Hélène Collavizza

Michel Rueher
email: rueher@polytech.unice.fr

Pascal Van Hentenryck

Comparison between CPBPV, ESC/Java, CBMC, Blast, EUREKA and Why for Bounded Program Verification

This report describes experimental results for a set of benchmarks on program verification. It compares the capabilities of CPBVP "Constraint Programming framework for Bounded Program Verification" [4] with the following frameworks: ESC/Java, CBMC, Blast, EUREKA and Why.

Introduction

This report describes experimental results for a set of benchmarks on program verification. It compares the capabilities of CPBVP "Constraint Programming framework for Bounded Program Verification" [START_REF] Collavizza | A Constraint-Programming Framework for Bounded Program Verification[END_REF] with the following frameworks:

-ESC/Java (http://kind.ucd.ie/products/opensource/ESCJava2/): Extended Static Checker for Java is a programming tool that attempts to find common run-time errors in JML-annotated Java programs by static analysis of the program code and its formal annotations. -CBMC (http://www.cprover.org/cbmc/): is a Bounded Model Checker for ANSI-C and C++ programs. It allows verifying array bounds (buffer overflows), pointer safety, exceptions and user-specified assertions. -Blast(http://mtc.epfl.ch/software-tools/blast/): Berkeley Lazy Abstraction Software Verification Tool is a software model checker for C programs. -EUREKA (http://www.ai-lab.it/eureka/): is a C bounded model checker which uses an SMT solver instead of an SAT solver. -Why (http://why.lri.fr/): is a software verification platform which integrates many existing provers (proof assistants such as Coq, PVS, HOL 4,... and decision procedures such as Simplify, Yices, ...).

All experiments were performed on the same machine, an Intel(R) Pentium(R) M processor 1.86GHz with 1.5G of memory, using the version of the verifiers that can be downloaded from their web sites (except for EUREKA project, for which we report the execution times given by the authors in [START_REF] Benerecetti | Abstraction Refinement of Linear Programs with Arrays[END_REF] and [START_REF] Mantovani | Bounded Model Checking of C Programs using a SMT solver instead of a SAT solver[END_REF]).

For each benchmark program, we describe the data entries and the verification parameters. Since the input formats slightly differ from one framework to another, we also give the input files that were used to perform the comparisons for each benchmark and each framework. In experimental result tables, UNABLE means that the framework is unable to validate the program (either because a lack of expression power or time overflow), NOT FOUND that it doesn't detect an error that was inserted in the program, and FALSE ERROR that it finds an arror in a correct program.

Triangle classification

The tritype program is a standard benchmark in test case generation and program verification since it contains numerous non-feasible paths: only 10 paths correspond to actual inputs because of complex conditional statements in the program. The program takes three positive integers as inputs (the triangle sides) and returns 2 if the inputs correspond to an isoscele triangle, 3 if they correspond to an equilateral triangle, 1 if they correspond to some other triangle, and 4 otherwise (see 3.1).

Program used for CPBPV, ESC/Java and Why

Comparative results

Table 1 shows experimental results for Tritype program using CPBPV, ESC/Java, CBMC, BLAST and Why frameworks. Note that BLAST was unable to validate this example because the current version does not handle linear arithmetic. But it succeeded in verifying the easier version presented in section 3.3 in 0.716s.

Note that our previous approach using constraint programming and Boolean abstraction to abstract the conditions, validated this benchmark in 8.52 seconds when integers were coded on 16 bits [START_REF] Collavizza | Software Verification using Constraint Programming Techniques[END_REF]. It also explored 92 spurious paths.

Triangle classification with an error

In this section, we consider an erroneous version of Tritype program where we have replaced the test "if ((trityp==2)&&(i+k>j))" in line 22 (see section 3.1) with the test "if ((trityp==1)&&(i+k>j))".

Since the local variable trityp is equal to 2 when i==k, if (i+k)>j we know that (i,j,k) are the sides of an isoscele triangle. In fact, the two other triangular inequalities i + j > k and j + k > i are trivial because j>0. But when trityp=1, i==j and this erroneous version can answer that the triangle is isoscele while it may not be a triangle at all (the triangular inequality i + j > k or j + k > i may not be verified). For example, it will return 2 when (i,j,k)=(1,1,2).

Program used for CPBPV, ESC/Java and Why

We show below the programs used for CPBPV, ESC/Java and Why. The program for Blast was modified in a similar way.

/* an error has been inserted line 21: trityp==1 instead of 2*/ /*@ requires (i >= 0 && j >= 0 && k >= 0); @ ensures @ (((i+j

) <= k || (j+k) <= i || (i+k) <= j) ==> (\result == 4)) @ && ((!((i+j) <= k || (j+k) <= i || (i+k) <= j) && (i==j && j==k)) ==> (\result == 3)) @ && ((!((i+j) <= k || (j+k) <= i || (i+k) <= j) && !(i==j && j==k) && (i==j || j==k || i==k)) ==> (\result == 2)) else { if (trityp > 3) { trityp = 3 ; } else if ((trityp == 1) && (i+j > k)){ trityp = 2 ; } else if ((trityp == 1) && (i+k > j)){ // ERROR: trityp == 1 instead of 2 trityp = 2 ; } else if ((trityp == 3) && (j+k > i)) { trityp = 2 ; } else { trityp = 4 ; } } } assert((!((i+j<=k)||(j+k<=i)||(i+k<=j)) || trityp == 4) && (!(!((i+j<=k)||(j+k<=i)||(i+k<=j))&&((i==j)&&(j==k))) || trityp == 3) && (!(!((i+j<=k)||(j+k<=i)||(i+k<=j))&&!((i==j)&&(j==k)) &&((i==j)||(j==k)||(i==k))) || trityp == 2) && (!(!((i+j<=k)||(j+k<=i)||(i+k<=j))&&!((i==j)&&(j==k)) && !((i==j)||(j==k)||(i==k))) ||

Comparative results

Table 2 shows experimental results for the erroneous version of Tritype program for CPBPV, ESC/Java, CBMC, BLAST and Why. Execution times correspond to the time required to find the first error.

For frameworks that were able to find the error, we give in section 4.4 the error traces printed by the framework.

Remark on results with CBMC Note that for CBMC framework, CBMC is unable to detect the error but when running the C program for values (i, j, k) = (1, 1, 2), the assertion verification mechanism of C detects that the assertion is violated.

If we use "CPROVER assert" instead of "assert" (as recommended by D. Kroening when we have contacted him), then CBMC finds the error in the erroneous version of tritype. Nevertheless, if we also use this option in the correct version of the tritype program, then CBMC finds a false error. The reason seems to be that CBMC works using modulo arithmetic and so we must specify that there is no overflow. So, we also added the statement:

CP ROV ER a ssume(i + j >= 0&&j + k >= 0&&k + i >= 0) ′
which means that there is no overflow intohe sums. The result is variable trityp 3 which is equal to 2. The two sides i and j are equals but (i,j,k) doesn't represent a triangle because the triangular inequality is not verified (i.e i+j=k). So returned value must be 4 (part 1 of the JML specification). -- ---bsearchAssertKO::binsearch::1::result=-1 (11111111111111111111111111111111) State 18 file bsearchAssertKO.c line 13 function binsearch thread 0 - -- ---bsearchAssertKO::binsearch::1::high=2 (00000000000000000000000000000010) State 25 file bsearchAssertKO.c line 13 function binsearch thread 0 - -- ---bsearchAssertKO::binsearch::1::high=0 (00000000000000000000000000000000) State 33 file bsearchAssertKO.c line 13 function binsearch thread 0 - -- -- Pred(i@main > 0) :: -1 XXX 27 :: 27: Pred(j@main > 0) :: -1 XXX 27 :: 27: Pred(k@main > 0) :: -1 XXX 33 :: 33: Block(trityp@main = 0;) :: 34 XXX 34 :: 34: Pred(i@main == j@main) :: -1 XXX 35 :: 35: Block(trityp@main = trityp@main + 1;) :: 36 XXX 36 :: 36: Pred(i@main != k@main) :: -1 XXX 38 :: 38: Pred(j@main != k@main) :: -1 XXX 40 :: 40:

ESC/Java error trace

Pred(trityp@main != 0) :: -1 XXX 54 :: 54: Pred(trityp@main <= 3) :: -1 XXX 59 :: 59: Pred(trityp@main == 1) :: -1 XXX 59 :: 59: Pred(i@main + j@main <= k@main) :: -1 XXX 65 :: 65: Pred(trityp@main == 1) :: -1 XXX 65 :: 65: Pred(i@main + k@main > j@main) :: -1 XXX 66 :: 66: Block(trityp@main = 2;) :: 67 XXX 67 :: 67: Pred(i@main != k@main) :: -1 XXX 67 :: 67: FunctionCall(__assert_fail(__assertion@__assert_fail = "i==k",__file@__assert_fail = "tritypeKO.c",__line@__ XXX 77 :: 77: FunctionCall(__blast_assert()) :: -1 XXX End trace

Binary search

In this section we consider the usual binary search program which determines if a value x is present in a sorted array tab (see 5.1 for a Java version of this program).

Program with invariant used with Why

This version of the binary search is given as example in the Why distribution. It uses a loop invariant which allows Why to use induction when generating proof obligations.

/*@ axiom mean_1 : \forall int x, int y; x <= y => x <= (x+y)/2 <= y */ /* binary_search(t,n,v) search for element v in array t between index 0 and n-1 array t is assumed sorted in increasing order returns an index i between 0 and n-1 where t[i] equals v, or -1 if no element of t is equal to v */ /*@ requires @ n >= 0 && \valid_range(t,0,n-1) && @ \forall int k1, int k2; 0 <= k1 <= k2 <= n-

1 => t[k1] <= t[k2] @ ensures @ (\result >= 0 && t[\result] == v) || @ (\result == -1 && \forall int k; 0 <= k < n => t[k] != v) @*/ int binary_search(int* t, int n, int v) { int l = 0, u = n-1; /*@ invariant @ 0 <= l && u <= n-1 && @ \forall int k; 0 <= k < n => t[k] == v => l <= k <= u @ variant u-l @*/ while (l <= u) { int m = (l + u) / 2; if (t[m] < v) l = m + 1; else if (t[m] > v) u = m -1;
else return m; } return -1; }

Comparative results

Table 3 reports comparative results for the binary search.

For ESC/Java framework, the number of loop unfolding must be given. Since the worst case complexity of binary search algorithm is O(log(n)) where n is the array length, we set the parameter "Loop" to log(n) + 1.

In a similar way, within the CBMC framework, an overestimate of the number of loop unfoldings is required (parameter "unwind").

Note that CPBPV doesn't require any additional information (neither invariant nor loop unfolding bound) because at any time the entrance condition of the loop is known. When performing symbolic execution, it selects a path, taking decisions for conditional expressions as "if (tab[m]==x)". These decisions involve that the lower and upper bounds l and u are assigned with constant values.

The Why framework was very efficient to make the verification when an invariant is given as shown in subsection 5.3 but was unable to make it if no invariant is provided.

The CBMC framework was not able to do the verification for an instance of array of length 32 (it was interrupted after 6691,87s).

CBMC error trace

We display here the error trace found with CBMC for an array of length 8 and parameter unwind sets to 6.

Counterexample:

State 1 file /usr/include/getopt.h line 59 thread 0 - --

-- stdin=NULL State 7 file /usr/include/stdio.h line 143 thread 0 -- stdout=NULL State 8 file /usr/include/stdio.h line 144 thread 0 -- stderr=NULL
State 9 file <built-in> line 12 thread 0 --__CPROVER_alloc=(assignment removed)

State 10 file <built-in> line 13 thread 0 --__CPROVER_alloc_size=(assignment removed)

State 11 file /usr/include/bits/sys_errlist.h line 27 thread 0 --sys_nerr=0 (00000000000000000000000000000000)

State 12 file /usr/include/unistd.h line 474 thread 0 --__environ=NULL

State 15 file bsearchAssertKO.c line 10 function binsearch thread 0 --bsearchAssertKO::binsearch::1::low=0 (00000000000000000000000000000000)

State 16 file bsearchAssertKO.c line 10 function binsearch thread 0 - -- -- This benchmark illustrates some capabilities of CPBPV framework that are not handled by other frameworks. It emphasizes the ability of specifying combinatorial constraints and of solving nonlinear problems. The alldifferent constraint [START_REF] Régin | A filtering algorithm for constraints of difference in CSPs[END_REF] in the pre-condition specifies that all the elements of the array are different, while the program constraints and postcondition involves quadratic and cubic constraints. This program takes two parameters as inputs: an array and its length. The array contains any permutaiton of the integers from 0 to n. It returns the sum of the squares of the array elements, which must be equal to n×(n+1)×(2×n+1)/6.

Experimental results

The maximum instance that we were able to solve with CPBPV framework was an array of size 10 in 66.179s.

Selection Sort

This last benchmark highlights both modular verification and the element constraint of constraint programming to index arrays with arbitrary expressions.

10.

 bsearchAssertKO.c line 10 function binsearch thread 0 --bsearchAssertKO::binsearch::1::low=0 (00000000000000000000000000000000) State 16 file bsearchAssertKO.c line 10 function binsearch thread 0 -

 -bsearchAssertKO::binsearch::1::high=7 (00000000000000000000000000000111) State 17 file bsearchAssertKO.c line 11 function binsearch thread 0 -

 -bsearchAssertKO::binsearch::1::1::middle=3 (00000000000000000000000000000011) State 21 file bsearchAssertKO.c line 17 function binsearch thread 0 -

 -bsearchAssertKO::binsearch::1::1::middle=1 (00000000000000000000000000000001) State 29 file bsearchAssertKO.c line 15 function binsearch thread 0 -

 -bsearchAssertKO::binsearch::1::1::middle=0 (00000000000000000000000000000000) State 37 file bsearchAssertKO.c line 15 function binsearch thread 0 -

 -bsearchAssertKO::binsearch::1::high=-1 (11111111111111111111111111111111) Violated property: file bsearchAssertKO.c line 21 function binsearch assertion result != -1 && a[result] == x || result == -1 && a[0] != x && a[1] != x && a[2] != x && a[3] != x && a[4] != x && a[5] != x && a[6] != x && a[7]

 -optarg=NULLState 2 file /usr/include/getopt.h line 59 thread 0---optarg#str=NULL State 3 file /usr/include/getopt.h line 73 thread 0 --optind=0(00000000000000000000000000000000)State 4 file /usr/include/getopt.h line 78 thread 0 --opterr=0 (00000000000000000000000000000000)State 5 file /usr/include/getopt.h line 82 thread 0 --optopt=0 (00000000000000000000000000000000) State 6 file /usr/include/stdio.h line 142 thread 0

 -bsearchAssertKO::binsearch::1::high=7 (00000000000000000000000000000111) State 17 file bsearchAssertKO.c line 11 function binsearch thread 0 -

 -bsearchAssertKO::binsearch::1::result=-1 (11111111111111111111111111111111) State 18 file bsearchAssertKO.c line 13 function binsearch thread 0 --bsearchAssertKO::binsearch::1::1::middle=3 (00000000000000000000000000000011)9 Sum of the square of any permutation of the n first integers

Table 1 .

 1 Comparison table for Tritype program

			triangle
	**/	
	/*@ requires (i >= 0 && j >= 0 && k >= 0);
		@ ensures
		@	(((i+j) <= k || (j+k) <= i || (i+k) <= j) ==> (\result == 4))
		@ && ((!((i+j) <= k || (j+k) <= i || (i+k) <= j) && (i==j && j==k)) ==> (\result == 3))
		@ && ((!((i+j) <= k || (j+k) <= i || (i+k) <= j) && !(i==j && j==k) && (i==j || j==k || i==k)) ==> (\result == 2))
		@ && ((!((i+j) <= k || (j+k) <= i || (i+k) <= j) && !(i==j && j==k) && !(i==j || j==k || i==k)) ==> (\result == 1));
		@*/
	1	int tritype (int i, int j, int k) {
	2	int trityp;
	3	if (i == 0 || j == 0 || k == 0) {
	4		trityp = 4;}
	5	else {
	6	trityp = 0;
	7	if (i == j) {trityp = trityp + 1;}
	8	if (i == k) {trityp = trityp + 2;}
	9	if (j == k) {trityp = trityp + 3;}
	10	if (trityp == 0) {
	11		if ((i+j) <= k || (j+k) <= i || (i+k) <= j) {
	12		trityp = 4;}
	13		else {trityp = 1;}
	14	}
	15	else {
	16		if (trityp > 3) {trityp = 3;}
	17		else {
	18		if (trityp == 1 && (i+j) > k) {
	19		trityp = 2;}
	20		else {
	21		if (trityp == 2 && (i+k) > j) {
	22		trityp = 2;}

/** Triangle classification * returns 4 if (i,j,k) are not the sides of a triangle * 3 if (i,j,k) is an equilateral triangle * 2 if (i,j,k) is an isoscele triangle * 1 if (i,jk) is a scalene

Table 2 .

 2 Comparison table for Tritype program with error4.4 Error tracesWe give here the execution traces of the three frameworks that were able to find the error.

	CPBPV ESC/Java	CBMC	WHY	BLAST BLAST (easier version)
	time 0.056s s 1.853s NOT FOUND NOT FOUND UNABLE	0.452s
	CPBPV error trace			
	i_0[-2147483647:2147483646] : 1			
	j_0[-2147483647:2147483646] : 1			
	k_0[-2147483647:2147483646] : 2			
	trityp_0[-2147483647:2147483646] : 0		
	trityp_1[-2147483647:2147483646] : 0		
	trityp_2[-2147483647:2147483646] : 1		
	trityp_3[-2147483647:2147483646] : 2		

 Executed else branch in "TritypeKO.java", line 23, col 7. Executed then branch in "TritypeKO.java", line 25, col 15. Executed else branch in "TritypeKO.java", line 28, col 3. Executed else branch in "TritypeKO.java", line 31, col 3. Executed else branch in "TritypeKO.java", line 42, col 8. Executed else branch in "TritypeKO.java", line 46, col 9. Executed else branch in "TritypeKO.java", line 50, col 10. Executed then branch in "TritypeKO.java", line 51, col 39. Executed return in "TritypeKO.java", line 66, col 2.

	typeof(j:18.25) <: T_int
	((j:18.25 + k:18.32) > j:18.25) == @true
	(0 + 1) == 1
	(j:18.25 == 0) == tmp1!cor:20.6
	typeof(k:18.32) <: T_int
	typeof(this) <: T_TritypeKO
	((j:18.25 + j:18.25) > k:18.32) == tmp4!cand:47.9
	typeof(this) <: T_TritypeKO
	trityp:19.6<7> == 2
	T_bigint == T_long
	tmp0!cor:20.23 == tmp0!cor:20.6
	trityp:19.6<2> == 1
	trityp:19.6<5> == 2
	elems@pre == elems
	j:18.25 == i:18.18
	trityp:19.6<8> == 2
	tmp5!cand:51.25 == @true
	trityp:19.6 == 2
	trityp:26.4 == 1
	trityp:19.6<3> == 1
	state@pre == state
	trityp:19.6<6> == 2
	tmp1!cor:20.13 == tmp1!cor:20.6
	trityp:19.6<1> == 1
	tmp5!cand:51.13 == @true
	alloc@pre == alloc
	tmp4!cand:47.21 == tmp4!cand:47.9
	!typeof(this) <: T_void
	!T_java.lang.Object <: T_java.
	TritypeKO.java:67: Warning: Postcondition possibly not established (Post)
	}
	Âssociated declaration is "TritypeKO.java", line 12, col 5:
	@ ensures ...
	Êxecution
	trace information:
	Counterexample context:
	(0 < k:18.32)
	((2 * j:18.25) <= k:18.32)
	(k:18.32 <= intLast)
	(longFirst < intFirst)
	(1000001 <= intLast)
	(null <= max(LS))
	(eClosedTime(elems) < alloc)
	(vAllocTime(this) < alloc)
	((intFirst + 1000001) <= 0)
	(intLast < longLast)
	(0 <= j:18.25)
	(k:18.32 == 0) == tmp0!cor:20.6
	null.LS == @true
	(null <= max(LS))

 /** Sum of the square of the n first integers * array t contains values between 0 and t.length-1 which are all different * (i.e array t contains any permutation of (0..t.length-1)

	*/		
	class SquareSumArray {
	/*		
	@ requires (n == t.length-1) &&
	@	(\forall int i; 0<=i && i<t.length-1;0<=t[i]&&t[i]<=n) &&
	@	\alldifferent t; // More compact notation than the JML quantified formulae
	@ ensures \result == n*(n+1)*(2*n+1)/6;
	@*/	
	1 int sum(int[] t, int n) {
	2	int s = 0;	
	3	int i = 0;	
	4	while (i!=t.length) {
	5	s=s+t[i]*t[i]
	6	i =i+1;	}
	7	return s;}	

 1 Selection sort for modular verification

	/*@ ensures (\forall int i; 0<=i && i<t.length-1;t[i]<=t[i+1]) @*/
	1 static void selectionSort(int[] t) {
	2	for (int i=0; i<t.length;i++){
	3	int k = findMin(t,i);
	5	int tmp = t[i];
	6	t[i]= t[k];	
	7	t[k] = tmp;	} }
	/*@ requires 0<=l && l<t.length
	@ ensures (l<=\result) && (\result<t.length)
	@	&& (\forall int k; l<=k && k<t.length;t[\result]<=t[k]) @*/
	1 static int findMin(int[] t,int l) {

23

else { 24 if (trityp == 3 && (j+k) > i) { 25 trityp = 2;} 26 else { 27 trityp = 4;} } } } } } return trityp; }

C program used for CBMC

The only difference with the Java version is that we translated the "implies" statement of JML specification with the corresponding disjunction (ie a ⇒ b is translated as ¬a ∨ b).

Program used for CBMC

We show below the program used for CBMC. The main function was used to run the C program in order to verify that the program contains an error.

Java program used for CPBPV and ESC/Java

/*@ requires (\forall int i; (i >= 0 && i < tab.length -1); tab[i] <= tab[i+1]); @ ensures @ ((\result == -1) ==> (\forall int i; (i >= 0 && i < tab.length); tab

C program for an instance of length 8 used with CBMC

In order to express the forall statements of the JML specification inside the CBMC framework, we unfolded the conditions for fixed array lengths. The program below shows the preconditions and postconditions for an array of length 8. We proceeded in the same way for other array lengths.

int binsearch(int x) { int a[8]; // PRECONDITION __CPROVER_assume(a[0]<=a [START_REF] Benerecetti | Abstraction Refinement of Linear Programs with Arrays[END_REF]&&a [START_REF] Benerecetti | Abstraction Refinement of Linear Programs with Arrays[END_REF]<=a [START_REF] Mantovani | Bounded Model Checking of C Programs using a SMT solver instead of a SAT solver[END_REF]&&a [START_REF] Mantovani | Bounded Model Checking of C Programs using a SMT solver instead of a SAT solver[END_REF]<=a [START_REF] Collavizza | Software Verification using Constraint Programming Techniques[END_REF]&&a [START_REF] Collavizza | Software Verification using Constraint Programming Techniques[END_REF]<=a [START_REF] Collavizza | A Constraint-Programming Framework for Bounded Program Verification[END_REF] &&a [START_REF] Collavizza | A Constraint-Programming Framework for Bounded Program Verification[END_REF]<=a [START_REF] Kroening | SATABS: SAT-Based Predicate Abstraction for ANSI-C[END_REF]&&a [START_REF] Kroening | SATABS: SAT-Based Predicate Abstraction for ANSI-C[END_REF]<=a [START_REF] Régin | A filtering algorithm for constraints of difference in CSPs[END_REF]&&a [START_REF] Régin | A filtering algorithm for constraints of difference in CSPs[END_REF]<=a [START_REF] Vanhentenryck | Constraint Satisfaction in Logic Programming[END_REF]); signed low=0, high=7; int result=-1; while(result==-1&&low<=high) { signed middle=(high+low)/

Binary search with error

We consider here an erroneous version of the binary search algorithm. We update the lower bound and the upper bound in the same way, whether the middle value is greater or less than the searched value (see line 15 in program below). We modified in the same way the binary search versions for CBMC and Why. The Why framework was unable to perform this proof because 60% of the proof obligations remained unknown.

Comparative results

Error traces

We display here the error trace found with CPBPV for an array of length 8 and integers coded on 32 bits. } Âssociated declaration is "BsearchKO.java", line 8, col 5: @ ensures ... Êxecution trace information: Reached top of loop after 0 iterations in "BsearchKO.java", line 17, col 2. Executed else branch in "BsearchKO.java", line 22, col 8. Executed else branch in "BsearchKO.java", line 26, col 9. Reached top of loop after 1 iteration in "BsearchKO.java", line 17, col 2. Executed return in "BsearchKO.java", line 31, col 2.

CPBPV error trace

State 21 file bsearchAssertKO.c line 17 function binsearch thread 0 - --

Buble sort with initial condition

This example is taken from [START_REF] Benerecetti | Abstraction Refinement of Linear Programs with Arrays[END_REF] and performs a bubble sort of an array t which contains integers from 0 to t.length given in decreasing order. The EU REKA tool [START_REF] Benerecetti | Abstraction Refinement of Linear Programs with Arrays[END_REF] validates the benchmark for arrays of lengths up to 8. In particular, it takes 91 seconds to verify for length 8. [START_REF] Mantovani | Bounded Model Checking of C Programs using a SMT solver instead of a SAT solver[END_REF]<=a [START_REF] Collavizza | Software Verification using Constraint Programming Techniques[END_REF]&&a [START_REF] Collavizza | Software Verification using Constraint Programming Techniques[END_REF]<=a [START_REF] Collavizza | A Constraint-Programming Framework for Bounded Program Verification[END_REF]&&a [START_REF] Collavizza | A Constraint-Programming Framework for Bounded Program Verification[END_REF]<=a [START_REF] Kroening | SATABS: SAT-Based Predicate Abstraction for ANSI-C[END_REF]&&a [START_REF] Kroening | SATABS: SAT-Based Predicate Abstraction for ANSI-C[END_REF]<=a [START_REF] Régin | A filtering algorithm for constraints of difference in CSPs[END_REF] &&a [START_REF] Régin | A filtering algorithm for constraints of difference in CSPs[END_REF]<=a [START_REF] Vanhentenryck | Constraint Satisfaction in Logic Programming[END_REF]); }

Comparative results

Table 5 shows the experimental results for the buble sort.

For the CPBPV framework, UNABLE corresponds to a memory capacity overflow. This is due to the need of SSA-like array renaming to express successive assignments. In this first prototype, we did not carefully manage the memory and so we duplicated indexes of the array which have not changed. This could easily be improved in a next version.

For ESC/Java framework, UNABLE corresponds to the message "Caution: Unable to check method tri(int[]) of type BubleSortMantovani because its VC is too large".

Sum of the square of the n first integers

This program computes the sum of the squares of the n first integers. The specification is that the sum is equal to n × (n + 1) × (n × 2 + 1)/6. The main interest of this example is that it contains a non linear expression.

We didn't perform the verification with EUREKA and BLAST, because they do not deal with non-linear expressions.

This constraint is interesting, since it features element constraint [START_REF] Vanhentenryck | Constraint Satisfaction in Logic Programming[END_REF], i.e., the ability of indexing arrays with expressions containing variables. Indeed, k 0 is a variable and a constraint like t 0 [k 0] ≤ t 0 [0] indexes the array t 0 of variables using k 0 . The element constraint is an important functionality of constraint programming, not only because of its ubiquity in practice but also because it highlights the kind of symbolic processing and filtering allowed by this technology. Note also that the subsequent assignments also create element constraints.

Comparative results

The modular verification of the selection sort explores only a single path, is independent of the integer representation, and takes less than 0.01s for arrays of size 40. The bottleneck in verifying selection sort is the validation of function findMin, which requires the exploration of many paths. However the complete validation of selection sort takes less than 4 seconds for an array of length 6. Once again, this should be contrasted with the model-checking approach of Eureka [START_REF] Benerecetti | Abstraction Refinement of Linear Programs with Arrays[END_REF]. On a version of selection sort where all variables are assigned specific values (contrary to our verification which makes no assumptions on the inputs), Eureka takes 104 seconds on a faster machine. Reference [START_REF] Benerecetti | Abstraction Refinement of Linear Programs with Arrays[END_REF] also reports that CBMC takes 432.6 seconds, that BLAST cannot solve this problem, and that SATABS [START_REF] Kroening | SATABS: SAT-Based Predicate Abstraction for ANSI-C[END_REF] only verifies the program for an array with 2 elements.