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Theoretical study of kinks on screw dislocation in silicon
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Theoretical calculations of the structure, formation and migration of kinks on a non-dissociated
screw dislocation in silicon have been carried out using density functional theory calculations as
well as calculations based on interatomic potential functions. The results show that the structure
of a single kink is characterized by a narrow core and highly stretched bonds between some of the
atoms. The formation energy of a single kink ranges from 0.9 to 1.36 eV, and is of the same order
as that for kinks on partial dislocations. However, the kinks migrate almost freely along the line
of an undissociated dislocation unlike what is found for partial dislocations. The effect of stress
has also been investigated in order to compare with previous silicon deformation experiments which
have been carried out at low temperature and high stress. The energy barrier associated with the
formation of a stable kink pair becomes as low as 0.65 eV for an applied stress on the order of 1 GPa,
indicating that displacements of screw dislocations likely occur via thermally activated formation of
kink pairs at room temperature.

PACS numbers: 61.72.Lk, 31.15.E-, 81.05.Cy, 62.20.F-
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I. INTRODUCTION

New information about the plasticity of silicon and
other diamond lattice materials has recently emerged.
Measurements at low temperature have shown deforma-
tion without failure when silicon samples are submitted
to large shear stress.1,2,3,4 These experiments have been
carried out either by applying a high confining pressure
or by doing scratch tests. The observed configurations
of dislocations differ strongly from the dissociated dislo-
cations seen after deformation at higher temperature.5

The low temperature dislocations are undissociated and
most likely belong to and glide along the widely spaced
(111) “shuffle planes”.6 They mainly align along several
favored orientations, <110> (screw dislocation), <112>
(30◦ dislocation) and < 123 > (41◦ dislocation). Sim-
ilarly, in III-V compounds with the zinc-blende struc-
ture, deformation experiments at low temperature under
high confining pressure indicate that the low temperature
plastic deformation is governed by undissociated screw
dislocations.7,8 To understand the plastic properties of
these materials, it is then important to characterize these
undissociated dislocations.

Most theoretical studies of dislocations in diamond lat-
tice materials have focused on dissociated dislocations
with partials in the glide set (the narrowly spaced (111)
planes). For silicon, simulations have clearly shown that
the 30◦ partial dislocation core is (2 × 1) reconstructed
along the dislocation line.9,10 Two core structures have
been proposed for the 90◦ partial dislocation. They are
close in energy11,12 and both appear to be stable un-
der some conditions.13,14 Partial dislocations have also
been theoretically investigated in other materials, such
as Ge,15,16 diamond,15,17,18,19,20 GaAs21,22 and other III-
V compounds,23 as well as in silicon carbide.24,25 It is

generally believed that due to large Peierls barriers, the
partial dislocations in semiconductors move by forma-
tion of kink pairs and subsequent migration of kinks.6

In this framework, the formation energy of a single kink,
Fk(90◦) = 0.73 eV and Fk(30◦) = 0.80 eV, and kink
migration energy Wm = 1.24 eV have experimentally
been determined.26 Theoretical studies of this are dif-
ficult since many possible kink configurations have to be
considered16,27,28 and the calculations need to be car-
ried out for large systems in order to reduce the effect
of the boundaries. This makes first principles calcula-
tions where electronic degrees of freedom are included
particularly challenging and less reliable methods based
on interatomic potential functions or tight-binding are
usually employed. As a result, calculated values of the
formation energy that have been reported range from
0.04 eV to 1.2 eV (Fk(90◦)) and from 0.25 eV to 2.15 eV
(Fk(30◦)), and values for the migration energy range from
0.6 eV to 1.8 eV (Wm(90◦)) and from 0.7 eV to 2.1 eV
(Wm(30◦)).10,12,27,28,29,30

Much less information is available for undissociated
dislocations, mainly because low temperature experi-
ments require high stress conditions. Naturally, previous
investigations have focussed on the screw orientation be-
cause, among all characteristics, it always plays a special
role. Indeed, it allows for cross-slip, and in the particular
case of the diamond cubic structure, it is the orientation
where the transition between the glide set and the shuf-
fle set is possible without any structural rearrangements
relying on diffusion. Moreover, in observations after low-
temperature deformation, the screw appears as one of
the favored orientations, what could indicate significant
Peierls valleys.3 Using first-principles methods, Arias and
Joannopoulos31 have confirmed the stability of the screw
dislocation placed at the centre of an hexagon, that is
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at the intersection of two {111} shuffle planes (Fig. 1).
Pizzagalli et al. have shown32 that a screw centered at
A is more stable than two other possible positions, B
at the intersection of a glide and a shuffle plane and
C at the intersection of two glide planes. The Peierls
stress of the undissociated screw dislocation at position
A has been determined, using ab initio simulations, to
0.07µ (µ is the shear modulus of silicon).33 Therefore,
the undissociated screw can move under the effect of an
applied stress, contrary to the partials in the glide set
which cannot move without thermal activation. Allowing
for period-doubling reconstruction of the undissociated
screw dislocation core, Wang et al. have recently shown
that the glide set C core has a lower energy than the
shuffle A core.34 This is certainly an important informa-
tion to keep in mind when examining possible transitions
from the shuffle set to the glide set. However, transmis-
sion electron microscopy observations of the dislocations
after deformation at low temperature show that all parts
of an expanding loop, having different characters, are
undissociated.1 Since all parts of a gliding loop necessar-
ily glide in the same plane, the whole dislocation loop
should belong to and glide in the shuffle set. Undissoci-
ated perfect dislocations have also been investigated in
other materials such as SiC,25,35 Ge,35 diamond,18,20,35

and GaN.36

There is a serious lack of knowledge about the mo-
bility properties of undissociated dislocations, especially
about the role of kinks, their structures and energetics.
As far as we know, the only published work focuses on
the relation between dislocation velocity and kinks and
does not provide reliable data about kink energies.37 A
determination of these quantities would improve the cur-
rent knowledge of (i) the thermally-assisted motion of
the screw dislocation, through formation and expansion
of kink pairs, and of (ii) the gradual transition for strictly
screw character to non screw orientations within the ex-
panding loop. From a more general perspective, Rabier
and Demenet2 pointed out that the observation of undis-
sociated dislocations fits into the analysis of Duesbery
and Joos,38 which, if extrapolated, predicts a transition
from dissociated dislocations in the glide set in the high
temperature/low stress domain, to undissociated dislo-
cations in the shuffle set in the low temperature/large
stress domain. A possible explanation could be related
to differences in mobility properties between dissociated
and undissociated dislocations, as a function of temper-
ature and stress. Another explanation could be the dif-
ferent formation/multiplication properties. Since partial
dislocations mobility is already well characterized, deter-
mining the mobility of undissociated dislocations would
enable one to confirm the first hypothesis.

In this work, we have investigated the mobility prop-
erties of an undissociated screw dislocation in the shuffle
set, by determining kinks structures and energies from
calculations using both an interatomic potential and first
principles. The paper is organized as follows. First, mod-
els, methods and analysis techniques are described. Then

the structure and the migration and formation energies
together with the effect of an applied stress are deter-
mined using an interatomic potential and reported. In
the third part, we describe the results obtained from first
principles calculations. Finally, we discuss our results in
relation with experiments and known properties of the
mobility of dissociated dislocations in silicon.

II. METHODS AND MODELS

A. Calculations methods

The modelling of silicon has been done with both a
semi-empirical interatomic potential and a first princi-
ples description. Among the available potentials for sili-
con, we have selected the EDIP potential,39 because it
has been specifically designed for describing extended
defects,40 and it adequately reproduces the stability of
the screw dislocation.32 With this potential, the lat-
tice constant is equal to the experimental data, i.e.
a = 5.43 Å. First principles calculations have been per-
formed in the framework of Density Functional The-
ory (DFT),41,42 using the VASP distribution.43,44 Ionic
interactions have been described with a Si ultrasoft
pseudopotential,45 and wave functions have been ex-
panded on a plane waves basis with an energy cutoff
of 140 eV. The exchange-correlation contributions have
been modelled by the PW91 Generalized Gradient Ap-
proximation (GGA).46 Only the Γ-point has been con-
sidered for the Brillouin zone sampling. Finally, the sys-
tem was considered fully relaxed when all forces were
below 3×10−3 eV Å−1. With these parameters, a lattice
constant a = 5.475 Å and a bulk modulus of 99.7 GPa
have been obtained, in good agreement with experimen-
tal data.

Minimum energy paths (MEP) associated with the cre-
ation and migration of kinks have been determined using
the Nudged Elastic Band (NEB) technique.47 Investiga-
tions of the formation and migration of kinks in body-
centered-cubic or L12 materials have already been done
with a similar approach.48,49,50 Both improved tangent
and climbing images algorithms51,52 have been employed
in this work. Generally, we found that migration and for-
mation mechanisms were simple enough to be described
with a small number of images. Nevertheless, we used as
many as 30 images in EDIP simulations, and 9 in first
principles calculations.

B. Model

EDIP potential calculations were done using a large
parallelepipedic box, oriented along i = 1/4[12̄1]

(X̂), j = 1/6[111] (Ŷ), and k = 1/2[1̄01] (Ẑ).
Typical system dimensions are 38i × 78j × 20k, i.e.
126.357 Å× 122.265 Å× 76.792 Å, accounting for 59280
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FIG. 1: (color online) Ball-stick top and side representations
of the system used in EDIP calculations (only atoms in the
center of the cell are shown). The initial screw dislocation
line, oriented along [1̄01], is located at position A in the shuf-
fle plane. The screw dislocation segment between the formed
kinks is located at position A’, also in the shuffle plane. B
(mixed shuffle-glide) and C (glide) are other possible positions
for the dislocation line. Orange spheres show atoms in the im-
mediate vicinity of the dislocation core, belonging to hexagons
around positions A or A’. Red spheres are atoms belonging
to the dimer row along [1̄01] centered on position B, between
the two screw dislocations locations. Black spheres are atoms
in the center of kinks with a coordination 5.

silicon atoms. Vacuum was added next to the X̂ and
Ŷ surfaces. A kinked screw dislocation was introduced
in the center of the cell according to the following proce-
dure: (1) along Ẑ the system is split up into 20 slices of
width k (2) for each slice, the displacements field due to
a screw dislocation of Burgers vector b = k, calculated
with anisotropic elasticity theory, is applied on all atoms
(3) for slices on the outside (called the A-slice in the
following), the screw dislocation is located at the shuf-
fle position A, whereas for slices in the cell center (the

A’-slices), it is located one hexagon away along X̂, at
position A’ (Fig. 1). This procedure allows to generate
initial configurations with two opposite kinks along the
screw dislocation line, with a kink-kink separation vary-
ing by steps of b.

Specific boundary conditions have been used in the
EDIP calculations. The two surfaces having X̂ as nor-
mal have been left free to relax, since we checked that
the system size is large enough to have negligible surface
relaxation. Conversely, along Ŷ, the surfaces have been
frozen in order to apply a well defined shear stress on
the system by rigidly shifting the Ŷ surfaces. Along Ẑ,
periodic conditions have been applied, causing our model
to represent an infinite number of interacting kinks. In
one specific case the Ẑ surfaces were frozen in order to
analyse one isolated kink.

DFT numerical simulations have been performed using
cluster-like systems with periodic boundary conditions
in all directions. A vacuum of 5 Å is surrounding the
clusters, in order to prevent spurious image interactions.
The input structures for the DFT simulations have been
cut from relaxed EDIP calculations, thus retaining the
initial crystal orientation. All surface atoms have been
saturated by hydrogens, and kept at their initial posi-
tions, to preserve the long-range strain field as obtained
by EDIP calculations. For the study of kink migration,
the systems dimensions were approximately 5i× 5j× 6k,
consisting of 336 Si and 197 H atoms. For kink formation,
we have considered larger systems including 528-529 Si
and 269-271 H atoms, depending on the configuration,
with dimensions about 5i× 5j× 9k.

C. Kink analysis

In order to investigate properties as a function of the
kink-kink separation, the position of both kinks along Ẑ
must be known with a good accuracy. As will be shown
in section III, the stable structure of a kink is character-
ized by a defined symmetry, that is why the geometric
position for a kink can be defined as a local symmetry
center in the structure. In the following, this approach is
called local determination.

However, local determination is not suited for kink mi-
gration analysis, since the symmetry brakes when the
structure is evolving. Instead, here, we propose to use
fits based on elasticity theory in order to determine the
position of kinks. As in the previous section, we assume
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FIG. 2: (color online) Kinks positions along Ẑ= [1̄01] obtained
from the variation of the screw dislocation core center. Thin
dashed lines represent the disregistry in the shuffle plane for
the “slice” Si (magnified by a factor 3 for clarity). Circles on
the red thick line show the position of the screw dislocation
core along X̂= [12̄1] for each “slice” Si, ranging from A to
A’ (see Fig. 1). From this curve, the kinks position along

Ẑ= [1̄01] can be determined.

that the system can be divided along Ẑ into slices of
width b = k. For each slice, the position of the screw
dislocation core is obtained from the disregistry along
[1̄01] between atoms on either sides of the initial shuffle
(111) plane (Fig. 2). The variation of the disregistry δzi

along X̂ for the slice Si is then fitted by the following
expression

δzi = b

[

− 1

π
arctan

(

x − xc
i

∆i

)

+
1

2

]

, (1)

yielding for each slice Si the position of the screw dis-
location core xc

i
along X̂, and a quantity ∆i proportional

to the width of the dislocation core.

Computing the variation of the dislocation position xc

along Ẑ is then straightforward, and we found that such
a variation can be accurately described using two arctan
functions, one for each kink. Practically, we considered

the following fitting expression:

xc =
h

π

[

arctan

(

x − xk
1

δk
1

)

− arctan

(

x − xk
2

δk
2

)]

+ xc

A,

(2)
where xk

1 , xk
2 , δk

1 , δk
2 are positions and widths of both

kinks, and xc

A
is the position A of the screw dislocation

(see Fig. 1), and h = a
√

6/4 = 3.325 Å is the kink height.
We refer to this procedure as a global determination in
the next sections. It allows to estimate the kinks position
even during their migration, since it does not rely on the
core structure of the kink, but rather on the modification
of the strain field due to the kink. Moreover, the width of
the kinks are also obtained with this analysis. It has to be
noted that when a shear strain is applied on the system,
the calculated disregistry has been corrected accordingly.

III. EDIP RESULTS

A. Single kink

We first describe the results obtained with the EDIP
potential. The initial configurations, when searching for
the stable kink structure, have been generated using the
procedure described in the section II B, i.e. by introduc-
ing elastic displacements corresponding to a kinked screw
dislocation. Immediate relaxation leads to a metastable
kink structure containing at least one dangling bond.
Simulated annealing or by-hand displacement of few
atoms yield a more stable reconstructed kink structure,
shown in the figure 3a,b. It includes a 5-coordinated
atom in the core of the kink, and can be understood by
examining the Ẑ=[1̄01] stacking of Si dimers (colored in

red in figure 3b). These dimers are tilted relative to Ẑ,
and the tilt direction tells whether the dimer belongs to
an A-slice (positive angle) or A’-slice (negative angle).
The 5-coordinated atom serves as the linking core where
dimers from A to A’ connect. The two linking bonds
are characterized by a length of 2.53 Å, and tilting angle
of ±42.4◦ relatively to (1̄01). For comparison equivalent
dimers in a straight screw dislocation have a bond length
of 2.44 Å and a tilting angle of 21◦ (not shown), show-
ing that the bonds in the linking core are more severely
stretched. Obviously, as shown in the figure 1, top and
bottom kink configurations are symmetric, as they can
be transformed in each other with a C2 rotation along
the Ẑ axis at position B. For reasons that will become
apparent below, we name this configuration the narrow
kink.

Several attempts to find other stable kink structures
have been made. For instance, we have tried to position
the center of the kink in the middle of a slice (as defined
in section II B), rather than between two slices. No sat-
isfactory results were obtained. However, another kink
structure, depicted in figure 3c,d emerged from NEB cal-
culations of the barrier for kink migration. It is alike the
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FIG. 3: (color online) Ball-stick representations of two kink
structures stable in EDIP calculations (top: narrow kink, bot-
tom: wide kink), along two different orientations, (111) (left)
and (12̄1) (right) projections. Same color convention than in
figure 1.

kink structure described above, but instead of one, three
5-coordinated atoms constitute the kink center. Bonds
in the center have length of 2.56 Å and form an angle of
48.4◦, whereas bonds linking a 5-coordinated atom with
a 4-coordinated atom have length of 2.52 Å and form an
angle of 44.2◦ with previous bonds. We name this second
configuration the wide kink.

Using concepts already proposed for silicon partials,28

it is possible to consider the wide kink structure as the
dissociation of the narrow kink into partial kinks. These
partial kinks are then separated by a one dimensional
stacking-fault, which can be identified as a screw dislo-
cation located between A and A’, in a mixed shuffle/glide
position B (see figure 1). We have previously shown that
such a screw dislocation is stable with EDIP, but not with
first principles computations.32 In a first approximation,
according to isotropic elasticity theory,6 the kink disso-

ciation results in an energy change

∆E =
µb2(h/2)2

8π

(1 + ν)

(1 − ν)

1

d
+ γd, (3)

with the shear modulus µ = 68.1 GPa = 0.425 eV Å−3,
the Poisson coefficient ν = 0.218, the partial kink height
h/2 = a

√
6/8 = 1.66 Å, and d being the partial kinks sep-

aration. The first term represents the elastic energy de-
crease when partial kinks separates, whereas the second
term is the linear energy increase due to the 1D stack-
ing fault formation. For the line energy γ, we use the
EDIP calculated energy difference between a screw dis-
location in position A and in the mixed position B,32 i.e.
γ = 0.06 eV Å−1. Taking the derivative of the above for-
mula, we found that the energy is minimal for a partial
kink separation d = 4.2 Å= 1.1 b. This value seems to be
reasonable in comparison with the structure of both nar-
row and wide kinks. However, since the model is crude
the result should only be used as an indication of the
stability of wide kinks.

We have tried to determine the relative stability of
both kink configurations, from single kink calculations
made in a large cell using full fixed boundary conditions.
Unfortunately, narrow and wide kinks have almost the
same energy, the difference being only few meV. The
calculation is likely troublesome due to the large fixed
boundary area. Surface effects could add up and become
too large when compared with the energy difference be-
tween both configurations. Also, along Ẑ, both kinks are
not exactly located at the same distance from the sur-
faces, due to their different structures. Nevertheless, we
will show in the following that the energy difference is
indeed very small, about 100 meV, but in favor of the
narrow kink.

B. Migration

We have investigated the full process of a kink pair
formation and the subsequent migration of one kink by
performing a series of NEB calculation, with the system
described in the section II B. The initial NEB configura-
tion is a perfect screw, whereas in the final image, formed
kinks are separated by about 10b (Fig. 4). We performed
a series of 10 consecutive NEB calculations. In each cal-
culation a band of 30 images was used connecting an ini-
tial configuration containing two narrow kinks separated
by d = nb (n = 0 equals perfect screw) and a final config-
uration where d is increased to (n+1)b. For each relaxed
image, the position of the kinks have been determined
using the global method described in the section II B.

The minimal energy path (MEP) mapped to kink-kink
distance is shown in figure 4. Relatively to the per-
fect screw, the energy steeply increases until d ∼ 2b is
reached, it then bends of and reach a plateau value at
d = 10b, where the model, due to periodic boundary
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FIG. 4: (color online) Kink pair energy (bottom graph) and
kinks width (top graph) versus kink-kink separation d (in
Burgers vector b), as obtained from NEB EDIP calculations.
Insets represent the initial system (perfect screw) and the final
one (d ≈ 10b). In the bottom graph, squares (circles) mark
stable configurations with d calculated with the kink posi-
tion global (local) determination, respectively. These squares
(circles) have been fitted using elasticity theory. In the top
graph, thick (thin) lines show the kink width variation for
the displaced (fixed) kink, while squares mark the position of
stable configurations for varying d.

conditions, represents an infinite distribution of equally-
separated kinks. From d ∼ 4b to d ∼ 10b, a well de-
fined repeated pattern with a period of b clearly appears,
what corresponds to the minimum energy path for the
migration of a single kink. Figure 5 shows both the
energy variation and the structural changes for a kink
migrating from an initial configuration where the two
narrow kinks are separated by d ∼ 8.4b to the final
state where d ∼ 9.4b. The metastable state emerging
halfway through the migration process corresponds to a
wide kink. This result suggests that (1) the wide kink
is an intermediate state allowing the transition of a nar-
row kink from one stable position to another (2) the wide
kink is less stable than the narrow one, with an energy
difference of about 0.1 eV.

The transition mechanism requires the formation and
the breaking of only one bond. The initial structure with
a 5-coordinated atom is progressively stretched along
[1̄01], until a bond is formed with the next dimer (see
inset a,b in figure 5 and figure 3). The kink structure con-
taining three 5-coordinated atoms relaxes and the wide
kink is obtained. To reach the final stable state the con-
figuration evolves further after the breaking of the origi-
nal bond, leading to a transition into a narrow kink con-
figuration displaced by b (Figure 5). The kink width as
determined with expression 2 is varying in full agreement
with the above description. In fact, the width increases

almost linearly from the initial narrow kink to the inter-
mediate wide kink, then decreases similarly to the final
narrow kink (Figure 4). The determined widths are ap-
proximately 1.0b for a narrow kink and 1.2b for a wide
kink, in good agreement with the simple model developed
in the section III A.

The kink migration process is associated with two en-
ergy barriers to overcome, the migration energy Wm be-
ing the highest of these barriers. It can be determined
by substracting the kink-kink elastic interaction contri-
bution, described in the next section, from the energy
variation represented in the figure 4. For kink-kink dis-
tances larger than 5b, we found that the remaining energy
variation associated with migration is well defined, with
an average value Wm = 158 ± 5 meV.

C. Formation

Now we focus on the kink pair formation mecha-
nism and the associated energy barrier. According to
anisotropic elasticity theory,6 the energy variation as a
function of the kink-kink distance d is the elastic interac-
tion between two opposite kinks and twice the formation
energy, Fk, of a single kink,

∆E = −K

d
+ 2 Fk. (4)

In the isotropic approximation, K is proportional to
the shear modulus and is equal to µb2h2(1 + ν)/[8π(1 −
ν)] = 1.12 eV b= 4.3 eV.Å. We used expression 4 to fit53

the calculated energies of configurations corresponding
to stable kinks, with kink positions determined with the
global approach (Figure 4). The best agreement is ob-
tained for the values K = 1.6 eV b and Fk = 0.91 eV,
yielding the fitted curve labelled F1. The full energy
variation is well reproduced by this fit, except for short
kink-kink separations for which elasticity theory is not
applicable. A comparable curve F2 was obtained when
the local approach is used for determining kink positions
instead, with K = 1.4 eV b and Fk = 0.90 eV. It is
noteworthy that very close values for Fk are obtained for
the two different kink position determination methods.
Conversely, the elastic factor K is rather sensitive to the
energy variation for small d, for which kinks positions
as determined with the two different approachs tend to
differ.

In the figure 6, the MEP and the structure of several
intermediate configurations during the creation of a kink
pair on a straight screw dislocation are shown. For the
MEP, the reaction coordinate is used instead of d in the
energy plot, since the kink position analysis (section II B)
fails when kinks are not fully formed. The initial config-
uration is a straight screw dislocation located in position
A, for which the Si dimers are stacked along [1̄01], cen-
tered on position B and all tilted in the same direction
as shown in Fig. 6A. The kink formation begins with an
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same color convention than in figure 1.
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FIG. 6: (color online) Ball-stick representations ((12̄1) pro-
jection) of the successive structures leading to a kink pair
formation on a straight screw dislocation (top) and NEB cal-
culated excess energy versus reaction coordinate (bottom).
Dashed lines mark the energies associated with configurations
on top. Same color convention than in figure 1.

increase in the angle of dimers 1-2 and 3-4, until atoms
2 and 3 are close enough to form a bond (Fig. 6B). This
first reorganization is characterized by an exponential-
like increase of the energy. The energy variation then
shows a short plateau followed by another exponential-
like increase. This corresponds to yet another process, in
which the dimer 5-6 is progressively tilted, leading to the
formation of a bond between atoms 4 and 5 (Fig. 6C).
Finally, a third atomistic mechanism occurs, character-
ized by a small lowering of energy followed by a sharp
increase. The bond between atoms 3 and 4 breaks caus-
ing two very close narrow kinks to be created (Fig. 6D).
Other mechanisms for kink pair formation, involving the
formation of wide kinks in particular, have been investi-
gated and seen to result in paths being higher in energy.

In the section III B, we have described the kink width
variation for migration when the kinks are well separated.
As soon as the kink-kink distance d is larger than about
4b, the average widths for both kinks seem to be con-
stant (Figure 4). It is also intructive to examine the kinks
widths variation when they are strongly interacting, even
if for very small separations, it is difficult to draw any
meaningful conclusions. Using the simple elastic model
developed in the section III A, we have considered two
interacting kinks separated by d, each one being dissoci-
ated in two partial kinks separated by a variable width.
This model enable us to determine the kink width corre-
sponding to the minimum energy for each of the values
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FIG. 7: (color online) Kink pair energy as a function of kink-
kink separation d (in Burgers vector b), for several shear strain
values. The thick full lines represent the NEB calculations
whereas thin dashed lines show the energy variation for stable
configurations, as fitted from elasticity theory.

of d. The best solution, obtained for a line energy γ of
0.06 eV Å−1, is plotted in the Figure 4. The agreement
is not satisfying when the kinks are close, what either
could be due to the elastic model is too simple, or that
the kink width determination is not accurate enough for
small d.

D. Effect of stress

The effect of stress on formation and migration of the
kinks has been investigated by imposing a shear strain on
the system. The shear strain ǫZY has been chosen, since
it is optimal for displacing the screw dislocation along
X̂. Stress and strain are related through the appropriate
elastic constant, here the 〈1̄01〉111 shear modulus G =
1/3(C11 −C12 + C44) (G = 61.3 GPa= 0.383 eV Å−3 for
the EDIP potential). NEB calculations, similar to those
reported in the previous sections, have been performed
for shear strain values of 0.5%, 1% and 1.5%.

No noticeable changes in the migration and formation
mechanisms have been found, for any of the shear val-
ues, compared to the no-stress case. However, the energy
variation as a function of the kink-kink separation d now
shows a different behavior (Figure 7). After the initial
increase due to the formation of the kink pair, the en-
ergy now reaches a maximum value, then decreases again
when the two kinks get further separated. The maximum
is characterized by the energy E∗ and the kink-kink dis-
tance d∗. Both values exhibit a strong dependence on
the applied stress: the higher the stress, the lower E∗

and d∗.

The elasticity theory predicts an energy variation

∆E = −K

d
+ 2 Fk − σbhd, (5)

which is similar to the expression 4 but also includes
the work done by the applied stress σ.6,54 The energy
variation as a function of d and stress, using d determined
from both the global and the local approachs for stable
configurations, has been fitted with this model (Figure 7).
We found an excellent agreement, except for very small
d, indicating that this simple elastic model correctly de-
scribe the kink pair formation in a system under stress.

The obtained values K, Fk and σ, resulting from the
fits, are reported in the table I. Fk, which now represents
the single kink energy in a stressed system, is decreas-
ing when the applied stress increases. This diminution
is modest in the case of the global approach, and even
smaller for the local approach. The fitted quantity σ
should theoretically be equal to the applied stress. Here,
although close, the fitted value tends to be systematically
lower than the applied stress. A posssible explanation is
that a fraction of the applied stress is relaxed through
free surfaces having X̂ as normal.

From the NEB calculations, E∗ and d∗ can be deter-
mined as a function of stress (Table I). Those are im-
portant quantities since they define the energy barrier to
overcome to form a stable kink pair. In a non stressed
system, the kink pair is never stable and the asymptotic
value E∗ is simply 2Fk + Wm = 1.94 eV. Our results
indicate that both E∗ and d∗ are strongly dependent on
the stress. For the largest applied stress considered here,
about 1 GPa, we found that the energy barrier (E∗) is
reduced to 0.65 eV and is reached as soon as kinks are
separated (d∗) by 1.73 b, i.e. 6.64 Å.

Finally, the kink migration barriers Wm have been de-
termined for each applied stress, by substracting the en-
ergy variations given by eq. 5 from the initial energy
curves. Computed values, obtained for large kink-kink
distances, are reported in the table I, and indicate that
Wm is sligthly decreasing when the stress increases. It
is also interesting to examine the variation of the energy
barriers for migration in the initial energy curves, shown
in the figure 7. The work done by the stress during the
kink migration allows to further reduce the energy bar-
rier. For instance, the latter drops to 75 meV for the
largest stress considered here.

IV. DFT RESULTS

A. Single kink: structure

We now focus on the results obtained from first-
principles calculations, in particular the structure of the
kink. The section III A described single kink EDIP calcu-
lations using a large cell and fixed boundaries. From this
structure, a cluster-like system of 529 Si atoms, centered
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TABLE I: Kink pair formation and migration data, from EDIP calculations and with kinks position determined using either
the global or local determinations (see section II C). The first two columns show the applied strain and the corresponding
stress. K is the elastic prefactor, Fk the single kink formation energy, σ the stress relaxed by kinks formation and migration,
Wm the kink migration energy, E

∗ the energy barrier for a kink pair formation, and d
∗ the minimum kink-kink distance for

creating a stable kink pair.

global local

strain [%] stress [GPa] K [eV b] Fk [eV] σ [GPa] E
∗ [eV] d

∗ [b] Wm [meV] K [eV b] Fk [eV] σ [GPa]

0 0 1.60 0.91 0 1.94 ∞ 158±5 1.40 0.90 0

0.5 0.3 1.34 0.88 0.29 1.20 4.13 148±5 1.30 0.86 0.27

1.0 0.61 1.12 0.83 0.57 0.89 2.66 134±10 1.33 0.86 0.56

1.5 0.92 1.02 0.79 0.85 0.65 1.73 117±15 1.33 0.85 0.84

c d
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FIG. 8: (color online) Ball-stick representations of two kink
structures stable in DFT calculations (top: narrow kink, bot-
tom: DB kink), along two different orientations, (111) (left)
and (12̄1) (right) projections. Same color convention than in
figure 1.

on a relaxed narrow kink, has been cut out. The sur-
face Si atoms were kept at fixed positions and saturated
with a total of 271 hydrogen atoms. Forces relaxation
yields a configuration close to the initial guess, as shown
in the upper part of the figure 8, proving that the nar-
row kink configuration is stable within DFT. The two
bonds in the kink core have a bond length of 2.67 Å, and
are tilted by 39◦ relatively to (1̄01). For comparison,
a straight screw dislocation relaxed within DFT exhibit
dimers with a bond length of 2.46 Å and a tilting angle
of 21◦. This suggests that the core of the narrow kink
is characterized by largely stretched bonds. Performing
EDIP simulations with the same system, we found a bond

length of 2.53 Å, indicating stronger bonds, with a rather
similar tilting angle of 39◦.

Relaxation from different initial structures revealed
one new kink configuration, shown in the lower part
of Figure 8. When compared to the narrow kink, a
stretched bond in the kink core no longer exists, caus-
ing a 3-coordinated atom. We called this configuration
the DB (Dangling Bond) kink. The two dimers on both
sides on the 3-coordinated atom are characterized by a
length of 2.52 Å, and a tilting angle of 31◦ relatively to
(1̄01) (Fig. 8d). If the center of the kink is defined by
its geometry (local determination), it appears that the
location of the DB kink is shifted by approximately b/2
compared to the narrow kink.

It would be interesting to know whether the narrow
kink or the DB kink is the most stable geometry. Un-
fortunately, both configurations are very dependent on
the initial conditions, i.e. on the stress state imposed by
the rigid surface. In fact, it was not possible to obtain
the DB kink from the system with surfaces to conform
a narrow kink, and vice versa. Also, the calculated to-
tal energies cannot be directly compared since they have
been obtained with different fixed surface configurations.
The kink structure results from a competition between
an elastic energy and a chemical energy. For the narrow
kink, the gain in chemical energy by forming bonds is bal-
anced by the loss in elastic energy when atoms are moved
closer together. For the DB kink, it is the opposite. We
will show in the next section that both configurations are
quasi degenerate.

B. Migration

The kink migration process has been investigated by
performing NEB calculations with 9 images. Initial and
final states are obtained from large cell configurations
relaxed with the EDIP potential and originate from the
computations of kink pair energies as a function of the
kinks separation. Clusters were cut from these configura-
tions, in such a way that a kink was located in its center.
Surface atoms, saturated by hydrogen atoms, are kept
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FIG. 9: (color online) NEB calculated excess energy versus
reaction coordinate (middle graph) corresponding to the mi-
gration of one kink, for two different kink-kink separations d,
and ball-stick representations ((12̄1) projection) of the suc-
cessive structures (same color convention than in figure 1) for
d ranging from 5.5b to 6.5b.

fixed at their initial positions to retain the displacement
field for two opposite kinks in interaction, as relaxed by
the EDIP potential. With this procedure, we are able
to mimic the migration of a single kink with an increas-
ing kink-kink separation, using only one single kink in
the cluster. The method relies on the two following as-
sumptions: (i) during the kink migration the interaction
between the kink and the surface does not change sig-
nificantly (ii) the EDIP potential correctly describes the
deformation field far from the kink. The cluster cells ap-
proximate dimensions are 6i × 12j × 5k, and it consists
of 336 Si and 197 H atoms.

Three cases have been considered, corresponding to
increases in the kink-kink separation d from 1.5b to 2.5b,
3.5b to 4.5b, and 5.5b to 6.5b. In the first case, d is small
enough for both kinks to be included in the cell. However,
the kinks are too close to be stable and relaxation leads to

their annihilation, suggesting that an investigation of the
mechanism of the kink pair formation within DFT using
the reduced size systems is impossible. The MEPs for the
two other cases, as well as intermediate configurations
during kink migration, are shown in the figure 9.

For both cases, relaxation of the initial and final im-
ages leads to a stable DB kink (fig. 9a,e). Starting from
this geometry, the kink migration occurs by formation
and breaking of one bond. First, the 3-coordinated atom
moves toward the atom defining the next dimer along the
migration direction. This dimer is progressively stretched
(fig. 9b), until a bond is formed. At this point, the pro-
cess is halfway and the structure corresponds to a narrow
kink (fig. 9c). The dimer is further stretched, and finally
breaks (fig. 9d). The DB kink structure is recovered but
now shifted by b along [1̄01].

Figure 9 shows the DFT calculated energy variation
associated with the kink migration. For both cases, the
curves are simpler than the EDIP results (fig. 5), since
no intermediate metastable configuration appears. Nev-
ertheless, similar features are observed. In fact, the final
configurations have energies larger than initial ones, and
migration from 5.5b to 6.5b is associated with a smaller
barrier than migration with d ranging from 3.5b to 4.5b.
This being due to the long range elastic interaction be-
tween the two kinks.

For both MEPs, the migration energy is given by the
energy maxima, which correspond approximately to a
narrow kink structure, with values of 115 and 75 meV. If
the migration energy decreases as an inverse power law as
a function of d, what was shown in the large scale EDIP
calculations, it is possible to extrapolate the asymptotic
limit. For DFT, we found that this limit is close to zero.
As a result, the DB and narrow kink configurations would
be quasi degenerate in energy for an isolated kink, ex-
plaining why the outcome of single kink relaxations de-
pends on fixed surface conditions. Nevertheless, our kink
migration calculations suggest that in presence of another
kink, the DB kink configuration is slightly more stable.

The energy barriers for a reverse kink migration pro-
cess, i.e. for a decrease of d and a subsequent recombina-
tion of the kinks, are indicated in the figure 9. They are
very small, with respective values of 13 and 26 meV, and
provides a simple explanation of the spontaneous annihi-
lation of kinks for d smaller than 3b.

C. Single kink: energy

Large cell EDIP calculations allowed us to determine
the kink formation energy Fk from the energy variation
as a function of the distance between kinks. However,
since DFT computations implie much smaller cells, Fk

has to be computed by other means. The two main issues
are the small cell dimensions and the fact that only total
energy is accessible from first principles calculations. We
used small cluster cells with fixed surfaces, leading to
non negligible interactions between screw segments and
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FIG. 10: (color online) Sketch of the 4 systems used for the
determination of the kink formation energy.

the surfaces. Also, the energies of the cluster surfaces
have to be known. It is likely that both contributions
are of the same order or larger than Fk.

Nevertheless, in the following we show that it is pos-
sible to determine Fk by combining the energies of four
different systems, schematically depicted in the figure 10.
System 1 (2) is a perfect screw dislocation located in A
(A’) (labelled as in figure 1). System 3 (4) includes a
kink changing the screw location from A to A’ (from A’
to A). All systems are constructed in such a way that the
kink is in the center of the cell. The total energies of the
4 systems are

E1 = Escrew + I1 + γa + γb, (6a)

E2 = Escrew + I2 + γc + γd, (6b)

E3 = Escrew + I3 + γa + γd + Fk, (6c)

E4 = Escrew + I4 + γc + γb + Fk. (6d)

Here, Escrew is the screw dislocation energy while γa−d

are energies of the Ẑ-surfaces (Figure 10). Ii are inter-
action terms and include contributions from the interac-
tion between the fixed boundaries, and both the screw
segments and the kink. Simple arithmetic leads to the
following expression where the surface energies γa−d have
cancelled out

2Fk = [(E3 + E4) − (E1 + E2)] + Θ (7)

with Θ = [(I3 + I4) − (I1 + I2)]. Theoretically, Θ is
simply twice the energy contribution coming from the in-
teraction between a single kink and the fixed boundaries,
and should be negligible in a large cell. We checked this
assumption by computing δE = (E3 + E4) − (E1 + E2)
using the EDIP potential and large cells (21i×42j×20k)
with fixed boundaries. We found δE=1.83 eV, i.e. very
close to 2Fk=1.82 eV as determined in the section III.

Initial structures for first-principles calculations have
been prepared by cutting out clusters, centered on kinks,
from large systems relaxed with the EDIP potential. This
procedure was used to reduce the unwanted interactions
between the kink and the surfaces. Furthermore surface
atoms with three dangling bonds were removed. All re-
maining surface atoms have been locked to their original

positions, and saturated by hydrogen atoms. The clus-
ters include 529 Si+270 H (system (1)), 528 Si+270 H
(system (2)), 529 Si+271 H (system (3)) 528 Si+269 H
(system (4)), resulting in dimensions close to 6i×11j×8k.
One can see that the total numbers of Si and H atoms in
(3)+(4) and (1)+(2) are equal, validating equation 7.

Forces relaxation for systems (3) and (4) leads to differ-
ent kink configurations, a narrow kink structure (3) and
a DB kink (4). However, we have already shown in the
previous section that these two kink structures are almost
degenerate in energy. Using equation 7, our calculated
δE is 2.78 eV. However, it is likely that Θ is not negligi-
ble for the small systems employed in DFT calculations.
To estimate this term, EDIP calculations with equivalent
systems were performed. We found δE=1.89 eV, giving
Θ=0.07 eV, provided that the EDIP kink formation en-
ergy is Fk=0.91 eV. Using this value in Eq.7, we found
the DFT kink formation energy to be Fk=1.36 eV.

V. DISCUSSION

A. Kink structure and stability

Simulations have revealed that three kink geometries
are possible on an undissociated screw dislocation. Two
kink configurations, labelled narrow and wide, are stable
when using the EDIP potential (fig. 3). For DFT calcula-
tions, we found two stable configurations, the same nar-
row structure and a new one, labelled DB (fig. 8). Actu-
ally, the three possible configurations are closely related.
A kink on a screw dislocation line is characterized by the
necessary reversing of the tilting angle of dimers stacked
along the axis Ẑ at the B position (see Fig. 1). The three
kink configurations possess this feature, at the expense
of one (narrow kink) or three (wide kink) 5-coordinated
atoms, or one 3-coordinated atom (DB kink). All at-
tempts to obtain other stable geometries, such as with no
over- or sub-coordinated atoms, were unsuccessful. This
is an entirely different situation compared to partial dis-
locations in silicon,16,27,28 or to screw dislocations in bcc
metals,55,56,57,58 for which a large number of different
kink geometries are possible.

The investigation of the kinks stability indicates that
for EDIP the narrow kink is favored, while for DFT the
narrow and DB kink are degenerate in energy. Additional
EDIP calculations showed that for EDIP an initial DB
kink structure relaxes to a narrow kink. We did not try to
calculate a wide kink with DFT, since it is very unlikely
that it would be stable. Hence, two stable configurations
are possible for a kink on a perfect screw dislocation.
In view of the reduced sizes of our systems, limiting the
accuracy of the calculations, it would not be credible to
assert which of the configuration that is the more stable
one. On the basis of DFT calculations, it is reasonable to
conclude that such an information is not relevant, as the
energy difference is so small that a kink would not stay
in one single defined geometry for a significant amount
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FIG. 11: (color online) Ball-stick representations ((12̄1) pro-
jections) of possible successive structures leading to a kink
pair formation from a straight screw dislocation. Same color
convention than in figure 1.

of time.

B. Kink migration

An energy barrier of 158 meV for the kink migration
process is calculated with EDIP, whereas it is found to
be a negligible barrier within DFT. Even if the latter is
likely associated with uncertainties due to the reduced
sizes of the computational systems, it appears that the
migration barrier is nevertheless very small. Such a small
energy is common for metals, but not for covalent mate-
rials like silicon. Then, at room temperature, kinks along
the screw dislocation in silicon should be highly mobile.

EDIP and DFT calculations lead to different structural
changes during migration. However, the mechanisms al-
lowing the kink movement are similar in both cases, since
it requires the formation and the breaking of one single
bond. These bonds are highly stretched, in particular
in DFT, suggesting that the energy cost for breaking or
forming a bond is low, what explains the low kink migra-
tion energy determined with both methods.

C. Kink formation

We have proposed a possible mechanism for the for-
mation of a kink pair along a perfect screw dislocation,
on the basis of EDIP calculations (Fig. 6). Like all
mechanisms described in this work, it requires the for-
mation and breaking of bonds between atoms belonging
to dimers stacked along Ẑ. A single kink is characterized
by a reversing of the dimers tilt. The formation of a kink
pair then requires two changes in the tilt of the dimers,
what also can be observed in figure 6c. The creation of
the kink pair is associated with a significant energy in-
crease. After formation, the kinks still have to overcome
a large elastic interaction in order to separate from each
other. Reduced system sizes and the very small recom-
bination barrier did not allow us to investigate kink pair
formation within DFT. Nevertheless, we propose a pos-
sible process, depicted in the figure 11. First steps are
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FIG. 12: (color online) Variation of E
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monds), and Wm (squares) as a function of the applied stress.
Dashed lines are fit from the formulas described in the sec-
tion VD.

similar to the EDIP result, with the formation of one
bond between atoms 2 and 3 (Fig. 11b). Then, unlike
the case for EDIP, bonds 1-2 and 3-4 break, leaving only
one single dimer with a reverse tilt and two 3-coordinated
atoms (Fig. 11c). This geometry, simple and very narrow,
includes a pair of opposite kinks, although it is almost
certain that it is not stable. Subsequent kink migration
leading to an increasing separation would, however, sta-
bilize the kink pair (figure 11d).

A single kink formation energy Fk = 0.90 eV has been
determined for the EDIP potential from the creation and
separation of a kink pair. Using DFT, we have computed
that Fk = 1.36 eV by combining the results of four to-
tal energy calculations. It is rather difficult to propose
one unique final value from the two models. While EDIP
computations have been performed in large systems, with
a fine control of the effect of boundary conditions, semi-
empirical potentials for silicon often suffer from an intrin-
sic lack of quantitative accuracy. Conversely, a better
determination is expected with DFT, but in that case,
boundary effects could be much larger and difficult to
estimate, because of the reduced sizes of computational
systems. Due to surface constraints, it is likely that the
DFT result is an upper limit of the true value, that is why
the kink formation energy should be within the range
from 0.9 to 1.36 eV.

D. Effect of stress

Calculations with an applied shear stress have been
only performed with the EDIP potential. The results,
reported in the figure 7, can be easily fitted using equa-
tion 5. This suggests that despite the short separation,
the kink energy is well described by the elastic interac-
tion model.6,54 According to this model, the saddle point
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for the kink pair stability is defined by

E∗ = 2
[

Fk − (Kσbh)
1

2

]

, (8)

and

d∗ =

(

K

σbh

)
1

2

. (9)

These expressions have been used for to fit the data re-
ported in the table I and shown in Figure 12. It appears
that the energy barrier E∗ variation as a function of shear
stress is accurately described by the elastic interaction
model. The best agreement is obtained for Fk = 0.97 eV
and K = 1.47 eV b. Using these parameters, it can be es-
timated that the barrier for the formation of a stable kink
pair would vanish for an applied stress of σ ≃ 2.1 GPa.
It is more difficult to fit the variation of d∗. A possible
explanation is that it is difficult to determine precisely
the distance beetween the two kinks when they are close.

Finally, the figure 12 also shows the variation of Wm

as a function of the applied stress. The best fit is
obtained with a linear regression and a coefficient of
45 meV GPa−1. Such a variation indicates that a kink
on the screw dislocation cannot be strictly compared to
a small edge segment. In fact, otherwise, the force due
to the applied shear stress would be zero, and Wm would
remain constant. However, it is difficult to make asser-
tions here because of the limited amount of data and the
very low migration energies.

E. Other zinc blende materials

All our investigations concerned silicon, because of the
large body of experimental and theoretical data. How-
ever, it is interesting to discuss how our results could be
appropriate for other materials with zinc-blende struc-
ture. For example, germanium has been shown to have
similarities with silicon regarding dislocation properties.
In the low temperature/large stress regime, screw dislo-
cations are also expected to be non-dissociated and lo-
cated in the shuffle set.35 It is then likely that the kinks
creation and migration mechanisms proposed in this pa-
per could also be valid for Ge. If so the kink migration
barrier could be approximated as the energy difference
between the DB and the narrow kinks, or between the
narrow and the wide kinks. It is however difficult to de-
termine which of the three possible kink structures will
be the more stable one. While it is less energetically
expensive to have overcoordinated atoms in Ge (com-
pared to Si) thus favoring the narrow and the wide kinks,
the energy penalty of a dangling bonds is also smaller in
Ge, thus favoring the DB kink. It is likely that both ef-
fects are of the same order, leading to a very small kink
migration energy, as in silicon. Of more interest is the
kink formation energy. First principles calculations of
the Peierls stress of a non-dissociated screw dislocation

reveal a value approximately four times smaller for Ge
than for Si.59 Assuming that the kink formation process
is directly related to the Peierls stress, a single kink for-
mation energy should be as low as 0.34 eV in Ge.

Cubic silicon carbide is another zinc-blende semicon-
ductor for which we can extrapolate our findings. Previ-
ous calculations have shown that glide and shuffle screw
dislocations were very close in energy,35 in agreement
with experiments indicating the coexistence of shuffle
perfects and glide partials.60 We focus on the kink pairs
formation and migration for perfect screw dislocation in
the shuffle set. Kink structures in silicon carbide could
be more complex than in silicon due to the fact that
SiC is a binary compound. Indeed, on a non dissoci-
ated screw dislocation, a formed kink pair includes now
two non-symmetric kinks, with two different migration
energy barriers. It is also likely that the kink pairs for-
mation is more complex that what we found for silicon.
Nevertheless, if we follow arguments developed above for
Ge, we can predict that the kink migration energy is also
negligible in silicon carbide. Also, other calculations re-
vealed that the SiC Peierls stress is nearly twice that in
silicon,59 why it is likely that the kink formation energy
is also about twice as the one in silicon.

F. Comparison with partials

Previous studies have determined kink pairs formation
and kink migration energies for silicon partial disloca-
tions. The situation is more complex than for perfect
dislocations, since there are many possible kink config-
urations, with close energies. Experimentally, Kolar et
al have measured formation energies Fk(90◦) = 0.73 eV
and Fk(30◦) = 0.80 eV, and a kink migration energy
of Wm = 1.24 eV.26 Theoretically, consensus has not
been obtained: formation energies range from 0.04 eV to
1.2 eV for 90◦, and from 0.25 eV to 2.15 eV for 30◦, mi-
gration energies from 0.6 eV to 1.8 eV for 90◦, and from
0.7 eV to 2.1 eV for 30◦.10,12,27,28,29,30 Here, we consider
the experimental data for partials, that we compare with
our first principles computed values.

Our calculated Fk for perfect dislocations is larger than
Fk for partial dislocations. Higher values were indeed ex-
pected for perfect dislocations, since isotropic elasticity
theory6 indicates that a single kink self-energy is propor-
tional to b2. Since b(screw) / b(partial) =

√
3, it is seen

that the kink formation energy is three times larger for
perfect than for partial dislocations. The here found ra-
tio is smaller, but of the same order. Obviously, elasticity
theory only cannot be used for a quantitative determina-
tion.

We found a striking difference between partial and per-
fect dislocations regarding kink migration. While a value
of 1.24 eV has been measured for partial dislocations,26

we found that in the case of perfect dislocation, the mi-
gration energy is extremely low, almost zero. It is difficult
to find a simple explanation for such an impressive differ-
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ence, as the atomistic mechanisms for kink migration are
different for each partial dislocations, and also different
for the screw dislocation. Nevertheless, it is noteworthy
that both the core structures of the screw dislocation and
its kinks are free of complex reconstructions. A kink then
migrates easily by breaking and forming highly stretched
bonds. Conversely, partial dislocations and its numer-
ous possible kinks structures have reconstructed cores,
and mechanisms such as stretching, rotation and even
breaking of strong bonds are involved in the migration
process,28 thus requiring much larger energies.

G. Comparison with experiments

Scratch tests and deformation experiments performed
under high confinement pressure revealed that the plas-
ticity of silicon is governed by perfect undissociated dislo-
cations, supposed to be located in the shuffle set. These
experiments have been done for temperatures ranging be-
tween 150K and 700K.1,2,3,4 Recently, using two differ-
ent methods, Rabier et al. have determined that local
stresses required for displacing these perfect dislocations
are larger than 1 GPa at 573K.61,62 Then, at lower tem-
peratures (i.e. well below the brittle-ductile transition
temperature), very large stresses are required in order to
move the dislocations.

These data are in very good agreement with our model
for non-dissociated dislocations, located in the shuffle set,
and moving via the thermally activated formation and
migration of kinks under a large stress. In fact, for an
applied stress of about 1 GPa, we found that the energy
barrier for the formation of a stable kink pair is as low
as 0.65 eV (Table I). Considering that the dislocation
mobility could be described using transition state theory,
it is possible to determine the average time required for
the formation of one stable kink pair as a function of
temperature from the expression

t =
1

ν0

exp

(

E∗

kT

)

, (10)

neglecting entropic contributions. Using ν0 ≃ 1013 Hz,
the silicon Debye frequency, and E∗ = 0.65 eV, we found
t = 8 ms at 300K. Consequently, perfect dislocations
could move easily via a kink mechanism at room temper-
ature for applied stresses of the order of a 1 GPa.

VI. CONCLUSION

First principles and interatomic potential calculations
have been performed to investigate the formation and
migration of kinks on a non-dissociated screw dislocation
in silicon. We found that the structure of a single kink
can be characterized by an angular switch of the tilt for
dimers stacked along [1̄01]. Two or three configurations,

being very similar in geometry, are nearly degenerate in
energy. The single kink energy has been computed to
range between 0.9 eV and 1.36 eV. The kink migrates
by successively alternating between two configurations,
resulting in a very low migration energy, below the un-
certainly limit. As a consequence, when formed, kinks on
a non-dissociated screw dislocation in silicon will migrate
freely at room temperature. We have also investigated
the kink pair formation mechanism and its energetics us-
ing an interatomic potential, and how an applied stress
modifies the formation and migration process. We found
a strong stress effect, an applied stress of about 1 GPa
leading to a 66% reduction of the initial energy barrier
for formation. These results are in very good agreement
with experiments on silicon performed in the low tem-
perature/high stress regime.

There have been several investigations of the proper-
ties of kinks on partial dislocations in silicon. Gathering
the large compilation of data with our results, it would
be interesting to redo the analysis of Duesbery and Joós
about the glide/shuffle controversy.38 Such a study would
further require a determination of the energy barriers as-
sociated with the cross-slip from the shuffle to the glide
plane, and the dissociation into partial dislocations, what
has not been done to our knowledge. Nevertheless, such
an investigation would make it possible to understand
and characterize the transition between the high tem-
perature/low stress and temperature/high stress regimes.
Future researches should be oriented in this direction.
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