4 Higher Dimensions (p. 110) discusses the construction and analy-
sis of universal cellular automata in dimensions 2 and more, mostly using boolean circuits
simulation. Section 5 Turing Universality (p. 111) discusses Turing universality, its links
with universal Turing machines and the main technics of construction. Section 6 Intrinsic
Universality (p. 113) discusses Intrinsic universality and the main technics of construc-
tion. Section 7 Reversiblity and Universality (p. 115) discusses universality in the special
restricted case of reversible cellular automata.

1. Cellular Automata

A cellular automaton A is a tuple (d, S,N, f) where d is the dimension of space, S is a
finite set of states, N a finite subset of Z

d is the neighborhood and f : SN → S is the local
rule, or transition function, of the automaton. A configuration of a cellular automaton is a

coloring of the space by S, an element of SZ
d

. The global rule G : SZ
d

→ SZ
d

of a cellular

automaton maps a configuration c ∈ SZ
d

to the configuration G(c) obtained by applying
f uniformly in each cell: for all position z ∈ Z

d, G(c)(z) = f(c(z + ν1), . . . , c(z + νk))
where N = {ν1, . . . , νk}. A space-time diagram of a given cellular automaton is a mapping

∆ ∈ SN×Z
d

such that for all time step t ∈ N, ∆(t+ 1) = G(∆(t)).

Example 1.1. Fig. 1 is a partial representation of a space-time diagram of the cellular
automaton (1,Z2, {0, 1} , f) where f(x, y) = x + y. State 0 is represented by the white
color, state 1 by the black color. Time goes from bottom to top.

In this paper, we consider for the most part cellular automata of dimension 1 and 2 with
the typical neighborhoods depicted on Fig. 2: von Neumann {(−1, 0), (1, 0), (0,−1), (0, 1)}
and Moore {−1, 0, 1}2 in dimension 2, first neighbors {−1, 0, 1} and one way {−1, 0} in
dimension 1.
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(a) von Neumann (b) Moore (c) first neighbors (d) one way

Figure 2: Typical neighborhoods

Several subsets of the space of configurations are considered. Given a quiescent state q
satisfying f(q, . . . , q) = q, a q-finite configuration c is a configuration equal to q in all but
finitely many cells: there exists α such that for all position z ∈ Z

d, ‖z‖
∞
> α→ c(z) = q. A

configuration c admits p as a periodicity vector if for all position z ∈ Z
d, c(z+ p) = c(z). A

configuration c in dimension d is periodic if it admits a family of d non-colinear periodicity
vectors: there exists p ∈ N

d such that (p1, 0, . . . , 0), (0, p2, 0, . . . , 0), . . . , and (0, . . . , 0, pd)
are periodicity vectors of c. A configuration c in dimension d is ultimately periodic if there
exists α and d non-colinear vectors vi such that for all position z ∈ Z

d and all vector
vi, ‖z‖∞ > α → c(z + vi) = c(z). Notice that in dimension 1, an ultimately periodic
configuration can have two different ultimately periodic pattern on each side.

Constraints can also be added to the local rule. Symmetries are usually considered to
obtain more natural rules mimicking physical systems. A symmetry rule can be seen as a

one-to-one mapping ρ : Z
d → Z

d: the image of a configuration c ∈ SZ
d

by the symmetry rule
ρ is the configuration ρ(c) satisfying for all position z ∈ Z

d, ρ(c)(z) = c(ρ(z)). A cellular
automaton A respects a symmetry rule ρ if ρ and G commute, i.e. ρ(G(c)) = G(ρ(c)).
Typical symmetries include reflections around point (ρ0(x, y) = (−x,−y)), around axes
(ρx(x, y) = (−x, y)) and rotations (θ(x, y) = (−y, x)). A cellular automaton is totalistic
if it’s set of states is a subset of N and the local rule f can be written as f(s1, . . . , sk) =

g(
∑k

i=1 si). Totalistic rules respect all symmetries that preserve the neighborhood (i.e. such
that the image of the neighborhood by the symmetry rule is equal to the neighborhood):
totalistic cellular automata with the von Neumann or Moore neighborhood are reflection
and rotation invariants.

A cellular automaton is injective (resp. surjective, one-to-one) if its global rule is
injective (resp. surjective, one-to-one). A cellular automaton A is reversible if there exists
a cellular automaton B that reverts it, that is such that GB ◦GA is the identity map.

Proposition 1.2 (Hedlund [31], Richardson [72]). A cellular automaton is reversible if and
only if it is injective.

Proposition 1.3 (Amoroso and Patt [2]). It is decidable given a one-dimensional cellular
automaton to decide whether it is reversible.

Proposition 1.4 (Kari [34, 35]). It is undecidable given a two-dimensional cellular au-
tomaton to decide whether it is reversible.

Whereas reversibility is an undecidable question, the construction of reversible cellular
automata is possible, provided that the backward rule is constructed at the same time as the
forward rule. Partitioned cellular automata provide a convenient way to construct reversible
cellular automata. A partitioned cellular automaton is a cellular automaton with state set
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S1 × S2 × · · · × Sk whose local rule can be rewritten as f((s11, . . . , s
k
1), . . . , (s

1
k, . . . , s

k
k)) =

ϕ(s11, s
2
2, . . . , s

k
k) where ϕ :

∏

Si →
∏

Si is the partitioned rule. As it is straightforward
to verify, a partitioned cellular automaton is reversible if and only if its partitioned rule is
one-to-one. As the partitioned rule is a mapping from a finite set to itself, any partially
defined injective rule can be completed to a reversible cellular automaton.

For a better and more complete introduction to the theory of cellular automata, see
Delorme [18] and/or Kari [36].

2. Chronology

It is a difficult task to give a fair and complete chronology of a research topic. In this
section, we propose an exploration of the history of the field in three main eras:

(1) the computation and machines era describes seminal papers outside the realm of
cellular automata that lead to the main tools necessary to consider computation in
the context of abstract machines;

(2) the universality and cellular automata era is the core part of the chronology: it
describes seminal papers along the path of universality study in the realm of cellular
automata, from the early work of von Neumann in the 50s to the end of the 90s;

(3) the recent trends era is a more subjective choice of some papers in the field in the
twenty-first century.

2.1. Computation and Machines

Gödel 1931 [30]: in his now classical paper describing incompleteness theorems, Gödel
introduces so-called Gödel numberings: the ability to encode and manipulate a for-
mal system inside itself if the system is complex enough. The concept of universal-
ity directly depends on such an encoding: a universal machine simulates a machine
through its encoding. For a precise analysis from a logic and computer science point
of view of Gödel’s paper, see Lafitte [38].

Turing 1936 [81]: while introducing Turing machines and proving the undecidability
of the halting problem by a diagonal argument, Turing also introduces its universal
machine. Fixing an enumeration of Turing machines and a recursive bijective pairing
function 〈., .〉 : N

2 → N, he describes a machine U that, on input 〈m,n〉, computes
the same value as the machine encoded m on input n. Universality as a property
is not discussed: a unique universal Turing machine U is given. For a discussion of
the development of ideas from Leibniz to Turing results, see Davis [17].

Post 1943 [68]: at that time, many different models of computation where proposed
and proved equivalent, leading to the so-called Church-Turing thesis. Post intro-
duces tag systems, a combinatorial word-based system successfully used since to
construct size-efficient universal Turing machines. For a modern definition and dis-
cussion of tag systems, see Minsky [51].

Kleene 1956 [37]: finite state machines are at the hearth of many models of com-
putation. Kleene’s paper proves the equivalence between three different families
of objects: regular languages, finite automata, and boolean circuits. Boolean cir-
cuits are modeled after the formal study of abstract neurons by McCulloch and
Pitts [49]. This equivalence is fundamental both to concrete computer design and
discrete models of computation like cellular automata. For a modern discussion on
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this equivalence and its consequences from the point of view of computation and
machines, see Minsky [51]. Perrin [66] gives an history of this period and important
achievements with respect to the field of finite automata and formal languages.

Minsky 1967 [51]: In the spirit of the question from Shannon [73] about the size
of a smallest Turing machine, Minsky explains how to efficiently encode tag sys-
tems computations into Turing machines and describe a universal Turing machine
with four symbols and seven states. This marks the real start of a (still running)
competition.

Lecerf 1963 [40], Bennett 1973 [8]: Reversible computation is concerned with com-
puting devices that can unroll their computation, going back in time. In their inde-
pendent papers, Lecerf and Bennett prove that reversible Turing machines are able
to simulate just any Turing machine. Thus, there exists reversible Universal Turing
machines.

Fredkin and Toffoli 1982 [27]: To encode classical computations into discrete mod-
els, Kleene [37]’s theorem permits to go freely from circuits to finite state machine,
an essential ingredient for computation. Fredkin and Toffoli discuss an analogous for
reversible computation: elementary building blocks to encode any reversible finite
state machine as a reversible circuit. This paper also introduces the so-called billard
ball model of computation: a discrete cellular automata model to encode reversible
computations. The encoding of reversible finite state machines into circuits was
later improved by Morita [55].

2.2. Universality and Cellular Automata

von Neumann 1966 [82]: Introducing cellular automata in order to construct a self-
reproducing machine, participating to the reflexion on the nature of life, von Neu-
mann takes a fixed-point approach. His two-dimensional, 29 states, von Neumann
neighborhood cellular automaton is able to simulate a particular kind of Turing ma-
chine that can also control a construction arm. The power of the construction arm
is rich enough to construct with finitely many instructions a copy of the Turing ma-
chine itself. Whereas the machine is constructed with a form of Turing-universality
in mind, the simulation of the Turing machine is done with very simple components
wiring down a particular family of boolean circuits. As a consequence, the original
cellular automaton is also, a posteriori, intrinsically universal. The construction of
von Neumann leads to various improvements and discussions on the encoding of
boolean circuits, the different organs that compose the machine and the transmis-
sion of signals. A non exhaustive list of interesting following papers might be: Arbib
[3], Burks [10, 11, 12], Moore [52, 53], Thatcher [77, 76].

Codd 1968 [14]: Following the principle of von Neumann idea on self-reproduction,
Codd drastically reduces the complexity of the automaton. Codd’s two-dimensional
rule uses 8 states with the von Neumann neighboorhood. Signals are conveyed
by pairs of states (an oriented particle) moving between walls and reacting upon
collision. This cellular automaton is also universal for boolean circuits and so in-
trinsically universal. A latter construction by Langton [39], based on Codd ideas,
has fewer states and a very simple family of self-reproducing loops but looses its
computation universal capabilities.
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Banks 1970 [4, 5]: The work of Banks is noticeable with respect to several aspects
and also because of its relatively small diffusion in the cellular automata community.
Banks constructs a family of very small cellular automata (two-dimensional, von
Neumann neighborhood, very symmetric, four to two states) simulating boolean
circuits in a very simple and modern way (signals moving in wires, boolean gates on
collisions), he identified and used explicitly the property of intrinsic universality and
gave a transformation to construct relatively small universal one-dimensional cellular
automata with large neighborhoods starting from two-dimensional ones (reencoding
it into a one-dimensional first-neighbors automaton with 18 states). Construction
of a two-dimensional four state universal cellular automaton in the spirit of Banks
is provided by Noural and Kashef [61].

Conway 1970 [29, 9]: The Game of Life introduced by Conway is certainly among
the most famous cellular automata and the first rule to be proven universal by
analysis of a given rule rather than on purpose construction. A modern exposition
of the Game of Life universality and a proof of its intrinsic universality was latter
proposed by Durand and Róka [22].

Smith III 1971 [74]: The simulation of Turing machine by cellular automata to con-
struct one-dimensional Turing-universal cellular automata is studied by Smith III.
Among several results, he explains how to construct a one-dimensional Turing-
universal cellular automaton with first neighbors and 18 states.

Toffoli 1977 [80]: Any cellular automaton of dimension d can be simulated, in a
certain sense, by a cellular automaton of dimension d+1. Using this assertion, Toffoli
shows that two-dimensional reversible cellular automata can be Turing-universal.
The result was later improved by Hertling [32].

Margolus 1984 [42]: Whereas Toffoli transforms any Turing machine into a two-
dimensional cellular automaton by using a new spatial dimension to store compu-
tational choices, Margolus constructs a Turing-universal two-dimensional reversible
cellular automaton by simulation a bouncing billard ball, complex enough to com-
pute any reversible boolean function of conservative logic. The billard ball model
cellular automaton has 16 states defined as two-by-two blocks of binary cells and
von Neumann neighborhood.

Albert and Čulik 1987 [1]: Each cellular automaton can be simulated by a totalis-
tic cellular automaton with one-way neigborhood. With the help of the last propo-
sition, Albert and Čulik construct the first universal cellular automaton obtained by
simulation of any cellular automaton of the same dimension. The automaton works
along the following principle: each macro-cell copies the state of its left neighbor
and adds it to its state obtaining some n, then by copying the nth element of a
reference table, it selects its new state. Whereas the spirit of intrinsic universality
is definitely there, the technical implementation is less clear. The one-dimensional
first-neighbors automaton obtained has 14 states. The construction was later im-
proved by Martin [43, 44] with better transition time complexity and smn theorem.

Morita and Harao 1989 [57]: Introducing partitioned cellular automata, Morita and
Harao explicitely simulate any reversible Turing machine on a one-dimensional re-
versible cellular automaton, proving that one-dimensional reversible cellular au-
tomata can be Turing-universal. The construction was later improved by Dubacq
[21], simulating any Turing machine in real time (without loss of time).
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Lindgren and Nordahl 1990 [41]: The direct simulation of Turing machine on one-
dimensional cellular automata proposed by Smith III can be improved and any
m states n symbols machine can be simulated by a (m + n + 2)-states cellular
automaton following Lindgren and Nordhal. Applying this to Minsky’s 7 states
and 4 symbols machine and then transforming the simple simulation into a macro-
state signal based simulation, Lindgren and Nordhal obtain a one-dimensional first
neighbors 7 state Turing-universal cellular automaton. The intrinsic universality
status of this automaton is unknown.

Durand and Róka 1996 [22]: Revisiting the Game of Life and filling holes in the
universality proof, Durand and Róka publish the first discussion on the different
kinds of universality for cellular automata and the problem of formal definition.

Durand-Lose 1997 [25]: Using a modern definition of intrinsic universality, Durand-
Lose goes one step further than Morita and Harao by constructing a one-dimensional
cellular automata intrinsically simulating any cellular automaton.

2.3. Recent Trends

Imai and Morita 2000 [33]: The improvement in the construction of small and sim-
ple two-dimensional reversible cellular automata continues. Imai and Morita use
partitioned cellular automata to define an 8 state universal automaton.

Ollinger 2002 [64]: Using simulation technics between cellular automata, strong in-
trinsically universal cellular automata with few states can be constructed, here 6
states.

Cook 2004 [15]: Very small universal cellular automata cannot be constructed, they
have to be obtained by analysis. Realising a real tour de force, Cook was able
to prove the Turing-universality of the 2-states first-neighbors so-called rule 110 by
analysing signals generated by the rule and their collisions. The intrinsic universality
of this automaton remains open. The original construction, simulation of a variant
of tag system, was exponentially slow. For a proof of Cook’s result using signals,
see Richard [70].

Neary and Woods 2006 [60]: Recently, the prediction problem of rule 110 was proven
P -complete by Neary and Woods by a careful analysis and modification of Turing
machines simulation technics by tag systems. As P -completeness is required for
intrinsic universality, this is another hint of the potential strong universality of rule
110.

Richard 2008 [71]: The limits of constructed small intrinsically universal cellular
automata are converging towards analysed cellular automata. Using particles and
collisions, Richard was recently able to construct a 4 state intrinsically universal
first-neighbors one-dimensional cellular automaton.

3. Towards Formal Definitions

What is a universal cellular automaton? At first, the question might seem simple and
superficial: a universal cellular automaton is an automaton able to compute anything recur-
sive. In fact, a formal definition is both required and difficult to obtain. The requirement
for such a definition is needed to define a frontier between cellular automata of maximal
complexity and the others: in particular when considering the simplest cellular automata,
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to be able to identify the most complex. The difficulty arise from the fact that we both
want a definition broad enough to encapsulate all constructions of the literature and all fair
enough future constructions. For more details concerning this philosophical question, see
Durand and Róka [22] attempt to give formal definitions.

Turing-universality is the easiest form of universality one might think about, that is
with a computability culture: let the cellular automaton simulate a well known universal
model of computation, either simulating one universal object of the family or any object of
the family.

The first approach pushes back the problem to the following one: what is a universal
Turing machine? a universal tag system? In its original work, Turing did not define
universal machines but a unique universal machine. The definition of universality for Turing
machines was later discussed by Davis [16] who proposed to rely on recursive degrees,
defining universal machines as machines with maximal recursive degree. This definition
while formal lacks precise practical view of encoding problems: the issue continues to be
discussed in the world of Turing machines, becoming more important as smaller and smaller
universal machines are proposed. For a view on the universality of Turing machines and
pointers to literature related to the topic, see Woods [86].

The second approach leads to the problem of heterogeneous simulation: classical models
of computation have inputs, step function, halting condition and output. Cellular automata
have no halting condition and no output. As pointed out by Durand and Róka [22], this
leads to very tricky encoding problems: their own attempt of a Turing-universality based
on this criterium as encoding flaw permitting counter-intuitively to consider very simple
cellular automata as universal.

Turing-universality of dynamical systems in general and cellular automata in particular
has been further discussed by Delvenne, Kůrka, and Blondel [19], and Sutner [75]. None
of the proposed definition are completely convincing so forth, so we will choose on purpose
not to provide the reader with yet another weak formal definition.

Intrinsic universality, on the other hand, is easier to formalize, yet more robust notion
(in the sense that variations along the lines of the definition lead to the same set of universal
automata). Consider a homogenous type of simulation: cellular automata simulated by
cellular automata in a shift invariant, time invariant way. A natural type of universal
object exist in this context: cellular automata able to simulate each cellular automaton.
Following the ideas of grouping and bulking [69, 47, 63], we introduce a general notion of
simulation broad enough to scope all reasonable constructions of the literature.

Direct simulation between two cellular automata can be formalized as follows. A cellular
automaton B directly simulates a cellular automaton A, denoted GA ≺ GB, of the same
dimension according to a mapping ϕ : SA → 2SB if for any pair of states a, b ∈ SA,

ϕ(a) ∩ ϕ(b) = ∅ and for any configuration c ∈ SZ
d

A
, GB(ϕ(c)) ⊆ ϕ(GA(c)).

For any state set S, let (m1, . . . ,md) be a tuple positive integers, the unpacking bijective

map o(m1,...,md) :
(

S
Q

mi

)Z
d

→ SZ
d

is defined for any configuration c ∈
(

S
Q

mi

)Z
d

and any

position z ∈ Z
d and r ∈

∏

i Zmi
as o(m1,...,md)(c)(m1z1 + r1, . . . ,mdzd + rd) = c(z)(r). The

translation of vector v ∈ Z
d is defined for any configuration c ∈ SZ

d

and position z ∈ Z
d as

σv(c)(z) = c(z − v).
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Simulation between two cellular automata is extended by considering packing, cutting
and shifting of the two cellular automata such that direct simulation occur between both
transformed objects. Universal objects are then maximum of the induced pre-order. In
fact, it can be proved that simulation on one side is sufficient for universal objects.

Definition 3.1 (intrinsic universality). A cellular automaton U is intrinsically universal if
for each cellular automaton A of the same dimension there exists an unpacking map om, a
positive integer n ∈ N and a translation vector v ∈ Z

d such that GA ≺ o
−1
m ◦G

n
U
◦ om ◦ σv.

Proposition 3.2 (Mazoyer and Rapaport [69, 47]). No cellular automaton is intrinsically
universal in real time (that is, when constraining cutting constant n to be equal to max(m)):
simulation cannot perform both information displacement and transition computation at the
same time.

Proposition 3.3 (Ollinger [65]). Given a cellular automaton, it is undecidable to determine
whether it is intrinsically universal.

Turing-universality and intrinsic universality notions are really different notions. Some
erroneous claims by Wolfram [83, 84] affirm for example that rule 110 is intrinsically uni-
versal. In fact, the question is yet open, Turing universality is the only proven thing.

Proposition 3.4 (Ollinger [63], Theyssier [78]). There exists Turing-universal cellular au-
tomata which are not intrinsically universal. Moreover, some of them are at the bottom of
an infinite increasing chain of equivalences classes of the preorder.

Universality can also be discussed when considering language recognition or computa-
tion on grids. This topic is out of scope of the present paper. For more on this topic, see
Mazoyer [45, 46].

4. Higher Dimensions

In two and more dimensions, an easy way to construct both intrinsically and Turing
universal cellular automata is to go through boolean circuit simulation. Boolean circuits
can encode any finite state machine and a cell of a cellular automaton or the control and
tape of a Turing machine can be described as finite state machines. The topic of boolean
circuit simulation with cellular automata is quite popular and a lot has been written on it,
see for example recreations around the wireworld cellular automaton designed by Silverman
and discussed in Dewdney [20]. Let us just here give technical hints and possible exotic
extensions without entering details.

To simulate boolean circuits, one typically needs to mix the following ingredients:

wires: boolean signals travel in piecewise straight line in space, their paths are the
wires. Several encoding of boolean signals with or without explicit wires are possible:
moving particles encoded as states with a direction vector, bouncing on walls to turn
as in game of life [29]; wire path encoded as wire cells with explicit direction vector
on each wire cell as in von Neumann [82]; undirected wire cells on which directed
signals travel; undirected wire cells on which pairs of two different signal cells travel,
the direction being given by the orientation of the pair as in wireworld [20]; pairs of
undirected wire paths in between which pairs of two different signal cells travel as
in Codd [14] or Banks [5].
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turn and delay: boolean signals should be able to turn in space and delay their
arrival to permit signal synchronization.

signal crossing: in order to encode all boolean circuits, crossing of signals has to
be encoded either explicitly (adding crossing states) or implicitly using delaying
technics (as in von Neumann [82]) or boolean logic tricks.

gates: signals must be combined using boolean gates at least taken in a boolean
universal family of gates. AND, OR, NOT is the classical one but NAND or NOR
is sufficient alone.

fan-out: signals must be duplicated in some way either with an explicit fan-out state
or using specific wire split rules.

Remarks and encoding tricks regarding boolean circuit simulation:

• Universal boolean functions families and their expressive power are described in Post
[67]. But, in cellular automata encoding, it is easy to use constants and multiple
wires encoding, thus the number of boolean classes depending on the implemented
gates is finite and small.
• Clocks are only needed when dealing with some form of synchronized logic simula-

tion. It is often used because boolean signals are encoded with two values: empty
wire or signal on wire. With such an encoding, NOT gate has to generate new signal
on wire and clock signal is used to determine at which time steps to do so. However,
a classical coding trick to avoid the use of clocks and diods is to only implement OR
and AND gates and use the two wires trick to gain boolean universality: a signal
is encoded as one signal on one wire, the second being empty (thus no signal is
encoded as no signal on both wires), then the NOT gate is just the wire crossing
(x, y) 7→ (y, x), the AND gate can be encoded as (x, y) 7→ (x∧ y, x∨ y) and the OR
gate as (x, y) 7→ (x ∨ y, x ∧ y). As both OR and AND produce signal only if there
is at least one signal in input, the need for clock vanishes.
• Wire crossing can be gained for free by using the XOR gate as planar crossing can

be implemented with XORs.
• Delays come for free if the wires can turn in all directions.
• In dimension 3, wire crossing is not needed, use the third dimension to route wires.
• Signal encoding can be done using signal constructions, in the spirit of Mazoyer and

Terrier [48], in order to reduce the number of states.

Of course, boolean circuit simulation is not restricted to square grids. As an example
of a more exotic lattice, Gajardo and Goles [28] encoded a boolean circuit simulator on a
hexagonal lattice (with proper cellular automata definition).

Small intrinsically universal cellular automata are quite simple to construct in dimension
two with few states: Banks does it with 2 states and von Neumann neighborhood with
reflection and rotation symmetry.

5. Turing Universality

In dimension one, boolean circuit encoding is more puzzling as wire crossing capabilities
is bounded by the local rule. Thus, historically, computation universality is achieved by
direct simulation of universal models of computations :

Turing machines: Turing machines are easy to encode on cellular automata (see
below) as an infinite tape really looks like a configuration of a cellular automaton.
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In fact, several variants of Turing machines exist and an important literature on
universality in the Turing world provide useful objects to build small universal
automaton based on this model. The question of existence of small universal Turing
machines was first raised by Shannon [73], different variants of Turing machines are
discussed by Fischer [26]. For a survey on small Turing machine construction, see
Woods and Neary [86].

Tag systems: Tag systems provide a better model to design very small universal
objects. In fact, very small universal Turing machines are constructed by simulation
of tag systems and their variants as originally proposed by Minsky [51, 13]. The
original drawback of tag system was its exponential slow-down when simulating
Turing machines, this drawback was removed recently by Woods and Neary [85,
86] achieving polynomial time simulation. The Turing-universality of rule 110 is
obtained by Cook [15] by direct simulation of a proper variant of tag systems.

The variant of Turing machine we use is the following. A Turing machine is a tuple
(S,Σ, B, s0, T ) where S is a finite set of states, Σ is a finite alphabet with a special blank
symbol B ∈ Σ, s0 ∈ S is the initial state and T : S × Σ → S × Σ × {←,→} is a partial
transition map. A transition rule T (s, a) = (s′, b, d) reads as follow: when reading a from
state s, write b on the tape, move in direction d, and enter state s′. A configuration of
the machine is a triple (s, z, c) where s ∈ S is the current state of the machine, z ∈ Z

is the position of the head, and c ∈ SZ is the content of the tape. The machines goes
in one step from a configuration (s, z, c) to a configuration (s′, z′, c′) if the transition rule
T (s, c(z)) = (s′′, d, b) is defined and verifies s′ = s′′, z′ − z = d, c′(z) = b and for all
position z′′ 6= z, c′(z) = c(z). Starting from a configuration c, an halting computation of

the machine in time t consists of a sequence of configurations (ci)
t
i=0 such that c0 = c, the

machine cannot reach any configuration from ct and for all i, the machine goes in one step
from ci to ci+1. The configuration ct is the output of the computation.

Following Smith III [74], a given Turing machine (S,Σ, B, s0, T ) can be simulated by
a cellular automaton (1, S′, {−1, 0, 1} , f) as follows. Let S′ = Σ ∪ S × Σ. A configuration
(s, z, c) of the Turing machine is encoded as a configuration c′ = τ(s, z, c) of the cellular
automaton in the following way: c′(z) = (s, c(z)) and for all positions z′ 6= z, c′(z′) = c(z).
The local rule encodes the transition function of the Turing machine. For each transition
T (s, a) = (s′, b,←), for all states x, y ∈ S, f(x, y, (s, a)) = (s′, y) and f(x, (s, a), y) = b.
Symmetrically, for each transition T (s, a) = (s′, b,→), for all states x, y ∈ S, f((s, a), y, x) =
(s′, y) and f(x, (s, a), y) = b. All undefined transitions apply identity: f(x, y, z) = y. With
this encoding, starting from an encoded configuration τ(c), the configuration evolves in one
step to a configuration τ(c′) where c

′ is the next computation step of the Turing machine
if it exists, c

′ = c otherwise. Using this simulation, a Turing machine with m states and
n symbols is simulated by a one-dimensional cellular automaton with first-neighbors and
(m+ 1)n states.

To lower the number of states, Lindgren and Nordahl [41] introduce a simulation scheme
where each step of the Turing machine computation is emulated by two time steps in the
cellular automaton. A given Turing machine (S,Σ, B, s0, T ) can be simulated by a cellular
automaton (1, S′, {−1, 0, 1} , f) as follows. Let S′ = Σ ∪ S ∪ {•,↔}. A configuration
(s, z, c) of the Turing machine is encoded as a configuration c′ = τ(s, z, c) of the cellular
automaton in the following way: for all z′ < z, c′(2z′) = •, c′(2z′ + 1) = c(z); for all z′ > z,
c′(2z′ + 1) = •, c′(2z′ + 2) = c(z); c′(2z) = • and either c′(2z + 1) = s, c′(2z + 2) = c(z)
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or c′(2z + 1) = c(z), c′(2z + 2) = s (two possible encodings). The local rule encode the
transition function of the Turing machine. Applying the rule: for each transition T (s, a) =
(s′, b,←), f(•, s, a) = s′, f(s, a, •) = b, f(•, a, s) = s′, f(a, s, •) = b, for each transition
T (s, a) = (s′, b,→), f(•, s, a) = b, f(s, a, •) = s′, f(•, a, s) = b, f(a, s, •) = s′. Moving:
for all s ∈ S, a, b ∈ Σ, f(↔, s, a) = •, f(a,↔, s) = s f(a, s,↔) = •, f(s,↔, a) = s.
All undefined transitions apply the identity rule but for • and ↔ that alternates: for all
states x, y ∈ S, f(x, •, y) =↔ and f(x,↔, y) = • With this encoding, starting from an
encoded configuration τ(c), the configuration evolves in two steps to a configuration τ(c′)
where c

′ is the next computation step of the Turing machine if it exists, c
′ = c otherwise.

Using this simulation, a Turing machine with m states and n symbols is simulated by a
one-dimensional cellular automaton with first-neighbors and m+ n+ 2 states.

Simulation of tag systems is more tricky due to the non-locality of one computation step
of the system. Following Cook [15], one can consider cyclic tag systems. A cyclic tag system
is given as a finite set of words (w0, . . . , wN−1) on the alphabet {◦, •}. A configuration of the
system is a word u ∈ {◦, •}∗. At time step t, the configuration u evolves to a configuraton
v according if either u0 = ◦ and u0v = u, either u0 = • and u0v = uwt mod N . Cyclic
tag systems can encode any recursive function. To encode all cyclic tag systems in a
same cellular automaton (1, S, {−1, 0, 1} , f), one can follow the following principle. Encode
each configuration u of a cyclic tag system (w0, . . . , wN−1) as a configuration of the kind
ω(T k) ·u ·�(w0N . . .NwN−1)

ω where intuitively T is a clock signal, � is the frontier between
u and the rule and the rule is repeated on the right each word separated by a N. Giving
the complete local rule is tedious but let us sketch its principle: each time a clock signal
hits the first letter of u, it erases it and send a signal to the right transporting the value of
that letter; when the signal meets the � it removes it and begins to treat the w word on
the right, either erasing it or just crossing it; when the signal meets a N, it changes it into a
� and the signal disappears. This principle is used by Cook to simulate cyclic tag systems
with rule 110 particles and collisions.

A main point of discussion there is to decide which kind of configurations are accept-
able for encoding Turing-universal computation. Finite configurations are certainly not a
problem and using any, potentially non-recursive, configuration would permit trivial cel-
lular automata to be misleadingly called universal. The previous constructions involving
Turing machines use finite or ultimately periodic configurations with a same period on
both sides, the same one for all simulated machines, whereas the tag system encoding uses
ultimately periodic configurations with different periods, moreover these periodic parts de-
pend on the simulated tag system. The tag system really needs this ultimate information,
transforming the simulating cellular automaton into one working on finite configurations
would have a constant but large impact on the number of states. As pointed in Durand and
Róka [22], this configuration encoding problem adds difficulties to the formal definition of
Turing-universality.

6. Intrinsic Universality

Even if the concept of intrinsically universal cellular automata took some time to
emerge, intrinsic universality does not require more complex constructions to be achieved.
Several technics are used to construct them:
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Parallel Turing machines table lookup: A simple way to achieve intrinsic uni-
versality is to use synchronized parallel Turing heads (one copy of the same Turing
machine per encoded cell) to lookup in the transition table (one copy in each encoded
cell) of the encoded cellular automaton. Notice that the Turing machines used for
this are not the same ones that are Turing-universal. In fact, their computational
power is very small but they can carry precise information movement tasks.

One-way totalistic lookup: Another more cellular automata centric way to achieve
intrinsic universality is, following Albert and Čulik 1987 [1], to simplify the task of
the previous machine by simulating only one-way totalistic cellular automata which
are sufficient to simulate all cellular automata.

Signals: The previous models are complex because the information displacement in-
volved is still complex due to the sequential behavior of head-based machines. Fol-
lowing Ollinger [64] and Richard [71], particles and collisions, that is signals in the
style of Mazoyer and Terrier [48], can be used to encode the information and perform
the lookup task with parallel information displacement.

We explain here the parallel Turing machines table lookup technic, the other ones being
refinements based on it. The one-dimensional first-neighbors universal cellular automaton
U simulates a cellular automaton (1, S, {−1, 0, 1} , f) the following way. Each configuration
c is encoded as the concatenation of ψA(c(z)) for all z. For each state s ∈ S, ψA(s) is a
word of the kind �τ(f(1, 1, 1)) • τ(f(1, 1, 2)) • . . . • τ(f(N,N,N))N0kτ(s)0k0k where N is
the size of S, k is the number of bits needed to encode numbers from 1 to N and τ(s) is a
binary encoding of the state s. The simulation proceeds as follows so that the movement
of each head is the same, up to translation, on each well encoded configuration. First the
� letter is activated as a Turing head in initial state. The Turing head then moves to the
left and copies the state τ(sL) of the left neighbor in place of the first 0k block. Then it
symmetrically copies the state τ(sR) of the right neighbor in place of the second 0k block.
This being done, the head scans the entire transition table, incrementing a counter (for
example stored on top of the encoded states) at each step: if at some point the counter is
equal to the triple of states, the result is copied from the transition table to the third 0k

block. At the end of the scan, the counter information is cleared, the result of the transition
is copied in the τ(s) place and all three 0k blocks are restored. The head then goes back
to the �. Using this simulation, one step of the simulated cellular automaton is simulated
in a constant number of step for each cell by each Turing head. The universal automaton
does not depend on the simulated automaton and is so intrinsically universal. A careful
design can lead to less than 20 states. If the simulation uses the one-way totalistic technic,
encoding states in unary, then it is easy to go under 10 states.

Notice that general Turing-universal cellular automata construction schemes from pre-
vious section concerning Turing machines can be adapted to produce small intrinsically
universal cellular automata: apply the encoding schemes on machines performing the cell
simulation task. However, the tag system simulations do not provide direct way to obtain
intrinsic universality. Moreover, it is possible to design cellular automata Turing-universal
by tag system simulation and not intrinsically universal.

More exotic intrinsically universal cellular automata have been studied on constrained
rules. As an example, Moreira [54] constructed number conserving intrinsically universal
automata, Bartlett and Garzon [6, 7] and Ollinger [62] do the same for bilinear cellular
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automata, and Theyssier [79] for captive cellular automata for which he proves that almost
all captive automata are intrinsically universal.

7. Reversibility and Universality

Reversible cellular automata are special in the sense that they can achieve Turing-
universality as any Turing machine can be simulated by a reversible Turing machine but they
cannot achieve intrinsic universality: reversible cellular automata only simulate reversible
cellular automata. However, there exists reversible cellular automata which are universal
with respect to the class of reversible cellular automata.

Definition 7.1 (reversible intrinsic universality). A reversible cellular automaton U is in-
trinsically universal for reversible cellular automata if for each reversible cellular automaton
A of the same dimension there exists an unpacking map om, a positive integer n ∈ N and
a translation vector v ∈ Z

d such that GA ≺ o
−1
m ◦G

n
U
◦ om ◦ σv.

Turing-universality and weak form of intrinsic universality have been proposed by
Morita [56], Morita and Imai [58, 59], Durand-Lose [23, 24], Miller and Fredkin [50]. As for
classical cellular automata in higher dimension the simulation of reversible boolean circuits
automatically gives reversible intrinsic universality.

For one-dimensional cellular automata, reversible intrinsic universality can be achieved
by simulating any one-way reversible partitioned reversible cellular automaton with a first-
neigbors reversible partitioned reversible cellular automaton. We briefly sketch how to use
a scheme similar to parallel Turing machine table lookup with reversible Turing machines
to achieve this goal. The first adaptation is to remark that a the local partition rule of
a reversible automaton is a permutation, thus it can be encoded as a finite sequence of
permutation pairs. So, the table of transition is encoded as a finite sequence of pairs of
states. The reversible Turing machine task is to scan the transition table and for each pair it
contains to replace the actual state by the second element of the pair if the state appears in
the current pair. It is technical but straightforward to see that a reversible Turing machine
can achieve this. The information movement is reversible as in partitioned automata each
cell gives half its state to a neighbor and take half a state from the other without erasing
any information. Developing this simulation scheme, one constructs a reversible intrinsically
universal cellular automaton.

8. Conclusion

This brief reading guide has given the reader the keys both to further explore the
literature and to construct by itself conceptually simple Turing-universal and/or intrinsically
universal cellular automata in one and two dimensions. The following broad bibliography
can be explored with the help of the main text, all references being cited.
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