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Since a few years, fictitious domain methods have been arising for Computational Fluid Dynamics. The main idea of these methods consists in immersing the original physical domain in a geometrically bigger and simply-shaped other one called fictitious domain. As the spatial discretization is then performed in the fictitious domain, simple structured meshes can be used. The aim of this paper is to solve convection-diffusion problems with fictitious domain methods which can easily simulate free-boundary with possibly deformations of the boundary without increasing the computational cost. Two fictitious domain approaches performing either a spread interface or a thin interface are introduced. These two approaches require neither the modification of the numerical scheme near the immersed interface nor the use of Lagrange multipliers. Several ways to impose general embedded boundary conditions (Dirichlet, Robin or Neumann) are presented. The spread interface approach is computed using a finite element method as a finite volume method is used for the thin interface approach. The numerical schemes conserve the firstorder accuracy with respect to the discretization step as observed in the numerical results reported here. The spread interface approach is then combined with a local adaptive mesh refinement algorithm in order to increase the precision in the vicinity of the immersed boundary. The results obtained are full of promise, more especially as convection-diffusion equations are the core of the resolution of Navier-Stokes equations.
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I. Introduction

A. Fictitious domain approach

Let Ω be an open bounded domain in R d (d = 2, 3) with a boundary ∂ Ω sufficiently regular. We consider the resolution of a given problem ( P) in Ω with different kinds of boundary conditions (B.C.). When the shape of ∂ Ω is geometrically not simple, classical methods involving structured or unstructured boundary-fitted meshes induce a loss of efficiency and rapidity of numerical solvers in comparison with Cartesian meshes. Moreover in case of moving boundaries, the cost of the mesh generation and re-meshing can be very important. In the fictitious domain approach, 1, 2 the original domain Ω is embedded in a geometrically bigger and simply-shaped other one Ω, called fictitious domain (cf. Figure 1).

The spatial discretization is now performed in Ω, independently of the shape of the original domain Ω. The original domain and the computational one are uncoupled. Numerical methods involving structured and Cartesian meshes can be used. The advantages of these methods are well known : natural tensor formulation, easy implementation for fast solvers (based for instance on finite volume methods with Cartesian grids) and for multi-level methods, 3 good convergence properties...Consequently, the resolution of the new problem in Ω will be fast and simple.

The main issue of fictitious domain method lies in the choice of the problem (P) solved in the fictitious domain Ω and in the numerical scheme used for the resolution. These two choices have to be linked in order to handle the original boundary conditions on ∂ Ω. Indeed, the B.C. on the original boundary ∂ Ω must still be enforced such that the solution u of the extended problem (P) can match the solution ũ of the original problem ( P) in the original domain Ω. Since a few years, fictitious domain methods have arisen in different fields : computational fluid dynamics, 4 medical simulation. [START_REF] Peskin | Flow patterns around heart valves: A numerical method[END_REF][START_REF] Cortez | The blob projection method for immersed boundary problems[END_REF] Numerically, there are mainly two approaches to deal with the embedded boundary conditions on the immersed boundary:

• "Thin" interface approaches : the original boundary is approximated without being enlarged in the normal direction. The original boundary and the approximated one lie in the same R d-1 space. For example, in this group, we find truncated domains methods (e.g. Ref. • "Spread" interface approaches : the support of the approximated interface is larger than the original one. The approximated interface has one dimension more than the original one. For example, the spread interface is a ring containing the immersed interface. This kind of approach can be found in Ref. 13, 17, 18). In this work, we use our recent works on fictitious domain methods for elliptic problems [START_REF] Angot | A fictitious domain model for general embedded boundary conditions[END_REF][START_REF] Ramière | A fictitious domain approach with spread interface for solving elliptic problems with general boundary conditions[END_REF][START_REF] Angot | A model of fracture for elliptic problems with flux and solution jumps[END_REF][START_REF] Angot | A general fictitious domain method with non-conforming structured mesh[END_REF][START_REF] Ramière | On the simulation of Nuclear Power Plant Components using a fictitious domain approach[END_REF] and adapt them to solve convection-diffusion problems. These fictitious domain approaches deal with Dirichlet, Robin or Neumann B.C. on an immersed interface without requiring neither the modification of the numerical scheme near the immersed interface nor the use of Lagrange multipliers. Since the fictitious problem (P) is not a saddle-point problem, no inf-sup condition must be verified (e.g. Ref. 16). Moreover, only one discretization grid is used, a structured regular mesh over the fictitious domain. Thus, these fictitious domain approaches easily simulate free-boundary problems with possibly deformations of the boundary without increasing the computational cost. We use a boundary non-conforming mesh which conserves the first-order accuracy. A local mesh refinement can be implemented in the vicinity of the immersed interface in order to improve the ratio of the obtained precision over the resulting cost (or CPU time).

B. Presentation of the study

For sake of clarity we choose to focus on 2D problems, but the formulations can be extended to 3D problems without more difficulty. We study the resolution of a convection-diffusion problem ( P) in the original domain Ω.

Let us consider the following model problem : 

For ã ∈ (L ∞ ( Ω)) d×d , ṽ ∈ (L ∞ ( Ω)) d , b ∈ (L ∞ ( Ω)) and f ∈ L 2 ( Ω), find ũ ∈ H 1 ( Ω)
• a Dirichlet condition : ũ = u D with u D ∈ H 1/2 (∂ Ω)
• a Robin (or Fourier) condition : The tensor of diffusion ã ≡ (ã ij ) 1≤i,j≤d and the reaction coefficient b verify the classical ellipticity assumptions. We suppose that u D , α R , u R and g R are constant. The non constant case can be treated without more difficulty. The non-constant data are then replaced by their extension in ω h,Σ ∪ Ω e,h such that the trace on Σ of the extensions are equal to the original data on Σ.

-(ã .∇ũ).n = α R ũ + g R , with α R ∈ L ∞ (∂ Ω); α R ≥ 0,
In a fictitious domain approach, the original domain Ω is embedded inside a fictitious domain Ω such that Ω = Ω ∪ Σ ∪ Ω e , where Ω e is the external fictitious domain and Σ the common interface between Ω and Ω e (see Figure 1 and6(b)). This original interface Σ is called immersed interface. The fictitious domain Ω is chosen to be geometrically simple (rectangular for example). If ∂ Ω ∩ ∂Ω = ∅ (see Figure 6 The aim of this work is to introduce the fictitious problem (P) to be solved all over the fictitious domain Ω in order to get the restriction of the fictitious solution u over the original domain Ω equal (or at least similar) to the solution ũ of the original problem ( P) : u| Ω ũ. The restriction of the problem (P) over the original domain Ω is chosen to be similar to ( P). Appropriate transmissions conditions on Σ, data in the external domain Ω e and B.C. on ∂Ω have to be determined in order to handle the original embedded B.C. of ( P).

In the further sections, two fictitious domain methods to deal with embedded boundary conditions are presented. These methods are based on respectively a spread and a thin interface approach. The corresponding fictitious domain problems to solve convection-diffusion problems are introduced. The last section is dedicated to the numerical resolution. A Finite Element as well as a Finite Volume Scheme are implemented. Moreover, for the spread interface approach, an example of the possibility to combine Fictitious Domain methods and local Adaptive Mesh Refinement methods is reported. Several results illustrate the accuracy of these Fictitious Domain methods.

II. The fictitious domain method with spread interface

A. Fictitious problem with spread interface (P s )

The fictitious domain method with spread interface has been introduced by Ramière, Angot and Belliard 19 for elliptic problems. This approach is based on a "spread" approximation (see also Ref. 14) of the immersed interface Σ. The computational domain Ω is uniformly meshed with a family T h = {K} of disjointed rectangular cells K such that Ω = ∪ K∈T h K. The approximated spread interface ω h,Σ is defined as

ω h,Σ = ω h,Σ \∂ω h,Σ where ω h,Σ = K∈T h {K, K ∩ Σ = ∅} (see Figure 2). h,Σ h Ω ~Ωe,h ω Figure 2
. Discretization of the fictitious domain Ω with a spread interface approach:

Ω = Ωh ∪ ω h,Σ ∪ Ω e,h
With an original convection-diffusion problem ( P) in Ω, the problem (P s ) solved in the fictitious domain Ω has the following generic form : 0 < η being a real parameter precised later, find u h η (depending on the mesh T h ) ∈ H 1 (Ω) such that

(P s )      -div (a .∇u h η ) + div(v u h η ) + b u h η = f in Ω original B.C. of ( P) on Γ suitable B.C. for u h η on Γ e where a ∈ (L ∞ (Ω)) d 2 , v ∈ (L ∞ (Ω)) d , b ∈ (L ∞ (Ω))
, and f ∈ L 2 (Ω) such that:

a| Ωh = ã| Ωh , v| Ωh = ṽ| Ωh , b| Ωh = b| Ωh f | Ωh = f| Ωh ,
and a and b satisfy classical ellipticity assumptions in Ω.

Remark: the B.C. on Γ e must be chosen such that the problem P s is well-posed.

For each kind of boundary conditions lying on the immersed boundary Σ, different possibilities to enforce these conditions using a spread approximation of the immersed interface Σ are introduced in the next sections. No variant modifies the numerical scheme or introduces local unknowns. We expect that: 

u h η | Ωh ũ| Ωh .
= 1 η (b → +∞ at η → 0) and f = 1 η u D in ω h,Σ (resp. Ω e ). These approaches allow to impose u h η u D in ω h,Σ (resp. Ω e,h
). It's the L 2 penalty. [START_REF] Angot | Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows[END_REF] When the coefficient a is also

equal to 1 η (a = 1 η Id) in ω h,Σ (resp. Ω e,h
), we obtain the H 1 penalty. [START_REF] Angot | Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows[END_REF] Elsewhere, the coefficients of the problem (P s ) are arbitrary extensions in Ω of the original coefficients lying on Ω (see Ref. 

Embedded Robin or Neumann B.C.

We consider the transmission problem between Ω and Ω e with continuity of the solution on Σ. For ψ in

Ω denoting a, v, b or f , we define ψ = ψ in Ω ψ e in Ω e
. The addition of the two weak formulations of the two convection-diffusion subproblems defined on respectively Ω and Ω e leads to the following problem:

Find u ∈ H 1 (Ω) such that ∀ψ ∈ H 1 (Ω) Ω â.∇u.∇ψ dx - ∂Ω (â.∇u).n ψ ds - Ω (vu).∇ψdx + ∂Ω (v.n u)ψds + Ω b u ψ dx = Ω f ψ dx-< [[(â.∇u).n]] Σ δ Σ , ψ > + < [[(v.n)]] Σ u δ Σ , ψ > (1)
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where

        
n denotes the outward normal unit vector either on ∂Ω or on Σ (oriented from

Ω to Ω e ) [[(â.∇u).n]] Σ = (â.∇u).n| + Σ -(â.∇u).n| - Σ = (a e .∇u).n| Σ -(ã.∇u).n| Σ [[(v.n)]] Σ = v e .n| Σ -ṽ.n| Σ δ Σ means the Dirac delta measure supported by Σ
In the distribution sense, we obtain the following equation:

-div (â.∇u) + div(v u) + bu = f -[[(â.∇u).n]] Σ δ Σ + [[(v.n)]] Σ u δ Σ (2) 
The jump of fluxes (diffusion and convection) across Σ can be interpreted as source terms carried by Σ.

In our case, we want

-(â.∇u).n| - Σ = -(ã.∇u).n| Σ = α R u| Σ + g R We choose to impose -(â.∇u).n| + Σ = 0 by a e = η on Ω e , so that [[(â.∇u).n]] Σ = α R u| Σ + g R
Moreover, we impose v| Ωe = v e = 0 in order to let the solution free on the exterior domain Ω e . If v e = 0, as u| - Σ = u| + Σ , the resolution of the exterior problem influences the embedded Robin condition.

On Ω, then we have:

-div (â.∇u η ) + div (v u η ) + b u η = f -[α R u η + g R + (v.n) -u η ] δ Σ (3) 
However, with a Cartesian mesh on Ω, the support of Σ is not exactly defined. We introduce a characteristic parameter in order to approximate the measure δ Σ supported by Σ by mollifiers [START_REF] Brezis | Analyse fonctionnelle, Théorie et applications[END_REF] on the spread interface ω h,Σ . The term δ ω h,Σ is a discrete Dirac function on the spread interface. Here, this discrete delta function is roughly approximated by a crenel function in Ω (δ ω h,Σ = 1 in ω h,Σ and 0 elsewhere) whereas a smoothed approximation using interaction equations is performed in the I.B.M., see e.g. Ref. 5, 14.

The principle is the following:

Σ {α R u η + g R + (v.n) -u η } ds = ω h,Σ α R u h η + g R + (v.n) u h η dx ( 4 
)
where v is an extension of the velocity field ṽ in the spread interface ω h,Σ and n denotes either the outward unit vector on Σ or its extension on ω h,Σ .

Then, the coefficients of the fictitious problem (P s ) are easily set extending the coefficients of the original domain ( P) in Ωh ∪ ω h,Σ (see Table 1). Only the B.C. on Γ e ∩ ∂ω h,Σ has an effect on the solution obtained in the physical domain. These B.C. must be homogeneous Neumann B.C. in order to have an external diffusion flux equal to zero. The B.C. on the rest of Γ e can be arbitrarily chosen as long as the whole problem (P s ) in Ω is well-posed.

The parameter can be estimated by several ways (see Ref. 19, 22). If h is the discretization step, Angot [START_REF] Angot | Contribution à l'étude des transferts thermiques dans des systèmes complexes; Application aux composants électroniques[END_REF] showed that is in O(h). We present here the three approximations of introduced in Ref. 19:

• A coarse global approximation of in Equation (4) holds :

Σ ds = ω h,Σ 1 dx
(5)
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In a first approach, we suppose that is constant all over ω h,Σ .

= meas(ω h,Σ ) meas(Σ) (6) 
In the second approach, the value of is given element by element. In the equation ( 4) the integration in ω h,Σ is weighted by a coefficient τ . This coefficient represents the presence rate of the original domain in each element K crossed by the boundary Σ (K ⊂ ω h,Σ ). By construction, τ is constant on each K :

τ K = volume of Ω included in K
volume of the element K By this way, the right hand side of ( 5) is integrated only in the original domain included in ω h,Σ . We get :

K = K [τ K .meas(K)] τ K .meas(Σ) (7) 
• A local approximation of consists in calculating in each cell K ⊂ ω h,Σ :

ΣK ds = K 1 dx (8) 
with Σ K = Σ ∩ K As Σ K is not simply defined, the boundary Σ is piecewise linear approximated by a segment Σ l,K in each cell K ⊂ ω h,Σ (see Figure 3).

Σ Σ Σ K K l,K Figure 3. Linear approximation of Σ in a rectangular cell K ⊂ ω h,Σ Then, K = meas(K) meas(Σ l,K ) (9) 
Here again, the value of depends on the element K ⊂ ω h,Σ under consideration. This approach induces a local piecewise linear reconstruction of the interface in each cell K of the mesh.

For each embedded B.C. variant, Table 1 gives the parameters of interest using a spread interface approach.

Parameters in ω h,Σ

Parameters in Ω e,h

Dirichlet B.C.

Spread interface penalization

a =    Id (L 2 penalty) 1 η Id (H 1 penalty) , v = ṽ, a = Id, v = 0, b = 1 η , f = 1 η u D b = 0, f = 0 Dirichlet B.C.
Exterior penalization 

a = ã, v = ṽ, a =    Id (L 2 penalty) 1 η Id (H 1 penalty) , v = 0, b = b, f = f b = 1 η , f = 1 η u D Robin B.C. with different approximations of a = ã, v = ṽ, a = η Id, v = 0, b = b + α R + v.n , f = f - g R b = 0, f = 0

III. The fictitious domain approach with thin interface

A. Fictitious problem with thin interface (P t )

The fictitious domain method with thin interface uses a recent fracture model for elliptic problems with flux and solution jumps. [START_REF] Angot | A model of fracture for elliptic problems with flux and solution jumps[END_REF] The fictitious domain model for convection-diffusion problems introduced here handle jumps of diffusion and convection fluxes as well as jumps of solution through Σ. As in Ref 20, this model includes algebraic transmission conditions linking both normal diffusion flux -(a.∇ u).n and the solution u jumps through the immersed interface Σ. We use an uniform Cartesian mesh T h = {K} of the fictitious domain Ω where the disjointed open rectangular control volumes K are such that Ω = ∪ K∈T h K. As this Cartesian mesh T h does not generally fit the immersed interface Σ, an approximated interface Σ h lying on sides of control volumes is defined by Σ h = ∂ Ωh \ Γ. The approximated original domain Ωh can be chosen for example like Ωh = ∪ K∈T h {K, K ∩ Ω = ∅} (see figure 4). Other choices are reported in section IV. The fictitious domain Ω is chosen small in order to have a cheap computational cost. Then, Σ h ∩ ∂Ω may not be empty (see Figure 4). We note Σ i h = Σ h \∂Ω the part of Σ h strictly immersed inside the fictitious domain Ω. Let n be the outward unit normal vector on Σ i h oriented from Ωh to Ω e,h . For a function ψ ∈ H 1 ( Ωh ∪ Ω e,h ), let ψ -and ψ + be respectively the traces of ψ| Ωh and ψ| Ω e,h on each side of Σ i h . We define the arithmetic mean of traces of ψ as ψ| Σ i h = (ψ + + ψ -)/2, and the jump of traces on Σ i h oriented by n as

[[ψ]] Σ i h = (ψ + -ψ -).
The fracture model with immersed transmissions conditions on Σ i h for convectiondiffusion problems reads : Find u h η ∈ H 1 ( Ωh ∪ Ω e,h ) (depending on the mesh T h and on a parameter η precised later) such that :

(P t )                -div (a .∇u h η ) + div(v u h η ) + b u h η = f in Ω original B.C. of ( P) on Γ suitable B.C. for u h η on Γ e [[(a.∇u h η ) . n ]] Σ i h = α u h η | Σ i h -h on Σ i h (a.∇u h η ) . n| Σ i h = β [[u h η ]] Σ i h -g on Σ i h
where a, v, b, and the transfer coefficients α, β ≥ 0 on Σ i h are measurable and bounded functions verifying classical ellipticity assumptions. f ∈ L 2 (Ω), g and h are given in L 2 (Σ i h ). Moreover, 

a| Ωh = ã| Ωh , v| Ωh = ṽ| Ωh , b| Ωh = b| Ωh f | Ωh = f | Ωh Remarks: When α = g = h = 0 and β → ∞,
u h η | + Σ i h = u D . To impose u h η | - Σ i h u D , we set β = 1 η on Σ i h (where 0 < η << 1 is a penalty parameter), thus [[u h η ]] Σ i h = 0.
The other transfer coefficients are equal to zero. In the second approach, a surface penalization on the approximated interface Σ i h is performed using the transmission equations. We set β = 1 η in order to have

[[u h η ]] Σ i h = 0 and then u h η | Σ i h = u h η | - Σ i h = u h η | + Σ i h = u h η | Σ i h . In this case, penalizing also α = 1 η and h = 1 η u D induces u h η | Σ i h u D on Σ i h .
The exterior domain has no influence on the solution obtained in the physical domain. Concerning the B.C. on Γ e , in these two approaches, only the B.C. on Γ e ∩Σ h are of interest :

u h η | Γe∩Σ h = u D .

Embedded Robin or Neumann B.C.

We want that -(a.∇u h η ).n| -

Σ h = α R u h η | - Σ h + g R on Σ h .
There are many ways to deal with the transfer coefficients in order to impose a Robin B.C. on Σ i h (see Ref. 18). One of particular interest is the one without control on the exterior domain. In this case, the elimination of -(a.∇u h η ).n|

+ Σ i h and u h η | + Σ i h
in the transmissions equations [START_REF] Angot | A fictitious domain model for general embedded boundary conditions[END_REF][START_REF] Angot | A general fictitious domain method with non-conforming structured mesh[END_REF] yields :

-(a.∇u h η ).n| - Σ i h = α 2 u h η | - Σ i h + g - h 2 with β = α 4 9 of 19
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This formulation enables us to deduce transmission coefficients (see Table 2).

On Γ e ∩ Σ h , we set the Robin B.C. of the original problem ( P). The B.C. on Γ e \Σ h are free (without effect on the solution on the physical domain as long as (P t ) is well-posed).

Remarks:

In this case, no penalization parameter η is required. The solution of the fictitious problem (P t ) depends only on the mesh T h . A Dirichlet B.C. can be considered as a Robin B.C. where α

R = 1 η (α R → ∞ as η → 0) and g R = - 1 η u D .
Moreover, when the interface Σ is roughly approximated by the mesh into Σ h , a correction is required for a Robin or Neumann condition. A characteristic parameter is introduced in order to respect the following equality :

Σ {α R ũ + g R + (ṽ.n) ũ} ds = Σ h α R u h- η + g R + (v.n) -u h η ds (10) 
On Σ h , the discrete data α R and g R must then be divided by .

We propose two manners to approximate this characteristic parameter :

• A global correction : Σ ds = Σ h 1 dx (11) = meas(Σ h ) meas(Σ) (12) 
• A local correction : This correction takes account of the relative surfaces considered in each cell K of the mesh crossed by the immersed interface Σ. In 2D, with a piecewise linear approximation Σ l of Σ composed by a segment Σ l,K in each K crossed by Σ (see figure 5), we get:

Σ Σ Σ Σ K θ K l,K K l L h
K = l + L meas (Σ l,K ) = cos θ K + sin θ K 0 ≤ θ K ≤ π 2 (13) 
Table 2 recapitulates the parameters of the fictitious problem (P t ) on the immersed approximated interface Σ i h and in the exterior domain Ω e,h . We remind that the coefficients of (P t ) in the approximated original domain Ωh are the same than the original problem ( P) ones. 

Parameters on Σ

i h = Σ h \∂Ω Parameters in Ω e,h Dirichlet B.C. volumic exterior penalization α = g = h = 0 a =    Id L 2 penalty 1 η Id H 1 penalty , v = 0, β = 1 η b = 1 η , f = 1 η u D Dirichlet B.C. surface penalization α = 1 η , h = 1 η a = Id, v = 0, β = 1 η , g = 0 b = f = 0 Robin B.C. no exterior control α = 2 α R , β = α R 2 , a = Id, v = 0, g - h 2 = g R b = f = 0

IV. Numerical Resolution

A. Description of the test problem

We solve a 2D boundary value convection-diffusion problem in Ω that is a quarter of the unit disk with symmetry conditions on Γ (see Figure 6(a)). The problem ( P) under study writes: A Q 1 F.E. Scheme The spread interface approach is implemented using a Q 1 F.E. Scheme, where Q k stands for the space of polynomials of degree of each variable less than or equal to k. For example, Q 1 = span{1, x, y, xy} in R 2 . The Q 1 discretization nodes are located on the vertex of the discrete elements. We set :

( P)      -ũ + div (ṽ ũ) = f in Ω ∇ũ.n = 0 on Γ ũ = u D or -∇ũ.n = α R ũ + g R on Σ x 1 1 Ω ∼ Σ Γ ∼ y (a)
a h , b h , f h ∈ Q 0 (Ω h ) u h , v h ∈ Q 1 (Ω h )
where the subscript h denotes the F.E. approximation of the original variable, and u h = u h η,h . A Bi-CGSTAB [START_REF] Van Der Vost | Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems[END_REF] algorithm is used to solve the linear system. Moreover a diagonal preconditioner is implemented in order to improve the ill-conditionning due to the penalization coefficients.

An A.M.R. algorithm : the Local Defect Correction 27 (L.D.C) method Using approximated interfaces, A.M.R. techniques are necessary to improve the accuracy of the solution near the immersed interface and by the way in the whole physical domain. Most of these techniques are derived from multi-grid methods. [START_REF] Hackbusch | Multi-grid Methods and applications[END_REF] A L.D.C. method 27 is combined with the spread interface approach. This method is a multi-grid method with a defect restriction in the ascent step. As the immersed interface Σ is coarsely approximated by the spread interface ω h,Σ , the refinement area is chosen around the spread interface in order to improve the accuracy of the solution. At each level, the local refinement zone is composed by all the elements of the spread interface ω h,Σ and their neighbors. This choice enables to correct the values of all the nodes located on the spread interface. The combination of a fictitious domain method with an A.M.R algorithm is expected be very efficient with a relatively cheap over-cost.

A cell-centered Finite Volume (F.V.) scheme for the Thin interface approach

For each control volume K ∈ T h , a cell-centered discretization point x K ∈ K is chosen. Let E denote the family of edges σ of control volumes. The set of interior (resp. boundary) edges is denoting by E int (resp.

E ext ), that is E int = {σ ∈ E ; σ / ∈ ∂Ω} (resp. E ext = {σ ∈ E ; σ ∈ ∂Ω}). Let E Σ be the set of edges σ lying on Σ i h : E Σ = {σ ∈ E int ; σ ⊂ Σ h }.
For each K ∈ T h or σ ∈ E, m(K) and m(σ) represents the measure of K or σ. For given quantity ψ, the discrete values ψ K and ψ σ are defined by the mean value of ψ over K or σ. For each K ∈ T h the main discrete unknown is denoted by u K ≈ u h η (x K ) and, for any (K, L) ∈ T 2 h two auxiliary unknowns (u σ,K , u σ,L ) are introduced on σ = K|L ∈ E int . Let d K,σ > 0 be the distance from x K to σ and n K,σ be the unit normal vector to σ outward to K. The cell-centered F.V. numerical scheme implemented is a generalization for convection-diffusion problems of the F.V. scheme proposed in Ref. 20, 21 for elliptic problems, where the numerical convection flux is obtained with an upstream scheme. This F.V. scheme allows jumps of diffusion and convection fluxes as well as jumps of solution on each edge σ ∈ E int and it reads in the following synthetic form:

{σ∈E;σ⊂∂K} m(σ) (F K,σ + v K,σ u U p σ ) + m(K) b K u K = m(K) f K ∀K ∈ T h (14) 
where the numerical diffusion flux F K,σ reads (for sake of simplicity we consider an isotropic diffusion tensor a=a(x)Id):

F K,σ =          -a K u σ,K -u K d K,σ if σ = K|L ∈ E int -a K u σ -u K d K,σ if σ ∈ E ext with a Dirichlet B.C. on σ : u σ = g D λu K + g R if σ ∈ E ext with a Robin (or Neumann) B.C. on σ : -(a .∇u).n = λ u + g R
and the numerical convection flux V K,σ = v K,σ u U p σ is obtained with an upstream scheme :

v K,σ = 1 m(σ) σ v -.n K,σ ds and      if v K,σ ≥ 0 u U p σ = u K otherwise u U p σ = u σ,K if (u σ,L -u σ,K ) = 0 u L otherwise
Moreover ∀σ = K|L ∈ E int transmission conditions on σ yields :

F L,σ + F K,σ = α σ,K u σ,K + u σ,L 2 -h σ,K (15) 
1 2 (F L,σ -F K,σ ) = β σ,K (u σ,L -u σ,K ) -g σ,K (16) 
with continuity of the transmissions coefficients through σ (α

σ,K = α σ,L , h σ,K = h σ,L , β σ,K = β σ,L ) except g σ,K which verifies g σ,K = -g σ,L .
We can see that the auxiliary unknowns u σ,L , u σ,K can be eliminated as reported in Ref. 20 and the numerical scheme is then as cheap as the standard scheme without any jump.

On the edges σ / ∈ E Σ , we set the discrete transfer coefficients of Equations ( 15) and ( 16) in order to respect the local conservativity and the solution continuity properties :

F K,σ = -F L,σ , and u σ,K = u σ,L , if σ = K|L ∈ E int \E Σ (17) 
Hence,

α σ,K = h σ,K = g σ,K = 0 and β σ,K = 1 η → ∞ ∀σ / ∈ E Σ 13 of 19
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Otherwise, ∀σ ∈ E Σ , the discrete transfer coefficients are equal to the mean value on σ of the transfer coefficients of the fictitious problem (P t ) lying on Σ i h :

α σ,K = α σ , h σ,K = h σ , g σ,K = g σ n.n K,σ , β σ,K = β σ ∀σ ∈ E Σ
where n denotes the outward unit normal vector of Σ i h on σ : n = ±n K,σ

As in the F.E. resolution, the linear system is solved for the family (u K ) K∈T h by the Bi-CGSTAB 26 algorithm with a diagonal preconditionner to improve the ill-conditionning due to the penalization coefficients.

C. Numerical results

The F.E. simulations have been computed thanks to the finite element industrial code PYGENE [START_REF] Grandotto | Calculs des écoulements diphasiques dans les échangeurs par une méthode aux éléments finis[END_REF][START_REF] Grandotto | A 3D finite element analysis for solving two phase flow problems in PWR steam generators[END_REF] of the Neptune project. This project, co-developed by the CEA and EDF, is dedicated to the simulation of two-phase flows in Nuclear Power Plants. A F.V. code using a structured approach had been implemented for the scheme presented here.

The test problem ( P) has an analytical solution for a source term correctly term. The error between the numerical and analytical solutions are calculated with the discrete L 2 -norm in Ω.

Dirichlet problem

We consider the Dirichlet problem :

       -ũ + div(ṽũ) = 4 in Ω ∂ ũ ∂n = 0 on Γ ũ = u D = 0 on Σ with ṽ = r 2
e r where r = x 2 + y 2 and e r is the radial unit vector. The analytic solution of this problem is :

ũ = 4 (1 -exp( r 2 -1 4 
))

in Ω

The fictitious domain problem (P s ) with a spread interface approach is solved in Ω with the two Dirichlet embedded B.C. methods : the spread interface penalization and the exterior penalization (see Table 1). For the fictitious domain problem (P t ) with immersed jumps on the approximated thin interface, the two Dirichlet methods (see Table 2) using either a volumic H 1 penalty in Ω e,h or a surface penalty on Σ h without exterior control, are computed with both the exterior and the cut approximated interface Σ h (see Figures 7(b) and 7(c)). The following results have been performed with η = 10 -12 to get the modelling error negligible compared to the discretization error. The Figure 8 shows the convergence of the numerical error with respect to the discretization step h. As excepted since |meas( Ωh )meas( Ω)| = O(h) in both the spread and the thin interface approaches, all the Dirichlet embedded B.C. variants are of first-order for the L 2 -norm. For the spread interface approach implemented with a Q 1 F.E. scheme, the penalization of the exterior domain is more accurate than the penalization of the spread interface. Indeed, by performing the Q 1 F.E. scheme (see in section 1), the reaction coefficient is computed by element (b h ∈ Q 0 ). All the nodes belonging to a penalized element are then penalized. The spread interface penalization induces the penalization at u D of all the spread interface nodes. Hence, nodes inside the original domain Ω are penalized. The exterior penalization imposes u h u D on the whole exterior domain and on the exterior nodes of the spread interface. In the original quarter disk domain, interior penalized nodes are globally farther of the physical interface Σ than the exterior nodes (see Figure 7(a)). However, the accuracy of the different penalization methods strictly depends on the geometry of the original domain Ω. In the F.V. approach, we can observe that the volumic H 1 penalty of the exterior domain and the surface penalization on Σ h lead to the same errors. Indeed, performing a H 1 penalty method on Ω e,h , the solution and its gradient are penalized. So u u D on the exterior domain Ω e,h until the approximated interface Σ h . For the two penalization approaches, the cut approximated interface leads to more accurate results than the exterior one since the cut interface approximates Σ more precisely than the exterior interface.

For the spread interface approach with an exterior volumic H 1 penalization, the Figure 9 shows the difference between the approximated solution and the analytic one. We can observe the main errors are located around the spread interface. An adaptive mesh refinement is then performed in this zone. On each local grid, a Q 1 F.E. scheme with an H 1 exterior domain penalization method is computed. A three-grid LDC algorithm (two refinement levels) is applied on each original mesh. The local refinement zone is composed by the elements of the spread interface ω h,Σ and their neighbors. This algorithm converges by three V-cycles.
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American Institute of Aeronautics and Astronautics As shown in Figure 10, the errors obtained with a L.D.C. algorithm vary like O(h f ) where h f is the discretization step of the local finest refinement grid (last level of refinement). The error on the original coarse grid is similar to the error obtained without refinement on a mesh with a discretization step equal to the local finest grid's one. The use of a local A.M.R. combined with the fictitious domain method allows to increase the precision of the solution even if the method remains first-order.

Robin problem

We now consider the following Robin problem :

         -ũ + div(ṽũ) = 16r 2 in Ω ∂ ũ ∂n = 0 on Γ ∂ ũ ∂n = ũ + 3 on Σ (α R = 1, g R = 3)
with ṽ = 2r 3 e r where r = x 2 + y 2 and e r is the radial unit vector.

The analytic solution of this problem is :

ũ = 2 - 5 3 exp( r 4 -1 2 ) in Ω
The fictitious domain problem (P s ) is solved in Ω with an embedded Robin B.C. in the spread interface (see Table 1). The results obtained with the three approximations of the characteristic parameter discussed in section 2 are reported on Figure 11(a). For the resolution of the fictitious domain problem (P t ), the method to enforce an embedded Robin B.C. on a thin approximated interface without exterior control (see Table 2) is implemented. In Figure 11(b) we investigate the effect of the two corrections introduced in section 2 for the two kinds of approximated interface (exterior and cut).

In the two fictitious domain methods, a global approximation of the characteristic parameter (see Eqs. ( 6), ( 7) and ( 12)) leads to an asymptotic stagnation of the error and then the first-order precision is lost. With a local correction (Eqs. ( 9) and ( 13)) no stagnation appears and the asymptotically first-order accuracy is then yielded for the L 2 -norm error. For the thin interface approach with a cut approximated interface, the first-order accuracy appears asymptotically for meshes with a discretization step h ≤ 1 32 . Here again,
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For the fictitious domain method with spread interface, a local A.M.R. algorithm is performed on the method involving a local epsilon (Eq. ( 13)). As in the Dirichlet case, we compute a three-grid LDC algorithm, which converges by three V-cycles. Local correction => order = 0.9 Mesh refinement (3 grids) + local correction=> order = 0.9 We can observe on Figure 12, that the combination of the spread interface fictitious domain method with an A.M.R. method leads to a discretization error in O(h f ) with h f the discretization step of the local finest grid.

V. Conclusion and Perspectives

Two accurate fictitious domain approaches to solve convection-diffusion problems have been introduced. They are based either on a spread interface or a thin interface approach and handle general embedded boundary conditions (Dirichlet, Robin and Neumann). Two numerical schemes are used to compute these methods : a Q 1 F.E. scheme for the spread interface approach and a F.V. scheme with jumps of fluxes and solutions for the thin interface approach. The main advantage of these methods is their weak costs : the numerical resolution is computed on a single Cartesian mesh without modifying locally the numerical scheme or introducing local unknowns. Even if these methods remain of first order, a cheap adaptive multi-level local mesh refinement algorithm can be easily computed to increase the precision of the solution.

Such fictitious domain methods are full of promise, especially to simulate moving boundaries with a cheap computational cost as no re-meshing is required. The next step will consist in extending these fictitious domain methods to Navier-Stokes equations with moving boundaries problems like two phase flows simulations or fluid/structure interactions.
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Figure 1 .

 1 Figure 1. Example of an original domain Ω immersed in a fictitious rectangular domain Ω: Ω = Ω ∪ Σ ∪ Ωe

B

  . Treatment of the original B.C. 1. Embedded Dirichlet B.C. The Dirichlet B.C. are treated by penalization (e.g. Ref. 10). Let 0 < η << 1 be a real penalty parameter which is likely to tend to zero. We propose to compare the penalization of the spread interface to the penalization of the exterior domain. The penalization of the spread interface (resp. the exterior domain) consists in setting b

  19). Concerning the B.C. on Γ e , for the spread interface penalization, the Dirichlet B.C. u h = u D must only be imposed on Γ e ∩ ∂ω h,Σ . The B.C. on the rest of Γ e have no influence on the solution obtained in the physical domain. To penalize the exterior domain, the B.C. on the whole exterior boundary Γ e must be Dirichlet B.C. u h | Γe = u D .

Figure 4 .

 4 Figure 4. Example of a thin approximation Σ h of the immersed boundary Σ

Figure 5 .

 5 Figure 5. Local parameters in a cell K crossed by the immersed interface Σ

Figure 6 .

 6 Figure 6. Immersion of the unit disk in the unit square
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9 (Figure 8 .

 98 Figure 8. Discretization errors for a Dirichlet B.C. with the two fictitious domain approaches

Figure 9 .

 9 Figure 9. Error distribution for the H 1 exterior penalization -F.E Scheme -Dirichlet case -32x32 mesh

9 Figure 10 .

 910 Figure 10. Errors with or without A.M.R. for a Dirichlet embedded B.C.-Spread interface approach with H 1 exterior penalization -F.E. Scheme

  Relative error norms -Robin B.C. -F.V. Scheme Global correction -Ext. interface Global correction -Cut interface Local correction -Ext. interface => order = 0.9 Local correction -Cut interface => order= 0.9 (asymp.) (b) Thin interface method Figure 11. Discretization errors for a Robin B.C. with the two fictitious domain approaches

  norms -Robin B.C. -F.D.M. + A.M.R.

Figure 12 .

 12 Figure 12. Errors with and without A.M.R. for a Robin embedded B.C. -Spread interface method with a local correction -F.E. Scheme

  2,13, in fluid/structure applications with the interface boundary method (I.B.M.) (e.g. Ref. 5,14), and more recently with the fat boundary method. 15 A lot of papers are dedicated to embedded Dirichlet or Neumann B.C., e.g. Ref. 1, 2, 9, 12, 16 and the references herein. Only few studies are devoted to embedded Fourier B.C. (Ref. 2,

Table 1 .

 1 Parameters in ω h,Σ and in Ω e,h for the spread interface approach

  the perfect transmission problem is recovered (see Ref.17).Here again the choice of the B.C. on Γ e must defined a well-posed problem (P t ).

	Id or a| Ω e,h =	1 η	Id, b| Ω e,h =	1 η	and f | Ω e,h =	1 η	u D ) such that lim η→0

B. Treatment of the original B.C. 1. Embedded Dirichlet B.C.

We present two manners to deal with a Dirichlet condition. The first one consists in penalizing the exterior domain at u D using a L 2 orH 1 penalty 23 (a| Ω e,h =

Table 2 .

 2 Parameters on Σ i h = Σ h \∂Ω and in Ω e,h for the thin interface approach
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