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RANK FOUR VECTOR BUNDLES WITHOUT THETA DIVISOR OVER A

CURVE OF GENUS TWO

CHRISTIAN PAULY

Abstract. We show that the locus of stable rank four vector bundles without theta divisor over a
smooth projective curve of genus two is in canonical bijection with the set of theta-characteristics.
We give several descriptions of these bundles and compute the degree of the rational theta map.

1. Introduction

Let C be a complex smooth projective curve of genus 2 and let Mr denote the coarse moduli
space parametrizing semi-stable rank-r vector bundles with trivial determinant over the curve C.
Let C ∼= Θ ⊂ Pic1(C) be the Riemann theta divisor in the degree 1 component of the Picard
variety of C. For any E ∈ Mr we consider the locus

θ(E) = {L ∈ Pic1(C) | h0(C, L ⊗ E) > 0},

which is either a curve linearly equivalent to rΘ or θ(E) = Pic1(C), in which case we say that E

has no theta divisor. We obtain thus a rational map, the so-called theta map

θ : Mr 99K |rΘ|,

between varieties having the same dimension r2 − 1. We denote by Br the closed subvariety of
Mr parametrizing semi-stable bundles without theta divisor. It is known [R] that B2 = B3 = ∅
and that Br 6= ∅ for r ≥ 4.

Is was recently shown that θ is generically finite; see [B1] Theorem A. Moreover the cases of
low ranks r have been studied in the past: if r = 2 the theta map is an isomorphism M2

∼= P3

[NR] and if r = 3 the theta map realizes M3 as a double covering of P8 ramified along a sextic
hypersurface [O].

In this note we study the next case r = 4 and give a complete description of the locus B4. Our
main result is the following

Theorem 1.1. Let C be a curve of genus 2.

(1) The locus B4 is of dimension 0, reduced and of cardinality 16.
(2) There exists a canonical bijection between B4 and the set of theta-characteristics of C. Let

Eκ ∈ B4 denote the stable vector bundle associated with the theta-characteristic κ. Then

Λ2Eκ =
⊕

α∈S(κ)

α, Sym2Eκ =
⊕

α∈J [2]\S(κ)

α,

where S(κ) is the set of 2-torsion line bundles α ∈ J [2] such that κα ∈ Θ ⊂ Pic1(C).
(3) If κ is odd, then Eκ is a symplectic bundle. If κ is even, then Eκ is an orthogonal bundle

with non-trivial Stiefel-Whitney class.
(4) The 16 vector bundles Eκ are invariant under the tensor product with the group J [2].
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The 16 vector bundles Eκ already appeared in Raynaud’s paper [R] as Fourier-Mukai transforms
and were further studied in [Hi] and [He] — see section 2.2. We note that Theorem 1.1 completes
the main result of [Hi] which describes the restriction of B4 to symplectic rank-4 bundles. The
method of this paper is different and is partially based on [P].

As an application of Theorem 1.1 we obtain the degree of the theta map for r = 4. We refer
to [BV] for a geometric interpretation of the general fiber of θ in terms of certain irreducible
components of a Brill-Noether locus of the curve θ(E) ⊂ Pic1(C).

Corollary 1.2. The degree of the rational theta map θ : M4 99K |4Θ| equals 30.

Acknowledgements: I am grateful to George Hitching and Olivier Serman for useful discussions.

Notations: If E is a vector bundle over C, we will write H i(E) for H i(C, E) and hi(E) for
dim H i(C, E). We denote the slope of E by µ(E) := deg E

rkE
, the canonical bundle over C by K and

the degree d component of the Picard variety of C by Picd(C). We denote by J := Pic0(C) the
Jacobian of C and by J [n] its group of n-torsion points. The divisor Θκ ⊂ J is the translate of the
Riemann theta divisor C ∼= Θ ⊂ Pic1(C) by a theta-characteristic κ. The line bundle OJ(2Θκ)
does not depend on κ and will be denoted by OJ (2Θ).

2. Proof of Theorem 1.1

2.1. The 16 vector bundles Eκ. We first show that the set-theoretical support of B4 consists
of 16 stable vector bundles Eκ, which are canonically labelled by the theta-characteristics of C.

We note that B4 6= ∅ by [R], see also [P] Theorem 1.1. We consider a vector bundle E ∈ B4.
Since B2 = B3 = ∅, we deduce that E is stable. We introduce E ′ = E∗ ⊗ K. Then µ(E ′) = 2 and
since E ∈ B4, we obtain that h0(E ′ ⊗ λ−1) = h1(E ⊗ λ) = h0(E ⊗ λ) > 0 for any λ ∈ Pic1(C). In
particular for any x ∈ C we have h0(E ′ ⊗OC(−x)) > 0. On the other hand stability of E implies
that h0(E) = h1(E ′) = 0. Hence h0(E ′) = 4 by Riemann-Roch. Thus we obtain that the evaluation
map of global sections

OC ⊗ H0(E ′)
ev
−→ E ′

is not of maximal rank. Let us denote by I := im ev the subsheaf of E ′ given by the image of ev.
Then clearly h0(I) = 4. The cases rk I ≤ 2 are easily ruled out using stability of E ′. Hence we
conclude that rk I = 3. We then consider the natural exact sequence

(1) 0 −→ L−1 −→ OC ⊗ H0(E ′)
ev
−→ I −→ 0,

where L is the line bundle such that L−1 := ker ev.

Proposition 2.1. We have h0(I∗) = 0.

Proof. Suppose on the contrary that there exists a non-zero map I → OC . Its kernel S ⊂ I is
a rank-2 subsheaf of E ′ and by stability of E ′ we obtain µ(S) < µ(E ′) = 2, hence deg S ≤ 3.
Moreover h0(S) ≥ h0(I) − 1 = 3.

Assume that deg S = 3. Then S is stable and S can be written as an extension

0 −→ µ −→ S −→ ν −→ 0,

with deg µ = 1 and deg ν = 2. The condition h0(S) ≥ 3 then implies that µ = OC(x) for some
x ∈ C, ν = K and that the extension has to be split, i.e., S = K ⊕ OC(x). This contradicts
stability of S.

The assumption deg S ≤ 2 similarly leads to a contradiction. We leave the details to the
reader. �
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Now we take the cohomology of the dual of the exact sequence (1) and we obtain — using
h0(I∗) = 0 — an inclusion H0(E ′)∗ ⊂ H0(L). Hence h0(L) ≥ 4, which implies deg L ≥ 5. On
the other hand deg L = deg I and by stability of E ′, we have µ(I) < 2, i.e., deg L ≤ 5. So we
can conclude that deg L = 5, that H0(E ′)∗ = H0(L) and that I = EL, where EL is the evaluation
bundle associated to L defined by the exact sequence

(2) 0 −→ E∗
L −→ H0(L) ⊗OC

ev
−→ L −→ 0.

Moreover the subsheaf EL ⊂ E ′ is of maximal degree, hence EL is a subbundle of E ′ and we
have an exact sequence

(3) 0 −→ EL −→ E ′ −→ K4L−1 −→ 0,

with extension class e ∈ Ext1(K4L−1, EL) = H1(EL ⊗ K−4L) = H0(E∗
L ⊗ K5L−1)∗. Using

Riemann-Roch and stability of EL (see e.g. [Bu]) one shows that

h0(E∗
L ⊗ K5L−1) = 7, h0(E∗

L ⊗ K5L−1(−x)) = 4, h0(E∗
L ⊗ K5L−1(−x − y)) = 1

for general points x, y ∈ C. In that case we denote by µx,y ∈ PH0(E∗
L ⊗ K5L−1) the point

determined by the 1-dimensional subspace H0(E∗
L ⊗ K5L−1(−x − y)). We also denote by

S ⊂ PH0(E∗
L ⊗ K5L−1)

the linear span of the points µx,y when x and y vary in C and by He ⊂ PH0(E∗
L ⊗ K5L−1) the

hyperplane determined by the non-zero class e.

Tensoring the sequence (3) with K−4L(x+ y) and taking cohomology one shows that µx,y ∈ He

if and only if h0(E ′ ⊗ K−4L(x + y)) > 0. Since we assume E ∈ B4, we obtain

S ⊂ He.

We consider a general point x ∈ C such that h0(E∗
L ⊗ K5L−1(−x)) = 4 and denote for simplicity

A := E∗
L ⊗ K5L−1(−x).

Then A is stable with µ(A) = 7
3
. We consider the evaluation map of global sections

evA : OC ⊗ H0(A) −→ A

and consider the set SA of points p ∈ C for which (evA)p is not surjective, i.e.

SA = {p ∈ C | h0(A(−p)) ≥ 2}.

Then we have the following

Lemma 2.2. We assume that x is general.

(1) If L2 6= K5, then the set SA consists of the 2 distinct points p1, p2 determined by the relation
OC(p1 + p2) = K4L−1(−x).

(2) If L2 = K5, then the set SA consists of the 2 distinct points p1, p2 introduced in (1) and
the conjugate σ(x) of x under the hyperelliptic involution σ.

Proof. Given a point p ∈ C, we tensorize the exact sequence (2) with K5L−1(−x − p) and take
cohomology:

0 −→ H0(A(−p)) −→ H0(L) ⊗ H0(K5L−1(−x − p)) −→ H0(K5(−x − p)) −→ · · ·

We note that h0(K5L−1(−x − p)) = 2. We distinguish two cases.

(a) The pencil |K5L−1(−x − p)| has a base-point, i.e. there exists a point q ∈ C such that
K5L−1(−x − p) = K(q), or equivalently K4L−1(−x) = OC(p + q). Since x is general, we have
h0(K4L−1(−x)) = 1, which determines p and q, i.e., {p, q} = {p1, p2}. In this case |K5L−1(−x −
p)| = |K(q)| = |K| and h0(A(−p)) = h0(K−1L) = 2. This shows that p1, p2 ∈ SA.



4 CHRISTIAN PAULY

(b) The pencil |K5L−1(−x − p)| is base-point-free. By the base-point-free-pencil-trick, we have
H0(A(−p)) ∼= H0(L2K−5(x + p)). Since deg L2K−5(x + p) = 2, we have h0(L2K−5(x + p)) = 2
if and only if L2K−5(x + p) = K, or equivalently OC(p) = K6L−2(−x). If K6L−2 6= K, then for
general x ∈ C the line bundle K6L−2(−x) is not of the form OC(p). If K6L−2 = K, then for any
x ∈ C, K6L−2(−x) = OC(σ(x)), which implies that σ(x) ∈ SA.

This shows the lemma. �

Proposition 2.3. If L2 6= K5, then S = PH0(E∗
L ⊗ K5L−1).

Proof. We consider a general point x ∈ C and the rank-3 bundle A. Let B ⊂ A denote the
subsheaf given by the image of evA. By Lemma 2.2 (1) we have deg B = deg A− 2 = 5. Moreover
H0(B) = H0(A) and there is an exact sequence

(4) 0 −→ M−1 −→ OC ⊗ H0(B)
evA−→ B −→ 0,

with M ∈ Pic5(C). It follows that the rational map

φx : C 99K PH0(B) = PH0(A) = P
3, y 7→ µx,y

factorizes through
C

ϕM−→ |M |∗ −→ PH0(B),

where ϕM is the morphism given by the linear system |M | and the second map is linear and
identifies with the projectivization of the dual of δ, which is given by the long exact sequence
obtained from (4) by dualizing and taking cohomology:

0 −→ H0(B∗) −→ H0(B)∗
δ

−→ H0(M) −→ H1(B∗) −→ · · ·

We obtain that the linear span of im φx is non-degenerate if and only if h0(B∗) = 0.

We now show that h0(B∗) = 0. Suppose on the contrary that there exists a non-zero map
B → OC . Its kernel S ⊂ B is a rank-2 subsheaf of A with deg S ≥ deg B = 5, hence µ(S) ≥ 5

2
,

which contradicts stability of A — recall that µ(A) = 7
3
.

This shows that im φx spans PH0(A) ⊂ PH0(E∗
L ⊗ K5L−1) for general x ∈ C. We now take 2

general points x, x′ ∈ C and deduce from dim H0(A)∩H0(A′) = dim H0(E∗
L⊗K5L−1(−x−x′)) = 1

that the linear span of the union PH0(A)∩PH0(A′) equals the full space PH0(E∗
L⊗K5L−1). This

shows the proposition. �

We deduce from the proposition that the line bundle L satisfies the relation L2 = K5, i.e.

L = K2κ

for some theta-characteristic κ of C. In that case we note that H0(E∗
L⊗K5L−1) equals H0(E∗

L⊗L)
and we can consider the exact sequence

0 −→ H0(E∗
L ⊗ L) −→ H0(L) ⊗ H0(L)

µ
−→ H0(L2) −→ 0,

obtained from (2) by tensoring with L and taking cohomology. We also note that there is a natural
inclusion Λ2H0(L) ⊂ H0(E∗

L ⊗ L), see e.g. [P] section 2.1. More precisely we can show

Proposition 2.4. The linear span S equals

S = PΛ2H0(L) ⊂ PH0(E∗
L ⊗ L).

Proof. Using the standard exact sequences and the base-point-free-pencil-trick, one easily works
out that for general points x, y ∈ C

µx,y = PΛ2H0(L(−x − y)) ⊂ PΛ2H0(L) ⊂ PH0(E∗
L ⊗ L).

This implies that S ⊂ PΛ2H0(L). In order to show equality one chooses 4 general points xi ∈ C

such that their images C → |L|∗ = P3 linearly span the P3. We denote by si ∈ H0(L) the global
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section vanishing on the points xj for j 6= i and not vanishing on xi. Then one checks that for
any choice of the indices i, j, k, l such that {i, j, k, l} = {1, 2, 3, 4} one has si ∧ sj = µxk,xl

. Since
the 6 tensors si ∧ sj are a basis of Λ2H0(L), we obtain equality. �

The hyperplane S = PΛ2H0(L) ⊂ PH0(E∗
L ⊗ L) determines a unique (up to a scalar) non-zero

extension class e ∈ H0(E∗
L ⊗ L)∗ by S = He, which in turn determines a unique stable vector

bundle E ∈ B4, which we will denote by Eκ.

This shows that B4 is of dimension 0 and of cardinality 16.

2.2. The Raynaud bundles. In this subsection we recall the construction of the Raynaud bun-
dles introduced in [R] as Fourier-Mukai transforms. We refer to [Hi] section 9.2 for the details and
the proofs.

The rank-4 vector bundle OJ(2Θ) ⊗ H0(J,OJ (2Θ))∗ over J admits a canonical J [2]-lineari-
zation and descends therefore under the duplication map [2] : J → J , i.e., there exists a rank-4
vector bundle M over J such that

[2]∗M ∼= OJ (2Θ) ⊗ H0(J,OJ(2Θ))∗.

Proposition 2.5. For any theta-characteristic κ of C there exists an isomorphism

ξκ : M
∼

−→ M∗ ⊗OJ(Θκ).

Moreover if κ is even (resp. odd), then ξκ is symmetric (resp. skew-symmetric).

Let γκ : C → J be the Abel-Jacobi map defined by γκ(p) = κ−1(p). We define the Raynaud
bundle

Rκ := γ∗
κM ⊗ κ−1.

Then by [R] the bundle Rκ ∈ B4. Since γ∗
κOJ(Θκ) = K we see that the isomorphism ξκ induces an

orthogonal (resp. symplectic) structure on the bundle Rκ, if κ is even (resp. odd). In particular
the bundle Rκ is self-dual, i.e., Rκ = R∗

κ. The pull-back γ∗
κ(ξ

′
κ) for a theta-characteristic κ′ = κα

with α ∈ J [2] gives an isomorphism

Rκ
∼

−→ R∗
κ ⊗ α,

hence a non-zero section in H0(Λ2Rκ ⊗α) (resp. H0(Sym2Rκ ⊗α)) if h0(κα) = 1 (resp. h0(κα) =
0). We deduce that there are isomorphisms

(5) Λ2Rκ =
⊕

α∈S(κ)

α, Sym2Rκ =
⊕

α∈J [2]\S(κ)

α.

In particular the 16 bundles Rκ are non-isomorphic. Each Rκ is invariant under tensor product
with J [2]. The isomorphisms (5) can be used to prove the relation

(6) Rκ ⊗ β = Rκβ2 , ∀β ∈ J [4].

2.3. Symplectic and orthogonal bundles. In this subsection we give a third construction of
the bundles in B4 as symplectic and orthogonal extension bundles. Let κ be a theta-characteristic.

If κ is odd, then κ = OC(w) for some Weierstrass point w ∈ C. The construction outlined in
[P] section 2.2 gives a unique symplectic bundle Ee ∈ B4 with e ∈ H1(Sym2G)+. We denote this
bundle by Vκ.

If κ is even, there is an analogue construction, which we briefly outline for the convenience
of the reader. The proofs are similar to those given in [Hi]. Using the Atiyah-Bott-fixed-point
formula one observes that among all non-trivial extensions

0 −→ κ−1 −→ G −→ OC −→ 0,
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there are 2 extensions (up to scalar), which are σ-invariant. We take one of them. Then any
non-zero class e ∈ H1(Λ2G) = H1(κ−1) determines an orthogonal bundle Ee, which fits in the
exact sequence

(7) 0 −→ G −→ Ee −→ G∗ −→ 0.

The composite map

DG : PH1(Λ2G) −→ M4
θ

−→ |4Θ|, e 7→ θ(Ee)

is the projectivization of a linear map

D̃G : H1(Λ2G) −→ H0(Pic1(C), 4Θ).

Moreover im D̃G ⊂ H0(Pic1(C), 4Θ)−, which can be seen as follows. By [Se] Thm 2 the second
Stiefel-Whitney class w2(Ee) of an orthogonal bundle Ee is given by the parity of h0(Ee ⊗ κ′)
for any theta-characteristic κ′. This parity can be computed by taking the cohomology of the
exact sequence (7) tensorized with κ′ and taking into account that the coboundary map is skew-
symmetric. One obtains that w2(Ee) 6= 0 and one can conclude the above-mentioned inclusion by
[B2] Lemma 1.4.

We now observe that by the Atiyah-Bott-fixed-point-formula h1(Λ2G)+ = h1(Λ2G)− = 1. By
the argument given in [P] section 2.2 we conclude that one of the two eigenspaces H1(Λ2G)± is

contained in the kernel ker D̃G. We denote the corresponding bundle Ee by Vκ ∈ B4.

2.4. Three descriptions of the same bundle.

Proposition 2.6. For any theta-characteristic κ the three bundles Eκ, Rκ and Vκ coincide.

Proof. If κ is odd, this was worked out in detail in [Hi] section 8 and Theorem 29. If κ is even,
the proofs are similar. �

This proposition shows all assertions of Theorem 1.1 except reducedness of B4.

I am grateful to Olivier Serman for giving me the following fourth description of the bundle
Eκ for an even theta-characteristic κ. We recall that an even theta-characteristic κ corresponds
to a partition of the set of six Weierstrass points of C into two subsets of three points, which we
denote by {w1, w2, w3} and {w4, w5, w6}. With this notation we have

Proposition 2.7. Let κ be an even theta-characteristic. We denote by Aκ (resp. Bκ) the unique
stable rank-2 bundle with determinant κ and which contains the four 2-torsion line bundles OC,
OC(w1−w2), OC(w1−w3) and OC(w2−w3) (resp. OC, OC(w4−w5), OC(w4−w6) and OC(w5−
w6)). Then the orthogonal rank-4 vector bundle Eκ is isomorphic to

Hom(Aκ, Bκ)

equipped with the quadratic form given by the determinant.

We refer to [S] section 5.5 for the proof.

2.5. Reducedness of B4. We denote by L the determinant line bundle over the moduli space
M4 and recall that the set B4 can be identified with the base locus of the linear system |L|. This
endows the set B4 with a natural scheme-structure.

We start with a description of the space of global sections H0(M4,L).

Proposition 2.8. For any theta-characteristic κ there is a section sκ ∈ H0(M4,L) with zero
divisor

∆κ := Zero(sκ) = {E ∈ M4 | h0(Λ2E ⊗ κ) > 0}.

The 16 sections sκ form a basis of H0(M4,L).
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Proof. The Dynkin index of the second fundamental representation ρ : sl4(C) → End(Λ2C4) equals
2 (see e.g. [LS] Proposition 2.6). Moreover the bundle Λ2E⊗κ admits a K-valued non-degenerate
quadratic form, which allows to construct the Pfaffian divisor sκ, which is a section of L (see
[LS]). The space H0(M4,L) is a representation of level 2 of the Heisenberg group Heis(2), which
is a central extension of J [2] by C

∗. One can work out that the sections sκ generate the 16 one-
dimensional character spaces for the Heis(2)-action on H0(M4,L). This shows that the sections
sκ are linearly independent. �

Since Eκ ∈ B4, we have Eκ ∈ ∆κ′ for any theta-characteristic κ′. By the deformation theory of
determinant and Pfaffian divisors (see e.g. [L], [LS]) the point Eκ ∈ M4 is a smooth point of the
divisor ∆κ′ ⊂ M4 if and only if the following two conditions hold

(1) h0(Λ2Eκ ⊗ κ′) = 2,
(2) the natural linear form

Φκ′ : TEκ
M4 = H1(End0(Eκ)) −→ Λ2H0(Λ2Eκ ⊗ κ′)∗

is non-zero.

Moreover if these two conditions holds, then TEκ
∆κ′ = ker Φκ′. The map Φκ′ is built up as follows:

the exceptional isomorphism of Lie algebras sl4
∼= so6 induces a natural vector bundle isomorphism

(8) End0(Eκ)
∼

−→ Λ2(Λ2Eκ).

Then Φκ′ is the dual of the linear map given by the wedge product of global sections

Λ2H0(Λ2Eκ ⊗ κ′) −→ H0(Λ2(Λ2Eκ) ⊗ K) = H0(End0(Eκ) ⊗ K).

Proposition 2.9. The 0-dimensional scheme B4 is reduced.

Proof. Since Eκ is a smooth point of M4 and dim TEκ
M4 = 15, it is sufficient to show that for

any theta-characteristic κ′ 6= κ the divisor ∆κ′ is smooth at Eκ and that the 15 hyperplanes
ker Φκ′ ⊂ TEκ

M4 are linearly independent: using the isomorphism (5) we obtain that for κ′ 6= κ

h0(Λ2Eκ ⊗ κ′) = ♯S(κ) ∩ S(κ′) = 2

and using the isomorphism (8) we obtain that

End0(Eκ) =
⊕

α∈J [2]\{0}

α.

On the other hand one easily sees that if γ, δ ∈ J [2] are the two 2-torsion points in the intersection
S(κ) ∩ S(κ′), then κ′ = κγδ, hence Λ2H0(Λ2Eκ ⊗ κ′) ∼= H0(Kγδ). This implies that the linear
form

Φκ′ :
⊕

α∈J [2]\{0}

H1(α) −→ H0(Kγδ)∗ = H1(β)

is projection onto the direct summand H1(β), where β = κ−1κ′ ∈ J [2]. This description of the
linear forms Φκ′ clearly shows that they are non-zero and linearly independent. �

This completes the proof of Theorem 1.1.
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3. Proof of Corollary 1.2

Since by Theorem 1.1 B4 is a reduced 0-dimensional scheme of length 16, the degree of the theta
map θ is given by the formula

deg θ + 16 = c15,

where c15
15!

is the leading coefficient of the Hilbert polynomial

P (n) = χ(M4,L
n) =

c15

15!
n15 + lower degree terms.

In order to compute the polynomial P we write

(9) P (X) =
15∑

k=0

αkQk(X), with Qk(X) =
1

k!
(X + 7)(X + 6) · · · (X + 8 − k)

and Q0(X) = 1. Note that deg Qk = k and that c15 = α15. The canonical bundle of M4

equals L−8. By the Grauert-Riemenschneider vanishing theorem we obtain that hi(M4,L
n) = 0

for any i ≥ 1 and n ≥ −7. Hence P (n) = h0(M4,L
n) for n ≥ −7. Moreover P (n) = 0 for

n = −7,−6, . . . ,−1 and P (0) = 1. The values P (n) for n = 1, 2, . . . , 8 can be computed by the
Verlinde formula and with the use of MAPLE. They are given in the following table.

n 1 2 3 4 5 6 7 8
P (n) 16 140 896 4680 21024 83628 300080 984539

Using the expression (9) of P one straightforwardly deduces the coefficients αk by increasing
induction on k: αk = 0 for k = 0, 1, . . . , 6 and the values αk for k = 7, . . . , 15 are given in the
following table.

k 7 8 9 10 11 12 13 14 15
αk 1 8 32 96 214 328 324 184 46

Hence deg θ = α15 − 16 = 30.
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