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Abstract

We present flow simulations in the Steam Generator of a pressurized water nuclear
reactor using Domain Decomposition (DDM) and local zoom methods on worksta-
tion cluster.

Concerning the DDM, we use a Dirichlet-Neumann approach jointly with FEM
for averaged mixture balance equations. The algorithm, based on parallel or se-
quential iteration-by-subdomain method, works with overlapping or nonoverlapping
subdomains and with conforming or nonconforming meshing. With DDM, the com-
putational problem size is easily increased to about 100,000 mesh cells and the CPU
time is strongly reduced.

Concerning the Local Zoom computations, the used Local Defect Correction
Method (LDC), in 3D local hierarchical multigrid context, is shown. The LDC
computation results are compared with the classical full domain computation re-
sults (with high or low spatial resolution). We conclude in an improvement of the
accuracy on the full domain with a high coherence between the zoom and the full
domain.
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1 INTRODUCTION

We present an application of Domain Decomposition Methods (DDM) and
Local Zoom methods in the context of two-phase flow computation. Our ap-
plication is the simulation of French Nuclear Steam Generator (SG) risers
where liquid water is boiling, see Fig. 1. Simulations are required for evalua-
tions of SG performances and safety analysis. The difficulties are brought by
differences in geometrical and physical scales, turbulent and 3D flows through
complex internal structures, exchange between the two phase,..
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Fig. 1. French nuclear steam generator (scheme)

In industrial background, the problem is simplified by a gas-liquid mixture
approach, like in the GENEPI software, see Grandotto et al. (1989), Grandotto
and Obry (1996) and Obry et al. (1990). However, the number of data to store
for each control volume limits the spatial resolution. Our goal is to

e increase by typically a factor three the simulation possibilities (memory)
and reduce the CPU time,

e deal with non conforming grids and

e increase locally the simulation accuracy (without the computation at high
resolution of the whole domain)

by using a memory distributed parallel implementation of DDM and local
zoom methods on cluster workstations.

Roughly, this paper is divided in three parts. The first part is dedicated to
a brief presentation of the two-phase fluid flow model, the numerical aspects
and the coupling strategy. The second one deals with the description of the
used DDM approach, illustrated with typical numerical results. Finally, in the
third part, we present the Local Defect Correction (LDC) method used for the



zoom computations in a 3D local hierarchical multigrid context and we give
some numerical results concerning a zoom simulation of the U-tube bundle
region of a SG Mock-up.

2 NOMENCLATURE

G : mixture mass flux (= p7)

g : gravity (m s72)

H : mixture specific enthalpy (J kg=1)

Hy, : saturated liquid specific enthalpy (J kg™!)
L : latent heat (J kg ')

P : pressure (Pa)

Q : heat source (W m™3)

t : time (s)

@ : mixture velocity (m s~ 1)

v : relative velocity (gas minus liquid, m s~*)

x : static quality (= £=1)

B : porosity (=£2,,/2)

X : turbulent diffusion coefficient for the mixture energy equation (kg m=* s71)
ur : two-phase turbulent dynamic viscosity (kg m™! s71)

p : mixture density (kg m™3)

A : two-phase friction tensor (s71)

Q : elementary volume (m?)

Q. : mixture volume (m?)

¢ : nodal function

.+ : restricted quantity

w

TWO-PHASE FLUID MODEL

After averaging the mass, momentum and energy equations for each phase
(see Hughes and Chen (1977)), we sum them to get a mixture description of
the two-phase flow. Provided that the following assumptions hold,

e surface tension, viscous and turbulent dissipation are neglected and pressure
terms are neglected in enthalpy balance equation,

e same pressure for steam and liquid,

e eddy viscosity model,

we get :



(1) mass balance

B0+ V.(BpT) =0 (1)
(2) momentum balance
B3, + Bp(V V)V
+div(Bx(1 — z)pvk @ V%) = Bpg — BAPT
_BYP + div(Bur(V T + VD)) 2)

(3) enthalpy balance

Bpd,H + Bp(T.V)H + div(Bz(1 — z)pLv})
= BQ + div(BxrV H) (3)

We solve in H, P and ¥ variables. In order to compute p, x and L in function
of H and P, we need water thermodynamic tables. The pr, xr, A, U4 terms
are obtained by the use of a large set of semi-empirical closure relations, see
Obry et al. (1990). The most often used are the Schlichting model for pur
and the drift-flux Lellouche-Zolotar model for 4. The heat source Q in the
enthalpy equation is linked to the resolution of an energy balance equation for
the primary flow. To evaluate this term, we include other correlations about
the heat exchange coefficient and the wall temperature.

According to the hyperbolic kind of the flow equations, we use Dirichlet bound-
ary conditions at entry of the domain (mass flux and enthalpy) and Neumann
ones at exit (pressure). The others sides of the domain are impermeable walls.
Generally we consider them adiabatic and with no shear stress.

4 NUMERICAL CONSIDERATIONS

We approach the stationary flow by a transient computation. In our ap-
plications, we can neglect wave effects. So, we eliminate the time term in
Equation (1). The numerical scheme is based on unstructured finite element
method (FEM) with tri-linear hexahedral elements and a Crank-Nicholson
time scheme. The H and @ variables take values at the nodes. In contrast,
the P variable is defined by element. Concerning the equation coefficients (x,
p, U%, -..), they are generally defined by element, except 8 which is a nodal
field. The stress and thermal flux terms are integrated by parts. We perform
the lumping of the mass matrix, see Gresho et al. (1978) and use under inte-
gration for computing the element matrices. The diffusion terms are implicit
like the friction one (momentum). Generally, the advection and drift terms



are explicit. As in Gresho et al. (1984), we include a BTD correction to in-
crease stability of the central difference advection scheme. At each time step
(= outer iteration to solve non linear coupled equations), we first solve the
primary fluid energy equation (fully implicit FEM) to get the enthalpy source
term Q. Thus, we resolve the enthalpy equation and then the coupled mass-
momentum ones by the Chorin-Gresho method, see Gresho and Chan (1990).
We use a conjugated gradient method (CGM) preconditioned by the diagonal
(= inner iterations).

5 THE COUPLING STRATEGY

Based on the master/slaves concept, we have developed an application with
the CEA code-linker software called ISAS, see De Gramont and Toumi (1996),
which uses the PVM software. In this application, several GENEPI tasks are
running simultaneously, coupled at every 'nc’ time iterations by the ISAS
task (coupling period). So, we mimic a Multiple Instructions Multiple Data
(MIMD) application, with distributed memory, on a workstation network.

For each GENEPI task, the user can set up 'coupled boundaries’. The coupled
boundaries are either 2D or 3D regions. Each coupled boundary is defined by
a boundary condition type (as Dirichlet, LDC, ...), a GENEPI task name
(providing the data) and an operator name (as interpolation, restriction, ...).
After some information exchanges, here through the ISAS Master task, each
GENEPI slave task knows which data it needs and which ones it must provide
at each coupling iteration.

6 DOMAIN DECOMPOSITION METHOD

We are interested in the opportunities brought by DDM concerning the deal
of non conforming grids (increasing mesh cells number in some particular re-
gions independently of the other ones) and of large mesh cells number. In an
other way, we wish to get a parallel version of the GENEPI software without
significant changes and involving only a small number of processors, typically
those available in a local workstation network. Taking this into account and
due to the kind of equations and boundary conditions, we choose a parallel
version of the Dirichlet-Neumann method, see Quarteroni (1990) and Le Tal-
lec (1994), to solve Equations (1) to (3). We also use DDM approach for the
primary fluid energy equation.

The computational kernel is advection - diffusion problem. The corresponding



interface conditions are both stress and variables continuity. For mass flux and
specific enthalpy this writes :

{ G, =Gy, (4)
o1t = 0973, (5)
and
{ H1 = HQ, (6)
Xr1V Hy - = xr,V Hy - 715, (7)
with
7= —PT+ (V0 + VD). (8)

One can notice the use of the mass flux (nodal value) instead of velocity in
Equation (4) in order to fasten the mass flow conservation. The choice of the
boundary conditions account for local direction of characteristic lines :

e outflow < Neumann
e inflow < Dirichlet.

The time step is independent for each task. Moreover, we deal with overlapping
and nonoverlapping cases. To increase stability and convergence, we introduce
a relaxation process on the values (stresses and variables) imposed on the
coupled boundaries. For the overlapping case, we perform linear interpolations
or direct affectations of fields on the coupled boundaries. Here, one uses DDM
as local preconditioner (= Jacobi) instead of partitioned version of CGM.

7 NUMERICAL TESTS

7.1 Tests definition

In the background field of the SG simulation, we choose the CEA CLOTAIRE
mock-up, Campan and Bouchter (1988). The riser part forms an half cylinder
of 0.62 m in diameter and 9.16 m in height. The inside is filled with U shaped
tube bundle, 7.2 m in height, in which travels the hot primary flow. One
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Fig. 2. Three subdomains partition meshing

flow distribution baffle, nine tube support plates and one anti-vibrating bar
are respectively located at the bottom, straight and curved part of the tube
bundle.

7.2 Domain partition and meshing

Three partitions were tried. For all cases, the domain carving is following the
mean flow direction.

e The first one involves three non overlapping subdomains : one for the incom-
ing flow region (named bottom), one for the straight part (named middle)
and one for the tube bend plus the exit flow region (named top). In each
subdomain the meshing is the best available, so the assembly is non con-
forming, see Fig. 2. The spatial resolution of subdomains one and three are
increased, so the cubic root of the mean cell volume is of order of the pitch
of the tube bundle. The total number of cells is around 70,000.



e The two other partitions involve two subdomains (named top and bottom)
and are similar considering the number of cells (= 7,000) and the conforming
of the global grid, but they differ by the existence of overlapping.

7.8  DDM numerical features

In each case, one processor is devoted to one subdomain. So, the required total
memory is spread over the processors. For instance, 480 Mo is needed in the
case of the three subdomains partition. Like this is around half of the total
memory capacity available for all the computer’s users, running the simulation
is not an easy task. In contrast, the situation is well better when asking 240,
120 and 120 Mo for three processors. For nonoverlapping subdomains, the
relaxation coefficient for the coupled boundaries is equal to 0.4. The interface
conditions are applied each 10 outer iterations (= time steps).

7.4 Results

7.4.1 Three subdomains partition

Here, one compares the DDM results with the full domain computation ones.
Physical models and numerical parameters are identical. Asking a relative dif-
ference error of 5.10 3571, the steady state is reach in 681 time steps.

Three subdomains partition

Mass flux. coupling 10 ite. relax. = 0.4

® bottom

* middle

O top

full domain

Relative difference norm L2 (log10)
I
w
(6]

0.0 400.0 800.0
Time Iterations

Fig. 3. Convergence history of the variables for the three subdomains partition

The full domain simulation needs around 1660 time steps to verify the same
criteria, see Table 1. Consequently, the amount of saved time iterations is
about 60 % due to DDM preconditioning. The Figure 3 shows the relative



Three subdomains partition

Mass flux boundary values
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| | |
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Fig. 4. Convergence history of the boundary values (mass flux) for the three subdo-
mains partition

difference evolution of G (the quantity with the lower convergence rate) :

1
|§)n+ — f}m|/\§n\ Here n is the outer iteration number and the norm is the
L2 one.

For the coupled boundaries, one shows similar quantities on Figure 4, but 'n’
is now the coupling iteration number. For Neumann coupled boundaries, the
mass flux is replaced by the stress & (see Equation 8).

The CPU time for the slowest task (= top, tube bend region) is 12655 s on a
SUN UltraSparc 2, 200 MHz. By comparison to the overall computation, one
saves 70 % of the CPU time ! With identical time step number, the speed-
up and the parallel efficiency are around 2 and 0.65 respectively. The CPU
overhead is about 20 % per time step, that is reasonable. It must be emphasized
that this CPU overhead may penalize the computation if the coupling period
value is too much decreased. In the tube bend region, the DDM and the
full domain computations are very similar with in particular the same time
step. But in consequence of increased time steps in the upstream regions, the
coupled boundary get more rapidly right values in the DDM case, see Table 1
(At and ©).

Comparing some global quantities on the riser exit area and the variable
fields themselves in each subdomain, we can quantify the accuracy of the
DDM results. Concerning the variables, the L2 norm relative difference
(| X a— Xaam|/| X ra| where X holds for variables and fd for full domain simula-
tion) is maximal in the straight part region for the mass flux and the specific
enthalpy (about 4.1072 and 103 respectively) and in the incoming flow region
for the pressure (around 4.107*), see Table 2. Concerning the global quantities



on the exit, the relative differences for the mean static quality, the mean void
fraction and the gas flow rate are less than 1072, In respect to the mixture
flow rate, the relative difference is around 5.107%.

**Here: Table 1 **

All in all, we consider these results as satisfactory with regard to analysis
of industrial SG. In addition, it is difficult to evaluate the part of the flow
instability in theses results. For instance, the points associated with the max-
imal relative mass flux difference are located in flow mixing regions such as
downstream from the flow distribution baffle or near the boiling front.

**Here: Table 2 **

7.4.2 Two subdomains partition

The results concerning the two nonoverlapping subdomains partition lead to
similar conclusions: outer iteration saving € [30; 60] %, CPU time saving €
[50; 80] %, efficiency € [50; 65] %.

So, one concentrates now on the simulation features of the overlapping subdo-
mains case. It can be viewed as an extension of the iterative method used for
nonoverlapping cases. Our test computations of the mock-up with two subdo-
mains partition have shown that : the overlapping increases the computation
robustness and that the discrepancies in the overlapping region are weak, see
Fig. 5.

For instance and concerning the computation robustness, the overlapping case
allows us to converge even if the initial spatial distribution of the specific en-
thalpy are discontinuous at the subdomain’s interface. This is a severe test
because enthalpy variation leads to mixture velocity and pressure variations
through the density ones. With nonoverlapping subdomains partition, the
same computation needs under relaxation (interface condition application)
to converge. If not, a flow inversion occurs and the computation falls.

8 LOCAL ZOOM COMPUTATION

We want to perform the computation of a local subdomain with a fine mesh
and, in the same time, to use this high resolution information in order to
increase the accuracy of the simulation of the whole domain. To doing this, we
use local hierarchical meshes (local multigrid) and the Local Defect Correction
method.

10
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8.1 The Local Defect Correction method

8.1.1 Overview

We want to reach a steady state flow simulation by a transient computation.
Consequently, there are time terms in the balance equations. The used semi
implicit approach leads to a splitting of the equation terms into an operator
part (left-hand side, implicit) and a source part (right-hand side, explicit).
Actually, the main purpose of this time scheme is to overcome the non lin-
ear feature (relaxation process). Moreover, the source terms in the balance
equations are dependent of the unknown variables.

11



In the introduced LDC application, we do not take into account the time
terms, focusing only on the steady state equations to solve. Hence, we prefer
take into account equations with the following form : T(u) = 0.

The goal of the LDC method is to locally correct the discretized operator, says
T;, involved in the numerical resolution of a discretized equation on a given
mesh M; : T;(u;) = 0. For a fixed discretization order, the error comes here
from the space discretization (space step).

Basically, we deal with two discretizations of the operator T. A coarse one (or
standard one, 77) in the whole computation domain, says D;, and a fine one,
T5, in the zoom region (improvement in the space step), says Dy. Generally,
the coarse discretization allows an easy numerical resolution, but may intro-
duce large errors in some particular parts of the computation domain. At the
opposite, the numerical resolution is enhanced with the fine discretization, but
more expensive. Hence, we only may compute a part of the whole domain. The
strategy is to solve the local problem with the best discretization and locally
correct the standard expression of the operator in the whole domain. To do
this, an iterative process is applied.

For an detailed presentation of the LDC method, see the Hackbusch’s original
paper (Hackbusch, 1984). In the following section, we present the modified
LDC method used in the GENEPI software, including the non linear feature
as well as possible.

8.1.2 The application of the LDC method in GENEPI

Let M; be the mesh associated with the standard space discretization of the
global domain D; and M, the mesh associated with the local problem D, (finer
discretization). And let By be the boundary of M; and B, be the boundary of
Ms. The local mesh and the global mesh are embedded forming a hierarchical
grid structure. The internal boundary is given by By\B; N By. Let A be the
coarse nodes included in the zoom region of the M; mesh and A be the internal
nodes of A.

The iterative process is the following. Let x be the characteristic function of
A and u? the initial approximation of the solution on the mesh M;.

e start with f2 = 0,
e given fi,i=0, 1,2,
- do some smoothmg 1terat10ns for the global problem Tj(u}) = f{ on Mj,
- compute the internal boundary values on Ms, by interpolation for instance,
- do some smoothing iterations for the local problem T5(u}) = 0 on Mo,
- compute the restriction of u} (called ru2!) on nodes of A (in M),
- define the next right-hand side by :

12



= x T(ru2y).

We add the LDC terms to the right-hand part of the secondary flow energy
balance equation and momentum balance equation. No correction is performed
on the pressure equation of the Chorin algorithm (the LDC term is kept con-
stant during a time step). Here, u} stands for the couple (H, Q) for the energy

balance equation and for (6, P) for the momentum balance equation.

Basically this algorithm may be viewed like a classical LDC iterations loop in
which we do not solve exactly the local and global problems, but only perform
few iterations (nc) of one iterative method: the usual numerical techniques of
Genepi, namely outer iterations for the non linear terms (transient computa-
tion with a semi-implicit approach) and a Conjugated Gradient type method
for the linear system solving. It can be view in terms of classical outer itera-
tions (i.e. time iterations) with periodic updates of the defect correction values
for the global problem and of the boundary values for the local one.

We have presented the multiplicative version (sequential one) of the algorithm,
but we have also developed an additive version (parallel one). In all cases, one
slave Genepi task runs for the global domain computation and several others
for the zoom subdomains computations (one by subdomain).

Data are sent from the zoom subdomain to the global one for the purpose of
the filling of the defect correction values. Following the type of the balance
equation, the sent data are specific enthalpy, mass flux, volume thermal source
or pressure. Then, by mean of canonical restrictions (for variables) or volume
weighted restrictions (for thermal sources and pressures), we restrict these data
on all nodes of the global domain mesh included in the zoom region A (except
at the Dirichlet nodes). The local defect corrections values are computed for
the nodes of the global mesh included in the correction region, A. These nodes,
included in A, are distant of the internal boundary nodes by more than one
or two elements. The extension of this region is managed by the code users.

8.1.8 The correction term for the energy balance equation.

The correction term is 7} (ru2?) where ru2! stands for the restriction on the
global domain of the mixture specific enthalpy (noted : Hr), of the mixture
pressure (noted : Pr) and of the mixture mass flux (noted : @) initially
computed on the zoom subdomain. The counterpart of the symbolic operator
Ty (ru2?) is the finite element formulation of the following term (in case of the
drift flux hypothesis), on the mesh of the global domain :

13



/ﬁ@i[ﬁ(@.?)ﬂr + div(Bz, (1 — z,) pr Ly VR
- [R50,
+ [ aX(V') (BxaV Hr) ©)

with L, (Pr):gtent heat, z,(Hr, Pr): static quality, p,(Hr, Pr): mixture den-
sity, Uz, (Hr, Gr, Pr): relative velocity, @Q,: source term including the restricted
volume thermal source, the boundary thermal flux and, possibly, the pressure

gradie_n)t terms. If exists, this last term is a function of the restricted variables
(Hr, Gr, Pr).

Concerning the non linear feature, the weakness lies in the values of x7, com-
puted with the variables taken at the current outer iteration (i.e. time itera-

tion), and of the volume thermal source (use of the restricted volume thermal
source).

8.1.4 The correction term for the momentum balance equation.
The correction term 7Ti(ru2}), with the same previously defined restricted

variables, is the finite element formulation of the following expression (in case
of the drift flux hypothesis) :

[ aXGBGH )T + div(Br, (1 — ,)p,7} © TY)
— [ X8, 7 - BLGH — [ XV (B¢)Pr

+ [V G (ur (Vo + Vo)

+BC (10)

with the same notations than above, A,(H r,CT;“,Pr) is the total two-phase

friction tensor, W’:@/ pr and BC is the boundary stress.

The weakness concerning the non linear feature lies only in the values of uy,
computed with the current iteration variables and not with the restricted ones.

14



9 NUMERICAL TESTS

9.1 Tests definition

We choose to compute a zoom simulation of the U-tube bundle region, above
the last tube support plate, of the CEA CLOTAIRE mock-up previously pre-
sented (DDM test cases). We know the existence of fluid vortices located in
the bundle wake.

We want compare the LDC zoom results (denoted LDC) with post-processing
(or chained) Zoom computations, denoted Post. By post-processing, we mean
a computation in two independent and successive steps : first, the computation
of the global domain and, second, the computation of the zoom subdomain.
We also want compare LDC zoom results with global domain simulations at
low and high space resolutions (respectively denoted Ref0 and Refl).

130 cells

I W
e e e

520 cells

Fig. 6. Coarse and fine meshes (sections)
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9.2 LDC zoom and meshing

Concerning the global domain, we use two meshes. The first one, denoted
the global coarse mesh, is composed of 5330 cells. There are 780 hexahedral
elements in the zoom region. The second one is denoted the global fine mesh
(each cell of the coarse is split in eight), see Fig. 6. This fine mesh is made of
42640 cells.

The mesh concerning the zoom subdomain is made of 6240 cells (it is a part
of the global domain fine mesh). It is a slice of the riser with walls, incoming
and out-coming areas, see Fig. 7.

9.3 Numerical features

The physical models and the numerical parameters for the internal iterative
method (here, Preconditioned Conjugated Gradient) are identical for all the
simulations. In particular, the stationary criteria is 5.1073s~! for the relative
difference error.

The boundary conditions for the global domain computations are the usual
ones. Concerning the zoom computations, there are specific boundary condi-
tions for the exits. Due to the presence of vortices across this section, we use
either Dirichlet conditions for the specific enthalpy and the mass flux (inner
nodes of the exit surface), either Adaptive Dirichlet Neumann (ADN) ones,
see Quarteroni (1990).

For the LDC computations, the momentum and the energy balance equations
on the global domain and on the zoom subdomain are coupled. Concerning
the primary flow energy balance equation, the zoom inlet primary flow tem-
perature and the zoom outlet thermal flux are coupled with the global domain
(as in DDM). The numerical parameters for the LDC computations are : cou-
pling period (nc) = 20 outer iterations and relaxation parameter = 0.5. The
number of corrected nodes in the global computation are 750 nodes (but, we
have done computations with several numbers of corrected nodes).

9.4 Results

We perform the coupled simulations with two Genepi tasks using a bi-processors
computer (Sun Enterprise 2, model 2002, 200 MHz). The performances con-
cerning the CPU time and the memory are listed in Table 3.

16



**Here: Table 3 **

We can do some comments. The memories used in the LDC case and Chained
case are similar. They deeply differ of the memory needed in the case of Refl.
It is the same for the CPU time comparison. Moreover, with parallel com-
putations, the LDC method leads to lower CPU time. Hence, it is possible
to increase locally the accuracy of the computation (see below) without too
much increase the cost.

Concerning the CPU time spends for the coupling, the LDC iterations on the
global domain or the updates of the boundary condition on the zoom domain
cost about 10% of the total CPU time.

Fig. 8 plots the convergence history of the mass flux variable for the global
domain LDC computations and the reference computations (Ref0 and Refl).

About 25 correction steps were applied. Beyond 200 outer iterations, the cor-
rection values are stabilized. At the end of the computation, the discrete L2
norm of the energy correction is about 3.79 kW. To compare, the exchanged
power in the U-tube bundle region is about 70 kW.

Fig. 9 plots the convergence history of the zoom subdomain variables. Clearly,
the computation convergence is strongly affected by the refreshments of the
coupled boundary values. In fact, the goal of the relaxation parameter (here
0.5) is to partially damp these oscillations (a lower value not increases deeply
the damping). Some additional tests showed that the decrease of the cou-
pling period (for instance, nc = 5) leads to a better convergence history with
identical physical results. However, the CPU times are increased.

The figure Fig. 10 shows the correction fields of the LDC computation for,

(Detail)

Fig. 7. Coarse and fine meshes for the zoom area
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respectively, the energy equation and the momentum equation (cut at 5 cm
inside the mock-up). The energy correction terms are located at the frontier
of the U-tube bundle and the momentum correction terms outside the anti-
vibration bars.

We have performed sequential computations for the same test case. Results
are similar, but obviously the CPU time significantly increases.

9.5 Physical features

Concerning some global quantities, like the exchanged power, the steam mass
flow rate, ..., all computations give similar results. For instance, the exchanged
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power, in the LDC computation, is slightly overestimated (about 0.4% in
comparison with the Refl case).

In fact the improvement obtained with the LDC method is particularly in the
local variation of the variables in the global domain. On Fig. 11, we show the
enthalpy distribution along some vertical lines in the cold leg for the coarse and
fine meshes computations alone and for the LDC computation. In particular,
the iso-values of the specific enthalpy inside the correction region are closer to
the Refl results than the Ref0 ones, even if some under-estimations appear.
The enthalpy profiles computed with the LDC on zoom or global domain are
very close and both present the same variations than those observed on the
Refl results. Obviously, the better are the coarse grid results in the entry of
the zoom, the better are the zoom predictions.

We have performed computations with Adaptive Dirichlet Neumann boundary
conditions for the same test case once. Again, the results are very similar.

10 CONCLUSION

Finally, we have proved the efficiency of an algorithm based on an additive
version of the Dirichlet-Neumann method in the simulation of SG two-phase
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flows. We take advantage of parallelism and preconditioning. It works with
overlapping or nonoverlapping partition and the global meshing can be non
conforming. The tests performed in industrial context conclude to the save
of a large amount of time iteration number and CPU time. Accordingly, the
usual mesh cells number (= 30,000) can be easily increased to 100,000 on
a workstation network. This work is completed with an adapted method to
face an eventual vortex presence at subdomain interfaces, like the Adaptive
Dirichlet Neumann method (Quarteroni, 1990), and with DDM computation
of primary fluid energy balance. We must outline the interest of code-linker
like the CEA one (ISAS) to parallelize tasks using a network, without code re-
engineering. However, this choice involves limitations on parallel computation
capacities. To illustrate this point, the Amdahl’s law allows the estimation
of the code parallel part and of the maximal reachable speed-up. We found
values around 70 to 90 % and 4 to 8, respectively (depending of the problem
size). If we compare with massively parallel machine capacities, this speed-up
value is low, but is enough for the planned applications.

Moreover, the implementation is versatile enough to extend to equations cou-
pling or to local adaptive zooming methods for flow simulation around obsta-
cle. Concerning this last point, we have proved the efficiency of an additive
version of a zooming algorithm based on the LDC method in the simulation
of SG two-phase flows. The LDC computation allows the enhancement of the
software prediction in the correction region :

e the behavior of the variables is between the result of the computations with
coarse and fine mesh,

e the coherence between the zoom subdomain results and the global domain
ones is enhanced.
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The LDC computation cost (zoom and global domains) is gently higher than a
post chained computation and, obviously, very cheaper than the global domain
one with the fine mesh.

This work consists in a first attempt to bring modern numerical tools in the
context of industrial simulations of SG two-phase flows. Future improvements
are planned. In particular, we can mention the development of a version of
the Flux Interface Correction method (FIC) for the zoom computations, see
Angot et al. (1992) or Angot et al. (1993), and FAS methods for multigrid
preconditioning (Brandt, 1977).
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Table 1
Efficiency of parallel DD computation for three subdomains partition.

Domain § iterations CPU At.10?2 <
(s) (s)

Top 681 12655 0.7 2.1
Middle 622 9133 21 2.3
Bottom 550 7416 1.5 4.5

Full domain 1660 64698  0.75 1.1

< Final time/time need to flow the domain

Table 2
Accuracy of parallel DD computation for three subdomains partition.

Subdomain é) H P
(%) (%) (%)

Top 0.7 0.06 0.02
Middle 3.8 0.11 0.01
Bottom 2.7 0.08 0.04

Table 3
Efficiency of the parallel LDC zoom computation.

Simulation name { iterations CPU Memory

(s) (Mo
Ref0 493 1460 20
Refl 1079 25460 280
Ref0 + Post 618 3180 60
LDC 492 2100 76

26



