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This paper studies an optimal stopping problem for Lévy processes. We give a justification of the form of the Snell envelope using standard results of optimal stopping. We also justify the convexity of the value function, and without a priori restriction to a particular class of stopping times, we deduce that the smallest optimal stopping time is necessarily a hitting time. We propose a method which allows to obtain the optimal threshold. Moreover this method allows to avoid long calculations of the integro-differential operator used in the usual proofs.

Introduction

In this paper we study an optimal stopping problem for jump processes and its application in Finance. We choose to solve a particular optimal stopping problem for Lévy processes. Without a priori restriction to a particular class of stopping times like in [START_REF] Chen | Credit spreads, optimal capital structure, and implied volatility with endogenous default and jump risk[END_REF], we propose a method to find the optimal stopping time form (it will be a hitting time), as well as for the calculation of the optimal threshold.

In fact we seek to control a stochastic process V of the form V = ve X where v is a real strictly positive constant and X a Lévy process. We consider the following optimal stopping problem :

esssup τ ∈∆,τ ≥t E τ t e -r(s-t) h(V s )ds | F V t , (1) 
where r > 0, F V t = σ(V s , s ≤ t), ∆ is the set of F V . -stopping times and h is an affine function. We will be brought back to find a stopping time τ * which maximizes τ → E v (A τ ) where A τ = e -rτ f (V τ ) and f an affine function. In many papers the optimal stopping time is supposed from the beginning to be a hitting time, here we show that the optimal stopping time is necessarily of the form τ b = inf {t ≥ 0 : V t ≤ b}. Following [START_REF] Shiryaev | Optimal Stopping Rules[END_REF], we also introduce a decreasing sequence of almost surely finite stopping times (τ ε , ε > 0) which converges to the optimal stopping time ; this is about the ε-optimal stopping times (i.e. E(A τ * )ε ≤ E(A τε )). We give a justification of the form of the Snell envelope of the process A using standard results of optimal stopping of [START_REF] Karoui | A probabilistic approach of the reduite[END_REF][START_REF] Shiryaev | Optimal Stopping Rules[END_REF], we argue the convexity of the function v → E(A τ * |V 0 = v) and the optimal stopping time form. The main result is given by Theorems 3.14 and 3.13 which allow to determine the optimal threshold. The method used here allows to solve the optimal stopping problem when the joint Laplace transform of (τ b , X τ b ), i.e. E[e -rτ b +aXτ b ], is known.

The optimal stopping theory is a subject which often appears in the specialized literature, having applications for example in Medicine [START_REF] Shechter | The Optimal Time to Initiate HIV Therapy under Ordered Health States[END_REF] or Finance [START_REF] Karatzas | Methods of Mathematical Finance[END_REF]. Among others, Leland [START_REF] Leland | Corporate debt value, bond convenants, and optimal capital structure[END_REF][START_REF] Leland | Agency costs, risk management, and capital structure[END_REF][START_REF] Leland | Optimal capital structure, endougenous bankruptcy, and the term strucure[END_REF], Duffie and Lando [START_REF] Duffie | Term structure of credit spreads with incomplete accounting information[END_REF] or Villeneuve [START_REF] Villeneuve | On the threshold strategies and smooth-fit principle for optimal stopping problem[END_REF] studied the optimal stopping problem for a diffusion process. Moreover, there are other authors who used mixed diffusion-jumps processes for their models. For example, Hilberink and Rogers [START_REF] Hilberink | Optimal capital structure and endogenous default[END_REF] or Kyprianou [START_REF] Kyprianou | Introductory Lectures on Fluctuations of Lévy Processes with Applications[END_REF] use a spectrally negative Lévy process and Le Courtois and Quittard-Pinon [START_REF] Courtois | The capital structure from the point of view of investitors and managers. An analysis with jump processes[END_REF] stable Lévy processes. Mixed diffusion-jump processes with double exponential jumps were studied by Chen and Kou [START_REF] Chen | Credit spreads, optimal capital structure, and implied volatility with endogenous default and jump risk[END_REF], Kou and Wang [START_REF] Kou | First passage times of a jump diffusion process[END_REF][START_REF] Kou | Option pricing under a double exponential jump diffusion model[END_REF], Dao [START_REF] Dao | Approche structurelle du risque de crédit avec des processus mixtes diffusion-sauts[END_REF]. In [START_REF] Mordecki | Optimal stopping for a diffusion with jumps[END_REF], the jumps follow an exponential law and they are either all positive or all negative. In [START_REF] Dao | Approche structurelle du risque de crédit avec des processus mixtes diffusion-sauts[END_REF], Dao studies a model where the jumps follow an uniform law. In [START_REF] Pham | Optimal Stopping, Free Boundary and American Option in a Jump Diffusion Model[END_REF], Pham uses a jump-diffusion process and the jumps are not restricted to any particular law. This paper is organized as follows : we introduce the optimal stopping problem (Section 2). The following section (Section 3) contains the main results which characterize the optimal stopping time and the optimal threshold. At the end of this paper we solve the studied optimal stopping problem in the case of some particular Lévy processes : Brownian motion, Poisson process, double exponential jump-diffusion process, a particular Lévy process with positive jumps on the one hand (Section 4), spectrally negative Lévy processes on the other hand (Section 5). We will recover Duffie and Lando's result [START_REF] Duffie | Term structure of credit spreads with incomplete accounting information[END_REF] for a Brownian motion with drift and Kou and Wang's result [START_REF] Kou | Option pricing under a double exponential jump diffusion model[END_REF] for a mixed diffusion-jump process with double exponential jumps. Section 6 contains some optimal stopping tools.

Optimal stopping problem

Let V be a stochastic process on a filtered probability space (Ω, F , (F t ) t≥0 , P). Assume that V is of the form

V = ve X
where v is a real strictly positive constant and X is a Lévy process. We sometimes use the notation V v = ve X , for v > 0.

Following Lévy-Khitchine formula (see for example [START_REF] Bertoin | Lévy Processes[END_REF] or [START_REF] Kyprianou | Introductory Lectures on Fluctuations of Lévy Processes with Applications[END_REF]), the characteristic function of X is E(e iλXt ) = e -tΨ (λ) where λ ∈ R and the function Ψ : R → C has the form

Ψ(λ) = -imλ + σ 2 2 λ 2 + R (1 -e iλx + iλx1 |x|<1 )Π(dx)
with m ∈ R, σ > 0 and Π a mesure on R * such that (1 ∧ |x| 2 )Π(dx) < ∞.

From now on, E(.|V 0 = v) and P(.|V 0 = v) are denoted E v (.) and P v (.).

Assumption 2.1 E v (V t ) < ∞ for t ≥ 0.
The condition E v (V t ) < ∞ for t ≥ 0 is equivalent to E(e Xt ) < ∞ and, using Theorem 3.6 page 76 of [START_REF] Kyprianou | Introductory Lectures on Fluctuations of Lévy Processes with Applications[END_REF], it is still equivalent to the condition |x|≥1 e x Π(dx) < ∞. Moreover E(e Xt ) is of the form E(e Xt ) = e tψ (1) and E v (V t ) = ve tψ (1) . Let F V be the right-continuous complete filtration generated by the process V ,

F V t = σ(V s , s ≤ t).
We consider the following optimal stopping problem :

S t = esssup τ ∈∆,τ ≥t E τ t e -r(s-t) (αV s -c)ds | F V t , (2) 
where r > 0, α > 0, c > 0 and ∆ is the set of F V . -stopping times.

Definition 2.2 A stopping time τ * t is said to be optimal at time t if it maximizes (2), i.e.

E τ * t t e -r(s-t) (αV s -c)ds | F V t = esssup τ ∈∆,τ ≥t E τ t e -r(s-t) (αV s -c)ds | F V t .
Remark that for every t ≥ 0, S t ≥ 0 because τ = t ∈ ∆.

The same type of problem (2) was studied by Duffie and Lando in [START_REF] Duffie | Term structure of credit spreads with incomplete accounting information[END_REF]. In [START_REF] Duffie | Term structure of credit spreads with incomplete accounting information[END_REF], X is a Brownian motion with drift. The authors solve the problem using the Hamilton-Jacobi-Bellman equations.

Assumption 2.3 r > ψ(1).

The necessity for this assumption is clearly apparent. If Assumption 2.3 were not checked, then

E v ∞ 0 e -rs (αV s -c)ds = αv ∞ 0 e -s(r-ψ(1)) ds -c
r would be infinite and τ * 0 = ∞. It implies that the process s → e -rs (αV sc) belongs to L 1 (Ω ⊗ R + , dP ⊗ ds).

Optimal stopping time

In this part we show that the problem (2) admits at least an optimal stopping time and that the smallest one is a hitting time. The proof of this result requires several lemmas. Lemma 3.1 Under Assumptions 2.1 and 2.3, for every τ ∈ ∆ the following equality is true :

E ∞ τ e -r(s-τ ) (αV s -c)ds | F V τ = αV τ r -ψ(1) - c r 1 {τ <∞} .
Proof Let s ≥ 0. The exponential form of the process V . allows the factorization V s = V τ e Xs-Xτ on the set {s > τ }.

However X is a Lévy process, therefore X s -X τ is independent of F V τ and equal in distribution with X s-τ conditionally to {s > τ }. Thus,

E ∞ τ e -r(s-τ ) (αV s -c)ds | F V τ = 1 {τ <∞} e rτ αV τ E ∞ τ e -rs e Xs-Xτ ds | F V τ - e -τ r c r ,
from which the result follows :

E ∞ τ e -r(s-τ ) (αV s -c)ds | F V τ = αV τ r -ψ(1) - c r 1 {τ <∞} . 2 
Using Lemma 3.1, S t can be rewritten as

S t = αV t r -ψ(1) - c r + e rt esssup τ ∈∆,τ ≥t E e -rτ -αV τ r -ψ(1) + c r 1 τ <∞ | F V t (3) 
for each t ≥ 0.

We have to solve the following optimal stopping problem :

J t = esssup τ ∈∆,τ ≥t E e -rτ -αV τ r -ψ(1) + c r 1 τ <∞ | F V t . (4) 
We introduce the process Y . defined by :

Notation 3.2 Y : t → Y t = e -rt -αVt r-ψ(1) + c r .
Lemma 3.3 Under Assumptions 2.1 and 2.3, the process Y . converges in L 1 and almost surely and its limit is

Y ∞ = 0. Proof Since E v (| Y t |) ≤ αv r-ψ(1)
e -(r-ψ(1))t + ce -rt r , then Y t -→ L 1 0. This process can be written in the form

Y t = -e -(r-ψ(1))t M t + N t , t ≥ 0
where M defined by M t = e -ψ(1)t αVt r-ψ(1) , t ≥ 0 is a positive martingale and N defined by N t = ce -rt r , t ≥ 0 is a continuous decreasing bounded positive function. Consequently, the process Y . is the difference between a continuous deterministic function which goes to 0 and a positive supermartingale (thus which converges almost surely). Then, the process Y . converges almost surely when t goes to ∞. Moreover the limit of Y in L 1 is equal to 0, therefore Y ∞ = 0 almost surely.
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We thus look for an optimal stopping time among almost surely finite stopping times. The random variable Y ∞ being null almost surely, we can remove the indicator 1 τ <∞ in (4).

Remark 3.4

We imposed c > 0 to avoid the case c = 0. Let us notice that if c = 0, we have to calculate essential supremum of a negative quantity :

esssup τ ∈∆,τ ≥t E e -rτ -αV τ r -ψ(1) | F V t .
In this case for each t ≥ 0, the optimal stopping time is τ * t = ∞, J t = 0 and the optimal value is S t = αVt r-ψ [START_REF] Bertoin | Lévy Processes[END_REF] . In all the particular cases which we will study, the optimal stopping time goes to infinity when c goes to 0.

We suppose that the process Y . checks the following assumption : Assumption 3.5 The process Y . is of class D (i.e. the set of random variables Y τ , τ ∈ ∆ is uniformly integrable).

Using Theorem 6.6 of Section 6.1, we prove easily the following result : Lemma 3.6 Under Assumptions 2.1 and 2.3, a sufficient condition for Assumption 3.5 is

lim n→∞ E e -rRn+X Rn 1 Rn<∞ |X 0 = 0 = 0 ( 5 
)
where

R n = inf {t ≥ 0 : e -rt+Xt ≥ n}.
This is the condition we will check in all the examples of Sections 4 and 5.

The process (t → Y t , t ≥ 0) being of class D, we can apply the results of optimal stopping (see Section 6.1). According to Theorem 6.1, the Snell envelope J of Y is of the form (e -rt s(V t )) t≥0 (with

J ∞ = 0 because Y ∞ = 0). We denote f (v) = -αv r-ψ(1) + c r ; Definition (3) gives S t = -f (V t ) + e -rt J t = -f (V t ) + s(V t ), t ≥ 0. (6) 
Thus the process (S t ) t≥0 is of the form (w(V t )) t≥0 where w is a positive Borelian function. Since σ > 0, the support of V t is R * + (as a consequence of Theorem 24.10 i) page 152 of [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF]), so for t = 0 Definition (6) yields S 0 = -f (v) + s(v) and the function w coincides with the function v → -f (v) + s(v).

The function s is a (decreasing) convex function because it is the sup of (decreasing) affine functions :

s(v) = sup τ ≥0 E v e -rτ -αV τ r -ψ(1) + c r = sup τ ≥0 E 1 e -rτ -αvV 1 τ r -ψ(1) + c r .
Remark 3.7 The function s being convex, it is thus continuous.

Remark that s is a positive function because

s(v) ≥ sup t≥0 E v e -rt -αVt r-ψ(1) + c r ≥ sup t≥0 E v e -rt -αVt r-ψ(1) = sup t≥0 -αve -(r-ψ(1))t r-ψ(1)
= 0.

Since Y t -→ p.s. 0, we have the following result which is already shown in [START_REF] Villeneuve | On the threshold strategies and smooth-fit principle for optimal stopping problem[END_REF] where the process is not a Lévy, but a diffusion process. In [START_REF] Villeneuve | On the threshold strategies and smooth-fit principle for optimal stopping problem[END_REF], the author uses the process trajectories continuity to show his result. Since our process is càdlàg, we have to remake the proof.

Lemma 3.8 For v > 0, let s(v) = sup τ ≥0 E v e -rτ -αV τ r -ψ(1) + c r and s + (v) = sup τ ≥0 E v e -rτ -αV τ r -ψ(1) + c r + .
If σ > 0, then under Assumptions 2.1, 2.3 and 3.5, s + (v) > 0 and s(v) = s + (v) for every v > 0.

Proof

We show that if there exists v 0 > 0 such that s(v 0 ) < s + (v 0 ), then there exists v 1 > 0 such that s + (v 1 ) = 0. We prove that this last relation can not be satisfied.

By construction, for each v > 0, s(v) ≤ s + (v). Let us suppose that there exists v 0 > 0 such that s(v 0 ) < s + (v 0 ). The process V . is a right continuous one, the process

Y + : t → Y + t = e -rt -αVt r-ψ(1) + c r +
takes its values in [0, c r ], then the assumptions of Theorem 6.3 of Section 6.1 are checked for Y + . We define the function f

+ (v) = -αv r-ψ(1) + c r +
; the stopping time

τ + = inf {u ≥ 0 : f + (V v 0 u ) = s + (V v 0 u )}
is the smallest optimal stopping time of the problem

s + (v 0 ) = sup τ ≥0 E v 0 e -rτ -αV τ r -ψ(1) + c r + .
Since Y converges almost surely to 0, then Y + converges almost surely to 0 and :

s + (v 0 ) = E v 0 e -rτ + -αV τ + r -ψ(1) + c r + = E v 0 e -rτ + -αV τ + r -ψ(1) + c r + 1 τ + <∞ .
Using the definition of s and s + :

E v 0 e -rτ + f (V τ + ) ≤ s(v 0 ) < s + (v 0 ) = E v 0 e -rτ + f + (V τ + )
and consequently

E v 0 e -rτ + (f (V τ + ) -f + (V τ + )) < 0, P v 0 ({ω : f (V τ + ) < 0}) > 0 and P v 0 ({ω : s + (V τ + ) = 0}) > 0.
Thus there exists v 1 such that s + (v 1 ) = 0. Then for any stopping time τ , P v 1 -almost surely e -rτ f + (V τ ) = 0 and in particular for every t ∈ R + , f + (V t ) = 0. This involves that

P v 1 -almost surely V t ≥ c(r-ψ(1)) αr which is a contradiction because the support of V t is R * + when σ > 0. So s + (v) > 0 for every v ∈ R * + and s(v) = s + (v). 2 
Remark 3.9 We have the equality s(v) = s + (v) > 0 for every v > 0.

Proposition 3.10 If σ > 0, then under Assumptions 2.1, 2.3 and 3.5, there exists at least an optimal stopping time for the problem (4).

For any c > 0 there exists b c > 0 such that the smallest optimal stopping time has the following form

τ bc = inf {t ≥ 0 : V t ≤ b c }.
Proof Using Lemma 3.8, the problem (4) can be written as sup τ ≥0 E(Y + τ ). The assumptions of Theorem 6.3 of Section 6.1 are checked and the stopping time

τ * = inf {u ≥ 0 : f + (V u ) = s + (V u )}
is the smallest optimal stopping time. However s(v) = s + (v) > 0 for all v > 0, so

τ * = inf {u ≥ 0 : f (V u ) = s(V u )} is the smallest optimal stopping time. The function s is upper bounded by c r because Y + . is upper bounded by c r and lim v↓0 s(v) = lim v↓0 f (v) = c r . Since s is convex and f affine, then inf {v > 0 : f (v) < s(v)} is equal to sup{v > 0 : f (v) = s(v)}, and we denote it b c . Indeed, let b ′ c = sup{v : f (v) = s(v)} and b c = inf {v : f (v) < s(v)}. Since lim v↓0 s(v) = lim v↓0 f (v), then b ′ c exists and b ′ c ≥ 0. If b c = 0, then b ′ c = 0. If b c > 0, then for every v < b c , f (v) = s(v) ; in particular f (b c -1 n ) = s(b c -1 n ).
When n goes to infinity, since s and f are continuous, then f

(b c ) = s(b c ), so b c ≤ b ′ c . Let us suppose that b c < b ′ c , thus there exists v, b c < v < b ′ c such that f (v) < s(v). However s is convex : s(v) -s(b c ) v -b c ≤ s(b ′ c ) -s(v) b ′ c -v . Since, by continuity, f (b ′ c ) = s(b ′ c ), then s(v) -f (b c ) v -b c ≤ f (b ′ c ) -s(v) b ′ c -v Since s(v) > f (v), then f (v) -f (b c ) v -b c < s(v) -f (b c ) v -b c ≤ f (b ′ c ) -s(v) b ′ c -v < f (b ′ c ) -f (v) b ′ c -v , which is a contradiction because, since f is affine, then f (v)-f (bc ) v-bc = f (b ′ c )-f (v) b ′ c -v = -α r-ψ(1) . Consequently b c = b ′ c .
This means that the smallest optimal stopping time τ * is also the first entrance time in ]0, b c ].
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The smallest optimal stopping time of (4) depends on c and from now on we use the notation τ * (c). As a consequence of Theorem 6.2 of Section 6.1, we have that

(t → e -r(t∧τ * (c)) s(V t∧τ * (c) ), t ≥ 0) is a martingale and Y τ * (c) = e -rτ * (c) s(V τ * (c) ).
We introduce an auxiliary function :

Definition 3.11 Let g : R * + ×]0, (r-ψ(1))c rα [→ R * + be the function defined by g(v, b) = E v e -rτ b -αV τ b r -ψ(1) + c r
where

τ b = inf {t ≥ 0 : V t ≤ b}. If b ∈ R + , then g is not necessarily positive. The condition b ∈]0, (r-ψ(1))c
rα [ implies the positivity of g. Remark 3.12 Under the assumptions of Proposition 3.10, there exists B c such that g(., B c ) = s(.).

Remark that we can explicit g as a function of Laplace transforms

L(x) = E e -rτx |X 0 = 0 , G(x) = E e -rτx+Xτ x |X 0 = 0
where τx = inf {t ≥ 0 : X t ≤ x}. Indeed, the function g can be written as

g(v, b) = -αv r -ψ(1) G ln b v + c r L ln b v .
Now, the aim is to calculate, when that is possible, the value of the optimal threshold B c as a function of α, c, r, ψ(1) and the functions L and G.

Remark that L(x) = G(x) = 1 for x ≥ 0 and 0 ≤ G(x) ≤ L(x) ≤ 1. Moreover these functions are increasing. Indeed for every x ≤ y < 0, τy ≤ τx , thus L is an increasing function. Moreover

G(y) = E e -rτy+Xτ y 1 Xτ y ≤x |X 0 = 0 + E e -rτy+Xτ y 1 x<Xτ y ≤y |X 0 = 0 .
On {X τy ≤ x}, τy = τx P(.|X 0 = 0)-almost surely and X τy = X τx . On {x < X τy ≤ y}, -rτ y + X τy ≥ -rτ x + x ≥ -rτ x + X τx and the result follows G(y) ≥ G(x).

When G is discontinuous at x = 0, B c is easy to obtain. Theorem 3.13 Let σ > 0. Under Assumptions 2.1, 2.3 and 3.5, we suppose that the function G is discontinuous at x = 0. Then the smallest optimal stopping time is

τ * (c) = inf {t ≥ 0 : V t ≤ B c }, where B c = c(r-ψ(1)) rα lim x↑0 1-L(x) 1-G(x) . Proof Let b ∈]0, (r-ψ(1))c rα [. The function g has the form g(v, b) = -αv r-ψ(1) + c r if v ≤ b -αv r-ψ(1) G ln b v + c r L ln b v if v > b.
If the function g(., b) is continuous at b, then b is solution of

- αb r -ψ(1) + c r = -αb r -ψ(1) G(0 -) + c r L(0 -). (7) 
However, G is discontinuous at x = 0, so G(0 -) = 1 and the equation ( 7) has only one solution :

b * = c(r -ψ(1)) rα 1 -L(0 -) 1 -G(0 -) = c(r -ψ(1)) rα lim x↑0 1 -L(x) 1 -G(x) .
The function s has the form g(., B c ) = s(.) and is convex, thus it is continuous, in particular it is continuous at B c . We deduce that B c = b * . 2

When G is continuous at x = 0, B c is more technical to obtain, but it has the same form.

Theorem 3.14 Let σ > 0. Under Assumptions 2.1, 2.3 and 3.5, we suppose that the function G is continuous at x = 0.

1. If G has left derivative at x = 0 (say G ′ (0 -)), then L has left derivative at x = 0 (say L ′ (0 -)). 2. If moreover G ′ (0 -) = 0, then B c ∈ [ b, (r-ψ(1))c rα [ where b = (r-ψ(1))c rα lim x↑0 1-L(x) 1-G(x) .
3. If moreover g(., b) is strictly convex on ] b, ∞[, then the smaller optimal stopping time is

τ * (c) = inf {t ≥ 0 : V t ≤ B c }, where B c = b.

Proof

(1) By Remark 3.12, there exists B c such that g(., B c ) = s(.). The function s is convex, therefore the right and left derivatives exist everywhere and

s ′ (v -) ≤ s ′ (v + ) for all v ∈ R * + , (8) 
where s ′ (v -) and s ′ (v + ) are the left and right derivatives of s at v. In particular, this means that

g(v, B c ) = -αv r -ψ(1) G ln B c v + c r L ln B c v = s(v)
has right and left derivatives at v = B c . Since G has right and left derivatives at x = 0, then L has also right and left derivatives at x = 0.

(2) Let us make v = B c in (8) :

-α r -ψ(1) ≤ -α r -ψ(1) + α r -ψ(1) G ′ (0 -) - c rB c L ′ (0 -).
We deduce that

B c ≥ b = (r-ψ(1))c rα L ′ (0 -) G ′ (0 -) = (r-ψ(1))c rα lim x↑0 1-L(x) 1-G(x) . (3) If moreover g(., b) is strictly convex on ] b, ∞[, then g(v, b) > f (v) for all v > b. (9) 
Indeed, the graph of f is tangent to the graph of g(., b) in v = b.

Suppose that B c > b, then

f (B c ) = s(B c ) = g(B c , B c ) ≥ g(B c , b)
which contradicts [START_REF] Duffie | Term structure of credit spreads with incomplete accounting information[END_REF]. 2

We stress the following consequence of Theorem 3.14.

Remark 3.15 If G ′ (0 -) exists, then L ′ (0 -) exists.
Proposition 3.16 For any ε > 0, let

τ ε (c) = inf {t ≥ 0 : e -rt s(V t ) ≤ e -rt f (V t ) + ε}.
If σ > 0, then under Assumptions 2.1, 2.3 and 3.5,

P(τ ε (c) < ∞) = 1 and lim ε→0 τ ε (c) = τ * (c).
Proof Since E[sup t≥0 max(e -rt f (V t ), 0)] ≤ c r , then using Lemma 6.5 of Section 6.1,

P(τ ε (c) < ∞) = 1.
The sequence (τ ε (c), ε ≥ 0) is a decreasing sequence of stopping times, hence the limit τ 0 = lim ε→0 τ ε (c) exists and using Theorem 6.3 of Section 6, it is equal to τ 0 = τ * (c). 2

Application to Finance

This type of optimal stopping problem can be applied in Finance : the process V describes the assets value of a given firm. The rate r describes the discount current rate and

ψ(1) = 1 t lnE Vt V 0
the expected asset growth rate. Suppose that the firm generates cash flows at the rate αV t at any time t. The firm issues bonds and pays coupons indefinitely (meaning that c is a speed of payement). The expected present value of the cash flows generated by the firm until the liquidation time τ is

E v τ 0 e -rt (αV s -c)ds .
At a fixed time t, the equity owners look for an optimal liquidation time : they want to maximize the expected present value of the cash flows generated by the firm until the liquidation time τ . This one corresponds to the solution of the optimal stopping problem (2).

Examples

The examples presented in this section are some models where E v e -rτ b +aXτ b is known for all b. Next we consider some particular Lévy processes, we check that the assumptions of Theorem 3.14 or Theorem 3.13 are satisfied and we solve the problem (2) in each case. We start with a continuous Lévy process (Brownian motion), then we continue with a double exponential jump-diffusion process, a particular spectrally positive process and we finish with the Poisson process.

Brownian motion

We find Duffie and Lando's result, the optimal stopping problem (2) being already studied in [START_REF] Duffie | Term structure of credit spreads with incomplete accounting information[END_REF] for a Brownian motion with drift. The parameters (m, σ, δ, (θ -1)C) of Duffie and Lando's model correspond here to (0, 1, α, c). Contrary to their method, our method allows to avoid long calculations of the integro-differential operator.

Let X = W where (W t , t ≥ 0) is a standard Brownian motion. Then V = ve W . In this case ψ(1) = 1 2 and Assumption 2.1 is checked. We impose (Assumption 2.3) that r > 1 2 .

Lemma 4.1 The Brownian motion checks the relation (5), i.e.

lim n→∞ E e -rRn+W Rn 1 Rn<∞ |W 0 = 0 = 0 where R n = inf {t ≥ 0 : e -rt+Wt ≥ n}. Consequently, Assumption 3.5 is satisfied.

Proof The process W is continuous, so

R n = inf {t ≥ 0 : e -rt+Wt ≥ n} = inf {t ≥ 0 : -rt + W t = ln(n)}. Thus E e -rRn+W Rn 1 Rn<∞ |W 0 = 0 = nP (R n < ∞|W 0 = 0) .
We apply a result of [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF] (page 197), and we obtain

E e -rRn+W Rn 1 Rn<∞ |W 0 = 0 = ne -2rln(n) = n 1-2r . However r > 1 2 , then lim n→∞ E e -rRn+W Rn 1 Rn<∞ |W 0 = 0 = 0. 2 
The hypothesis of Proposition 3.10 are checked and the smallest optimal stopping time has the form

τ bc = inf {t ≥ 0 : V t ≤ b c } = inf {t ≥ 0 : V t = b c } because V is a continuous process.
Using Remark 8.3 page 96 of [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF] which gives the Laplace transform of a hitting time in the case of a Brownian motion,

L(x) = e x √ 2r and G(x) = e x( √ 2r+1) , x < 0.
The function g has the form

g(v, b) =    -αv r-1 2 + c r if v ≤ b -αb r-1 2 + c r v b - √ 2r if v > b.
We notice that the function x → G(x) is continuous at x = 0. Let us check the hypothesis of Theorem 3.14 :

(1) G has left derivative at x = 0.

( 

) Moreover G ′ (0 -) = √ 2r + 1 = 0. Since L ′ (0 -) = √ 2r then b = c √ 2r(r-1 2 ) αr( √ 2r+1) . (3) Remark that the function g(., b) belongs to C 2 (] b, ∞[). Its second derivative is equal to ∂ 2 g ∂v 2 (v, b) = -α b r -1 2 + c r √ 2r( √ 2r + 1) b2 v b - √ 2r-2 = c √ 2r r b2 v b - √ 2 
B c = c √ 2r(r-1 2 ) αr( √ 2r+1) . 2.
The value function w is given by

w(v) = αv r -1 2 - c r 1 + 1 √ 2r v B c - √ 2r 
where v > B c .

Double exponential jump-diffusion process

Using Lemma 3.8, the problem (2) can be brought back to an optimal stopping problem for an American Put option with strike price c(r-ψ(1)) rα :

s(v) = sup τ ≥0 E v e -rτ -αV τ r -ψ(1) + c r + = α r -ψ(1) sup τ ≥0 E v e -rτ -V τ + c(r -ψ(1)) rα + .
We find the result of Theorem 1 of [START_REF] Kou | Option pricing under a double exponential jump diffusion model[END_REF]. In [START_REF] Kou | Option pricing under a double exponential jump diffusion model[END_REF], the authors solve an optimal stopping problem for an American Put option. They use the Wiener-Hopf factorization. But, in general explicit calculation of the Wiener-Hopf factorization is difficult. Because of the memoryless property of the exponential distribution, they can solve the problem explicitly.

Our method is much easier to use than their method, much more rapid and it can be used for any Lévy process.

In [START_REF] Pham | Optimal Stopping, Free Boundary and American Option in a Jump Diffusion Model[END_REF], Pham studies an optimal stopping problem for an American Put option with finite time horizon. His model is a jump-diffusion one and the jumps are not restricted to any particular law. He uses integro-differential equations to solve his problem.

The next model is Kou and Wang's model (we refer to [START_REF] Kou | First passage times of a jump diffusion process[END_REF][START_REF] Kou | Option pricing under a double exponential jump diffusion model[END_REF] and [START_REF] Chen | Credit spreads, optimal capital structure, and implied volatility with endogenous default and jump risk[END_REF]). Indeed, we suppose that X is a mixed diffusion-jump process and the jump size is a double exponential distributed random variable :

X t = mt + σW t + Nt i=1 Y i , t ≥ 0, (10) 
where (W t , t ≥ 0) is a standard Brownian motion, (N t , t ≥ 0) is a Poisson process with constant positive intensity a, (Y i , i ∈ N) is a sequence of independent and identically distributed random variables. The common density of Y is given by

f Y (y) = pη 1 e -η 1 y 1 y>0 + qη 2 e η 2 y 1 y<0 , y ∈ R,
where p + q = 1, p, q > 0, η 1 > 1 and η 2 > 0. Moreover we suppose that (Y i , i ∈ N), (N t , t ≥ 0) and (W t , t ≥ 0) are independent.

We treat separately the cases where q = 0 or p = 0.

The condition The demonstration of this lemma rests on Corollary 3.3 of [START_REF] Kou | First passage times of a jump diffusion process[END_REF] recalled in Section 6.2 (we refer to relation [START_REF] Leland | Corporate debt value, bond convenants, and optimal capital structure[END_REF]).

η 1 > 1 implies E(e Y ) < ∞ and E v (V t ) < ∞ for every t ≥ 0. Assumption 2.1 is checked and ψ(1) = m + σ 2 2 + aE(e Y -1). Here Assumption 2.3 is r > m + σ 2 2 + aE(e Y -1) where E(e Y -1) = η 1 p η 1 -1 + η 2 q η 2 +1 -1.
Proof Remark that R n = inf {t ≥ 0 : (-r + m)t + σW t + Nt i=1 Y i ≥ ln(n)}, n ∈ N * .
We apply (18) of Section 6.2 to r = 0, β = 1, b = ln(n) and X t = (-r + m)t + σW t + Nt i=1 Y i (in fact we replace the drift m by -r + m) :

E e -rRn+X Rn 1 Rn<∞ |X 0 = 0 = n 1-ψ 1 (η 1 -ψ 1 )(ψ 0 -1) (ψ 0 -ψ 1 )(η 1 -1) + n 1-ψ 0 (ψ 0 -η 1 )(ψ 1 -1) (ψ 0 -ψ 1 )(η 1 -1) (11) 
where 0 < ψ 1 < η 1 < ψ 0 < ∞ are the positive roots of equation f (ψ) = 0 with

f (ψ) = (-r + m)ψ + σ 2 2 ψ 2 + a η 1 p η 1 -ψ + η 2 q η 2 + ψ -1 .
The equation f (ψ) = 0 has exactly four roots (see Lemma 2.1 of [START_REF] Kou | First passage times of a jump diffusion process[END_REF]), and the two positive solutions are both strictly greater than 1. Indeed,

ψ -∞ -η 2 0 1 η 1 ∞ f (ψ) ∞ -∞ ∞ 0 f (1) ∞ -∞ ∞ where f (1) = (-r + m) + σ 2 2 + a η 1 p η 1 -1 + η 2 q η 2 +1 -1 = -r + m + σ 2 2
+ aE(e Y -1) < 0 according to Assumption 2.3 rewritten in this case. Since 1 < ψ 1 < η 1 < ψ 0 , then by taking the limit in [START_REF] Hilberink | Optimal capital structure and endogenous default[END_REF] we obtain :

lim n→∞ E e -rRn+X Rn 1 Rn<∞ |X 0 = 0 = 0.

2

The assumptions of Proposition 3.10 are checked and the smallest optimal stopping time has the form

τ bc = inf {t ≥ 0 : V t ≤ b c }.
The results of [START_REF] Kou | First passage times of a jump diffusion process[END_REF] allow us to write for all x < 0 the form of the functions x → L(x), x → G(x) and therefore g(., b) on ]b, ∞[ :

L(x) = ψ 2 (η 2 + ψ 3 ) (ψ 2 -ψ 3 )η 2 e -xψ 3 - ψ 3 (η 2 + ψ 2 ) (ψ 2 -ψ 3 )η 2 e -xψ 2 , G(x) =e x (η 2 + ψ 3 )(ψ 2 -1) (ψ 2 -ψ 3 )(η 2 + 1) e -xψ 3 + (η 2 + ψ 2 )(1 -ψ 3 ) (ψ 2 -ψ 3 )(η 2 + 1) e -xψ 2 ,
where -∞ < ψ 3 < -η 2 < ψ 2 < 0 are the two negative roots of the equation

mψ + σ 2 2 ψ 2 + a[ η 1 p η 1 -ψ + η 2 q η 2 + ψ -1] = r.
Thus, the function g is equal to :

g(v, b) = -αv r-ψ(1) + c r if v ≤ b A b ( v b ) ψ 3 + D b ( v b ) ψ 2 if v > b,
where

A b = - αb r -ψ(1) (η 2 + ψ 3 )(ψ 2 -1) (ψ 2 -ψ 3 )(η 2 + 1) + c r ψ 2 (η 2 + ψ 3 ) (ψ 2 -ψ 3 )η 2 and D b = - αb r -ψ(1) (η 2 + ψ 2 )(1 -ψ 3 ) (ψ 2 -ψ 3 )(η 2 + 1) - c r ψ 3 (η 2 + ψ 2 ) (ψ 2 -ψ 3 )η 2 .
Remark that the function x → G(x) is continuous at x = 0. Let us check the assumptions of Theorem 3.14 :

(1) G has left derivative at x = 0.

(2) Moreover G ′ (0

-) = (1-ψ 2 )(1-ψ 3 ) (η 2 +1) = 0. Since L ′ (0 -) = ψ 2 ψ 3 η 2 then b = c(r-ψ(1))ψ 2 ψ 3 (η 2 +1) rαη 2 (1-ψ 2 )(1-ψ 3 ) . (3) Remark that g(., b) ∈ C 2 (] b, ∞[) and ∂ 2 g ∂v 2 (v, b) =A c ( 1 b ) ψ 3 ψ 3 (ψ 3 -1)v ψ 3 -2 + D c ( 1 b ) ψ 2 ψ 2 (ψ 2 -1)v ψ 2 -2 where A c = cψ 2 (η 2 + ψ 3 ) r(ψ 2 -ψ 3 )η 2 (1 -ψ 3 ) > 0, D c = - cψ 3 (η 2 + ψ 2 ) r(ψ 2 -ψ 3 )η 2 (1 -ψ 2 ) > 0.
Thus ∂ 2 g ∂v 2 (v, b) > 0 for v > b and g(., b) is strictly convex on ] b, ∞[. We can apply Theorem 3.14, B c = b and the optimal stopping time is

τ * (c) = inf {t ≥ 0 : V t ≤ B c }.
Proposition 4.4 Let X be the process introduced in (10). Then, using the notations introduced in Section 4.2 :

1. The smallest optimal stopping time is τ * (c) = inf {t ≥ 0 :

V t ≤ B c } where B c = c(r-ψ(1))ψ 2 ψ 3 (η 2 +1) rαη 2 (1-ψ 2 )(1-ψ 3 ) . 2. For v > B c , the value function w is equal to w(v) = αv r -1 2 - c r + cψ 2 (η 2 + ψ 3 ) r(ψ 2 -ψ 3 )η 2 (1 -ψ 3 ) v B c ψ 3 - cψ 3 (η 2 + ψ 2 ) r(ψ 2 -ψ 3 )η 2 (1 -ψ 2 ) v B c ψ 2 .

Exponential jump-diffusion process

To our knowledge, the following result seems to be new.

In this section, we suppose that X is a mixed diffusion-jump process and the jump size is a random variable with an exponential distribution :

X t = mt + σW t + Nt i=1 Y i , t ≥ 0, (12) 
where (W t , t ≥ 0) is a standard Brownian motion, (N t , t ≥ 0) is a Poisson process with constant positive intensity a, (Y i , i ∈ N) is a sequence of independent and identically distributed random variables with an exponential distribution, i.e. the common density of Y is given by f Y (y) = η 1 e -η 1 y 1 y>0 where η 1 > 1. Moreover we suppose that (Y i , i ∈ N), (N t , t ≥ 0) and (W t , t ≥ 0) are independent. This is a particular Lévy process with positive jumps.

As for the double exponential jump-diffusion process (here we consider q = 0, so p = 1), the condition η 1 > 1 implies E(e Y ) < ∞. Assumption 2.1 is thus checked. In this particular case, ψ(1) = m + σ 2 2 + a η 1 -1 and Assumption 2.

3 is r > m + σ 2 2 + a η 1 -1 .
Lemma 4.5 The process X introduced in ( 12) satisfies the relation (5), i.e.

lim n→∞ E e -rRn+X Rn 1 Rn<∞ |X 0 = 0 = 0 where R n = inf {t ≥ 0 : e -rt+Xt ≥ n}. Consequently, Assumption 3.5 is checked.

We use [START_REF] Leland | Corporate debt value, bond convenants, and optimal capital structure[END_REF] and Remark 6.8 of Section 6.2 to prove this result. The demonstration of this lemma is the same as that of Lemma 4.3, the only difference is that here p = 1 (thus q = 0) and 0 < ψ 1 < η 1 < ψ 0 < ∞ are the positive roots of equation f (ψ) = 0 where f (ψ) = (-r + m)ψ + σ 2 2 ψ 2 + aψ η 1 -ψ . The assumptions of Proposition 3.10 are checked and the smallest optimal stopping time has the form

τ bc = inf {t ≥ 0 : V t ≤ b c }.
The following result of [START_REF] Emery | Exit problem for a spectrally positive process[END_REF] allows us to write for every x < 0 the form of the functions x → L(x) and x → G(x) : Let X be a Lévy process with no negative jumps and characteristic function Ψ : E(e iλXt ) = e -tΨ(λ) .

1. The equation r + Ψ(λ) = 0 has at most one root in Im(λ) > 0.

2. Let x < 0 and τ = inf {t ≥ 0 : X t ≤ x}. If r + Ψ(λ) = 0 has a root denoted i λ, λ > 0, then E e -rτ +iqXτ = e x λ+ixq .

In our particular case Ψ(λ) = -imλ + σ 2 λ 2 2 -aiλ η 1 -iλ . Since the equation r + Ψ(λ) = 0 has a root in Im(λ) > 0, then we can apply Proposition 4.6 :

L(x) = e x λ and G(x) = e x( λ+1) .
The function g has the form

g(v, b) = -αv r-ψ(1) + c r if v ≤ b -αb r-ψ(1) + c r b v λ if v > b.
Remark that the function x → G(x) is continuous at x = 0. Let us check the assumptions of Theorem 3. Then B c = b. Since, X has no negative jumps, the smallest optimal stopping time is

τ * (c) = inf {t ≥ 0 : V t = B c }.
Proposition 4.7 Let X be the process introduced in (12). Then, using the notations introduced in section 4.3, we have :

1. The smallest optimal stopping time is τ

* (c) = inf {t ≥ 0 : V t ≤ B c } where B c = c λ(r-ψ(1)) αr( λ+1) . 2. For v > B c , the value function w is equal to w(v) = αv r-ψ(1) -c r + c r(1+ λ) Bc v λ .

Poisson process

In absence of a known reference, we treat the easy case X = -N where (N t , t ≥ 0) is a Poisson process with constant positive intensity a. Then V = ve -N . In this case the Laplace transform of the process X exists, Assumption 2.1 is checked and ψ(1) = a(e -1 -1). We note that here Assumption 2.3 is always checked since r > 0 > a(e -1 -1). Moreover, the process t → Y t = e -rt -αve -N t r-a(e -1 -1) + c r is bounded, thus of class D.

In this particular case, since the Gaussian component of X is null, Lemma 3.8 cannot be applied. Let us recall that this lemma allows us to rewrite the function s in a particular form (s(v) = sup τ ≥0 E v [e -rt f + (V t )]) in order to be able to apply Theorem 6.3 of Section 6 and to find the smallest optimal stopping time form. However, since the process t → Y t = e -rt f (V t ) is bounded, then Theorem 6.3 of Section 6 may be applied directly. The smallest optimal stopping time is τ * = inf {t : f (V t ) = s(V t )}. In this particular case where X = -N, the function s is defined on {v, ve -1 , ve -2 ...}, its continuous prolongation by linear interpolation is convex and the conclusion of Proposition 3.10 is true.

The smallest optimal stopping time has the form

τ bc = inf {t ≥ 0 : V t ≤ b c } = inf t ≥ 0 : N t ≥ ln v b c
and in this case it coincides with a jump time of the process N.

Let (T i , i ∈ N * ) be a sequence of random variables describing the jump times of the process N.

To find the form of the functions L and G we calculate E (e -rτx ) and E e -rτx-Nτ x where τ x = inf {t ≥ 0 : N t ≥ -x}:

L(x) = i≥0 E e -rT i 1 τx=T i = 1 x≥0 + i≥1 E e -rT i 1 i-1<-x≤i .
Since T i = S 1 + ... + S i where (S j , j ∈ N) is a sequence of independent and identically distributed random variables with exponential distribution with parameter a, then E e -rT i = E e -rS 1 i = a r+a i and

L(x) = 1 x≥0 + i≥1 a r + a i 1 i-1<-x≤i .
In the same way, we calculate

G(x) = i≥0 E e -rT i -i 1 τx=T i = 1 x≥0 + i≥1 a e(r + a) i 1 i-1<-x≤i .
The function g(., b) has the form :

g(v, b) =            -αv r-ψ(1) + c r if v ≤ b -αv r-ψ(1) a e(r+a) + c r a r+a if b < v ≤ be -αv r-ψ(1) a e(r+a) 2 + c r a r+a 2 if be < v ≤ be 2 ... Remark that G is discontinuous at x = 0. By Theorem 3.13, B c = ce(r-ψ(1))
α(er+ea-a) and the optimal stopping time is

τ * (c) = inf {t ≥ 0 : V t ≤ B c }.
Proposition 4.8 Let X = -N where (N t , t ≥ 0) is a Poisson process with constant positive intensity a. Then with the notations introduced in Section 4.4 :

1. The smallest optimal stopping time is τ

* (c) = inf {t ≥ 0 : V t ≤ B c } where B c = ce(r-ψ(1)) α(er+ea-a) . 2. For v > B c , the value function w is equal to w(v) = i≥1 αv r -ψ(1) 1 - a e(r + a) i - c r 1 - a r + a i 1 Bce i-1 <v≤Bce i .
5 Spectrally negative processes. Case of an unbounded variation process.

The case of spectrally negative processes is more complicated and requires more calculations than the other examples. We present here the example of a spectrally negative process with a non null Gaussian component.

Notations, hypothesis and tools

Throughout this section, we suppose that X is a real-valued Lévy process with no positive jumps. Some authors say that X is spectrally negative. The case when X is either a negative Lévy process with decreasing paths or a deterministic drift are excluded in this sequel. The Laplace transform of such a process exists and has the following form (see [START_REF] Bertoin | Lévy Processes[END_REF] page 187-189 for details) :

E(e λXt ) = e tψ(λ) where λ ∈ R + , ψ(λ) = mλ + σ 2 2 λ 2 + 0 -∞ (e λx -1 -λx1 x>-1 )Π(dx).
The function ψ : [0, ∞[→ R is strictly convex and lim λ→∞ ψ(λ) = ∞. We denote by Φ(0) the largest solution of the equation ψ(λ) = 0. Observe that 0 is always a solution of ψ(λ) = 0. If Φ(0) > 0, then by strict convexity, 0 and Φ(0) are the only solutions of ψ(λ) = 0. In all cases, ψ : [Φ(0), ∞[→ R + is continuous and increasing, it is a bijection and its inverse is Φ

: [0, ∞[→ [Φ(0), ∞[ : ψ • Φ(λ) = λ (λ > 0). Assumption 2.3, i.e. r > ψ(1) is equivalent to Φ(r) > 1.
In the sequel we suppose that r > ψ(1) (Assumption 2.3).

The process t → e cXt-ψ(c)t is a martingale. Define for each c ≥ 0 the change of measure : dP c dP | Ft = e cXt-ψ(c)t . Following [START_REF] Kyprianou | Introductory Lectures on Fluctuations of Lévy Processes with Applications[END_REF], we introduce a new function : Definition 5.1 For any q ≥ 0 let W (q) : R → R + be the function defined by

W (q) (x) = e Φ(q)x P Φ(q) (inf t≥0 X t ≥ 0|X 0 = x).
The following proposition presents some properties of the function W (q) shown in [START_REF] Kyprianou | Introductory Lectures on Fluctuations of Lévy Processes with Applications[END_REF] and [START_REF] Chan | Smoothness of scale functions for spectrally negative Lévy processes[END_REF] : Proposition 5.2 For any q ≥ 0, the function W (q) has the following properties :

1. W (q) (x) = 0 for x < 0 and W (q) is a strictly increasing and continuous function on [0, ∞[ whose Laplace transform satisfies ∞ 0 e -βx W (q) (x)dx = 1 ψ(β)q for β > Φ(q) (Theorem 8.1 page 214 of [START_REF] Kyprianou | Introductory Lectures on Fluctuations of Lévy Processes with Applications[END_REF]).

2. W (q) (0) = 0 if and only if X has unbounded variation (Lemma 8.6 page 223 of [START_REF] Kyprianou | Introductory Lectures on Fluctuations of Lévy Processes with Applications[END_REF]).

3. W (q) ′ (0) = 2 σ 2 if X has unbounded variation (Exercice 8.5 page 234 of [START_REF] Kyprianou | Introductory Lectures on Fluctuations of Lévy Processes with Applications[END_REF]). 4. If the process X has a non null Gaussian component, then the function W (q) belongs to C 2 (]0, ∞[) (Theorem 2 of [START_REF] Chan | Smoothness of scale functions for spectrally negative Lévy processes[END_REF]).

We introduce the following functions:

Definition 5.3 1.
For any q ≥ 0 let Z (q) : R + → R + be the function defined by

Z (q) (x) = 1 + q x 0 W (q) (y)dy.
2. For any q ∈ C and c ∈ R such that ψ(c) ≤ q, let

W (q-ψ(c)) c (x) = e -cx W (q) (x) and Z (q-ψ(c)) c (x) = 1 + (q -ψ(c)) x 0 W (q-ψ(c)) c (y)dy
for every x ≥ 0.

Remark 5.4 i) From Proposition 5.2 (2) and Definition 5.3 (2), if X has unbounded variation, then

W (q-ψ(c)) c (0) = 0.
ii) Moreover, Definition 5.3 (1) and ( 2) taken in x = 0 give

Z (q) (0) = 1, Z (q-ψ(c)) c (0) = 1.

Optimal stopping time

Let us suppose that σ > 0 ; one can express the Lévy process as the sum of a Brownian motion with drift and a pure jump process with negative jumps ; there are thus processes with unbounded variation. The case p = 0 of Section 4.2 is a particular case of a negative Lévy process with a non null Gaussian component.

At our knowledge, there does not exist any proof to show that under Assumption 2.3, the process e -rt+Xt , t ≥ 0 is of class D. The proof of this lemma rests on the following result : Lemma 5.6 Let X be a spectrally negative process and for each x > 0 let τ x be the following stopping time τ x = inf {t > 0 : X t > x}. Then 1. For any x > 0, τ x = inf {t > 0 : X t ≥ x} P(.|X 0 = 0)-almost surely (Lemma 49.6 page 373 of [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF]).

2. P (τ x < ∞|X 0 = 0) = e -Φ(0)x where Φ(0) is introduced in Section 5.1 (Corollary 3.13 page 82 of [START_REF] Kyprianou | Introductory Lectures on Fluctuations of Lévy Processes with Applications[END_REF]).

3. Since the process X has no positive jumps, then P(X τ x = x|τ x < ∞, X 0 = 0) = 1 (page 212 of [START_REF] Kyprianou | Introductory Lectures on Fluctuations of Lévy Processes with Applications[END_REF]).

Proof of Lemma 5.5

The stopping time R n can be written as R n = inf {t ≥ 0 : -rt + X t ≥ ln(n)}. Since n > 0, then P(R n = 0|X 0 = 0) = 0 and R n = inf {t > 0 : -rt + X t ≥ ln(n)}. We apply Lemma 5.6 to t → -rt + X t and x = ln(n) : R n = τ ln(n) P(.|X 0 = 0)-almost surely and

E e -rRn+X Rn 1 Rn<∞ |X 0 = 0 = ne -Φ(0)ln(n) = n 1-Φ(0) , (13) 
where Φ(0) is the largest solution of the equation ψ(λ) = 0 where

ψ(λ) = (m -r)λ + σ 2 2 λ 2 + 0 -∞ (e λx -1 -λx1 x>-1 )Π(dx).
The largest solution of the equation ψ(λ) = 0 satisfies Φ(0) > 1. Indeed, ψ is a continuous function, ψ(1) = mr + σ 2 2 + 0 -∞ (e x -1 -x1 x>-1 )Π(dx) < 0 (by Assumption 2.3) and this function goes to infinity when λ goes to infinity.

Let us take the limit in [START_REF] Karatzas | Methods of Mathematical Finance[END_REF],

lim n→∞ E e -rRn+X Rn 1 Rn<∞ |X 0 = 0 = 0.
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The assumptions of Proposition 3.10 are checked and the smallest optimal stopping time has the form

τ bc = inf {t ≥ 0 : V t ≤ b c }.
Now we seek L and G. In [START_REF] Kyprianou | Introductory Lectures on Fluctuations of Lévy Processes with Applications[END_REF], the author calculates the Laplace transform of a stopping time of the form τ - x = inf {t > 0 : X t < x} and the joint Laplace transform of (τ -

x , X τ - x ). In order to be able to apply his results, we show that if there exists a non null Gaussian component, then the hitting time τ -

x is equal to τ x = inf {t ≥ 0 : X t ≤ x}.

Proposition 5.7 Let X be a spectrally negative process with a non null Gaussian component. Then, P(.|X 0 = 0)-almost surely inf {t ≥ 0 :

X t ≤ x} = inf {t ≥ 0 : X t < x} = inf {t > 0 : X t < x} for x ≤ 0.
The proof of this proposition rests on the following result :

Proposition 5.8 Let X be a spectrally negative process and τ - y = inf {t > 0 : X t < y}.

1. (Theorem 8.1 (ii) page 214 of [START_REF] Kyprianou | Introductory Lectures on Fluctuations of Lévy Processes with Applications[END_REF]) For any x ∈ R and r ≥ 0,

E e -rτ - 0 1 τ - 0 <∞ |X 0 = x = Z (r) (x) - r Φ(r) W (r) (x).
2. It is enough to remark that τ - x = inf {t > 0 : X t < x} = inf {t > 0 : X tx < 0} to deduce that for r ≥ 0, the Laplace transform of τ -

x is equal to

E e -rτ - x 1 τ - x <∞ |X 0 = 0 = E e -rτ - 0 1 τ - 0 <∞ |X 0 = -x = Z (r) (-x)- r Φ(r) W (r) (-x). ( 14 
)
Proof of Proposition 5.7

• Case x=0

Remark that τ 0 = 0 P(.|X 0 = 0)-almost surely. We denote τ ′ x = inf {t ≥ 0 : X t < x}. We want to show that τ - 0 = 0 and τ ′ 0 = 0 P(.|X 0 = 0)-almost surely. Using Proposition 5.8 for x = 0, we obtain :

E e -rτ - 0 1 τ - 0 <∞ |X 0 = 0 = Z (r) (0) - r Φ(r) W (r) (0).
Since X has unbounded variation, then by Proposition 5.2 (2), W (r) (0) = 0 and by Remark 5.4 ii), Z (r) (0) = 1, so

E e -rτ - 0 1 τ - 0 <∞ |X 0 = 0 = 1.
However 0 ≤ e -rτ - 0 1 τ - 0 <∞ ≤ 1 implies e -rτ - 0 1 τ - 0 <∞ = 1 P(.|X 0 = 0)-almost surely, and τ - 0 = 0. The process X is smaller than a Brownian motion with drift, X t ≤ mt + σW t for every t ≥ 0, and

P(τ ′ 0 = 0|X 0 = 0) ≥ P(τ ′ m,W x = 0|X 0 = 0)
where τ ′ m,W x = inf {t ≥ 0 : mt + σW t < x}. However P(.|X 0 = 0)-almost surely we have inf {t ≥ 0 : mt + σW t < 0} = inf {t ≥ 0 : mt + σW t = 0}, so P(τ ′ m,W 0 = 0|X 0 = 0) = 1, consequently P(τ ′ 0 = 0|X 0 = 0) = 1.

• Case x¡0

Since x < 0, then P(τ ′ x = 0|X 0 = 0) = 0 and τ ′ x = τ - x P(.|X 0 = 0)-almost surely. We want to show that τ x = τ ′ x P(.|X 0 = 0)-almost surely. Since τ x ≤ τ ′ x , then τ ′ x = τ x + τ ′ x • θ τx where θ is the translation operator. Apply the strong Markov property at τ x :

P(τ x = τ ′ x |X 0 = 0) = E E(1 τ ′ x =0 |X 0 = X τx )|X 0 = 0 =E(1 Xτ x <x |X 0 = 0) + E 1 Xτ x =x P(τ ′ x = 0|X 0 = x)|X 0 = 0 . Since P(τ ′ x = 0|X 0 = x) = P(τ ′ 0 = 0|X 0 = 0) = 1, then P(τ x = τ ′ x |X 0 = 0) = P(X τx < x|X 0 = 0) + P(X τx = x|X 0 = 0) = 1,
and the conclusion holds. 2

According to Proposition 5.7, the optimal stopping time has the form τ - ln bc v P(.|X 0 = 0)-almost surely. We can use ( 14) from Proposition 5.8 and Proposition 5.9 below to find the functions L and G.

Proposition 5.9 (Exercice 8.7 de [START_REF] Kyprianou | Introductory Lectures on Fluctuations of Lévy Processes with Applications[END_REF])

Let X be a spectrally negative process and τ - x = inf {t > 0 : X t < x}. For any x < 0, c ≥ 0 and r ≥ ψ(c) ∨ 0, we have :

E e -rτ - x +c(X τ - x -x) 1 τ - x <∞ |X 0 = 0 = e -cx Z (r-ψ(c)) c (-x) - r -ψ(c) Φ(r) -c W (r-ψ(c)) c (-x) .
By Lemma 3.3, the process t → e -rt -αve X t r-ψ(1) + c r converges in L 1 and almost surely to 0. Thus, in our case we can remove the indicator function

1 τ - x <∞ . The function g(., b) has the form -αv r-ψ(1) + c r if v ≤ b ; if not -αv r-ψ(1) G ln b v + c r L ln b v , where G(x) =Z (r-ψ(1)) 1 (-x) - r -ψ(1) Φ(r) -1 W (r-ψ(1)) 1 (-x), L(x) =Z (r) (-x) - r Φ(r) W (r) (-x).
Remark that the function x → G(x) is continuous at x = 0. Indeed, using Definition 5.3 and Proposition 5.2, lim x↑0 G(x) = 1 = G(0).

In order to be able to check the assumptions of Theorem 3.14, we prove the following results : Proposition 5.10 For any x > 0, r ≥ ψ(c) ∨ 0 and c ∈ R, the following equalities are true :

1. Z ′ (r) (x) = rW (r) (x), 2. W ′ (r-ψ(c)) c (x) = -ce -cx W (r) (x) + e -cx W ′ (r) (x), 3. Z ′ (r-ψ(c)) c (x) = (r -ψ(c))W (r-ψ(c)) c (x) = (r -ψ(c))e -cx W (r) (x). Proof 1. By definition Z (r) (x) = 1 + r x 0 W (r) (y)dy, thus Z ′ (r) (x) = rW (r) (x).
2. For the second equality, it is enough to differentiate the relation

W (r-ψ(c)) c (x) = e -cx W (r) (x).
3. For the last relation, it is enough to differentiate the function

x → Z (r-ψ(c)) c (x) = 1 + (r -ψ(c)) x 0 W (r-ψ(c)) c (y)dy and Z ′ (r-ψ(c)) c (x) = (r -ψ(c))W (r-ψ(c)) c (x) = (r -ψ(c))e -cx W (r) (x). 2 
The following result is obtained by using Proposition 5.2 ((2) and ( 3)) and Proposition 5.10. Corollary 5.11 Let X be a spectrally negative process with unbounded variation. For any r ≥ ψ(c) ∨ 0 and c ∈ R :

1. Z ′ (r) (0) = 0 and Z ′ (r-ψ(c)) c (0) = 0, 2. W ′ (r-ψ(c)) c (0) = 2 σ 2 .
Proposition 5.12 (proof of Theorem 9.11 page 258 of [START_REF] Kyprianou | Introductory Lectures on Fluctuations of Lévy Processes with Applications[END_REF]) For any r ≥ 0 and x ≥ 0 :

W ′ (r) (x) -ψ(r)W (r) (x) > 0.
Now we have all the necessary tools to check the assumptions of Theorem 3.14 :

(1) G has left derivative at x = 0.

(2) Moreover 

G ′ (0 -) = -(r -ψ(1))W (r) (0) + r -ψ(1) Φ(r) -1 -W (r) (0) + W ′ (r) (0) = r -ψ(1) Φ(r) -1 W ′ (r) ( 
∂v (v, b) = -α r-ψ(1) Z (r-ψ(1)) 1 ln v b +W ′ (r) ln v b α b v(Φ(r)-1) -c vΦ(r) +W (r) ln v b -α b v + c v .
However b = c(ψ(r)-1) αψ(r) , so

α b v(Φ(r)-1) -c vΦ(r) = 0 and -α b v + c v = c vΦ(r) . ∂g ∂v (v, b) = - α r -ψ(1) Z (r-ψ(1)) 1 ln v b + c vΦ(r) W (r) ln v b .
By differentiating this relation, we obtain the second derivative of g(., b) :

∂g 2 ∂v 2 (v, b) = - α v(r -ψ(1)) Z ′ (r-ψ(1)) 1 ln v b - c v 2 Φ(r) W (r) ln v b + c v 2 Φ(r) W ′ (r) ln v b .
Using Proposition 5.10, and replacing b by its value, we obtain

∂g 2 ∂v 2 (v, b) = c v 2 Φ(r) W ′ (r) ln v b - c v 2 W (r) ln v b = c v 2 Φ(r) W ′ (r) ln v b -Φ(r)W (r) ln v b > 0 
by Proposition 5.12. Thus, the function g(., b) is strictly convex on ] b, ∞[.

We apply Theorem 3.14, B c = b and the smallest optimal stopping time is

τ * (c) = inf {t ≥ 0 : V t ≤ B c }.
Proposition 5.13 Let X be a spectrally negative process with a non null Gaussian component. Then, with the notations introduced in Section 5,

1. The smallest optimal stopping time is τ * (c) = inf {t ≥ 0 : V t ≤ B c } where B c = c(Φ(r)-1) αΦ(r) . 2. For v > B c , the value function w is equal to 

Conclusion

Our method is much easier than the traditional methods (Wiener-Hopf factorizationsee for exemple [START_REF] Boyarchenko | Barrier options and touch-and-out options under regular Lévy processes of exponential type[END_REF][START_REF] Boyarchenko | Non-Gaussian Merton-Black-Scholes Theory[END_REF][START_REF] Kou | Option pricing under a double exponential jump diffusion model[END_REF], Monte-Carlo method as in [START_REF] Longstaff | Valuing American options by simulation : a simple least-squares approach[END_REF] or integro-differential equations as in [START_REF] Duffie | Term structure of credit spreads with incomplete accounting information[END_REF][START_REF] Mordecki | Optimal stopping for a diffusion with jumps[END_REF]). It can be used for all Lévy process when the the joint Laplace transform of (τ b , X τ b ) is known, where τ b = inf {t ≥ 0 : X t ≤ b}.

Appendix

Optimal stopping tools

For the sake of completeness, we recall some classical results of optimal stopping theory used to solve the problem studied in this paper (we refer to [START_REF] Karoui | A probabilistic approach of the reduite[END_REF] and [START_REF] Shiryaev | Optimal Stopping Rules[END_REF]).

Theorem 6.1 (Theorem 3.4 of [START_REF] Karoui | A probabilistic approach of the reduite[END_REF]) Let V . be a strong Markov process and Y . a process of class D of the form t → e -rt f (V t ) where f is a measurable function. Let J be its Snell envelope (i.e. the smallest supermartingale larger than Y ) : J t = esssup τ ∈∆,τ ≥t E[Y τ | F t ]. Then J . has the form t → J t = e -rt s(V t ) where the function s is called "r-reduite" of f .

Useful result

Next, we present a useful result for the calculation of the optimal strategy in the case of a particular mixed diffusion-jump process. The following proposition starts from [START_REF] Kou | First passage times of a jump diffusion process[END_REF] and [START_REF] Dao | Approche structurelle du risque de crédit avec des processus mixtes diffusion-sauts[END_REF]. In [START_REF] Kou | First passage times of a jump diffusion process[END_REF] and [START_REF] Dao | Approche structurelle du risque de crédit avec des processus mixtes diffusion-sauts[END_REF], the authors calculate the Laplace transform of a first passage time of the form τ b = inf {t ≥ 0 : X t ≥ b} where X is a mixed diffusion-jump process and the jump size is a random variable with a double exponential distribution. They also calculate the joint Laplace transform of (τ b , X τ b ) and give the calculation algorithm in the case of a first passage time of the form τ b = inf {t ≥ 0 : X t ≤ b}.

Throughout this section (W t , t ≥ 0) is a standard Brownian motion, (N t , t ≥ 0) a Poisson process with constant positive intensity a, (Y i , i ∈ N) is a sequence of independent and identically distributed random variables with a double exponential distribution, i.e. the common density of Y is given by f Y (y) = pη 1 e -η 1 y 1 y>0 + qη 2 e η 2 y 1 y<0 where p + q = 1, p, q > 0, η 1 > 1 and η 2 > 0. where ψ 2 , ψ 3 are the negative roots of the equation

mψ + σ 2 2 ψ 2 + a[ η 1 p η 1 -ψ + η 2 q η 2 + ψ -1] = r, (17) 
-∞ < ψ 3 < -η 2 < ψ 2 < 0. 

The result follows from Remark 4.2 [START_REF] Kou | First passage times of a jump diffusion process[END_REF]. Indeed, according to Remark 4.2 of [START_REF] Kou | First passage times of a jump diffusion process[END_REF] or [START_REF] Dao | Approche structurelle du risque de crédit avec des processus mixtes diffusion-sauts[END_REF], to make the same calculation as above for a stopping time of the form τ = inf {t ≥ 0 : mt+ σW t + Nt i=1 Y i ≤ b} where b < 0, we only need to make the following changes : p → q, q → p, ψ 1 → -ψ 2 , ψ 0 → -ψ 3 , η 1 → η 2 , η 2 → η 1 , b → -b, β → -β where ψ 2 and ψ 3 are the negative roots of the equation [START_REF] Kyprianou | Introductory Lectures on Fluctuations of Lévy Processes with Applications[END_REF]. 2 Remark 6.8 Even if p = 1 (and thus q = 0), the relation ( 18) is true. But, since p = 1, the equation ( 17) has only one negative root and in this case [START_REF] Kou | First passage times of a jump diffusion process[END_REF] and ( 16) are not true.

- 2 > 1 , 1 .

 211 0 and the function g(., b) is strictly convex on ] b, ∞[. Thus B c = b and the optimal stopping time isτ * (c) = inf {t ≥ 0 : V t = B c }.Proposition 4.2 If X is a standard Brownian motion, then with the notations introduced in Section 4.The smallest optimal stopping time is τ * (c) = inf {t ≥ 0 : V t = B c } where

Lemma 4 . 3

 43 The process X introduced in (10) checks the relation (5), i.e.lim n→∞ E e -rRn+X Rn 1 Rn<∞ |X 0 = 0 = 0 where R n = inf {t ≥ 0 : e -rt+Xt ≥ n}. Consequently, Assumption 3.5 is satisfied.

Proposition 4 . 6 (

 46 Theorem 1 of[START_REF] Emery | Exit problem for a spectrally positive process[END_REF])

14 : ( 1 )c λ r b2 b v λ+2 > 0 .

 141λ+20 G has left derivative at x = 0. (2) Moreover G ′ (0 -) = λ + 1 = 0. Since L ′ (0 -) = λ then b = c λ(r-ψ(1)) αr( λ+1) . (3) Remark that g(., b) ∈ C 2 (] b, ∞[) and ∂ 2 g ∂v 2 (v, b) = Thus the function g(., b) is strictly convex on ] b, ∞[.

Lemma 5 . 5

 55 Let X be a Lévy process with a non null Gaussian component satisfying Assumption 2.3. This process checks the relation (5), i.e.lim n→∞ E e -rRn+X Rn 1 Rn<∞ |X 0 = 0 = 0 where R n = inf {t ≥ 0 : e -rt+Xt ≥ n}. Consequently, Assumption 3.5 is satisfied.

  0) > 0 by Proposition 5.12 for x = 0. Since L ′ (0 -) = r Φ(r) W ′ (r) (0), then b = c(Φ(r)-1) αΦ(r) . (3) Using Proposition 5.2 (4), g(., b) ∈ C 2 (] b, ∞[). We use Definition 5.3 (2) and Proposition 5.10 to compute the first derivative of g(., b).

  ∂g

  Z (r) ln v Bc -r ψ(r) W (r) ln v Bc

Proposition 6 . 7

 67 Let τ be a the first passage time of the formτ = inf {t ≥ 0 : X t ≤ b} where m ∈ R, σ > 0, b < 0 and X t = mt + σW t + Nt i=1 Y i , t ≥ 0. For any r ≥ 0 : E[e -rτ |X 0 = 0] = ψ 2 (η 2 + ψ 3 ) (ψ 2ψ 3 )η 2 e -bψ 3 -ψ 3 (η 2 + ψ 2 ) (ψ 2ψ 3 )η 2 e -bψ 2 ,(15)E[e -rτ +Xτ 1 τ <∞ |X 0 = 0] = e b (η 2 + ψ 3 )(ψ 2 -1) (ψ 2ψ 3 )(η 2 + 1) e -bψ 3 + (η 2 + ψ 2 )(1ψ 3 ) (ψ 2ψ 3 )(η 2 + 1) e -bψ 2 ,(16)

Proof- 1 ]

 1 Using Theorem 3.1 of[START_REF] Kou | First passage times of a jump diffusion process[END_REF], the Laplace transform of the following stopping timeτ b = inf {t ≥ 0 : mt + σW t + Nt i=1 Y i ≥ b} where b > 0, is : E[e -rτ b |X 0 = 0] = ψ 0 (η 1ψ 1 ) (ψ 0ψ 1 )η 1 e -bψ 1 + ψ 1 (-η 1 + ψ 0 ) (ψ 0ψ 1 )η 1 e -bψ 029where 0 < ψ 1 < η 1 < ψ 0 < ∞ are the positive roots of the equation = r.By Corollary 3.3 of[START_REF] Kou | First passage times of a jump diffusion process[END_REF], for any β < η 1 ,E[e -rτ b +βX τ b 1 τ b <∞ |X 0 = 0] = e βb [ (η 1ψ 1 )(ψ 0β) (ψ 0ψ 1 )(η 1β) e -bψ 1 + (ψ 0η 1 )(ψ 1β) (ψ 0ψ 1 )(η 1β) e -bψ 0 ].

Theorem 6.2 (Optimality criteria -Remark 3.5 of [START_REF] Karoui | A probabilistic approach of the reduite[END_REF]) Let Y . be a strong Markov process and J its Snell envelope. A stopping time τ * is optimal if and only if :

-Y τ * = J τ * , -J .∧τ * is a martingale. Theorem 6.3 (Theorem 3.3 page 127 of [START_REF] Shiryaev | Optimal Stopping Rules[END_REF]) Let V . be a strong Markov process and Y . a process of the form t → f (V t ) where f is a measurable function. Let J be the Snell envelope of Y .

For any ε ≥ 0, let

For any ε > 0, the times τ ε are ε-optimal stopping times.

2. If the function f is upper semicontinuous, i.e. lim y→x f (y) ≤ f (x), then τ 0 is an optimal stopping time.

3. If there exists an optimal time τ ∈ ∆, then P(τ 0 ≤ τ ) = 1 and τ 0 ∈ ∆ is optimal. Remark 6.4 i) Under the hypothesis of Theorem 6.3, if the function f is u.s.c., then using 3., τ 0 is the smallest optimal stopping time. ii) Theorem 6.3 is also checked when Y is a process of the form t → e -rt f (V t ) where f is a measurable function. Indeed, since X t = (V t , t), t ≥ 0 is a strong Markov process it is enough to consider f (X t ) = e -rt f(V t ). Lemma 6.5 (Lemma 3.8. page 123 of [START_REF] Shiryaev | Optimal Stopping Rules[END_REF])

Let Y be a strong Markov process and J its Snell envelope. For any ε ≥ 0, let τ ε = inf {t ≥ 0 : J t ≤ Y t + ε}. If the process Y satisfies the following conditions P(lim t↓0 Y t = Y 0 ) = 1 and E[sup t≥0 max(Y t , 0)] < ∞, then for any ε > 0, P (τ ε < ∞) = 1. where R n = inf {t ≥ 0 : X t ≥ n}.