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Abstract

The aim of this article is to solve second-order elliptic problems in an original physical
domain using a fictitious domain method with a spread interface approach . The main
idea of the fictitious domain approach consists in immersing the original domain
of study into a geometrically bigger and simpler one called fictitious domain. As
the spatial discretization is being performed in the fictitious domain, this method
allows the use of structured meshes. The discretization is not boundary-fitted to
the original physical domain. This paper describes several ways to impose Dirichlet,
Robin or Neumann boundary conditions on a spread immersed interface, without
locally modifying the numerical scheme and without using Lagrange multipliers.

The numerical applications focus on diffusion and convection problems in the
unit disk, with Dirichlet or Robin boundary conditions. For such problems, analyt-
ical solutions can be determined for a correctly chosen source term. The numerical
resolution is performed using a Q1 Finite Element scheme. The spread interface ap-
proach is then combined with a local adaptive mesh refinement algorithm in order
to increase the precision in the vinicity of the immersed boundary. The L2 norm of
the errors is computed in order to evaluate the capability of the method.

Immersed boundaries are found in many industrial applications like two-phase
flow simulations, fluid/ structure interaction, etc. This article represents a first step
towards the simulation of these kinds of applications.
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1 Introduction

Let Ω̃ be an open bounded domain in R
d (d = 2, 3) with a boundary

∂Ω̃ that is sufficiently regular. The resolution of a given problem (P̃) in Ω̃
with different kinds of boundary conditions (B.C.) is considered. When the
shape of ∂Ω̃ is geometrically complex, classical methods involving structured
or unstructured boundary-fitted meshes induce a loss of efficiency and rapidity
of numerical solvers in comparison with Cartesian meshes. Moreover, in the
case of moving boundaries, the cost of mesh generation and re-meshing can
be significant.
In the fictitious domain approach [1,2], the original domain Ω̃ is embedded in
a geometrically bigger and simply-shaped other one Ω, called fictitious domain
(cf. Figure 1(a)).

The spatial discretization is now performed in Ω, independently of the shape
of the original domain Ω̃. The original domain and the computational one are
uncoupled. Numerical methods involving structured and Cartesian meshes can
be used. The advantages of these methods are well known: natural tensor for-
mulation, easy implementation for fast solvers (based for instance on finite
volume methods with Cartesian grids) and multi-level methods [3], good con-
vergence properties, etc. Consequently, the resolution of the new problem in
Ω will be fast and simple.

The main issue lies in both the choice of the problem (P) solved in the fic-
titious domain Ω and in the numerical scheme used for the resolution. These
two choices have to be linked in order to handle the original boundary con-
ditions on ∂Ω̃. The B.C. on the original boundary ∂Ω̃ must still be enforced
so that the solution u of the extended problem (P) matches the solution ũ of
the original problem (P̃) in the original domain Ω̃.

The fictitious domain method was introduced in the sixties [1] and for a few
years now, fictitious domain methods have been hugely developed and have
arisen in different fields: computational fluid dynamics [4], medical simulation
[5], etc. Numerically, there are two main approaches available to deal with the
embedded boundary conditions on the immersed boundary:

• “Thin” interface approaches: the original boundary is approximated with-
out being enlarged in the normal direction. The original boundary and the
approximated one lie in the same R

d−1 space. For example, the following
methods can be found in this group: truncated domains methods [6,7], im-
mersed interface methods (I.I.M.) [8,9], penalty methods [1,2,10,11,12,4],
fictitious domain methods with Lagrange multipliers [13,14,15], an adapted
Galerkin method proposed in [16], and recent work on a fictitious model
with flux and solutions jumps for general embedded boundary conditions
[17,18].
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• “Spread” interface approaches: the support of the approximated interface is
larger than the original one. The approximated interface has one dimension
more than the original one. For example, the spread interface can be a ring
containing the immersed interface. This kind of approach can be found in
[2,19], in fluid/structure applications with the immersed boundary method
(I.B.M.) [20,21], and more recently with the fat boundary method [22,23].

Numerous papers have been dedicated to embedded Dirichlet or Neumann
B.C., e.g. [1,2,8,10,15,6,24] and the references herein. Only a few studies have
been devoted to embedded Fourier B.C. [25,19,2,12,17,18].
The fictitious domain approach introduced here deals with Dirichlet, Robin
and Neumann B.C. on an immersed interface without having to change

the numerical scheme near the immersed interface or use Lagrange

multipliers. Since the fictitious problem (P) is not a saddle-point problem,
the inf-sup condition does not need verifying (e.g. [15,24]). Moreover, only one
discretization grid is used. The fictitious domain is meshed with a structured
regular uniform grid.
The fictitious domain method presented in this article easily simulates free-
boundary problems with possible boundary deformations without increasing
the computational cost. A boundary non-conforming mesh is used, which con-
serves the first-order accuracy. The precision of the solution is improved by a
local mesh refinement in the vicinity of the immersed interface.
A “spread” interface approach (see section 2.2) has been chosen here com-
pared to our other works [17,18] which deal with an approximated “thin” inter-
face. In comparison with the original problem (P̃), the terms of the fictitious
problem (P) solved all over the fictitious domain Ω are designed to handle
the original B.C. of (P̃). The restriction of the problem (P) over the original
domain Ω̃ is chosen to be similar to (P̃). Appropriate data in the external
domain Ωe and B.C. on ∂Ω have to be determined.

In the following sections, we will study the resolution of an original el-
liptic problem (P̃), which can be either a diffusion or a convection-diffusion
problem. The associated problem (P) solved in the fictitious domain is intro-
duced. Several ways to impose usual B.C. on a spread approximated immersed
interface are then discussed. This fictitious domain method is then combined
with a multi-grid local mesh refinement to increase the precision of the solu-
tion. The last section is dedicated to numerical resolution. A F.E. scheme is
implemented and several results are provided to illustrate the accuracy of the
method.
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2 The fictitious domain method with spread interface for diffusion

problems

2.1 Presentation of the original problem (P̃)

For sake of simplicity we choose to focus on 2D problems, even though
the formulations can be extended to cover 3D problems without any difficulty.
The resolution of a diffusion-reaction problem (P̃) in the original domain
Ω̃ is investigated.

Let us consider the following model problem:
For ã ∈ (L∞(Ω̃))d×d, b̃ ∈ (L∞(Ω̃)) and f̃ ∈
L2(Ω̃), find a function ũ defined on Ω̃ such that:

(P̃)







−div (ã .∇ũ) + b̃ũ = f̃ in Ω̃

B.C. on ∂Ω̃

where B.C. represents several types of boundary
conditions:

n

Ω
~

∂Ω̃

• A Dirichlet condition: ũ = uD with uD ∈ H1/2(∂Ω̃),
• A Robin (or Fourier) condition: −(ã .∇ũ).n = αRũ + gR ,

with αR ∈ L∞(∂Ω̃); αR> 0, and gR ∈ L2(∂Ω̃) (with n the outward unit
normal vector on ∂Ω̃)
Remark: a Neumann condition, −(ã .∇ũ).n = g, is considered as a partic-
ular Robin condition where αR ≡ 0 and gR ≡ g.

Moreover, the tensor of diffusion ã ≡ (ãij)16i,j6d and the reaction coefficient
b̃ verify the classical ellipticity assumptions:

∃ã0 > 0, ∀ξ ∈ R
d, ã(x).ξ.ξ>ã0|ξ|2 a.e. in Ω̃ (A1)

where |.| is the Euclidean norm in R
d

∃b̃0>0, b̃(x)>b̃0 a.e. in Ω̃ (A2)

In this case, classical variational techniques (e.g. [26,27]) prove that the solu-
tion ũ of the original problem (P̃) exists and is the unique solution ũ in the
space H1(Ω̃) satisfying the weak formulation of (P̃).
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2.2 Fictitious problem (P)

The original domain Ω̃ is embedded inside a fictitious domain Ω such that
Ω = Ω̃∪Σ∪Ωe, where Ωe is the external fictitious domain and Σ the common
interface between Ω̃ and Ωe (see Figure 1(a) and 4(b)). This original interface
Σ is called the immersed interface. The fictitious domain Ω is chosen to be ge-
ometrically simple (rectangular for example). If ∂Ω̃∩∂Ω 6= ∅ (see Figure4(b)),
the boundary of Ω̃ is defined by ∂Ω̃ = Γ̃ ∪ Σ, and the boundary of Ω by
∂Ω = Γ̃ ∪ Γe. Otherwise (see Figure 1(a)), Γ̃ ≡ ∅, so ∂Ω̃ ≡ Σ and ∂Ω ≡ Γe.

Ω
~

eΩ

Σ

Ω

(a) Fictitious domain Ω

h,ΣhΩ~

Ωe,h

ω

(b) Spread interface ωh,Σ

Figure 1. Example of an original domain Ω̃ immersed in the fictitious rectangular
domain Ω. Discretization of the fictitious domain Ω : Ω = Ω̃h ∪ ωh,Σ ∪ Ωe,h

The computational domain Ω is uniformly meshed with a family Th = {K}
of disjointed rectangular cells K such that Ω = ∪

K∈Th

K . A “spread” in-

terface approach [21,28] is chosen to approximate the immersed interface
Σ. The approximated interface ωh,Σ is the open bounded domain defined as
ωh,Σ = ωh,Σ \ ∂ωh,Σ, where ωh,Σ = ∪

K∈Th

{K, K ∩ Σ 6= ∅}. (cf. Figure 1(b)).

The problem (P) solved in the fictitious domain Ω has the following generic
form:

0 < η being a real parameter specified later, find uh
η (depending on the mesh

Th) a real-valued function in Ω such that

(P)







−div (a .∇uh
η) + b uh

η = f in Ω

original B.C. of (P̃) on Γ̃

suitable B.C. for uh
η on Γe

where a ∈ (L∞(Ω))d2

, b ∈ (L∞(Ω)), f ∈ L2(Ω) such that:

a|Ω̃h
= ã|Ω̃h

, b|Ω̃h
= b̃|Ω̃h

f |Ω̃h
= f̃ |Ω̃h

,

and a and b respectively satisfy the assumptions (A1) and (A2) in Ω.
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Once again, for B.C. correctly chosen on Γe (such that the problem (P) is
well-posed), variational techniques [26,27] make it possible to conclude that
the solution uh

η of the problem (P) exists, is unique and belongs to H1(Ω).

The extensions a, b and f of the original coefficients enable us to take
account of the immersed boundary [4,12,29]. For each kind of boundary con-
ditions lying on the immersed boundary Σ, different possibilities to enforce
these conditions exist using a spread approximation of the immersed interface
Σ and are introduced in the next sections. No variant modifies the numerical
scheme or introduces local unknowns. It is expected that: uh

η |Ω̃h
' ũ|Ω̃h

.

2.3 Methodology and different variants

For sake of clarity, it is assumed that uD, αR and gR are constant. The
non-constant case can be treated just as easily. The non-constant data are
then replaced by their extensions in ωh,Σ ∪ Ωe,h such that the traces on Σ of
the extensions are equal to the original data on Σ.

2.3.1 Embedded Dirichlet B.C.

The Dirichlet embedded B.C. are treated by volume penalization (see
e.g. [30]).

2.3.1.1 Spread interface penalization

The first possibility to have a Dirichlet condition on Σ is to penalize the
Dirichlet value in the approximated interface ωh,Σ.
Let 0 < η << 1 be a real penalty parameter which is likely to tend to zero.
The L

2 penalty [30] consists in penalizing the reaction coefficient b and the
source term f in the spread interface:

b =
1

η
, f =

1

η
uD in ωh,Σ

Then, the penalty parameter enforces uh
η ' uD in the approximated immersed

boundary ωh,Σ. By defining the spread interface, it implies uh
η ' uD on the

original boundary Σ.
The H

1 penalty [30] is a particular case of L2 penalty where the diffusion

coefficient a is also penalized in ωh,Σ (a =
1

η
Id). In this case, the value of u

and the gradient ∇u are penalized.
With a penalization of the spread interface ωh,Σ, the equation solved in Ωe,h

has no influence on the solution obtained in the original domain. So in Ωe,h,
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the equation coefficients are arbitrary extensions of the original coefficients of
P̃ (as long as the whole problem (P) in Ω is well-posed).
Concerning the B.C. on Γe, the Dirichlet B.C. uh

η = uD must be imposed only
on Γe ∩ ∂ωh,Σ. The rest of the B.C. on Γe can be arbitrary chosen.
Remark: If Γe ∩ ∂ωh,Σ 6= ∅, the generalized Poincaré inequality [31] holds in
ωh,Σ. The H1 penalty required penalizing the diffusion coefficient a only. The
reaction coefficient b and the source term f don’t need to be penalized any
further.

2.3.1.2 Exterior penalization

The second approach consists in penalizing uh
η at uD only in the external do-

main Ωe,h (the approximated interface ωh,Σ is not penalized). All the external
nodes are penalized at uD so the solution tends to uD near the original im-
mersed boundary Σ. In this case, the coefficients of the original problem (P̃)
are extended in Ω̃h ∪ ωh,Σ.
As in the previous case, the L

2 penalty is obtained by setting:

b =
1

η
, f =

1

η
uD in Ωe,h

Seeing that in this case the B.C. u|Γe
= uD holds on Γe, the Poincaré inequality

in Ωe,h makes it possible to obtain the H
1 penalty by penalizing a|Ωe,h

=
1

η
Id

only. This approach is similar to the one introduced in [1,2].
These two variants are summarized in Table 1.

2.3.2 Embedded Robin B.C.

2.3.2.1 Theoretical aspect

The Robin condition is treated in a different manner than the Dirichlet one.
Let us consider an extended diffusion problem (Pe) of (P̃) in Ωe with a unique
solution ue ∈ H1(Ωe) such that ue|Σ = ũ|Σ.
Let a and b be L∞ − extension of ã and b̃ respectively in Ω and f a L2 −
extension of f̃ in Ω such that:

? a =







ã in Ω̃

ae in Ωe

? b =







b̃ in Ω̃

be in Ωe

? f =







f̃ in Ω̃

fe in Ωe

We then define u ∈ H1(Ω) such that :

u|Ω̃ := ũ and u|Ωe
:= ue.
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By considering the transmission problem between Ω̃ and Ωe, using the weak
formulations of the subproblems defined in Ω̃ and Ωe, the following can be
expressed:
∀v ∈ H1(Ω)

∫

Ω̃
a.∇u.∇v dx +

∫

Ω̃
b v dx −

∫

Σ
(a.∇u)−.n v ds −

∫

Γ̃
(a.∇u).n v ds =

∫

Ω̃
f v dx in Ω̃

∫

Ωe

a.∇u.∇v dx +
∫

Ωe

b v dx +
∫

Σ
(a.∇u)+.n v ds −

∫

Γe

(a.∇u).n v ds =
∫

Ωe

f v dx in Ωe

where n denotes the outward normal unit vector either on Γ̃, on Γe, or on Σ. In
the latter case, n is oriented from Ω̃ to Ωe. Thus, (a.∇u)−.n|Σ and (a.∇u)+.n|Σ
are the traces of (a.∇u).n|Ω̃ and (a.∇u).n|Ωe

on each side of Σ respectively.
Therefore, the addition of the two formulations in Ω̃ and Ωe leads to:

∫

Ω
a.∇u.∇v dx+

∫

Ω
b u v dx+

∫

Σ
[[(a.∇u).n]]Σ v ds−

∫

∂Ω
(a.∇u).n v ds =

∫

Ω
f v dx

(1)
where [[(a.∇u).n]]Σ = (a.∇u)+.n|Σ − (a.∇u)−.n|Σ
Then:
∫

Ω
a.∇u.∇v dx+

∫

Ω
b u v dx−

∫

∂Ω
(a.∇u).n v ds =

∫

Ω
f v dx− < [[(a.∇u).n]]ΣδΣ, v >

where δΣ refers to the Dirac delta measure supported on Σ.
In the distribution sense, the following equation is obtained in Ω:

−div (a.∇u) + b u = f − [[(a.∇u).n]]ΣδΣ (2)

The jump of flux across Σ can be interpreted as a measure source

term carried by Σ.

In our case, the following expression is required

−(a.∇u)−.n|Σ = αR u|Σ + gR

It is chosen to impose −(a.∇u)+.n|Σ = 0 by setting a|Ωe
= ηId, so that

[[(a.∇u).n]]Σ = αR u|Σ + gR

In the end, the following is obtained:

−div (a.∇uη) + b uη = f − [αR uη + gR] δΣ (3)

However, with a Cartesian mesh on Ω, the support of Σ is not exactly defined.
A characteristic parameter ε is introduced in order to approximate the measure
δΣ supported by Σ by mollifiers [32] δωh,Σ

on the spread interface ωh,Σ. The term
δωh,Σ

is a discrete Dirac function on the spread interface. Here, this discrete
delta function is roughly approximated by a crenel function in Ω (δωh,Σ

= 1
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in ωh,Σ and 0 elsewhere) whereas a smoothed approximation using interaction
equations is performed in the I.B.M., e.g. [20,5,21].
The principle is the following:

∫

Σ
{αR uη + gR} ds =

∫

ωh,Σ

αR uh
η + gR

ε
dx (4)

The parameter ε can be estimated in several manners, some of which will be
presented in the next paragraph.
The equation solved in Ω is:

−div (a.∇uh
η) + b uh

η = f − [
αR

ε
uh

η +
gR

ε
] δωh,Σ

(5)

The coefficients of the original problem (P̃) are extended in Ω̃h ∪ ωh,Σ. The
coefficient of the problem (P) are obtained by identifying the equation (5)
with the generic formulation of the problem (P) (see Table 1).
As in the Dirichlet case with a spread interface penalization, only the B.C.
of the nodes lying on Γe ∩ ∂ωh,Σ induce the solution in the original domain.
These B.C. must be homogeneous Neumann B.C. in order to have an external
flux equal to zero.
Remark: Numerical schemes allowing local jumps of the solution u make it
possible to also simulate a Robin immersed B.C. (e.g. [12,18,17]).

2.3.2.2 Numerical aspect

There are many ways to estimate the parameter ε. This paper presents three
of them representing different kinds of approximations (see [28,33]). If h is the
discretization step, Angot [29] showed that ε is in O(h).

• A coarse global approximation of ε in Equation (4) holds:

∫

Σ
ds =

∫

ωh,Σ

1

ε
dx (6)

? In a first approach, it is assumed that ε is constant all over ωh,Σ.

ε =
meas(ωh,Σ)

meas(Σ)
(7)

? In the second approach, the value of ε is given element by element. In the
equation (4), the integration in ωh,Σ is weighted by a coefficient τ . This
coefficient represents the presence rate of the original domain in each
element K crossed by the boundary Σ (K ⊂ ωh,Σ). By construction, τ is
constant on each K:

τK =
volume of Ω̃ included in K

volume of the element K

9



By this way, the right hand side of (6) is only integrated in the original do-

main included in ωh,Σ. Introducing ε =
ε′

τ
with a constant ε′ the following

is obtained:
∫

Σ
ds=

∫

ωh,Σ

1

ε′
τ dx

∫

Σ
ds=

∑

{K⊂ωh,Σ}

∫

K

1

ε′
τK dx

τK being constant on K:

ε′ =

∑

K
[τK.meas(K)]

meas(Σ)

εK =

∑

K
[τK.meas(K)]

τK.meas(Σ)
(8)

• A local approximation of ε consists in calculating ε in each cell K ⊂ ωh,Σ:

∫

ΣK

ds =
∫

K

1

ε
dx (9)

with ΣK = Σ ∩ K

As ΣK is not simply defined, the boundary Σ is piecewise linear approxi-
mated by a segment Σl,K in each cell K ⊂ ωh,Σ (see Figure 2).

Σ

Σ
Σ

K

K

l,K

Figure 2. Linear approximation of Σ in a rectangular cell K ⊂ ωh,Σ

The equation (9) is written using the linear approximation Σl = ∪
K∈ωh,Σ

Σl,K

of Σ: ∫

Σl,K

ds '
∫

K

1

ε
dx

Finally,

εK =
meas(K)

meas(Σl,K)
(10)

Here again, the value of ε depends on the element K ⊂ ωh,Σ under consid-
eration.
This approach induces a local piecewise linear reconstruction of the interface
in each cell K of the mesh.
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For each embedded B.C. variant, Table 1 gives the parameters of interest using
a spread interface approach.

Parameters in ωh,Σ Parameters in Ωe,h

Dirichlet B.C.

Spread interface penalization a =







ã (L2 penalty)
1

η
Id (H1 penalty)

, a = Id,

b =
1

η
, f =

1

η
uD b = 0, f = 0

Dirichlet B.C.

Exterior penalization a = ã, a =







ã (L2 penalty)
1

η
Id (H1 penalty)

,

b = b̃, f = f̃ b =
1

η
, f =

1

η
uD

Robin B.C.

with different approximations of ε a = ã, a = η Id,

b = b̃ +
αR

ε
, f = f̃ − gR

ε
b = 0, f = 0

Table 1
Parameters in ωh,Σ and in Ωe,h for diffusion problems

3 The fictitious domain method with spread interface for convection-

diffusion problems

3.1 Presentation of the study

Let us consider the following convection-diffusion-reaction problem:
For ã ∈ (L∞(Ω̃))d×d, ṽ ∈ (L∞(Ω̃))d, b̃ ∈ (L∞(Ω̃)) and f̃ ∈ L2(Ω̃), find
ũ ∈ H1(Ω̃) such that :

(P̃)







−div (ã .∇ũ) + div (ṽũ) + b̃ũ = f̃ in Ω̃

B.C. on ∂Ω̃

where B.C. represents Dirichlet, Robin or Neumann boundary conditions (see
section 2). The diffusion tensor ã ≡ (ãij)16i,j6d and the reaction coefficient b̃

verify the classical ellipticity assumptions (A1) and (A2).
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This problem needs to be solved using the fictitious domain method with
spread interface introduced in the last section for diffusion problems. With an
original convection-diffusion problem (P̃) in Ω̃, the problem (P) solved in the
fictitious domain Ω has the following generic form:
With 0 < η � 1, find uh

η ∈ H1(Ω) such that

(P)







−div (a .∇uh
η) + div(v uh

η) + b uh
η = f in Ω

original B.C. of (P̃) on Γ̃

suitable B.C. for uh
η on Γe

where a ∈ (L∞(Ω))d2

, v ∈ (L∞(Ω))d, b ∈ (L∞(Ω)), and f ∈ L2(Ω) such that:

a|Ω̃h
= ã|Ω̃h

, v|Ω̃h
= ṽ|Ω̃h

, b|Ω̃h
= b̃|Ω̃h

f |Ω̃h
= f̃ |Ω̃h

,

and a and b satisfy classical ellipticity assumptions in Ω.
With the spread interface approach, the embedded B.C. will be imposed using
a unique Cartesian mesh and without locally modifying the numerical scheme.

3.2 Treatment of the original B.C.

3.2.1 Embedded Dirichlet B.C.

The Dirichlet B.C. are treated by volume penalization as is the case for
diffusion problems (see section 2.3.1). We suggest comparing the penalization

of the spread interface with the penalization of the exterior domain.

3.2.2 Embedded Robin or Neumann B.C.

As developed in section 2.3.2, the transmission problem between Ω̃ and
Ωe with continuity of the solution on Σ is taken into consideration.
In the distribution sense, the following equation is obtained:

−div (a.∇u) + div(v u) + bu = f − [[(a.∇u).n]]Σ δΣ + [[(v.n)]]Σ u δΣ (11)

where







n denotes the outward normal unit vector on Σ (oriented from Ω̃ to Ωe)

[[(a.∇u).n]]Σ = (a.∇u).n|+Σ − (a.∇u).n|−Σ = (ae.∇u).n|Σ − (ã.∇u).n|Σ
[[(v.n)]]Σ = ve.n|Σ − ṽ.n|Σ
δΣ means the Dirac delta measure supported by Σ

Here again, the jump of fluxes (diffusion and convection) across Σ appear as
source terms carried by Σ.
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The following Robin flux is required

−(a.∇u).n|−Σ = −(ã.∇u).n|Σ = αR u|Σ + gR

We impose −(a.∇u).n|+Σ = 0 by ae = ηId on Ωe, so that

[[(a.∇u).n]]Σ = αR u|Σ + gR

Moreover, v|Ωe
= ve = 0 is imposed in order to free up the solution in the

exterior domain Ωe. If ve 6= 0, as u|−Σ = u|+Σ, the resolution of the exterior
problem influences the embedded Robin condition.

On Ω, then we have:

−div (a.∇uη) + div (v uη) + b uη = f − [αR uη + gR + (v.n)− uη] δΣ (12)

A characteristic parameter (see section 2.3.2 and [32]) is introduced in order
to approximate the Dirac function on Σ by a discrete Dirac delta function in
ωh,Σ. The principle is the following:

∫

Σ
{αR uη + gR + (ṽ.n)− uη} ds =

∫

ωh,Σ

αR uh
η + gR + (v.n) uh

η

ε
dx (13)

where v is an extension of the velocity field ṽ in Ω̃h∪ωh,Σ and n denotes either
the outward unit vector on Σ or its extension in ωh,Σ.

Next, the coefficients of the fictitious problem (P) are easily set by extend-
ing the coefficients of the original problem (P̃) in Ω̃h ∪ ωh,Σ and using the
formulations (12) and (13) (see Table 2).
Only the B.C. on Γe ∩ ∂ωh,Σ has an effect on the solution obtained in the
original domain. These B.C. must be homogeneous Neumann B.C. to vanish
the external diffusion flux. The B.C. on the rest of Γe can be arbitrarily chosen
as long as the whole problem (P) in Ω is well-posed.
Approximations of the parameter ε with Cartesian uniform meshes are ob-
tained in the same manner as that in section 2.3.2.
For each embedded B.C. variant, Table 2 summarizes the parameters of inter-
est for the resolution of a convection-diffusion problem.

4 Spread interface approach and local adaptive mesh refinement

Using a spread interface approach, Adaptive Mesh Refinement (AMR)
techniques are necessary to improve the accuracy of the solution near the
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Parameters in ωh,Σ Parameters in Ωe,h

Dirichlet B.C.

Spread interface

penalization
a =







ã (L2 penalty)
1

η
Id (H1 penalty)

, v = ṽ, a = Id, v = 0,

b =
1

η
, f =

1

η
uD b = 0, f = 0

Dirichlet B.C.

Exterior penalization a = ã, v = ṽ, a =







ã (L2 penalty)
1

η
Id (H1 penalty)

, v = 0,

b = b̃, f = f̃ b =
1

η
, f =

1

η
uD

Robin B.C.

a = ã, v = ṽ, a = η Id, v = 0,

b = b̃ +
αR

ε
+

v.n

ε
, f = f̃ − gR

ε
b = 0, f = 0

Table 2
Parameters in ωh,Σ and in Ωe,h for convection-diffusion problems

immersed interface and by the way on the whole original domain. Most of
these techniques are derived from multi-grid methods [34].

4.1 Multi-grid method

In order to simply present the multi-grid method, two nested grids only are
taken into consideration: a “coarse” grid Gl with a discretization step hl and
a “fine” grid Gl+1 such that hl+1 < hl. Generally speaking, a two-grid scheme
can be divided into two steps:

• A descent or prolongation step from a coarse grid Gl to a fine grid Gl+1. At
this stage, an estimation of the solution on the coarse grid has already been
calculated. This step consists in establishing boundary conditions on the
boundary Γl+1 of the fine grid by interpolation and in solving the discrete
problem associated with the grid Gl+1.

• An ascent or restriction step from a fine grid Gl+1 to a coarse grid Gl.
The solution on the coarse grid Gl is corrected according to the solution
obtained on Gl+1 at the descent step. This correction can be either a simple
local restriction on the solution or a local restriction on the defect. In the
second case, an error equation is then solved on all the coarse grid Gl.
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The multi-grid method is a generalization of the two-grid scheme. If the
solution obtained on a grid Gl+1 isn’t precise enough, a two-grid scheme is
performed again from Gl+1. A local fine grid Gl+2 such that hl+2 < hl+1

is introduced. This procedure is repeated until the finest grid is reached. A
recursive process is then generated.
For example, an iteration can be represented by a V-cycle: see Figure 3.

R : Local restriction of the "fine" solution or of the "fine" defect on the coarse grid
P : Prolongation or interpolation of the "coarse" solution in order to determine the B.C. on the fine grid
S : Solver (exact or inexact)

P R

P

S

S

S

S

R

S

l+2

l+1

G

G

lG

Figure 3. Representation of two V-cycles on three grids

The solver used on each grid is independent of the multi-grid method which
has been chosen.

4.2 Local Defect Correction (L.D.C.) method

This method was introduced by Hackbusch [35]. This method is a multi-grid
method with a defect restriction in the restriction step. The defect restriction
is computed only on the coarse “interior” nodes. These nodes can be defined as
the coarse nodes strictly included in the fine grid. In other words, this covers
all the coarse nodes included in the fine grid except those lying on the fine
grid boundary. The set of the coarse inner nodes associated with the grid Gl

is called Al.

Let us consider the resolution of the following problem:

(P)







Lu = f(x) in Ω

u|Γ on Γ = ∂Ω

At each iteration k of a multi-grid algorithm, the following discrete problem
on the grid Gl is solved:

(Pk
l )







Lk
l u

k
l = f k

l in Ωl

appropriate B.C. on Γl
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It is assumed that:

? Lk
l = L|Ωl

,
? f k=0

l = f |Ωl
,

? Ω0 = Ω.

The B.C. on Γl can be divided into two parts:

? If Γl ∩Γ 6= 0, the B.C. on Γl ∩Γ are computed by restricting on Γl the B.C.
lying on Γ,

? Otherwise the B.C. on Γl are Dirichlet conditions obtained by interpolating
the solution uk

l−1.

For two grids Gl and Gl+1, the L.D.C. algorithm writes:

Initialization: Computation of u0
l , solution of the initial problem (P0

l ) on
the grid Gl.
Iterations: Computation of uk

l .
for k=1 to nbcycles do

uk
l = uk−1

l .

Resolution on the fine grid Gl+1:

- Compute B.C. on Γl+1\(Γl+1 ∩ Γ) by interpolation of uk
l :

uk
l+1 = P l

l+1u
k
l on Γl+1\(Γl+1 ∩ Γ)

where P l
l+1 is a interpolation operator also called coarse-to-fine operator.

- Computation of uk
l+1 by solving (Pk

l+1).

Correction on the coarse grid Gl:

- Restriction of the “fine” solution on Al:
ũk

l (x) = (Rl+1
l uk

l+1)(x) ∀x ∈ Al

where Rl+1
l is a restriction operator also called fine-to-coarse operator.

- Computation of the local defect rk
l (ũ)(x) = (f 0

l − Llũ
k
l )(x) ∀x ∈ Al.

- Computation of the corrected solution uk
l : resolution of the initial problem

(Pk
l ) with f k

l = f 0
l − χAl

rk
l (ũ) (where χ is the characteristic function).

endfor

Remark: The “initial” L.D.C algorithm [34,3] introduces a subset A0 of A
in order to evaluate the restricted defect according to nodes of A only. In this
case, the refinement zones must be large enough to contain sufficient inner
nodes. In our problem, this improvement is not necessary. The local defect
restriction on A is accurate enough.
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5 Numerical examples

All the simulations have been computed thanks to the finite element
industrial code PYGENE [36,37] of the Neptune project [38]. The Neptune
project, co-developed by CEA and EDF, is dedicated to the simulation of
two-phase flows in Nuclear Power Plants.

5.1 Test problems

The resolution of a diffusion problem and a convection-diffusion prob-

lem in the unit disk Ω̃ is investigated. For symmetry reasons, this problem
can only be solved on a quarter of this disk (see Figure 4(a)). The generic
formulation of the problem (P̃) under study writes:

(P̃)







−div (ã .∇ũ) + div(ṽ ũ) = f̃ in Ω̃

(ã .∇ũ).n = 0 on Γ̃

ũ = uD or − (ã .∇ũ).n = αR ũ + gR on Σ

Remark:The formulation of (P̃) corresponds to a convection-diffusion problem.
However, setting ṽ = 0, we obtain the generic formulation of a diffusion
problem.
The fictitious domain is the unit square Ω =]0, 1[×]0, 1[ (see Figure 4(b)).

x

1

1

Ω
∼

Σ

Γ
∼

y

0

(a) Original domain Ω̃

x

1

1

Ω

eΓ

eΩ

Ω
∼

Σ

Γ
∼

y

0

(b) Fictitious domain Ω

Figure 4. Immersion of the unit disk in the unit square

The domain Ω is meshed uniformly with square cells K with a grid step varying

from h =
1

4
to h =

1

256
. This defines the spread interface ωh,Σ (see Figure 5).

The problems (P) solved in Ω are the ones defined in sections 2 and section 3
with symmetry conditions on Γ̃.
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Figure 5. Discretization of Ω and definition of the spread interface ωh,Σ.

5.2 Numerical methods

5.2.1 Approximation spaces and numerical solver

The numerical resolution is performed using the Q1 finite element method

(e.g. [39,27]). In this case, the usual simplicial Lagrange finite element space
associated to the mesh Th of Ω can be written as:

Vh = {vh ∈ C0(Ω); vh|K ∈ Q1, ∀K ∈ Th} ⊂ H1(Ω),

where







K is an element of Th,

Qk stands for the space of polynomials of degree for each variable less than or equal to k,

Example:Q1 = span{1, x, y, xy} in R
2

The Q1 discretization nodes are located on the vertices of the elements K.

Within a Q1 finite element numerical approach, we set :







ah, bh, fh ∈ Q0(Ωh)

uh,vh ∈ Q1(Ωh)

where the subscript h denotes the F.E. approximation of the original variable,
and uh = uh

η,h.
For diffusion problems, when the matrix a is symmetric, the matrix of the

linear system becomes symmetric positive definite. A conjugate gradient itera-
tive algorithm [40] is used to solve the linear system. A diagonal preconditioner
is used in order to improve the ill-conditioning due to the penalization coeffi-
cients. However, a more efficient preconditionner would be the inverse of the
mass matrix.
For convection-diffusion problems, a conjugate gradient squared algorithm [41]
is used to solve the linear system. In this case, a ILLU preconditioner is im-
plemented .
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5.2.2 Notations

In order to evaluate the accuracy of the different variants presented in the
previous sections, several error calculations are performed. As the analytic
solution in the original domain of the test problems can be determined for
coefficients of (P̃) correctly chosen, the error eh is defined as the difference in
Ω̃h between the analytic solution ũ and the computational one uh:

eh = ũ − uh

A discrete L2-norm is computed on the approximated original domain Ω̃h:

∀ϕh ∈ Q1, ||ϕh||2L2(Ω̃h) = (
∑

K∈Th,K⊂Ω̃h

||ϕh||2L2(K))

where ||ϕh||2L2(K) is performed using a numerical integration exact on Q1(K):

∫

K
ϕ2

h dx =
4∑

i=1

meas(K)

4
ϕ2

h(xi) + R(ϕ2
h)

(the subscript i denotes the vertex of the element K)
with R(ϕ) ≡ 0 if ϕ ∈ Q1.
Here R(ϕ2

h) 6= 0 because ϕh ∈ Q1 ⇒ ϕ2
h ∈ Q2 . However the approximated

coefficients of the fictitious problem (P) are Q0. In the numerical resolution,
the integrals on Ω̃h are then roughly approximated. Thus, a Q1 numerical
integration is sufficient to compute the discrete L2 error norm. Hence, the
solution uh does not need to be reconstructed in the Q1 base.
Finally,

||ϕh||2L2(Ω̃h) '
∑

K∈Th,K⊂Ω̃h

4∑

i=1

meas(K)

4
ϕ2

h(xi)

The discrete L2 norm of the error eh in the approximated original domain
Ω̃h will be called absolute discrete L2 error norm :

||eh||L2(Ω̃h) = ||ũ − uh||L2(Ω̃h)

while the relative discrete L2 error norm will be the ratio of the absolute
discrete L2 error norm to the discrete L2 norm of the analytic solution ũ:

||eh||L2(Ω̃h)

||ũ||L2(Ω̃h)

=
||ũ − uh||L2(Ω̃h)

||ũ||L2(Ω̃h)

The error can be divided into three parts: a modelling error, an interface
discretization error and a numerical scheme error. If uη denotes the solution
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of the continuous fictitious problem (depending on η due either to the penal-
ization in the Dirichlet case or the vanishing of the external flux in the Robin
case), we have:

||ũ − uh||6 ||ũ − uη||
︸ ︷︷ ︸

modelling error

+ ||uη − uh
η ||

︸ ︷︷ ︸

interface discretization error

+ ||uh
η − uh||

︸ ︷︷ ︸

numerical scheme error
︸ ︷︷ ︸

discretization error

In order to study the behavior of the modelling error, the discretization error
has to be negligible compared to the modelling one. The discretization step
has to be very small. To study the discretization error, a small penalization
parameter η is chosen.

5.2.3 Local adaptive mesh refinement

After selecting the best approach (in term of error value), a local adaptive
mesh refinement is performed. As the immersed interface Σ is coarsely approx-
imated by the spread interface ωh,Σ, the refinement area is chosen around the
spread interface in order to improve the accuracy of the solution. A three-grid
LDC algorithm (two refinement levels) is applied on each initial mesh. At each
level, the local refinement zone is composed by all the elements of the spread
interface ωh,Σ and their neighbors. This choice makes it possible to correct the
values of all the nodes located in the spread interface (see the LDC algorithm
Section 4). If Gl is the initial coarse grid, the local nested sub-grids Gl+p are

such that hl+p =
hl

2p
(see Figure 6).

Figure 6. Example of a three-grid composite mesh

When the local adaptive mesh refinement is computed, it can be interesting
to compute a composite L2 error norm instead of the “coarse” discrete L2 error
norm on the original domain. On the initial coarse domain, this composite L2
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norm enables us to take into account the approximated solutions obtained on
the local fine nodes.
The composite L2 norm is calculated on the initial domain by the same way
as the “coarse” discrete L2 norm. The only difference between these two norms
stands in the L2 norm evaluation of the refined elements. For the evaluation
of the composite L2 norm, the L2 error norm on the refined elements is esti-
mated by the sum of the discrete L2 error norms on each local fine element
(of the fine grid generated from the current element) included in this coarse
element. This algorithm is recursively applied to each element until the local
finest level is reached.
On each nested grid, the iterative solvers have to deal with a relatively small
number of degrees of freedom only. Thus, the implementation of this refine-
ment method is relatively cheap.

5.3 Results

5.3.1 Diffusion problems

5.3.1.1 Dirichlet case

The problem solved in the original domain Ω̃ is:

(P̃)







−4ũ = 4 in Ω̃
∂ũ

∂n
= 0 on Γ̃

ũ = 0 on Σ

With the generic formulation of the diffusion problem (P̃) (see section 2.2)

ã ≡ 1(ã ≡ Id), f̃ ≡ 4 and ũ = uD = 0 on Σ (Dirichlet B.C.)

The analytic solution of this problem is:

ũ = 1 − r2 in Ω̃ where r =
√

x2 + y2

This problem is computed on the fictitious square domain using the two ap-
proaches described in Section 2.3.1.

First, the asymptotic behavior of the solution is investigated with respect to
the penalization parameter η. Thus, the modelling error can be estimated. In
order to have a discretization error as negligible as possible, a 256× 256 mesh
is used. The results obtained for the exterior penalization (second approach)
are presented.
In Figure 7, it can be observed that the L2-norm of the modelling error varies
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10−10 10−8 10−6 10−4 10−2 100

eta

10−2

10−1

100

||u−uh||/||u||

Relative discrete L2 error norms versus eta  (for h=1/256)
Dirichlet B.C.

L2 penalty
Regression => slope = 0.33
H1 penalty
Regression => slope =0.75

Figure 7. Modelling error for a Dirichlet diffusion problem with an exterior penal-
ization

with respect to the penalization parameter η like O(η
1

3 ) for the L2 penalty, and

like O(η
3

4 ) for the H1 penalty. In [30], Angot theoretically estimates the H1-

norm of the modelling error with respect to η. These estimations are in O(η
1

4 )
for the L2 penalty and in O(η) for the H1 penalty. As the error estimates of
the L2-norm should be smaller, the asymptotic behavior of the modelling error
obtained with the H1 penalty is in contradiction with the error estimates of [30]
in our approach. This can be explained by the fact that since the H1 penalty
modelling error converges rapidly, only a few points are used to estimate the
asymptotic behavior of the modelling error.
The stagnation observed in Figure 7 corresponds to the discretization error.
For small enough η, the modelling error becomes negligible compared to the
discretization one, hence the error on the solution tends to the discretization
error.
The following computations are performed with a H1-penalty method setting
η = 10−12 in order to obtain a negligible modelling error compared to the
discretization error.

The approximated solutions obtained with the two Dirichlet approaches and
the analytic one are represented in Figure 8. It can be seen that the penalty
coefficient makes it possible to correctly impose uh ' uD = 0 by penalizing
either the spread interface (first approach) or the exterior domain (second ap-
proach). The exterior penalization seems to lead to a solution that is closer
to the analytic solution than the solution obtained using the spread inter-
face penalization. However, the accuracy of the different penalization methods
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Approximated solutions for eta=10−12

(32*32 mesh − diagonal square section)

Penalization on the spread interface
Analytic solution (in the original domain)
Penalization on the exterior domain

Figure 8. Approximated solutions in the Dirichlet case for a diffusion problem

seems to strictly depend on the geometry of the original domain Ω̃. Performing
the Finite Element Method, the reaction coefficient is computed by element
(bh ∈ Q0). All the nodes belonging to a penalized element are then penal-
ized. The spread interface penalization induces the penalization at uD of all
the spread interface nodes. Hence, interior nodes of the original domain are
penalized. The exterior penalization imposes uh ' uD on the whole exterior
domain and then on the exterior nodes of the spread interface. With an origi-
nal geometry of quarter of a disk, interior penalized nodes are globally farther
from the immersed interface Σ than the exterior nodes of the spread interface
(see Figure 5).

For each approach, the relative discrete L2 error norms with respect to
the discretization step h are reported in Figure 9.
As |meas(Ω̃h)−meas(Ω̃)| = O(h), our fictitious domain approach is expected
to be a first-order method. Figure 9 confirms that the two Dirichlet approaches
are first-order methods. The interface discretization error leads to a “global”
discretization error in O(h) even if the numerical scheme error is in O(h2) for
the L2-norm (see [39]).

As illustrated in Figure 10, the main differences between the approximated
solution and the analytic one are located around the spread interface. An
adaptive mesh refinement is performed in this zone. At each level, an H1

exterior penalization is performed. The three-grid LDC algorithm converges
within three V-cycles (see Figure 11). The relative discrete L2 error norms on
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1/41/81/161/321/641/1281/256
discretization step

10−3

10−2

10−1

100

||u−uh||/||u||

Relative error norms (discrete L2 norm) − Dirichlet B.C.

H1 spread interface penalization
Regression : slope = 0.95
H1 exterior domain penalization (without the spread interface)
Regression : slope = 0.95

Figure 9. Discretization errors for a Dirichlet diffusion problem

Figure 10. Error distribution for the exterior penalization - Dirichlet diffusion prob-
lem - 32x32 mesh

the fine levels have been computed extending by 0 the error in the part of
the original domain Ω̃h with an empty intersection with the refinement zone.
Moreover, on each level, the absolute discrete L2 error norm is divided by the
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same coarse absolute discrete L2 norm of the analytic solution.

0 1 2 3 4 5
number of V−cycles

10−3

10−2

10−1
||u−uh||/||u||

Relative error norms on each level − Dirichlet B.C.
(discrete L2 norms − 32*32 mesh)

Level 0
Level 1
Level 2

Figure 11. Representation of the relative discrete L2 error norms on each refinement
level - Dirichlet diffusion problem

As shown in Figure 12, with a local refinement around the immersed in-
terface Σ, the error on the initial coarse grid is similar to the error obtained
without refinement on a mesh with a discretization step equal to the local
finest grid’s one. It confirms that the most important error is located near
the immersed interface. Moreover, for fine mesh steps, the composite L2 error
norm and the relative L2 error norm on the initial coarse domain are similar.
Figure 12 enables us to conclude that the results obtained with refinement
vary like O(hf ) where hf is the discretization step of the local finest refine-
ment grid (last level of refinement). The combination of local adaptive mesh
refinement with the spread interface fictitious domain method allows us to
increase the precision of the solution even if the method remains first-order.

5.3.1.2 Robin case

The following problem is considered:

(P̃)







−4ũ = 16r2 in Ω̃
∂ũ

∂n
= 0 on Γ̃

−∂ũ

∂n
= u + 3 on Σ
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1/41/81/161/321/641/1281/256
discretization step

10−3

10−2

10−1

100

||u−uh||/||u||

Relative L2 error norms  − F.D.M. + A.M.R. −Dirichlet B.C.
 

H1 exterior domain penalization => slope=0.95
Mesh refinement (3 grids) + H1 exterior penalization=> slope=0.95
Composite error norm 

Figure 12. Discretization errors with or without refinement - Exterior penalization -
Dirichlet diffusion problem

Identifying with the generic formulation (P̃), we get:

ã ≡ 1(ã ≡ Id), f̃ = 16r2, αR = 1 and gR = 3 (Robin B.C.)

The solution of this problem is:

ũ = 2 − r4 in Ω̃

The behavior of the three approaches presented in Section 2.3.2 are investi-
gated. We chose η = 10−12 to make the external flux vanish. The modelling
error is then negligible.

In Figure 13, all these approaches are approximately first-order methods up to
a 128×128 mesh. For a 256×256 mesh, error stagnation seems appear for the
variants involving a global approximation of the characteristic parameter ε.
The method using a piecewise linear approximation of the interface leads to
slightly smaller errors.

Local adaptive mesh refinement is performed on the methods involving

either global approximations of epsilon
(

constant case ε =
meas(ωh,Σ)

meas(Σ)
and

volume weighted case εK =

∑

K
[τK .meas(K)]

τK .meas(Σ)

)

or a local approximation of
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1/41/81/161/321/641/1281/256 discretization step
10−2

10−1

100

||u−uh||/||u||

Relative error norms (discrete L2 norm) − Robin B.C.

Global approximation − Constant epsilon  => slope=0.80
Global approximation − Volume weighted epsilon  => slope=0.84
Local approximation => slope =0.9

Figure 13. Discretization errors for a Robin diffusion problem

epsilon
(

linear approximation εK =
meas(K)

meas(Σl,K)

)

. As in the Dirichlet case, a

three-grid LDC algorithm is computed, which converges by three V-cycles.

1/41/81/161/321/641/1281/256 discretization step
10−2

10−1

100

||u−uh||/||u||

Relative error norms − F.D.M. + A.M.R. − Robin B.C.

Global approximation − Constant epsilon => slope = 0.8
Mesh refinement (3 grids) + constant epsilon 

(a) Constant epsilon

1/41/81/161/321/641/1281/256 discretization step
10−2

10−1

100

||u−uh||/||u||

Relative error norms − F.D.M. + A.M.R. − Robin B.C.

Global approximation − Volume weighted epsilon => slope=0.84
Mesh refinement (3 grids) + volume weighted epsilon 

(b) Volume weighted epsilon

Figure 14. Discretization errors with or without refinement - Global approximations
of ε - Robin diffusion problem

The results obtained with the local mesh refinement (see Figures 14 and 15)
confirm the first conclusions drawn from Figure 13. The methods with global
approximations of ε do not remain the first-order accuracy for fine meshes.
Indeed, error stagnation is observed in Figure 14. Such stagnation is due to
the global estimation of ε (equation (6)) since no stagnation appears with a
local approximation of ε (see Figure 15). A local correction enables us to have
a discretization error in O(hf) with hf the discretization step of the local
finest grid.
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1/41/81/161/321/641/1281/256
discretization step

10−3

10−2

10−1

100

||u−uh||/||u||

Relative error norms − F.D.M. + A.M.R. − Robin B.C.

Local approximation => slope = 0.9
Mesh refinement (3 grids) + local approx => slope = 0.9

Figure 15. Discretization errors with or without refinement - Local approximation
of ε - Robin problem

5.3.2 Convection-diffusion problems

5.3.2.1 Dirichlet problem

The Dirichlet problem is considered as follows:

(P̃)







−4ũ + div(ṽũ) = 4 in Ω̃
∂ũ

∂n
= 0 on Γ̃

ũ = uD = 0 on Σ

with ṽ =
r

2
er where r =

√
x2 + y2 and er is the radial unit vector.

The analytic solution of this problem is:

ũ = 4 (1 − exp(
r2 − 1

4
)) in Ω̃

The associated fictitious problem (P) (see section 3.1) with a spread inter-
face approach is solved in Ω with the two Dirichlet embedded B.C. methods:
the spread interface penalization and the exterior penalization (see Table 2).
The following results have been performed with η = 10−12 to obtain a negli-
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gible modelling error compared to the discretization error.

1/41/81/161/321/641/1281/256
discretization step

10−3

10−2

10−1

100
||u−uh||/||u||

Relative L2 error norms − Dirichlet B.C. 

H1 spread interface penalization  => slope = 1
H1 exterior domain penalization  => slope = 0.9

Figure 16. Discretization errors for a Dirichlet convection-diffusion problem

Figure 16 shows the convergence of the numerical errors (performed with
the H1 penalty) with respect to the mesh step h. As for a diffusion problem,
since |meas(Ω̃h) − meas(Ω̃)| = O(h) all the Dirichlet embedded B.C. variants
are of first-order accuracy for the L2-norm.
An adaptive mesh refinement is performed around the immersed interface. On
each local grid, a Q1 F.E. scheme with an H1 exterior domain penalization
method is computed. A three-grid LDC algorithm (two refinement levels) is
applied on each original mesh. As for the diffusion case, this algorithm con-
verges by three V-cycles.

As shown in Figure 17, once again the spread interface method combined with
a L.D.C. algorithm is a first-order method with respect to the discretization
step of the local finest refinement grid.
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1/41/81/161/321/641/1281/256
discretization step

10−3

10−2

10−1

100
||u−uh||/||u||

Relative L2 error norms  −  F.D.M. + A.M.R. − Dirichlet B.C.
�

H1 exterior penalization  => slope = 0.9
Mesh refinement (3 grids) + H1 ext. penalization => slope = 0.9

Figure 17. Discretization errors with or without refinement - Exterior penalization -
Dirichlet convection-diffusion problem

5.3.2.2 Robin problem

The following Robin problem is considered:

(P̃)







−4ũ + div(ṽũ) = 16r2 in Ω̃
∂ũ

∂n
= 0 on Γ̃

∂ũ

∂n
= ũ + 3 on Σ (αR = 1, gR = 3)

with ṽ = 2r3
er.

The analytic solution of this problem is:

ũ = 2 − 5

3
exp(

r4 − 1

2
) in Ω̃

The fictitious problem (P) is solved in Ω with an embedded Robin B.C.
in the spread interface (see Table 2). The results obtained with the three
approximations of the characteristic parameter ε discussed in section 2.3.2 are
reported in Figure 18.

A global approximation of the characteristic parameter ε (see Eq. (7) and
(8)) leads to an asymptotic stagnation of the error and then the first-order
precision is lost. With a local correction (see Eq. (10)), the asymptotically
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1/41/81/161/321/641/1281/256
discretization step

10−3

10−2

10−1

100
||u−uh||/||u||

Relative L2 error norms − Robin B.C. 

Global constant correction 
Global volume weighted correction
Local correction => slope=0.9

Figure 18. Discretization errors for a Robin convection-diffusion problem

first-order accuracy is then yielded for the L2-norm error. Compared to diffu-
sion problems, the asymptotic stagnation of the variants involving a global ε

appears earlier, from the 32×32 mesh. For Robin problems, a local correction
is thus required to keep the first-order method.

A local A.M.R. algorithm is performed on the method involving a local
epsilon (Eq. (10)). As in the Dirichlet case, we compute a three-grid LDC
algorithm, which converges by three V-cycles.
Figure 19 illustrates that the combination of the spread interface fictitious
domain method with an A.M.R. method leads to a discretization error in
O(hf ) with hf the mesh step of the local finest grid.

6 Conclusion

The numerical results presented in the last section prove the efficiency of
the fictitious domain method with a spread interface introduced in this article.
This method enables us to handle all the usual B.C.. Moreover, the main ad-
vantage of this method is its low cost. The numerical resolution is computed on
a single Cartesian mesh of the fictitious domain, without locally modifying the
numerical scheme. No surface mesh (on the immersed interface) is required.
Even if this is a first-order method, the combination with an adaptive multi-
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1/41/81/161/321/641/1281/256
discretization step

10−3

10−2

10−1

100
||u−uh||/||u||

Relative L2 error norms −  F.D.M. + A.M.R. − Robin B.C.

Local correction => slope = 0.9
Mesh refinement (3 grids)  + local correction => slope = 0.9

Figure 19. Discretization errors with and without refinement - Local approximation
of ε - Robin convection-diffusion problem

level local mesh refinement solver yields an error on the coarse grid similar
to the error obtained without refinement on a mesh with the local finest grid
discretization step. The over-cost of the A.M.R. resolution is relatively cheap.
Our fictitious domain method combined with a local adaptive mesh refinement
is then accurate and relatively cheap in CPU time.
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