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Abstract

This paper studies an optimal stopping problem for Lévy processes. We give a justifi-
cation of the form of the Snell envelope using standard results of optimal stopping. We also
justify the convexity of the value function, and without a priori restriction to a particular
class of stopping times, we deduce that the smallest optimal stopping time is necessar-
ily a hitting time. We propose a method which allows to obtain the optimal threshold.
Moreover this method allows to avoid long calculations of the integro-differential operator
used in the usual proofs.
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1 Introduction

In this paper we study an optimal stopping problem for jump processes and its application
in Finance. We choose to solve a particular optimal stopping problem for Lévy processes.
Without a priori restriction to a particular class of stopping times like in [5], we propose
a method to find the optimal stopping time form (it will be a hitting time), as well as for
the calculation of the optimal threshold.

In fact we seek to control a stochastic process V of the form V = veX where v is a
real strictly positive constant and X a Lévy process. We consider the following optimal
stopping problem :

esssupτ∈∆,τ≥tE

(
∫ τ

t

e−r(s−t)h(Vs)ds | FV
t

)

, (1)

where r > 0, FV
t = σ(Vs, s ≤ t), ∆ is the set of FV

. -stopping times and h is an affine
function. We will be brought back to find a stopping time τ ∗ which maximizes τ 7→ Ev(Aτ )
where Aτ = e−rτf(Vτ ) and f an affine function. In many papers the optimal stopping
time is supposed from the beginning to be a hitting time, here we show that the optimal
stopping time is necessarily of the form τb = inf{t ≥ 0 : Vt ≤ b}. Following [26], we also
introduce a decreasing sequence of almost surely finite stopping times (τε, ε > 0) which
converges to the optimal stopping time ; this is about the ε-optimal stopping times (i.e.
E(Aτ∗) − ε ≤ E(Aτε)). We give a justification of the form of the Snell envelope of the
process A using standard results of optimal stopping of [14, 26], we argue the convexity
of the function v 7→ E(Aτ∗ |V0 = v) and the optimal stopping time form. The main result
is given by Theorems 3.14 and 3.13 which allow to determine the optimal threshold. The
method used here allows to solve the optimal stopping problem when the joint Laplace
transform of (τb, Xτb), i.e. E[e−rτb+aXτb ], is known.

The optimal stopping theory is a subject which often appears in the specialized liter-
ature, having applications for example in Medicine [25] or Finance [13]. Among others,
Leland [18, 19, 20], Duffie and Lando [9] or Villeneuve [27] studied the optimal stop-
ping problem for a diffusion process. Moreover, there are other authors who used mixed
diffusion-jumps processes for their models. For example, Hilberink and Rogers [11] or
Kyprianou [17] use a spectrally negative Lévy process and Le Courtois and Quittard-
Pinon [6] stable Lévy processes. Mixed diffusion-jump processes with double exponential
jumps were studied by Chen and Kou [5], Kou and Wang [15, 16], Dao [7]. In [22],
the jumps follow an exponential law and they are either all positive or all negative. In
[7], Dao studies a model where the jumps follow an uniform law. In [23], Pham uses a
jump-diffusion process and the jumps are not restricted to any particular law.

This paper is organized as follows : we introduce the optimal stopping problem (Sec-
tion 2). The following section (Section 3) contains the main results which characterize the
optimal stopping time and the optimal threshold. At the end of this paper we solve the
studied optimal stopping problem in the case of some particular Lévy processes : Brown-
ian motion, Poisson process, double exponential jump-diffusion process, a particular Lévy
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process with positive jumps on the one hand (Section 4), spectrally negative Lévy pro-
cesses on the other hand (Section 5). We will recover Duffie and Lando’s result [9] for a
Brownian motion with drift and Kou and Wang’s result [16] for a mixed diffusion-jump
process with double exponential jumps. Section 6 contains some optimal stopping tools.

2 Optimal stopping problem

Let V be a stochastic process on a filtered probability space (Ω,F , (Ft)t≥0,P). Assume
that V is of the form

V = veX

where v is a real strictly positive constant and X is a Lévy process. We sometimes use
the notation V v = veX , for v > 0.

Following Lévy-Khitchine formula (see for example [1] or [17]), the characteristic func-
tion of X is

E(eiλXt) = e−tΨ(λ)

where λ ∈ R and the function Ψ : R → C has the form

Ψ(λ) = −imλ +
σ2

2
λ2 +

∫

R
(1 − eiλx + iλx1|x|<1)Π(dx)

with m ∈ R, σ > 0 and Π a mesure on R
∗ such that

∫

(1 ∧ |x|2)Π(dx) <∞.

From now on, E(.|V0 = v) and P(.|V0 = v) are denoted Ev(.) and Pv(.).

Assumption 2.1 Ev(Vt) <∞ for t ≥ 0.

The condition Ev(Vt) <∞ for t ≥ 0 is equivalent to E(eXt) <∞ and, using Theorem
3.6 page 76 of [17], it is still equivalent to the condition

∫

|x|≥1
exΠ(dx) < ∞. Moreover

E(eXt) is of the form E(eXt) = etψ(1) and Ev(Vt) = vetψ(1).

Let FV be the right-continuous complete filtration generated by the process V ,
FV
t = σ(Vs, s ≤ t). We consider the following optimal stopping problem :

St = esssupτ∈∆,τ≥tE

(
∫ τ

t

e−r(s−t)(αVs − c)ds | FV
t

)

, (2)

where r > 0, α > 0, c > 0 and ∆ is the set of FV
. -stopping times.

Definition 2.2 A stopping time τ ∗t is said to be optimal at time t if it maximizes (2),
i.e.

E

[

∫ τ∗t
t
e−r(s−t)(αVs − c)ds | FV

t

]

= esssupτ∈∆,τ≥tE
[∫ τ

t
e−r(s−t)(αVs − c)ds | FV

t

]

.
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Remark that for every t ≥ 0, St ≥ 0 because τ = t ∈ ∆.

The same type of problem (2) was studied by Duffie and Lando in [9]. In [9], X is a
Brownian motion with drift. The authors solve the problem using the Hamilton-Jacobi-
Bellman equations.

Assumption 2.3 r > ψ(1).

The necessity for this assumption is clearly apparent. If Assumption 2.3 were not checked,
then Ev

(∫∞
0
e−rs(αVs − c)ds

)

= αv
∫∞
0
e−s(r−ψ(1))ds− c

r
would be infinite and τ ∗0 = ∞. It

implies that the process s 7→ e−rs(αVs − c) belongs to L1(Ω ⊗ R+, dP ⊗ ds).

3 Optimal stopping time

In this part we show that the problem (2) admits at least an optimal stopping time and
that the smallest one is a hitting time. The proof of this result requires several lemmas.

Lemma 3.1 Under Assumptions 2.1 and 2.3, for every τ ∈ ∆ the following equality is
true :

E

(
∫ ∞

τ

e−r(s−τ)(αVs − c)ds | FV
τ

)

=

(

αVτ

r − ψ(1)
− c

r

)

1{τ<∞}.

Proof

Let s ≥ 0. The exponential form of the process V. allows the factorization

Vs = Vτe
Xs−Xτ on the set {s > τ}.

However X is a Lévy process, therefore Xs − Xτ is independent of FV
τ and equal in

distribution with Xs−τ conditionally to {s > τ}. Thus,

E

(
∫ ∞

τ

e−r(s−τ)(αVs − c)ds | FV
τ

)

= 1{τ<∞}e
rτ

[

αVτE

(
∫ ∞

τ

e−rseXs−Xτds | FV
τ

)

− e−τrc

r

]

,

from which the result follows :

E

(
∫ ∞

τ

e−r(s−τ)(αVs − c)ds | FV
τ

)

=

(

αVτ

r − ψ(1)
− c

r

)

1{τ<∞}.

2

Using Lemma 3.1, St can be rewritten as

St =
αVt

r − ψ(1)
− c

r
+ ertesssupτ∈∆,τ≥tE

[

e−rτ
( −αVτ
r − ψ(1)

+
c

r

)

1τ<∞ | FV
t

]

(3)
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for each t ≥ 0.

We have to solve the following optimal stopping problem :

Jt = esssupτ∈∆,τ≥tE

[

e−rτ
( −αVτ
r − ψ(1)

+
c

r

)

1τ<∞ | FV
t

]

. (4)

We introduce the process Y. defined by :

Notation 3.2 Y : t 7→ Yt = e−rt
(

−αVt
r−ψ(1)

+ c
r

)

.

Lemma 3.3 Under Assumptions 2.1 and 2.3, the process Y. converges in L1 and almost
surely and its limit is Y∞ = 0.

Proof

Since Ev(| Yt |) ≤ αv
r−ψ(1)

e−(r−ψ(1))t + ce−rt

r
, then Yt −→L1

0.
This process can be written in the form

Yt = −e−(r−ψ(1))tMt +Nt, t ≥ 0

where M defined by Mt = e−ψ(1)tαVt
r−ψ(1)

, t ≥ 0 is a positive martingale and N defined by

Nt = ce−rt

r
, t ≥ 0 is a continuous decreasing bounded positive function. Consequently,

the process Y. is the difference between a continuous deterministic function which goes to
0 and a positive supermartingale (thus which converges almost surely). Then, the process
Y. converges almost surely when t goes to ∞. Moreover the limit of Y in L1 is equal to
0, therefore Y∞ = 0 almost surely. 2

We thus look for an optimal stopping time among almost surely finite stopping times.
The random variable Y∞ being null almost surely, we can remove the indicator 1τ<∞ in
(4).

Remark 3.4 We imposed c > 0 to avoid the case c = 0. Let us notice that if c = 0, we
have to calculate essential supremum of a negative quantity :

esssupτ∈∆,τ≥tE

[

e−rτ
−αVτ
r − ψ(1)

| FV
t

]

.

In this case for each t ≥ 0, the optimal stopping time is τ ∗t = ∞, Jt = 0 and the optimal
value is St = αVt

r−ψ(1)
.

In all the particular cases which we will study, the optimal stopping time goes to infinity
when c goes to 0.

We suppose that the process Y. checks the following assumption :
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Assumption 3.5 The process Y. is of class D (i.e. the set of random variables Yτ , τ ∈ ∆
is uniformly integrable).

Using Theorem 6.6 of Section 6.1, we prove easily the following result :

Lemma 3.6 Under Assumptions 2.1 and 2.3, a sufficient condition for Assumption 3.5
is

limn→∞E
(

e−rRn+XRn1Rn<∞|X0 = 0
)

= 0 (5)

where Rn = inf{t ≥ 0 : e−rt+Xt ≥ n}.

This is the condition we will check in all the examples of Sections 4 and 5.

The process (t 7→ Yt, t ≥ 0) being of class D, we can apply the results of optimal
stopping (see Section 6.1). According to Theorem 6.1, the Snell envelope J of Y is of
the form (e−rts(Vt))t≥0 (with J∞ = 0 because Y∞ = 0). We denote f(v) = −αv

r−ψ(1)
+ c

r
;

Definition (3) gives

St = −f(Vt) + e−rtJt = −f(Vt) + s(Vt), t ≥ 0. (6)

Thus the process (St)t≥0 is of the form (w(Vt))t≥0 where w is a positive Borelian function.
Since σ > 0, the support of Vt is R

∗
+ (as a consequence of Theorem 24.10 i) page 152 of

[24]), so for t = 0 Definition (6) yields S0 = −f(v) + s(v) and the function w coincides
with the function

v 7→ −f(v) + s(v).

The function s is a (decreasing) convex function because it is the sup of (decreasing)
affine functions :

s(v) = supτ≥0Ev

[

e−rτ
( −αVτ
r − ψ(1)

+
c

r

)]

= supτ≥0E1

[

e−rτ
( −αvV 1

τ

r − ψ(1)
+
c

r

)]

.

Remark 3.7 The function s being convex, it is thus continuous.

Remark that s is a positive function because

s(v) ≥ supt≥0Ev

[

e−rt
(

−αVt
r−ψ(1)

+ c
r

)]

≥ supt≥0Ev

[

e−rt −αVt
r−ψ(1)

]

= supt≥0
−αve−(r−ψ(1))t

r−ψ(1)
= 0.

Since Yt −→p.s. 0, we have the following result which is already shown in [27] where
the process is not a Lévy, but a diffusion process. In [27], the author uses the process
trajectories continuity to show his result. Since our process is càdlàg, we have to remake
the proof.
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Lemma 3.8 For v > 0, let

s(v) = supτ≥0Ev

[

e−rτ
( −αVτ
r − ψ(1)

+
c

r

)]

and s+(v) = supτ≥0Ev

[

e−rτ
( −αVτ
r − ψ(1)

+
c

r

)+
]

.

If σ > 0, then under Assumptions 2.1, 2.3 and 3.5, s+(v) > 0 and s(v) = s+(v) for every
v > 0.

Proof

We show that if there exists v0 > 0 such that s(v0) < s+(v0), then there exists v1 > 0
such that s+(v1) = 0. We prove that this last relation can not be satisfied.

By construction, for each v > 0, s(v) ≤ s+(v). Let us suppose that there exists v0 > 0
such that s(v0) < s+(v0).

The process V. is a right continuous one, the process Y + : t→ Y +
t = e−rt

(

−αVt
r−ψ(1)

+ c
r

)+

takes its values in [0, c
r
], then the assumptions of Theorem 6.3 of Section 6.1 are checked

for Y +. We define the function f+(v) =
(

−αv
r−ψ(1)

+ c
r

)+

; the stopping time

τ+ = inf{u ≥ 0 : f+(V v0
u ) = s+(V v0

u )}

is the smallest optimal stopping time of the problem

s+(v0) = supτ≥0Ev0

[

e−rτ
( −αVτ
r − ψ(1)

+
c

r

)+
]

.

Since Y converges almost surely to 0, then Y + converges almost surely to 0 and :

s+(v0) = Ev0

[

e−rτ
+

( −αVτ+

r − ψ(1)
+
c

r

)+
]

= Ev0

[

e−rτ
+

( −αVτ+

r − ψ(1)
+
c

r

)+

1τ+<∞

]

.

Using the definition of s and s+ :

Ev0

[

e−rτ
+

f(Vτ+)
]

≤ s(v0) < s+(v0) = Ev0

[

e−rτ
+

f+(Vτ+)
]

and consequently Ev0

[

e−rτ
+

(f(Vτ+) − f+(Vτ+))
]

< 0, Pv0 ({ω : f(Vτ+) < 0}) > 0 and

Pv0 ({ω : s+(Vτ+) = 0}) > 0.

Thus there exists v1 such that s+(v1) = 0. Then for any stopping time τ , Pv1-almost
surely e−rτf+(Vτ ) = 0 and in particular for every t ∈ R+, f+(Vt) = 0. This involves that

Pv1-almost surely Vt ≥ c(r−ψ(1))
αr

which is a contradiction because the support of Vt is R
∗
+

when σ > 0. So s+(v) > 0 for every v ∈ R
∗
+ and s(v) = s+(v). 2
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Remark 3.9 We have the equality s(v) = s+(v) > 0 for every v > 0.

Proposition 3.10 If σ > 0, then under Assumptions 2.1, 2.3 and 3.5, there exists at
least an optimal stopping time for the problem (4).

For any c > 0 there exists bc > 0 such that the smallest optimal stopping time has the
following form

τbc = inf{t ≥ 0 : Vt ≤ bc}.

Proof

Using Lemma 3.8, the problem (4) can be written as supτ≥0E(Y +
τ ). The assumptions of

Theorem 6.3 of Section 6.1 are checked and the stopping time

τ ∗ = inf{u ≥ 0 : f+(Vu) = s+(Vu)}

is the smallest optimal stopping time. However s(v) = s+(v) > 0 for all v > 0, so

τ ∗ = inf{u ≥ 0 : f(Vu) = s(Vu)}

is the smallest optimal stopping time. The function s is upper bounded by c
r

because Y +
.

is upper bounded by c
r

and limv↓0s(v) = limv↓0f(v) = c
r
.

Since s is convex and f affine, then inf{v > 0 : f(v) < s(v)} is equal to
sup{v > 0 : f(v) = s(v)}, and we denote it bc. Indeed, let b′c = sup{v : f(v) = s(v)} and
bc = inf{v : f(v) < s(v)}. Since limv↓0s(v) = limv↓0f(v), then b′c exists and b′c ≥ 0. If
bc = 0, then b′c = 0.

If bc > 0, then for every v < bc, f(v) = s(v) ; in particular f(bc − 1
n
) = s(bc − 1

n
).

When n goes to infinity, since s and f are continuous, then f(bc) = s(bc), so bc ≤ b′c. Let
us suppose that bc < b′c, thus there exists v, bc < v < b′c such that f(v) < s(v). However
s is convex :

s(v) − s(bc)

v − bc
≤ s(b′c) − s(v)

b′c − v
.

Since, by continuity, f(b′c) = s(b′c), then

s(v) − f(bc)

v − bc
≤ f(b′c) − s(v)

b′c − v

Since s(v) > f(v), then

f(v) − f(bc)

v − bc
<
s(v) − f(bc)

v − bc
≤ f(b′c) − s(v)

b′c − v
<
f(b′c) − f(v)

b′c − v
,

which is a contradiction because, since f is affine, then f(v)−f(bc)
v−bc = f(b′c)−f(v)

b′c−v
= −α

r−ψ(1)
.

Consequently bc = b′c.
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This means that the smallest optimal stopping time τ ∗ is also the first entrance time
in ]0, bc]. 2

The smallest optimal stopping time of (4) depends on c and from now on we use the
notation τ ∗(c). As a consequence of Theorem 6.2 of Section 6.1, we have that

(t 7→ e−r(t∧τ
∗(c))s(Vt∧τ∗(c)), t ≥ 0) is a martingale and Yτ∗(c) = e−rτ

∗(c)s(Vτ∗(c)).

We introduce an auxiliary function :

Definition 3.11 Let g : R
∗
+×]0, (r−ψ(1))c

rα
[→ R

∗
+ be the function defined by

g(v, b) = Ev

[

e−rτb
( −αVτb
r − ψ(1)

+
c

r

)]

where τb = inf{t ≥ 0 : Vt ≤ b}.

If b ∈ R+, then g is not necessarily positive. The condition b ∈]0, (r−ψ(1))c
rα

[ implies the
positivity of g.

Remark 3.12 Under the assumptions of Proposition 3.10, there exists Bc such that
g(., Bc) = s(.).

Remark that we can explicit g as a function of Laplace transforms

L(x) = E
[

e−rτ̄x|X0 = 0
]

, G(x) = E
[

e−rτ̄x+Xτ̄x |X0 = 0
]

where τ̄x = inf{t ≥ 0 : Xt ≤ x}. Indeed, the function g can be written as

g(v, b) =
−αv

r − ψ(1)
G
(

ln
b

v

)

+
c

r
L
(

ln
b

v

)

.

Now, the aim is to calculate, when that is possible, the value of the optimal threshold
Bc as a function of α, c, r, ψ(1) and the functions L and G.

Remark that L(x) = G(x) = 1 for x ≥ 0 and 0 ≤ G(x) ≤ L(x) ≤ 1. Moreover these
functions are increasing. Indeed for every x ≤ y < 0, τ̄y ≤ τ̄x, thus L is an increasing
function. Moreover

G(y) = E
[

e−rτ̄y+Xτ̄y1Xτ̄y≤x|X0 = 0
]

+ E
[

e−rτ̄y+Xτ̄y1x<Xτ̄y≤y|X0 = 0
]

.

On {Xτ̄y ≤ x}, τ̄y = τ̄x P(.|X0 = 0)-almost surely and Xτ̄y = Xτ̄x . On {x < Xτ̄y ≤ y},
−rτ̄y +Xτ̄y ≥ −rτ̄x + x ≥ −rτ̄x +Xτ̄x and the result follows G(y) ≥ G(x).

When G is discontinuous at x = 0, Bc is easy to obtain.
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Theorem 3.13 Let σ > 0. Under Assumptions 2.1, 2.3 and 3.5, we suppose that the
function G is discontinuous at x = 0. Then the smallest optimal stopping time is

τ ∗(c) = inf{t ≥ 0 : Vt ≤ Bc},

where Bc = c(r−ψ(1))
rα

limx↑0
1−L(x)
1−G(x)

.

Proof

Let b ∈]0, (r−ψ(1))c
rα

[. The function g has the form

g(v, b) =

{

− αv
r−ψ(1)

+ c
r

if v ≤ b
−αv
r−ψ(1)

G
(

ln b
v

)

+ c
r
L
(

ln b
v

)

if v > b.

If the function g(., b) is continuous at b, then b is solution of

− αb

r − ψ(1)
+
c

r
=

−αb
r − ψ(1)

G(0−) +
c

r
L(0−). (7)

However, G is discontinuous at x = 0, so G(0−) 6= 1 and the equation (7) has only one
solution :

b∗ =
c(r − ψ(1))

rα

1 − L(0−)

1 − G(0−)
=
c(r − ψ(1))

rα
limx↑0

1 −L(x)

1 − G(x)
.

The function s has the form g(., Bc) = s(.) and is convex, thus it is continuous, in
particular it is continuous at Bc. We deduce that Bc = b∗. 2

When G is continuous at x = 0, Bc is more technical to obtain, but it has the same
form.

Theorem 3.14 Let σ > 0. Under Assumptions 2.1, 2.3 and 3.5, we suppose that the
function G is continuous at x = 0.

1. If G has left derivative at x = 0 (say G′(0−)), then L has left derivative at x = 0
(say L′(0−)).

2. If moreover G′(0−) 6= 0, then Bc ∈ [̃b, (r−ψ(1))c
rα

[ where b̃ = (r−ψ(1))c
rα

limx↑0
1−L(x)
1−G(x)

.

3. If moreover g(., b̃) is strictly convex on ]̃b, ∞[,

then the smaller optimal stopping time is

τ ∗(c) = inf{t ≥ 0 : Vt ≤ Bc}, where Bc = b̃.
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Proof

(1) By Remark 3.12, there exists Bc such that g(., Bc) = s(.). The function s is convex,
therefore the right and left derivatives exist everywhere and

s′(v−) ≤ s′(v+) for all v ∈ R
∗
+, (8)

where s′(v−) and s′(v+) are the left and right derivatives of s at v. In particular, this
means that

g(v, Bc) =
−αv

r − ψ(1)
G
(

ln
Bc

v

)

+
c

r
L
(

ln
Bc

v

)

= s(v)

has right and left derivatives at v = Bc. Since G has right and left derivatives at x = 0,
then L has also right and left derivatives at x = 0.
(2) Let us make v = Bc in (8) :

−α
r − ψ(1)

≤ −α
r − ψ(1)

+
α

r − ψ(1)
G′(0−) − c

rBc

L′(0−).

We deduce that Bc ≥ b̃ = (r−ψ(1))c
rα

L′(0−)
G′(0−)

= (r−ψ(1))c
rα

limx↑0
1−L(x)
1−G(x)

.

(3) If moreover g(., b̃) is strictly convex on ]̃b, ∞[, then

g(v, b̃) > f(v) for all v > b̃. (9)

Indeed, the graph of f is tangent to the graph of g(., b̃) in v = b̃.

Suppose that Bc > b̃, then

f(Bc) = s(Bc) = g(Bc, Bc) ≥ g(Bc, b̃)

which contradicts (9). 2

We stress the following consequence of Theorem 3.14.

Remark 3.15 If G′(0−) exists, then L′(0−) exists.

Proposition 3.16 For any ε > 0, let

τε(c) = inf{t ≥ 0 : e−rts(Vt) ≤ e−rtf(Vt) + ε}.

If σ > 0, then under Assumptions 2.1, 2.3 and 3.5, P(τε(c) <∞) = 1 and
limε→0τε(c) = τ ∗(c).

Proof

Since E[supt≥0max(e
−rtf(Vt), 0)] ≤ c

r
, then using Lemma 6.5 of Section 6.1,

P(τε(c) <∞) = 1.

The sequence (τε(c), ε ≥ 0) is a decreasing sequence of stopping times, hence the limit
τ0 = limε→0τε(c) exists and using Theorem 6.3 of Section 6, it is equal to τ0 = τ ∗(c). 2
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3.0.1 Application to Finance

This type of optimal stopping problem can be applied in Finance : the process V describes
the assets value of a given firm. The rate r describes the discount current rate and

ψ(1) = 1
t
lnE

(

Vt
V0

)

the expected asset growth rate. Suppose that the firm generates cash

flows at the rate αVt at any time t. The firm issues bonds and pays coupons indefinitely
(meaning that c is a speed of payement). The expected present value of the cash flows
generated by the firm until the liquidation time τ is

Ev

[
∫ τ

0

e−rt(αVs − c)ds

]

.

At a fixed time t, the equity owners look for an optimal liquidation time : they want to
maximize the expected present value of the cash flows generated by the firm until the
liquidation time τ . This one corresponds to the solution of the optimal stopping problem
(2).

4 Examples

The examples presented in this section are some models where Ev

(

e−rτb+aXτb
)

is known
for all b. Next we consider some particular Lévy processes, we check that the assumptions
of Theorem 3.14 or Theorem 3.13 are satisfied and we solve the problem (2) in each case.
We start with a continuous Lévy process (Brownian motion), then we continue with a
double exponential jump-diffusion process, a particular spectrally positive process and we
finish with the Poisson process.

4.1 Brownian motion

We find Duffie and Lando’s result, the optimal stopping problem (2) being already studied
in [9] for a Brownian motion with drift. The parameters (m, σ, δ, (θ − 1)C) of Duffie and
Lando’s model correspond here to (0, 1, α, c). Contrary to their method, our method
allows to avoid long calculations of the integro-differential operator.

Let X = W where (Wt, t ≥ 0) is a standard Brownian motion. Then V = veW . In
this case ψ(1) = 1

2
and Assumption 2.1 is checked. We impose (Assumption 2.3) that

r > 1
2
.

Lemma 4.1 The Brownian motion checks the relation (5), i.e.

limn→∞E
(

e−rRn+WRn1Rn<∞|W0 = 0
)

= 0

where Rn = inf{t ≥ 0 : e−rt+Wt ≥ n}. Consequently, Assumption 3.5 is satisfied.

12



Proof

The process W is continuous, so

Rn = inf{t ≥ 0 : e−rt+Wt ≥ n} = inf{t ≥ 0 : −rt+Wt = ln(n)}.

Thus E
(

e−rRn+WRn1Rn<∞|W0 = 0
)

= nP (Rn <∞|W0 = 0) .

We apply a result of [12] (page 197), and we obtain

E
(

e−rRn+WRn1Rn<∞|W0 = 0
)

= ne−2rln(n) = n1−2r.

However r > 1
2
, then limn→∞E

(

e−rRn+WRn1Rn<∞|W0 = 0
)

= 0. 2

The hypothesis of Proposition 3.10 are checked and the smallest optimal stopping time
has the form

τbc = inf{t ≥ 0 : Vt ≤ bc} = inf{t ≥ 0 : Vt = bc}
because V is a continuous process.

Using Remark 8.3 page 96 of [12] which gives the Laplace transform of a hitting time
in the case of a Brownian motion,

L(x) = ex
√

2r and G(x) = ex(
√

2r+1), x < 0.

The function g has the form

g(v, b) =







− αv

r− 1
2

+ c
r

if v ≤ b
(

−αb
r− 1

2

+ c
r

)

(

v
b

)−
√

2r
if v > b.

We notice that the function x 7→ G(x) is continuous at x = 0. Let us check the hy-
pothesis of Theorem 3.14 :

(1) G has left derivative at x = 0.

(2) Moreover G′(0−) =
√

2r + 1 6= 0. Since L′(0−) =
√

2r then b̃ =
c
√

2r(r− 1
2
)

αr(
√

2r+1)
.

(3) Remark that the function g(., b̃) belongs to C2(]̃b, ∞[). Its second derivative is equal
to

∂2g

∂v2
(v, b̃) =

(

−αb̃
r − 1

2

+
c

r

) √
2r(

√
2r + 1)

b̃2

(

v

b̃

)−
√

2r−2

=
c
√

2r

rb̃2

(

v

b̃

)−
√

2r−2

> 0

and the function g(., b̃) is strictly convex on ]̃b, ∞[.

Thus Bc = b̃ and the optimal stopping time is

τ ∗(c) = inf{t ≥ 0 : Vt = Bc}.
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Proposition 4.2 If X is a standard Brownian motion, then with the notations introduced
in Section 4.1,

1. The smallest optimal stopping time is τ ∗(c) = inf{t ≥ 0 : Vt = Bc} where

Bc =
c
√

2r(r− 1
2
)

αr(
√

2r+1)
.

2. The value function w is given by

w(v) =
αv

r − 1
2

− c

r

(

1 +
1√
2r

(

v

Bc

)−
√

2r
)

where v > Bc.

4.2 Double exponential jump-diffusion process

Using Lemma 3.8, the problem (2) can be brought back to an optimal stopping problem

for an American Put option with strike price c(r−ψ(1))
rα

:

s(v) = supτ≥0Ev

[

e−rτ
( −αVτ
r − ψ(1)

+
c

r

)+
]

=
α

r − ψ(1)
supτ≥0Ev

[

e−rτ
(

−Vτ +
c(r − ψ(1))

rα

)+
]

.

We find the result of Theorem 1 of [16]. In [16], the authors solve an optimal stopping
problem for an American Put option. They use the Wiener-Hopf factorization. But, in
general explicit calculation of the Wiener-Hopf factorization is difficult. Because of the
memoryless property of the exponential distribution, they can solve the problem explicitly.
Our method is much easier to use than their method, much more rapid and it can be used
for any Lévy process.

In [23], Pham studies an optimal stopping problem for an American Put option with
finite time horizon. His model is a jump-diffusion one and the jumps are not restricted
to any particular law. He uses integro-differential equations to solve his problem.

The next model is Kou and Wang’s model (we refer to [15, 16] and [5]). Indeed, we
suppose thatX is a mixed diffusion-jump process and the jump size is a double exponential
distributed random variable :

Xt = mt+ σWt +
Nt
∑

i=1

Yi, t ≥ 0, (10)

where (Wt, t ≥ 0) is a standard Brownian motion, (Nt, t ≥ 0) is a Poisson process with
constant positive intensity a, (Yi, i ∈ N) is a sequence of independent and identically
distributed random variables. The common density of Y is given by

fY (y) = pη1e
−η1y1y>0 + qη2e

η2y1y<0, y ∈ R,

where p + q = 1, p, q > 0, η1 > 1 and η2 > 0. Moreover we suppose that (Yi, i ∈ N),
(Nt, t ≥ 0) and (Wt, t ≥ 0) are independent.
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We treat separately the cases where q = 0 or p = 0.

The condition η1 > 1 implies E(eY ) <∞ and Ev(Vt) <∞ for every t ≥ 0. Assumption
2.1 is checked and ψ(1) = m+ σ2

2
+ aE(eY − 1). Here Assumption 2.3 is

r > m+ σ2

2
+ aE(eY − 1) where E(eY − 1) = η1p

η1−1
+ η2q

η2+1
− 1.

Lemma 4.3 The process X introduced in (10) checks the relation (5), i.e.

limn→∞E
(

e−rRn+XRn1Rn<∞|X0 = 0
)

= 0

where Rn = inf{t ≥ 0 : e−rt+Xt ≥ n}. Consequently, Assumption 3.5 is satisfied.

The demonstration of this lemma rests on Corollary 3.3 of [15] recalled in Section 6.2
(we refer to relation (18)).

Proof

Remark that Rn = inf{t ≥ 0 : (−r +m)t+ σWt +
∑Nt

i=1 Yi ≥ ln(n)}, n ∈ N
∗.

We apply (18) of Section 6.2 to r = 0, β = 1, b = ln(n) and
Xt = (−r +m)t+ σWt +

∑Nt
i=1 Yi (in fact we replace the drift m by −r +m) :

E
(

e−rRn+XRn1Rn<∞|X0 = 0
)

= n1−ψ1
(η1 − ψ1)(ψ0 − 1)

(ψ0 − ψ1)(η1 − 1)
+ n1−ψ0

(ψ0 − η1)(ψ1 − 1)

(ψ0 − ψ1)(η1 − 1)
(11)

where 0 < ψ1 < η1 < ψ0 <∞ are the positive roots of equation f(ψ) = 0 with

f(ψ) = (−r +m)ψ +
σ2

2
ψ2 + a

[

η1p

η1 − ψ
+

η2q

η2 + ψ
− 1

]

.

The equation f(ψ) = 0 has exactly four roots (see Lemma 2.1 of [15]), and the two
positive solutions are both strictly greater than 1. Indeed,

ψ −∞ −η2 0 1 η1 ∞
f(ψ) ∞ −∞ ∞ 0 f(1) ∞ −∞ ∞

where f(1) = (−r + m) + σ2

2
+ a

[

η1p

η1−1
+ η2q

η2+1
− 1
]

= −r + m + σ2

2
+ aE(eY − 1) < 0

according to Assumption 2.3 rewritten in this case.

Since 1 < ψ1 < η1 < ψ0, then by taking the limit in (11) we obtain :

limn→∞E
(

e−rRn+XRn1Rn<∞|X0 = 0
)

= 0.

2

The assumptions of Proposition 3.10 are checked and the smallest optimal stopping
time has the form

τbc = inf{t ≥ 0 : Vt ≤ bc}.
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The results of [15] allow us to write for all x < 0 the form of the functions x 7→ L(x),
x 7→ G(x) and therefore g(., b) on ]b, ∞[ :

L(x) =
ψ2(η2 + ψ3)

(ψ2 − ψ3)η2
e−xψ3 − ψ3(η2 + ψ2)

(ψ2 − ψ3)η2
e−xψ2,

G(x) =ex
[

(η2 + ψ3)(ψ2 − 1)

(ψ2 − ψ3)(η2 + 1)
e−xψ3 +

(η2 + ψ2)(1 − ψ3)

(ψ2 − ψ3)(η2 + 1)
e−xψ2

]

,

where −∞ < ψ3 < −η2 < ψ2 < 0 are the two negative roots of the equation

mψ +
σ2

2
ψ2 + a[

η1p

η1 − ψ
+

η2q

η2 + ψ
− 1] = r.

Thus, the function g is equal to :

g(v, b) =

{ − αv
r−ψ(1)

+ c
r

if v ≤ b

Ab(
v
b
)ψ3 +Db(

v
b
)ψ2 if v > b,

where Ab = − αb

r − ψ(1)

(η2 + ψ3)(ψ2 − 1)

(ψ2 − ψ3)(η2 + 1)
+
c

r

ψ2(η2 + ψ3)

(ψ2 − ψ3)η2
and

Db = − αb

r − ψ(1)

(η2 + ψ2)(1 − ψ3)

(ψ2 − ψ3)(η2 + 1)
− c

r

ψ3(η2 + ψ2)

(ψ2 − ψ3)η2
.

Remark that the function x 7→ G(x) is continuous at x = 0. Let us check the assump-
tions of Theorem 3.14 :
(1) G has left derivative at x = 0.

(2) Moreover G′(0−) = (1−ψ2)(1−ψ3)
(η2+1)

6= 0. Since L′(0−) = ψ2ψ3

η2
then b̃ = c(r−ψ(1))ψ2ψ3(η2+1)

rαη2(1−ψ2)(1−ψ3)
.

(3) Remark that g(., b̃) ∈ C2(]̃b, ∞[) and

∂2g

∂v2
(v, b̃) =Ac(

1

b̃
)ψ3ψ3(ψ3 − 1)vψ3−2 +Dc(

1

b̃
)ψ2ψ2(ψ2 − 1)vψ2−2

where Ac =
cψ2(η2 + ψ3)

r(ψ2 − ψ3)η2(1 − ψ3)
> 0,

Dc = − cψ3(η2 + ψ2)

r(ψ2 − ψ3)η2(1 − ψ2)
> 0.

Thus ∂2g

∂v2
(v, b̃) > 0 for v > b̃ and g(., b̃) is strictly convex on ]̃b, ∞[.

We can apply Theorem 3.14, Bc = b̃ and the optimal stopping time is

τ ∗(c) = inf{t ≥ 0 : Vt ≤ Bc}.

Proposition 4.4 Let X be the process introduced in (10). Then, using the notations
introduced in Section 4.2 :
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1. The smallest optimal stopping time is τ ∗(c) = inf{t ≥ 0 : Vt ≤ Bc} where

Bc = c(r−ψ(1))ψ2ψ3(η2+1)
rαη2(1−ψ2)(1−ψ3)

.

2. For v > Bc, the value function w is equal to

w(v) =
αv

r − 1
2

− c

r
+

cψ2(η2 + ψ3)

r(ψ2 − ψ3)η2(1 − ψ3)

(

v

Bc

)ψ3

− cψ3(η2 + ψ2)

r(ψ2 − ψ3)η2(1 − ψ2)

(

v

Bc

)ψ2

.

4.3 Exponential jump-diffusion process

To our knowledge, the following result seems to be new.

In this section, we suppose that X is a mixed diffusion-jump process and the jump
size is a random variable with an exponential distribution :

Xt = mt+ σWt +
Nt
∑

i=1

Yi, t ≥ 0, (12)

where (Wt, t ≥ 0) is a standard Brownian motion, (Nt, t ≥ 0) is a Poisson process with
constant positive intensity a, (Yi, i ∈ N) is a sequence of independent and identically
distributed random variables with an exponential distribution, i.e. the common density of
Y is given by fY (y) = η1e

−η1y1y>0 where η1 > 1. Moreover we suppose that (Yi, i ∈ N),
(Nt, t ≥ 0) and (Wt, t ≥ 0) are independent. This is a particular Lévy process with
positive jumps.

As for the double exponential jump-diffusion process (here we consider q = 0, so
p = 1), the condition η1 > 1 implies E(eY ) <∞. Assumption 2.1 is thus checked. In this
particular case, ψ(1) = m+ σ2

2
+ a

η1−1
and Assumption 2.3 is r > m+ σ2

2
+ a

η1−1
.

Lemma 4.5 The process X introduced in (12) satisfies the relation (5), i.e.

limn→∞E
(

e−rRn+XRn1Rn<∞|X0 = 0
)

= 0

where Rn = inf{t ≥ 0 : e−rt+Xt ≥ n}. Consequently, Assumption 3.5 is checked.

We use (18) and Remark 6.8 of Section 6.2 to prove this result. The demonstration of
this lemma is the same as that of Lemma 4.3, the only difference is that here p = 1 (thus
q = 0) and 0 < ψ1 < η1 < ψ0 < ∞ are the positive roots of equation f(ψ) = 0 where
f(ψ) = (−r +m)ψ + σ2

2
ψ2 + aψ

η1−ψ .

The assumptions of Proposition 3.10 are checked and the smallest optimal stopping
time has the form

τbc = inf{t ≥ 0 : Vt ≤ bc}.

The following result of [10] allows us to write for every x < 0 the form of the functions
x 7→ L(x) and x 7→ G(x) :
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Proposition 4.6 (Theorem 1 of [10])

Let X be a Lévy process with no negative jumps and characteristic function Ψ :
E(eiλXt) = e−tΨ(λ).

1. The equation r + Ψ(λ) = 0 has at most one root in Im(λ) > 0.

2. Let x < 0 and τ = inf{t ≥ 0 : Xt ≤ x}. If r + Ψ(λ) = 0 has a root denoted iλ̄,
λ̄ > 0, then

E
(

e−rτ+iqXτ
)

= exλ̄+ixq.

In our particular case Ψ(λ) = −imλ + σ2λ2

2
− aiλ

η1−iλ . Since the equation r + Ψ(λ) = 0

has a root in Im(λ) > 0, then we can apply Proposition 4.6 :

L(x) = exλ̄ and G(x) = ex(λ̄+1).

The function g has the form

g(v, b) =

{ − αv
r−ψ(1)

+ c
r

if v ≤ b
(

−αb
r−ψ(1)

+ c
r

)

(

b
v

)λ̄
if v > b.

Remark that the function x 7→ G(x) is continuous at x = 0. Let us check the assump-
tions of Theorem 3.14 :
(1) G has left derivative at x = 0.

(2) Moreover G′(0−) = λ̄+ 1 6= 0. Since L′(0−) = λ̄ then b̃ = cλ̄(r−ψ(1))

αr(λ̄+1)
.

(3) Remark that g(., b̃) ∈ C2(]̃b, ∞[) and ∂2g

∂v2
(v, b̃) = cλ̄

rb̃2

(

b̃
v

)λ̄+2

> 0. Thus the function

g(., b̃) is strictly convex on ]̃b, ∞[.

Then Bc = b̃. Since, X has no negative jumps, the smallest optimal stopping time is

τ ∗(c) = inf{t ≥ 0 : Vt = Bc}.

Proposition 4.7 Let X be the process introduced in (12). Then, using the notations
introduced in section 4.3, we have :

1. The smallest optimal stopping time is τ ∗(c) = inf{t ≥ 0 : Vt ≤ Bc} where

Bc = cλ̄(r−ψ(1))

αr(λ̄+1)
.

2. For v > Bc, the value function w is equal to w(v) = αv
r−ψ(1)

− c
r

+ c
r(1+λ̄)

(

Bc
v

)λ̄
.
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4.4 Poisson process

In absence of a known reference, we treat the easy case X = −N where (Nt, t ≥ 0)
is a Poisson process with constant positive intensity a. Then V = ve−N . In this case
the Laplace transform of the process X exists, Assumption 2.1 is checked and ψ(1) =
a(e−1 −1). We note that here Assumption 2.3 is always checked since r > 0 > a(e−1 −1).

Moreover, the process t 7→ Yt = e−rt
(

−αve−Nt
r−a(e−1−1)

+ c
r

)

is bounded, thus of class D.

In this particular case, since the Gaussian component of X is null, Lemma 3.8 cannot
be applied. Let us recall that this lemma allows us to rewrite the function s in a particular
form (s(v) = supτ≥0Ev[e

−rtf+(Vt)]) in order to be able to apply Theorem 6.3 of Section
6 and to find the smallest optimal stopping time form. However, since the process t 7→
Yt = e−rtf(Vt) is bounded, then Theorem 6.3 of Section 6 may be applied directly. The
smallest optimal stopping time is τ ∗ = inf{t : f(Vt) = s(Vt)}. In this particular case
where X = −N , the function s is defined on {v, ve−1, ve−2...}, its continuous prolongation
by linear interpolation is convex and the conclusion of Proposition 3.10 is true.

The smallest optimal stopping time has the form

τbc = inf{t ≥ 0 : Vt ≤ bc} = inf

{

t ≥ 0 : Nt ≥ ln

(

v

bc

)}

and in this case it coincides with a jump time of the process N .

Let (Ti, i ∈ N
∗) be a sequence of random variables describing the jump times of the

process N .

To find the form of the functions L and G we calculate E (e−rτx) and E
(

e−rτx−Nτx
)

where τx = inf{t ≥ 0 : Nt ≥ −x}:

L(x) =
∑

i≥0

E
(

e−rTi1τx=Ti
)

= 1x≥0 +
∑

i≥1

E
(

e−rTi
)

1i−1<−x≤i.

Since Ti = S1 + ... + Si where (Sj, j ∈ N) is a sequence of independent and identi-
cally distributed random variables with exponential distribution with parameter a, then

E
(

e−rTi
)

= E
(

e−rS1
)i

=
(

a
r+a

)i
and

L(x) = 1x≥0 +
∑

i≥1

(

a

r + a

)i

1i−1<−x≤i.

In the same way, we calculate

G(x) =
∑

i≥0

E
(

e−rTi−i1τx=Ti
)

= 1x≥0 +
∑

i≥1

(

a

e(r + a)

)i

1i−1<−x≤i.
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The function g(., b) has the form :

g(v, b) =























− αv
r−ψ(1)

+ c
r

if v ≤ b

− αv
r−ψ(1)

a
e(r+a)

+ c
r

a
r+a

if b < v ≤ be

− αv
r−ψ(1)

(

a
e(r+a)

)2

+ c
r

(

a
r+a

)2
if be < v ≤ be2

...

Remark that G is discontinuous at x = 0. By Theorem 3.13, Bc = ce(r−ψ(1))
α(er+ea−a) and the

optimal stopping time is
τ ∗(c) = inf{t ≥ 0 : Vt ≤ Bc}.

Proposition 4.8 Let X = −N where (Nt, t ≥ 0) is a Poisson process with constant
positive intensity a. Then with the notations introduced in Section 4.4 :

1. The smallest optimal stopping time is τ ∗(c) = inf{t ≥ 0 : Vt ≤ Bc} where

Bc = ce(r−ψ(1))
α(er+ea−a) .

2. For v > Bc, the value function w is equal to

w(v) =
∑

i≥1

[

αv

r − ψ(1)

(

1 −
(

a

e(r + a)

)i
)

− c

r

(

1 −
(

a

r + a

)i
)]

1Bcei−1<v≤Bcei.

5 Spectrally negative processes. Case of an unbounded

variation process.

The case of spectrally negative processes is more complicated and requires more calcu-
lations than the other examples. We present here the example of a spectrally negative
process with a non null Gaussian component.

5.1 Notations, hypothesis and tools

Throughout this section, we suppose that X is a real-valued Lévy process with no positive
jumps. Some authors say that X is spectrally negative. The case when X is either a
negative Lévy process with decreasing paths or a deterministic drift are excluded in this
sequel. The Laplace transform of such a process exists and has the following form (see [1]
page 187-189 for details) :

E(eλXt) = etψ(λ) where λ ∈ R+, ψ(λ) = mλ+
σ2

2
λ2 +

∫ 0

−∞
(eλx − 1 − λx1x>−1)Π(dx).

20



The function ψ : [0,∞[→ R is strictly convex and limλ→∞ψ(λ) = ∞. We denote by
Φ(0) the largest solution of the equation ψ(λ) = 0. Observe that 0 is always a solution
of ψ(λ) = 0. If Φ(0) > 0, then by strict convexity, 0 and Φ(0) are the only solutions of
ψ(λ) = 0. In all cases, ψ : [Φ(0),∞[→ R+ is continuous and increasing, it is a bijection
and its inverse is Φ : [0,∞[→ [Φ(0),∞[ : ψ ◦ Φ(λ) = λ (λ > 0). Assumption 2.3, i.e.
r > ψ(1) is equivalent to Φ(r) > 1.

In the sequel we suppose that r > ψ(1) (Assumption 2.3).

The process t 7→ ecXt−ψ(c)t is a martingale. Define for each c ≥ 0 the change of measure

: dP
c

dP
|Ft= ecXt−ψ(c)t. Following [17], we introduce a new function :

Definition 5.1 For any q ≥ 0 let W (q) : R → R+ be the function defined by

W (q)(x) = eΦ(q)x
P

Φ(q)(inft≥0Xt ≥ 0|X0 = x).

The following proposition presents some properties of the function W (q) shown in [17]
and [4] :

Proposition 5.2 For any q ≥ 0, the function W (q) has the following properties :

1. W (q)(x) = 0 for x < 0 and W (q) is a strictly increasing and continuous function on
[0,∞[ whose Laplace transform satisfies

∫ ∞

0

e−βxW (q)(x)dx =
1

ψ(β) − q

for β > Φ(q) (Theorem 8.1 page 214 of [17]).

2. W (q)(0) = 0 if and only if X has unbounded variation (Lemma 8.6 page 223 of [17]).

3. W (q)′(0) = 2
σ2 if X has unbounded variation (Exercice 8.5 page 234 of [17]).

4. If the process X has a non null Gaussian component, then the function W (q) belongs
to C2(]0,∞[) (Theorem 2 of [4]).

We introduce the following functions:

Definition 5.3 1. For any q ≥ 0 let Z(q) : R+ → R+ be the function defined by

Z(q)(x) = 1 + q

∫ x

0

W (q)(y)dy.

2. For any q ∈ C and c ∈ R such that ψ(c) ≤ q, let

W (q−ψ(c))
c (x) = e−cxW (q)(x) and Z(q−ψ(c))

c (x) = 1+(q−ψ(c))

∫ x

0

W (q−ψ(c))
c (y)dy

for every x ≥ 0.
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Remark 5.4 i) From Proposition 5.2 (2) and Definition 5.3 (2), if X has unbounded
variation, then

W (q−ψ(c))
c (0) = 0.

ii) Moreover, Definition 5.3 (1) and (2) taken in x = 0 give

Z(q)(0) = 1, Z(q−ψ(c))
c (0) = 1.

5.2 Optimal stopping time

Let us suppose that σ > 0 ; one can express the Lévy process as the sum of a Brownian
motion with drift and a pure jump process with negative jumps ; there are thus processes
with unbounded variation. The case p = 0 of Section 4.2 is a particular case of a negative
Lévy process with a non null Gaussian component.

At our knowledge, there does not exist any proof to show that under Assumption 2.3,
the process

(

e−rt+Xt , t ≥ 0
)

is of class D.

Lemma 5.5 Let X be a Lévy process with a non null Gaussian component satisfying
Assumption 2.3. This process checks the relation (5), i.e.

limn→∞E
(

e−rRn+XRn1Rn<∞|X0 = 0
)

= 0

where Rn = inf{t ≥ 0 : e−rt+Xt ≥ n}. Consequently, Assumption 3.5 is satisfied.

The proof of this lemma rests on the following result :

Lemma 5.6 Let X be a spectrally negative process and for each x > 0 let τx be the
following stopping time τx = inf{t > 0 : Xt > x}. Then

1. For any x > 0, τx = inf{t > 0 : Xt ≥ x} P(.|X0 = 0)-almost surely (Lemma 49.6
page 373 of [24]).

2. P (τx <∞|X0 = 0) = e−Φ(0)x where Φ(0) is introduced in Section 5.1 (Corollary
3.13 page 82 of [17]).

3. Since the process X has no positive jumps, then P(Xτx = x|τx < ∞, X0 = 0) = 1
(page 212 of [17]).

Proof of Lemma 5.5
The stopping time Rn can be written as Rn = inf{t ≥ 0 : −rt + Xt ≥ ln(n)}. Since
n > 0, then P(Rn = 0|X0 = 0) = 0 and Rn = inf{t > 0 : −rt +Xt ≥ ln(n)}. We apply
Lemma 5.6 to t 7→ −rt+Xt and x = ln(n) : Rn = τ ln(n) P(.|X0 = 0)-almost surely and

E
(

e−rRn+XRn1Rn<∞|X0 = 0
)

= ne−Φ̄(0)ln(n) = n1−Φ̄(0), (13)
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where Φ̄(0) is the largest solution of the equation ψ̄(λ) = 0 where

ψ̄(λ) = (m− r)λ+
σ2

2
λ2 +

∫ 0

−∞
(eλx − 1 − λx1x>−1)Π(dx).

The largest solution of the equation ψ̄(λ) = 0 satisfies Φ̄(0) > 1. Indeed, ψ̄ is a

continuous function, ψ̄(1) = m−r+ σ2

2
+
∫ 0

−∞(ex−1−x1x>−1)Π(dx) < 0 (by Assumption
2.3) and this function goes to infinity when λ goes to infinity.

Let us take the limit in (13),

limn→∞E
(

e−rRn+XRn1Rn<∞|X0 = 0
)

= 0.

2

The assumptions of Proposition 3.10 are checked and the smallest optimal stopping
time has the form

τbc = inf{t ≥ 0 : Vt ≤ bc}.

Now we seek L and G. In [17], the author calculates the Laplace transform of a
stopping time of the form τ−x = inf{t > 0 : Xt < x} and the joint Laplace transform of
(τ−x , Xτ−x

). In order to be able to apply his results, we show that if there exists a non
null Gaussian component, then the hitting time τ−x is equal to τx = inf{t ≥ 0 : Xt ≤ x}.

Proposition 5.7 Let X be a spectrally negative process with a non null Gaussian com-
ponent. Then, P(.|X0 = 0)-almost surely

inf{t ≥ 0 : Xt ≤ x} = inf{t ≥ 0 : Xt < x} = inf{t > 0 : Xt < x}

for x ≤ 0.

The proof of this proposition rests on the following result :

Proposition 5.8 Let X be a spectrally negative process and τ−y = inf{t > 0 : Xt < y}.

1. (Theorem 8.1 (ii) page 214 of [17])
For any x ∈ R and r ≥ 0,

E

(

e−rτ
−

0 1τ−0 <∞|X0 = x
)

= Z(r)(x) − r

Φ(r)
W (r)(x).

2. It is enough to remark that τ−x = inf{t > 0 : Xt < x} = inf{t > 0 : Xt − x < 0} to
deduce that for r ≥ 0, the Laplace transform of τ−x is equal to

E

(

e−rτ
−

x 1τ−x <∞|X0 = 0
)

= E

(

e−rτ
−

0 1τ−0 <∞|X0 = −x
)

= Z(r)(−x)− r

Φ(r)
W (r)(−x).

(14)
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Proof of Proposition 5.7
• Case x=0
Remark that τ0 = 0 P(.|X0 = 0)-almost surely. We denote τ ′x = inf{t ≥ 0 : Xt < x}.
We want to show that τ−0 = 0 and τ ′0 = 0 P(.|X0 = 0)-almost surely.

Using Proposition 5.8 for x = 0, we obtain :

E

(

e−rτ
−

0 1τ−0 <∞|X0 = 0
)

= Z(r)(0) − r

Φ(r)
W (r)(0).

Since X has unbounded variation, then by Proposition 5.2 (2), W (r)(0) = 0 and by
Remark 5.4 ii), Z(r)(0) = 1, so

E

(

e−rτ
−

0 1τ−0 <∞|X0 = 0
)

= 1.

However 0 ≤ e−rτ
−

0 1τ−0 <∞ ≤ 1 implies e−rτ
−

0 1τ−0 <∞ = 1 P(.|X0 = 0)-almost surely, and

τ−0 = 0.

The process X is smaller than a Brownian motion with drift, Xt ≤ mt+σWt for every
t ≥ 0, and

P(τ ′0 = 0|X0 = 0) ≥ P(τ
′m,W
x = 0|X0 = 0)

where τ
′m,W
x = inf{t ≥ 0 : mt + σWt < x}. However P(.|X0 = 0)-almost surely we have

inf{t ≥ 0 : mt + σWt < 0} = inf{t ≥ 0 : mt+ σWt = 0},

so P(τ
′m,W
0 = 0|X0 = 0) = 1, consequently P(τ ′0 = 0|X0 = 0) = 1.

• Case x¡0
Since x < 0, then P(τ ′x = 0|X0 = 0) = 0 and τ ′x = τ−x P(.|X0 = 0)-almost surely. We want
to show that τx = τ ′x P(.|X0 = 0)-almost surely. Since τx ≤ τ ′x, then τ ′x = τx + τ ′x ◦ θτx
where θ is the translation operator. Apply the strong Markov property at τx :

P(τx = τ ′x|X0 = 0) = E
[

E(1τ ′x=0|X0 = Xτx)|X0 = 0
]

=E(1Xτx<x|X0 = 0) + E
(

1Xτx=xP(τ ′x = 0|X0 = x)|X0 = 0
)

.

Since P(τ ′x = 0|X0 = x) = P(τ ′0 = 0|X0 = 0) = 1, then

P(τx = τ ′x|X0 = 0) = P(Xτx < x|X0 = 0) + P(Xτx = x|X0 = 0) = 1,

and the conclusion holds. 2

According to Proposition 5.7, the optimal stopping time has the form τ−
ln bc

v

P(.|X0 = 0)-almost surely. We can use (14) from Proposition 5.8 and Proposition 5.9
below to find the functions L and G.
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Proposition 5.9 (Exercice 8.7 de [17])

Let X be a spectrally negative process and τ−x = inf{t > 0 : Xt < x}. For any x < 0,
c ≥ 0 and r ≥ ψ(c) ∨ 0, we have :

E

(

e
−rτ−x +c(X

τ
−

x
−x)

1τ−x <∞|X0 = 0
)

= e−cx
(

Z(r−ψ(c))
c (−x) − r − ψ(c)

Φ(r) − c
W (r−ψ(c))
c (−x)

)

.

By Lemma 3.3, the process t 7→ e−rt
(

−αveXt
r−ψ(1)

+ c
r

)

converges in L1 and almost surely

to 0. Thus, in our case we can remove the indicator function 1τ−x <∞. The function g(., b)

has the form − αv
r−ψ(1)

+ c
r

if v ≤ b ; if not −αv
r−ψ(1)

G
(

ln b
v

)

+ c
r
L
(

ln b
v

)

, where

G(x) =Z
(r−ψ(1))
1 (−x) − r − ψ(1)

Φ(r) − 1
W

(r−ψ(1))
1 (−x),

L(x) =Z(r)(−x) − r

Φ(r)
W (r)(−x).

Remark that the function x 7→ G(x) is continuous at x = 0. Indeed, using Definition
5.3 and Proposition 5.2, limx↑0G(x) = 1 = G(0).

In order to be able to check the assumptions of Theorem 3.14, we prove the following
results :

Proposition 5.10 For any x > 0, r ≥ ψ(c) ∨ 0 and c ∈ R, the following equalities are
true :

1. Z
′(r)(x) = rW (r)(x),

2. W
′(r−ψ(c))
c (x) = −ce−cxW (r)(x) + e−cxW

′(r)(x),

3. Z
′(r−ψ(c))
c (x) = (r − ψ(c))W

(r−ψ(c))
c (x) = (r − ψ(c))e−cxW (r)(x).

Proof

1. By definition Z(r)(x) = 1 + r
∫ x

0
W (r)(y)dy, thus Z

′(r)(x) = rW (r)(x).

2. For the second equality, it is enough to differentiate the relation W
(r−ψ(c))
c (x) =

e−cxW (r)(x).

3. For the last relation, it is enough to differentiate the function

x 7→ Z(r−ψ(c))
c (x) = 1 + (r − ψ(c))

∫ x

0

W (r−ψ(c))
c (y)dy

and Z
′(r−ψ(c))
c (x) = (r − ψ(c))W

(r−ψ(c))
c (x) = (r − ψ(c))e−cxW (r)(x).
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2

The following result is obtained by using Proposition 5.2 ((2) and (3)) and Proposition
5.10.

Corollary 5.11 Let X be a spectrally negative process with unbounded variation. For
any r ≥ ψ(c) ∨ 0 and c ∈ R :

1. Z
′(r)(0) = 0 and Z

′(r−ψ(c))
c (0) = 0,

2. W
′(r−ψ(c))
c (0) = 2

σ2 .

Proposition 5.12 (proof of Theorem 9.11 page 258 of [17])
For any r ≥ 0 and x ≥ 0 :

W
′(r)(x) − ψ(r)W (r)(x) > 0.

Now we have all the necessary tools to check the assumptions of Theorem 3.14 :

(1) G has left derivative at x = 0.
(2) Moreover

G′(0−) = − (r − ψ(1))W (r)(0) +
r − ψ(1)

Φ(r) − 1

[

−W (r)(0) +W
′(r)(0)

]

=
r − ψ(1)

Φ(r) − 1
W

′(r)(0) > 0

by Proposition 5.12 for x = 0. Since L′(0−) = r
Φ(r)

W
′(r)(0), then b̃ = c(Φ(r)−1)

αΦ(r)
.

(3) Using Proposition 5.2 (4), g(., b̃) ∈ C2(]̃b, ∞[). We use Definition 5.3 (2) and Propo-
sition 5.10 to compute the first derivative of g(., b̃).

∂g

∂v
(v, b̃) = −α

r−ψ(1)
Z

(r−ψ(1))
1

(

lnv
b̃

)

+W
′(r)
(

lnv
b̃

)(

αb̃
v(Φ(r)−1)

− c
vΦ(r)

)

+W (r)
(

lnv
b̃

)(

−αb̃
v

+ c
v

)

.

However b̃ = c(ψ(r)−1)
αψ(r)

, so αb̃
v(Φ(r)−1)

− c
vΦ(r)

= 0 and −αb̃
v

+ c
v

= c
vΦ(r)

.

∂g

∂v
(v, b̃) = − α

r − ψ(1)
Z

(r−ψ(1))
1

(

ln
v

b̃

)

+
c

vΦ(r)
W (r)

(

ln
v

b̃

)

.

By differentiating this relation, we obtain the second derivative of g(., b̃) :

∂g2

∂v2
(v, b̃) = − α

v(r − ψ(1))
Z

′(r−ψ(1))
1

(

ln
v

b̃

)

− c

v2Φ(r)
W (r)

(

ln
v

b̃

)

+
c

v2Φ(r)
W

′(r)

(

ln
v

b̃

)

.
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Using Proposition 5.10, and replacing b̃ by its value, we obtain

∂g2

∂v2
(v, b̃) =

c

v2Φ(r)
W

′(r)

(

ln
v

b̃

)

− c

v2
W (r)

(

ln
v

b̃

)

=
c

v2Φ(r)

[

W
′(r)

(

ln
v

b̃

)

− Φ(r)W (r)

(

ln
v

b̃

)]

> 0

by Proposition 5.12. Thus, the function g(., b̃) is strictly convex on ]̃b, ∞[.

We apply Theorem 3.14, Bc = b̃ and the smallest optimal stopping time is

τ ∗(c) = inf{t ≥ 0 : Vt ≤ Bc}.

Proposition 5.13 Let X be a spectrally negative process with a non null Gaussian com-
ponent. Then, with the notations introduced in Section 5,

1. The smallest optimal stopping time is τ ∗(c) = inf{t ≥ 0 : Vt ≤ Bc} where

Bc = c(Φ(r)−1)
αΦ(r)

.

2. For v > Bc, the value function w is equal to
αv

r−ψ(1)
− c
r
+ −αv
r−ψ(1)

[

Z
(r−ψ(1))
1

(

ln v
Bc

)

− r−ψ(1)
ψ(r)−1

W
(r−ψ(1))
1

(

ln v
Bc

)]

+ c
r

[

Z(r)
(

ln v
Bc

)

− r
ψ(r)

W (r)
(

ln v
Bc

)]

Conclusion

Our method is much easier than the traditional methods (Wiener-Hopf factorization –
see for exemple [2, 3, 16], Monte-Carlo method as in [21] or integro-differential equations
as in [9, 22]). It can be used for all Lévy process when the the joint Laplace transform of
(τb, Xτb) is known, where τb = inf{t ≥ 0 : Xt ≤ b}.

6 Appendix

6.1 Optimal stopping tools

For the sake of completeness, we recall some classical results of optimal stopping theory
used to solve the problem studied in this paper (we refer to [14] and [26]).

Theorem 6.1 (Theorem 3.4 of [14])

Let V. be a strong Markov process and Y. a process of class D of the form t 7→ e−rtf(Vt)
where f is a measurable function. Let J be its Snell envelope (i.e. the smallest su-
permartingale larger than Y ) : Jt = esssupτ∈∆,τ≥tE[Yτ | Ft]. Then J. has the form
t 7→ Jt = e−rts(Vt) where the function s is called ”r-reduite” of f .
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Theorem 6.2 (Optimality criteria – Remark 3.5 of [14])

Let Y. be a strong Markov process and J its Snell envelope. A stopping time τ ∗ is
optimal if and only if :

- Yτ∗ = Jτ∗,

- J.∧τ∗ is a martingale.

Theorem 6.3 (Theorem 3.3 page 127 of [26])

Let V. be a strong Markov process and Y. a process of the form t 7→ f(Vt) where f is a
measurable function. Let J be the Snell envelope of Y .

For any ε ≥ 0, let τε = inf{t ≥ 0 : Jt ≤ Yt+ε}. If Yt satisfies the following conditions
: P(limt↓0Yt = Y0) = 1, E[supt≥0max(Yt, 0)] <∞, E[supt≥0 −min(Yt, 0)] <∞, then

1. For any ε > 0, the times τε are ε-optimal stopping times.

2. If the function f is upper semicontinuous, i.e. limy→xf(y) ≤ f(x), then τ0 is an
optimal stopping time.

3. If there exists an optimal time τ ∈ ∆, then P(τ0 ≤ τ) = 1 and τ0 ∈ ∆ is optimal.

Remark 6.4 i) Under the hypothesis of Theorem 6.3, if the function f is u.s.c., then
using 3., τ0 is the smallest optimal stopping time.
ii) Theorem 6.3 is also checked when Y is a process of the form t 7→ e−rtf̄(Vt) where f̄ is
a measurable function. Indeed, since Xt = (Vt, t), t ≥ 0 is a strong Markov process it is
enough to consider f(Xt) = e−rtf̄(Vt).

Lemma 6.5 (Lemma 3.8. page 123 of [26])

Let Y be a strong Markov process and J its Snell envelope. For any ε ≥ 0, let
τε = inf{t ≥ 0 : Jt ≤ Yt + ε}. If the process Y satisfies the following conditions
P(limt↓0Yt = Y0) = 1 and E[supt≥0max(Yt, 0)] <∞, then for any ε > 0, P (τε <∞) = 1.

Theorem 6.6 (Theorem 25 page 92 of [8])

A positive right continuous supermartingale X is of class D if and only if

limn→∞E (XRn1Rn<∞) = 0

where Rn = inf{t ≥ 0 : Xt ≥ n}.

28



6.2 Useful result

Next, we present a useful result for the calculation of the optimal strategy in the case
of a particular mixed diffusion-jump process. The following proposition starts from [15]
and [7]. In [15] and [7], the authors calculate the Laplace transform of a first passage
time of the form τ b = inf{t ≥ 0 : Xt ≥ b} where X is a mixed diffusion-jump process
and the jump size is a random variable with a double exponential distribution. They also
calculate the joint Laplace transform of (τ b, Xτb) and give the calculation algorithm in
the case of a first passage time of the form τb = inf{t ≥ 0 : Xt ≤ b}.

Throughout this section (Wt, t ≥ 0) is a standard Brownian motion, (Nt, t ≥ 0) a
Poisson process with constant positive intensity a, (Yi, i ∈ N) is a sequence of independent
and identically distributed random variables with a double exponential distribution, i.e.
the common density of Y is given by

fY (y) = pη1e
−η1y1y>0 + qη2e

η2y1y<0

where p + q = 1, p, q > 0, η1 > 1 and η2 > 0.

Proposition 6.7 Let τ be a the first passage time of the form

τ = inf{t ≥ 0 : Xt ≤ b}

where m ∈ R, σ > 0, b < 0 and Xt = mt + σWt +
∑Nt

i=1 Yi, t ≥ 0. For any r ≥ 0 :

E[e−rτ |X0 = 0] =
ψ2(η2 + ψ3)

(ψ2 − ψ3)η2
e−bψ3 − ψ3(η2 + ψ2)

(ψ2 − ψ3)η2
e−bψ2 , (15)

E[e−rτ+Xτ1τ<∞|X0 = 0] = eb
[

(η2 + ψ3)(ψ2 − 1)

(ψ2 − ψ3)(η2 + 1)
e−bψ3 +

(η2 + ψ2)(1 − ψ3)

(ψ2 − ψ3)(η2 + 1)
e−bψ2

]

, (16)

where ψ2, ψ3 are the negative roots of the equation

mψ +
σ2

2
ψ2 + a[

η1p

η1 − ψ
+

η2q

η2 + ψ
− 1] = r, (17)

−∞ < ψ3 < −η2 < ψ2 < 0.

Proof

Using Theorem 3.1 of [15], the Laplace transform of the following stopping time
τ b = inf{t ≥ 0 : mt + σWt +

∑Nt
i=1 Yi ≥ b} where b > 0, is :

E[e−rτ
b|X0 = 0] =

ψ0(η1 − ψ1)

(ψ0 − ψ1)η1

e−bψ1 +
ψ1(−η1 + ψ0)

(ψ0 − ψ1)η1

e−bψ0
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where 0 < ψ1 < η1 < ψ0 <∞ are the positive roots of the equation

mψ +
σ2

2
ψ2 + a[

η1p

η1 − ψ
+

η2q

η2 + ψ
− 1] = r.

By Corollary 3.3 of [15], for any β < η1,

E[e−rτ
b+βX

τb1τb<∞|X0 = 0] = eβb[
(η1 − ψ1)(ψ0 − β)

(ψ0 − ψ1)(η1 − β)
e−bψ1 +

(ψ0 − η1)(ψ1 − β)

(ψ0 − ψ1)(η1 − β)
e−bψ0 ].

(18)

The result follows from Remark 4.2 [15]. Indeed, according to Remark 4.2 of [15] or
[7], to make the same calculation as above for a stopping time of the form
τ = inf{t ≥ 0 : mt+σWt+

∑Nt
i=1 Yi ≤ b} where b < 0, we only need to make the following

changes : p 7→ q, q 7→ p, ψ1 7→ −ψ2, ψ0 7→ −ψ3, η1 7→ η2, η2 7→ η1, b 7→ −b, β 7→ −β
where ψ2 and ψ3 are the negative roots of the equation (17). 2

Remark 6.8 Even if p = 1 (and thus q = 0), the relation (18) is true. But, since p = 1,
the equation (17) has only one negative root and in this case (15) and (16) are not true.

References
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gales”, chapitres V à VIII, Hermann, Paris, 1980.

[9] D. DUFFIE, D. LANDO, ”Term structure of credit spreads with incomplete account-
ing information”, Econometrica, Vol. 69, 2001, pp. 633-664.

[10] D. J. EMERY, ”Exit problem for a spectrally positive process”, Adv. Appl. Prob. 5,
1973, pp. 498-520.

[11] B. HILBERINK, L.C.G. ROGERS, ”Optimal capital structure and endogenous de-
fault”, Finance and Stochastics, 2002, pp. 237-263.

[12] I. KARATZAS, S.E. SHREVE, ”Brownian Motion and Stochastic Calculus”, Second
Edition, Springer-Verlag, New-York, 1991.

[13] I. KARATZAS, S.E. SHREVE, ”Methods of Mathematical Finance”, Springer, 1998.

[14] N. EL KAROUI, J.-P. LEPELTIER, A.MILLET, ”A probabilistic approach of the
reduite”, Probab. Math. Statist. 13, no 1, 1992, pp. 97-121.

[15] S.G. KOU, HUI WANG, ”First passage times of a jump diffusion process”, Adv.
Appl. Prob. 35, 2003, pp. 504-531.

[16] S.G. KOU, HUI WANG, ”Option pricing under a double exponential jump diffusion
model”, Management Science, 2004, pp. 1178-1192.

[17] A. E. KYPRIANOU, ”Introductory Lectures on Fluctuations of Lévy Processes with
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