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LOCAL ZOOM COMPUTATION OF TWO-PHASE FLOWS IN STEAM

GENERATORS USING A LOCAL DEFECT CORRECTION METHOD
M. Belliard' and M. Grandotto
Commissariat & I"Energie Atomique (CEA)
DRN/DTP/STH/LMTA

C.E. CADARACHE, 13108 Saint Paul-lez-Durance Cedex, France

A Local Defect Method used to perform local zoom computations within the framework of
the steady state two-phase flow simulations of PWR Reactors Steam Generators is described.
The particular LDC formulation used, jointly with the FEM, a projection algorithm and the
Crank-Nicholson scheme for non-linear averaged mixture balance equations, is discussed, as well
as the particular geometry involved (3D local hierarchical multigrid). In the case of vortices
located at an inner interface, the boundary conditions are dynamically managed in a approach ’a
la Adaptive Dirichlet Neumann’. Cluster workstations, using a master-slaves context (through a
code-linker) and the PVM package, are used. Results concerning the simulation of a mock-up are
provided. The parallel and sequential LDC computation results are compared with the results of
classical full domain computations. The conclusion describes the improvements in the accuracy

of the corrected region and on the coherence between the zoom and the full domain.

Nomenclature

Latin symbols

e a: Schlichting model dimensionless constant

e A: subset of M; coarse nodes included in Do
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A: subset of internal nodes of A

B;: boundary nodes of mesh M;

cp: coupling period

D;: global domain (whole computation domain)
Ds: zoom domain

¢ gravity (m s72)

G mixture mass flux (= p?)

H: mixture specific enthalpy (J kg~—1)

Hj,: saturated liquid specific enthalpy (J kg~ !)
k: coupling iteration counter

L: latent heat (J kg™ ')

L,: typical vortex length (m)

M;: global domain mesh (coarse)

Mjy: zoom domain mesh (fine)

n: outer iteration (or pseudo time step) counter
P: pressure (Pa)

Q: heat source (W m~3)

t: time (s)

Tp: primary fluid temperature (K)



e : mixture velocity (m s~1)

e 4: relative velocity (gas minus liquid, m s™!)
e 1: static quality (= %)

Grrek symbols

a: relaxation parameter

B: porosity (=Q,/9)

x7: turbulent diffusion coefficient for the energy equation (kg m ! s 1)

¢*: nodal function

A: two-phase friction tensor (s 1)

pr: two-phase turbulent dynamic viscosity (N s m~2)

Q: elementary volume (m?)

Qpm: mixture volume (m?)

e p: mixture density (kg m~?3)

e (: generic imposed boundary value

1 INTRODUCTION

An application of a Local Zoom method, the Local Defect Correction (LDC, [1]) method, is
presented, in the context of 3D two-phase flow computations. Our application is the simulation
of French nuclear steam generator (SG) risers where liquid water boils, see Fig. 1. Simulations

are needed to evaluate SG performances and perform a safety analysis. The difficulties reside



in the differences in geometrical and physical scales, turbulent and 3D flows through complex
internal structures, exchanges between the two phases,..

In an industrial background, the problem is simplified by a gas-liquid mixture approach, as in
the GENEPI software (in French: “GENErateur Programme Industriel”) [2, 3, 4]. However, the
amount of data to store for each control volume limits the spatial resolution. In particular, this
problem is crucial when high spatial resolution is needed in only some parts of the SG. On the
one hand, a fine mesh for the full domain is too expensive and unnecessary. On the other hand,
locally increasing the space discretization is not easy with the numerical method used, especially

a standard Finite Elements Method. Our goal is to:

¢ locally increase the simulation accuracy (without the computation at high resolution of the

whole domain),

e deal with non-conforming grids through the use of two grids in a local hierarchical multigrid

(MG) context,

e deal with flow vortices at the boundaries of the zoom region,

e deal with simulations of zoom regions fully embedded in the global domain,

e increase the simulation possibilities: increase the memory and reduce the CPU time,

by using a memory distributed parallel implementation of local zoom methods on cluster work-
stations.

The LDC method is used jointly with a dynamic determination of the boundary conditions in
order to face the presence of flow vortices at the interfaces of the zoom region. This approach is
similar to the treatment of the boundary conditions in the Adaptive Dirichlet Neumann method
(ADN) [5] in a Domain Decomposition context. Hence, we call it (“a la ADN”).

This paper is structured as follows. The second part is dedicated to a brief presentation of the
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two-phase flow model and to the numerical aspects. The coupling strategy is emphasized in the
third part. In the fourth one, the Local Defect Correction method used for the zoom computa-
tions in a 3D local hierarchical multigrid context and the dynamic management of the boundary
conditions are presented. Finally, numerical results concerning some zoom simulations of the
U-tube bundle and of the flow distribution baffle regions of a SG Mock-up are given in the fifth

part.

2 TWO-PHASE FLOW MODEL

After averaging the mass, momentum and energy equations for each phase [6], these are merged
to obtain a mixture description of the two-phase flow. Provided that the following assumptions
hold: (i) surface tension, viscous and turbulent dissipation are neglected and pressure terms are
neglected in the enthalpy balance equation, (ii) same pressure for steam and liquid, (iii) eddy

viscosity model, one obtains:

1. mass balance

B+ V (BpT) = 0 (1)

2. momentum balance

Bpo ™ + Bp(V V)T + div(Bz(1 — z)poh @ 1)

= pp7 — BAPT — BV P + div(Bur(V T + VD) (2)

3. enthalpy balance

BpOH + Bp(T V) H + div(Ba(1 — 2)pLi) = BQ + div(Bx: V H) (3)



We solve in H, P and o variables. (Even if we solve in 7, it is the 8 variable that plays the
more important role due to the mass balance equation, see below.) In order to compute p, z and
L in function of H and P, we need water thermodynamic tables. The ur, x7, A, v4 terms are
obtained by the use of a large set of semi-empirical closure relations [4]. The most often used are
the Schlichting model for ur (ur = a|8|Lv where a is a dimensionless constant and L, a typical
vortex length, [7]) and the drift-flux Lellouche-Zolotar model [8], based on the Zuber-Findlay
approach [9], for v4. The heat source Q@ in the enthalpy equation is linked to the resolution of an
energy balance equation for the primary flow. To evaluate this term, other correlations on the
heat exchange coefficient and the wall temperature are included.

According to the hyperbolic nature of the flow equations, Dirichlet boundary conditions are
used at the inlets of the domain (mass flux and enthalpy) and Neumann boundary conditions at
the outlets (pressure). The other boundaries of the domain are impermeable walls. Generally,
these are considered adiabatic and with no shear stress (the strong pressure drop induced by the

tube bundle leads us to neglect the wall shear stress).

3 NUMERICAL CONSIDERATIONS

The stationary flow is approached with a pseudo-transient computation. According to this compu-
tational approach, a steady-state problem is solved by performing pseudo-time steps. Moreover,
in our applications, the wave effects can be neglected (linked to the time term in the mass balance
equation). In fact, the time term is eliminated in Eq. (1). By doing this, an incompressible flow
simulation is mimicked, substituting the free divergence equation (dz’v? = 0) by a similar one in-
volving the mass flux (diva = 0). This allows us to use the powerful Chorin-Gresho method [10]
to simultaneously solve the couple (Z,P). The numerical scheme is based on the unstructured

finite element method (FEM) with tri-linear hexahedral elements and a Crank-Nicholson time



scheme. The H and o variables take values at the nodes. In contrast, the P variable is defined
as constant per element. Concerning the equation coefficients (z, p, U_R>, ...), these are generally
defined per element, except for § which is a nodal field. The stress and thermal flux terms are
integrated by parts. The lumping of the mass matrix [11] is done and one point integration is
used to compute the element matrices. The diffusive terms are implicit as is the frictional one
(momentum). Generally, the advective and drift terms are explicit. Like Gresho and al., we
include a balancing tensor diffusivity (BTD) correction to increase the stability of the central
difference advection scheme [12]. At each pseudo-time step (= outer iteration to solve non-linear
coupled equations), we first solve the primary fluid energy equation (fully implicit FEM) to ob-
tain the enthalpy source term (). Thus, the enthalpy equation is solved and then the coupled
mass-momentum ones are solved by the Chorin-Gresho method.

A conjugated gradient method (CGM) (= inner iterations), preconditioned by the diagonal, is

used to solve the arising linear systems.

4 THE COUPLING STRATEGY

Based on the master/slave concept, we have developed a general application [13] with the CEA
code-linker software called ISAS [14] which uses the PVM software. In this application, several
GENEPI tasks run together, coupled at every cp (a given coupling period) outer iterations - or
pseudo-time iterations - by the ISAS task. Thus, a Multiple Instructions Multiple Data (MIMD)
application, with distributed memory, on a workstation network is mimicked. The pseudo-time
step is independent in each task (stationary flow simulation).

For each GENEPI task, the user can set up some ’coupled boundaries’. Each coupled bound-
ary is defined by a boundary condition type (such as Dirichlet, ADN, LDC, ...), a GENEPI task

name (providing the data) and an operator name (such as interpolation, restriction, ...).



When dealing with conforming meshes, linear interpolations or direct affectations of fields on the
coupled boundaries are performed. In case of non-conforming meshes, only linear interpolations
can be performed.

To increase stability and convergence, a relaxation process is introduced on the values (flux and

variables) imposed on the coupled boundaries. We denote « the relaxation parameter:

F=al*+ (1 —a)k! (4)

Here, ¢ stands for the imposed boundary values, k£ for the current coupling iteration and (* for
a new value coming from an external task.

After some information exchanges, here through the ISAS Master task, each GENEPT slave task
knows what data it needs and what data it must provide at each coupling iteration (external

requests). Concerning the coupling process, each coupling iteration is done in three steps.
e Each task sends messages to the master in order to supply data for its external requests.
e Each task receives data, from the master, for its own coupled boundaries.
e Each task runs cp outer iterations (i.e. pseudo-time steps).

And the process is run again for the next coupling iteration. At the end of the cp outer iterations,
the convergence test is run for the slaves and the result is sent to the master. If all the slaves have
reached the convergence, then the master stops them. The convergence test includes convergence
tests for the variables (H, P and 8) and for the coupled boundary values (H, 8, thermal flux
and mechanical stress).

Two strategies are available. In the first one (additive version), the coupling iterations are
run together. Then, the slaves process the data coming from the previous coupling iteration, as

in a Jacobi process. In the second one (multiplicative version), after the first step (send data),



some slaves are put to sleep during a full coupling iteration: the second and third steps of the
current one and the first step of the next one. Then the slaves are awoken to receive data and
run cp outer iterations. With this approach, the slaves process the newest available data as in a

Gauss-Seidel process.

5 LOCAL ZOOM COMPUTATION

We want to perform the computation of a local subdomain with a fine mesh and, at the same
time, use this high resolution information to increase the accuracy of the simulation of the whole
domain. To do this, we use local hierarchical meshes (local multigrid) and the Local Defect

Correction method.

5.1 The Local Defect Correction method

5.1.1 Overview

We want to reach a steady state flow simulation using a transient computation. Consequently,
there are time terms in the balance equations (or similarly terms coming from a relaxation
process). The used semi-implicit approach leads to a splitting of the equation terms into an
operator part (left-hand side, implicit) and a source part (right-hand side, explicit). Moreover,
the source terms in the balance equations are dependent on the variables. But, in fact, the
mean purpose of this pseudo-time scheme is to overcome the non-linearity (the relaxation process
already mentioned).

In the introduced LDC application, the time terms are not taken into account, the focus being
only on the steady state equations to solve. Hence, we prefer to take into account equations with
the following form:

T(u) =0 with BC. (5)



The goal of the LDC method is to locally correct the discretized operator, say T;, involved in the

numerical resolution of a discretized equation on a given mesh M;:

Ti(u;) =0 with BC. (6)

For a fixed discretization order, the error here comes from the space discretization (space step).
Basically, we deal with two discretizations of the operator T (associated in the FEM context with
two given meshes). A coarse one (or standard one, 77) in the whole computation domain, say
M, and a fine one, T5, in the zoom region (improvement in the space step ), say Ms. Generally,
the coarse discretization allows an easy numerical resolution, but may introduce large errors in
some specific parts of the computation domain. Contrarily, the numerical resolution is better
with the fine discretization, but more expensive. Hence, we may only compute part of the whole
domain: the zoom region. The strategy is to solve the local problem with the better discretization
and locally correct the standard expression of the operator in the whole domain. To do this, an
iterative process is used.

For a detailed presentation of the LDC method, see Hackbusch’s original paper [1]. It is worth
pointing out that the LDC method allows a general framework to locally correct the global domain
computation using a local improved approximation coming from a more precise computation
scheme that may completely differ from the global domain scheme: finite volume method, spectral
method,... In the following section, the modified LDC method used in the GENEPI software is

presented, including the non-linearity.

5.1.2 The application of the LDC method in GENEPI

Let M; be the mesh associated with the standard space discretization of the global domain D; and

M5 the mesh associated with the local problem on the zoom domain D, (better discretization).
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And let B; be the boundary of M; and By be the boundary of My. The local mesh and the
global mesh are embedded forming a hierarchical grid structure. The internal boundary is given
by B2\(B1 N Bs). Let A be the coarse nodes of the M; mesh included in the zoom region D and
A be the internal nodes of A.

The iterative process is the following. Let x be the characteristic function of A and uY the

initial approximation of the solution on the mesh M;.
e start with f) = 0,
e given fF. k=0,1,2, ..

— do some smoothing iterations for the global problem Tj(uf) = fF on My,

compute the internal boundary values on Ms, by interpolation for instance,

do some smoothing iterations for the local problem Ty(u%) = 0 on My,

compute the restriction of u% (called 7u2¥) on nodes of A (in M),

define the next right-hand side by: fF1 = y Ty (ru2k).

We add the LDC terms to the right-hand parts of the secondary flow energy balance equation
and momentum balance equation. No correction is performed on the mass balance equation
(free divergence of the mass flux, see below). Here, u;“ stands for the couple (H, Q) for the
energy balance equation and for (8, P) for the momentum balance equation. The LDC term
is kept constant during a coupling iteration (in fact during several pseudo-time steps). This
term involved in the modified right-hand side of the equation is similar to a multigrid correction
(MGC) term. Basically, this algorithm may be viewed as a classical LDC iteration loop in which
the local and global problems are not solved exactly, but only a few iterations cp of one iterative
method are performed: the usual numerical techniques of GENEPI, namely outer iterations

for the non-linearity (transient computation with a semi-implicit approach) and a Conjugated
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Gradient type method for the linear system solving. It can be viewed in terms of classical outer
iterations (i.e. pseudo-time iterations) with periodic updates of the defect correction values for
the global problem and of the boundary values for the local one. Concerning the global problem,
the defect correction is added to the constant source term of the balance equation’s RHS. Hence,
the introduction of a constant term does not introduce modifications of the Chorin algorithm
based on Taylor’s development in time. So, the pressure equation is unchanged.

We have presented the multiplicative version (sequential) of the algorithm, but we have also
developed an additive version (parallel). In all cases, one slave GENEPI task runs for the global
domain computation and several others for the zoom subdomain computations (one per subdo-
main). Data are sent from the zoom subdomain to the global one for the purpose of filling the
defect correction values. Depending on the type of balance equation, the sent data are specific
enthalpy, mass flux, volume thermal source or pressure. Then, by means of canonical restrictions

(for the nodal variables, here denoted u):
U1 = ug (7)
or volume V weighted restrictions (for the thermal sources and pressures, here denoted Q):

ViQi =) QsVs (8)

we restrict these data on all nodes or cells of the global domain mesh included in the zoom region
A (but not at the B; Dirichlet nodes). The local defect correction values are computed for the
nodes of the global mesh included in the correction region, A. Theses nodes, included in A, are
distant from the internal boundary nodes by more than one or two elements (in the first case,

the coarse corrected nodes do not lie in the coarse elements bordering the internal boundary).

12



The extension of this region is managed by the code users.

5.1.3 The correcting term for the energy balance equation

Let us come back to the correcting term described in Section 5.1.2 and symbolically denoted
by Ty (ru2;)’. Here, ru2; stands for the restriction, at the nodes of subset A (see Section 5.1.2)
of the global domain, of the mixture specific enthalpy (notation : Hr), of the mixture pressure
(notation : Pr) and of the mixture mass flux (notation : Gr) initially computed on the zoom
subdomain. In the same way, Tl(...)i stands for the integral of the energy balance equation
(written with all terms in the LHS) weighted by the nodal function associated at the node i: ¢".

Hence, the counterpart of the symbolic operator T (ru21)i is the finite element formulation of

the following term (in case of the drift flux hypothesis), on the mesh of the global domain :

Ty (ru2,)" = /d?go’[ﬁ(@z?)hﬁ" + div(Bz, (1 — z,) pr LyoRy)]

- / X' BQ, + / R ((F o) (Bxr F Hr)] + BC (9)

_>
with L,.(Pr) latent heat, z,.(Hr, Pr) static quality, p,(Hr, Pr) mixture density, vz, (Hr, Gr, Pr)
relative velocity, @), source term, including the restricted volume thermal source, the boundary
thermal flux and, eventually, the pressure gradient terms. If it exists, this last term is a function
of the restricted variables (Hr, Gr, Pr). Concerning the non-linearity, the weakness lies in the
values of xr, computed with the variables taken at the current outer iteration (i.e. pseudo-time
iteration), and in the values of the volume thermal source (use of the restricted volume ther-
mal source instead of the exact computation with Hr, Gr and Pr). It is to be noted that this

correction term is no more than the energy balance equation weighted residual.
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5.1.4 The correcting term for the momentum balance equation

The correcting term ?1(7"1121)Z at node ¢, with the same previously defined restricted variables, is

the finite element formulation of the following expression (in case of the drift flux hypothesis) :

T(ruz)' = [ DX TV + div(By (1~ ,)or57; © T2
- [ @07 - iGN - [ DD (Pr
+ / dX Y G [Bur (Yot + @«7)] + BC (10)

- — - =
with the same notations as above and A, (Hr, Gr, Pr) the total two-phase friction tensor, oF=Gr /pr
and BC the boundary stress. The weakness concerning the non-linearity lies only in the values

of ur, computed with the current iteration variables and not with the restricted ones.

5.1.5 The dynamic determination of the BC type (4 la ADN)

The Adaptive Dirichlet Neumann (ADN) method, introduced by Quarteroni et al [15, 5, 16] is
a particular domain decomposition method, not included in the zoom computation methods as
previously described. But, the general strategy implied in the local BC determination can be
fruitfully applied here. Roughly, the BC nature at a node of a given subdomain boundary is
function of the sign of the dot product of the external normal and the fluid velocity. We set a
Dirichlet condition at the inflow velocity nodes (negative sign) and a Neumann condition at the
outflow velocity node (positive sign). Here, we follow this approach to face zoom computations
with vortices located at interfaces. Dealing with a vortex at the interface is not really a problem
for pure isothermal hydrodynamic computations, using the Chorin - Gresho algorithm. (It is to be
noted that without any Neumann BC for the momentum balance equation, an ill-posed problem

exists for the pressure.) Indeed, the problem comes with a reversal flow at the nodes of a fixed
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Neumann BC interface for the energy balance equation. In this case, no value is supplied to the
incoming specific enthalpy. To overcome this difficulty, we introduce the dynamic management
of BC at outflow coupled boundaries.

The ‘ADN‘ coupled surfaces are managed in the following way. At each coupling iteration:

—_

. Receive the mass flux field from the global domain (like a Dirichlet BC).

2. Eventually, apply a relaxation stage (see Eq. 4 and remark below).

3. Compute the dot product between the (eventually relaxed) mass flux and the outward
normal. Determine the nature of the coupled BC by using the above rule. This holds for

the momentum and the energy balance equations.

4. Compute again the matrix for the pressure equation (the BC nature has changed).

5. Receive the stress tensor field from the global domain (like a Neumann BC) and, eventually,

apply a relaxation stage.

6. Receive specific enthalpy and thermal flux fields, with eventually relaxation.

At this point, some remarks are to be made.

Using relaxation stages leads to smoothing the changes of the BC values but may weaken the
coherence between the mass flux fields of the zoom subdomain and the global domain.

Specific treatment is applied to the energy balance BC. The flow direction at the Neumann
nodes of the ‘ADN* coupled boundary may be inverted during the computation. In the case of
inversions, we change the nature of the BC to the Dirichlet one, leading to freezing the enthalpy
value to the last computed one. (This is released if the flow direction is inverted again.)

The previously presented strategy may be denoted as ‘full ADN*, because the mass flux and the
specific enthalpy are concerned. It is possible to independently define the coupled BC for each

balance equation, keeping the adaptive determination only for the energy one.
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6 NUMERICAL TESTS

6.1 Test definition

For the SG simulation, we chose the CEA CLOTAIRE mock-up [17]. The riser part forms a half
cylinder of 0.62 m in diameter and 9.16 m in height. The inside is filled with U-shaped tube
bundle, 7.2 m in height, into which the hot primary flow enters. One flow distribution baffle,
nine tube support plates and one anti-vibration bar are fixed in respectively the bottom, upright
and curved part of the bundle. Our test cases are devoted to the zoom simulations of : (i) the
U-tube bundle region above the last tube support plate, (ii) the flow distribution baffle region.
In particular, we know of the existence of fluid vortices located in the U-tube bundle wake.

We compare the LDC zoom results (called LDC) with post-processing (or chained) Zoom com-
putations, called Post. By post-processing, we mean a computation in two independent and
successive steps: first, the computation of the global domain and, second, the computation of the
zoom subdomain. We also compare the LDC zoom results with the global domain simulations at
low and high space resolutions (respectively denoted Ref0 and Refl).

In all the presented computations, the advection term is explicit. The physical models and the
numerical parameters for the internal iterative method (here, Preconditioned Conjugated Gradi-
ent) are identical for all the simulations. In particular, the stationary criteria is 1076s~! for the
relative difference error per unit of time (with a maximum of 2,000 outer iterations).

We perform all the coupled simulations with two GENEPT tasks using a bi-processor computer

(Sun Enterprise 2, model 2002, 200 MHz).
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6.2 The CLOTAIRE U-tube bundle test case

6.2.1 LDC zoom and meshing

Concerning the global domain, we use two meshes. The first one, called the global coarse mesh,
makes use of 5,330 cells. There are 780 hexahedral elements in the zoom region. The second one
is called the global fine mesh (each cell of the coarse mesh is split into eight), see Fig. 2. This
fine mesh is made of 42,640 cells. Fig.3 shows details of the meshes with the trace of the U-tube
bundle. The mesh concerning the zoom subdomain is made of 6,240 cells (It is part of the global
domain fine mesh). It is a slice of the riser with walls, inlet (bottom) and outlet (upper) areas,

see Fig. 4.

6.2.2 Numerical features

The boundary conditions for the global domain computations are the usual ones. Concerning
the zoom computations, there are specific boundary conditions for the exit (upper surface). Due
to the presence of a vortex across this boundary, we use Adaptive Dirichlet Neumann (ADN)
BC for the specific enthalpy and the mass flux. We also show results of computations with
Dirichlet conditions for this boundary. For the LDC computations, the momentum and the energy
balance equations on the global domain and on the zoom subdomain are coupled. Concerning the
primary flow energy balance equation, the zoom inlet primary flow temperature and the zoom
outlet thermal flux are coupled with the global domain (as in a domain decomposition method,
DDM). The numerical parameters for the LDC computations are: coupling period cp = 20 outer
iterations and relaxation parameter a = 1.0 (unless explicitly stated). The number of corrected
nodes in the global computation is 750 (but we have made computations with different numbers

of corrected nodes).
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6.2.3 Results

The performances concerning the CPU time (up to a relative difference per unit of time of about
5.1073s71) and the memory are listed in Table 1. We can make some comments. The memory
used in the LDC case and Chained case is similar (factor 2). They deeply differ from the memory
needed in the case of Refl (factor 7). It is the same for the CPU time comparison. Moreover, with
parallel computations, the LDC method leads to lower CPU time. Hence, it is possible to locally
increase the accuracy of the computation (see below) on the global domain without increasing
the cost too much. Concerning the CPU time spent for the coupling, the LDC iterations on the
global domain or the updates of the boundary condition on the zoom domain cost about 10% of
total CPU time. This ratio may be lower with an increase in mesh cell number.

Fig. 5 plots the convergence history of the mass flux variable for the reference global domain
computation (Ref0, standard computation) and the LDC ones, using various BC natures (Dirich-
let or ADN). All the convergence histories for the variables (8, P, H, T,) are given in terms of

relative difference, between two consecutive outer iterations, in discrete L2 norm : A, u,

: .
|un — un—1|r2 (E:ﬁﬂ% — Uy, )0

lun-ilrz (M i, |P)05

Apu = (11)

In Eq. 11, w stands for a variable, n for the outer iteration counter and nd for the number of
nodes. Up to a relative difference of the order of 107¢, the convergence histories are similar.
Typically, after 10-15 LDC iterations (or about 200-300 outer iterations), the correction values
are stabilized. In Fig. 6, we plot the evolutions of the relative correction terms for the mixture
energy balance equation (mgc_H, see Eq. 9) and for the mixture momentum balance equation
(mgc_G, see Eq. 10). Here, the test involves 450 corrected nodes. The evolutions of the relative

residuals are also given. The L2 norms of the plotted quantities are defined by |ry|r2/|r0|L2,
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where r stands for a correction term or a residual and n for the outer iteration counter.

Hence, the convergence of the LDC algorithm is fast. At the end of the computation, the
discrete L2 norm of the energy correction is of a few kW. To compare, the exchanged power
in the U-tube bundle region is of about 70 kW. Fig. 7 plots the convergence history of the
zoom subdomain variables in case of computation with Dirichlet BC on the upper boundary.
The convergence histories are similar to the ADN boundary case. Clearly, the computation
convergence is significantly affected by the refreshments of the coupled boundary values at the
beginning of the computation. In fact, the goal of the relaxation parameter « (here 0.5) is to
partly damp these oscillations (a lower value does not greatly increase the damping). Some
additional tests showed that the decrease of the coupling period (for instance, cp = 5) leads to
a better convergence history with identical physical results. However, the coupling CPU time is
increased : about 30% of the total CPU time in the case of cp = 5 instead of 10% in the case of
cp = 20.

Fig. 8 shows the LDC fields on the coarse mesh computation for, respectively, the energy
equation and the momentum equation (cut 5 cm inside the mock-up, detail of the global mesh).
The energy correction terms are located at the border of the U-tube bundle and the momentum
correction terms outside the anti-vibrating bars, see Fig.3.

Sequential computations were performed for the same test case (cp = 20), see Fig. 9. The results
are similar. However, the convergence history is slightly smoother for the sequential case than for
the parallel one. But obviously the CPU time is largely increased (factor two). In particular, we
have also reported a convergence history for a computation with a coupling period of 100 outer
iterations. No convergence acceleration is gained and the CPU time is higher. In fact, to solve
the fine and coarse mesh systems at each coupling iteration is not a good strategy due to the

strong non-linearities.
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6.2.4 Physical features

Concerning some global quantities, such as the exchanged thermal power, the steam mass flow
rate, ..., all the computations give similar results. For instance, the exchanged thermal power, in
the LDC computation, is slightly overestimated (about 0.4% in comparison with the Refl case).
In fact, the improvement due to by the LDC method is to be found in the local variation of the
variables in the global domain. In particular, the isovalues of the specific enthalpy inside the
correction region are closer to the Refl results than the Ref0 ones, even if some underestimations
appear. In Fig. 10, we show the enthalpy distribution along one vertical line in the cold leg for the
coarse and fine mesh computations alone (called coarse and fine) and for the LDC computation
(called zoom and LDC coarse). The zoom extension is drawn with dashed vertical lines. The
enthalpy profiles computed with the LDC on zoom or global domain are very close to each other
and present the same variations as the Refl results. Obviously, the better the coarse grid results

in the entry of the zoom, the better the zoom predictions.

6.2.5 Dynamic BC features

As previously stated, there is a vortex on the zoom upper boundary. We report in Fig. 11 the
inflow node number history concerning this coupled boundary. This number quickly converges
to 32 inflow nodes (about 25 coupling iterations). The inflow region coherency (between the
local fine mesh zoom and the global coarse mesh riser) is satisfactory in regard of Fig. 12 and
13. In these figures, the inflow region (negative value of the dot product of the mass flux and the

outward normal) is dark.
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6.3 The CLOTAIRE flow distribution baflle test case

We briefly report results concerning the flow distribution baffle zoom computation. The function
of this device is to force the flow to move toward the inner region. The particularity is an

embedded zoom computation : the zoom boundary does not cross the global domain boundary.

6.3.1 Meshing

Fig. 14 shows a section of the global domain mesh (coarse) and of the zoom subdomain (fine).
Fig.15 shows the fine mesh zoom with the flow distribution baffle (lower) and two support plates.

This mesh is made of 2,048 cells. The coarse global domain mesh is the same as before.

6.3.2 Numerical features

The boundary conditions for the zoom computation are Dirichlet, except on the upper boundary
(global outflow area) where those of adaptive BC are used (‘4 la ADN‘). With regards to the
flow distribution shown in Fig.15, the use of dynamic BC may seem needless : no vortex on the
boundary. Neumann BC seems to be the right choice. In fact, the pressure distribution computed
during the transient may lead to flow inversions... The momentum, the energy and the primary
flow energy balance equations are coupled in the same way as before. The coupling period cp
is 20 outer iterations and no relaxation stage is applied. The number of corrected nodes in the
global computation is 147. These nodes are located between the flow distribution baffle and the

first support plate, see Fig.15.

6.3.3 Results

Again, the convergence history is good and a fast convergence of the LDC values is achieved
(after about 25 coupling iterations). Fig. 16 plots the convergence history of the zoom subdomain

variables. The stationary criteria is reached at the outer iteration number 1,860. We can notice
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a more perturbed period on the first 300 outer iterations. This is due to the time needed to set
up the flow regime. During this period, a flow reversal is produced, see Fig. 17, but the adaptive
BC used prevents the computation from failing. Finally, we present in Fig. 18 the isovalues of
the vertical component of the mass flux in the zoom region. The left hand side picture is relative
to the standard coarse mesh global computation (no LDC), the middle one to LDC coarse mesh
global computation and the right one to the fine mesh Zoom. Again, the LDC prediction on the
coarse mesh is close to the prediction on the fine mesh zoom in the corrected region (between the

flow distribution baffle and the first support plate).

7 CONCLUSION

We have proved the efficiency of an additive version of a zooming algorithm based on the LDC
method in the simulation of Steam Generator two-phase flows. The possibility of a local adaptive
zooming for flow simulation around obstacles and a locally improved description for the global
Steam Generator domain have been achieved. In particular, this original approach applies, for
non-linear equations, a parallel version (instead of sequential) of the LDC Method, without
solving the balance equations, but only using a few iterations of an iterative process. The LDC
computation allows the enhancement of the software prediction in the correction region: (i) the
behaviour of the variables is between the result of the computations with coarse and fine mesh, (ii)
the coherence between the zoom subdomain results and those of the global domain is enhanced.
The LDC computation cost (zoom and global domains) is slightly higher than a post-chained
computation and, obviously, much cheaper than the global domain one with the fine mesh. This
work was completed with an adapted method, to face an eventual vortex presence at subdomain
interfaces, suggested by the Adaptive Dirichlet Neumann method [5].

It comnsists in a first attempt to bring modern numerical tools into the context of industrial
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simulations of SG two-phase flows. In the zoom computation framework, future improvements
are planned. In particular, we can mention the development of a version of the Flux Interface
Correction method (FIC) [18, 19]. We plan to improve the flux coherence at the coupled bound-
aries. We must outline the interest of the code-linker (like that of the CEA, ISAS) to parallelize
tasks using a network, without code re-engineering. However, this choice involves limitations on
parallel computation capacities.Moreover, the implementation is versatile enough to be extended
to Domain Decomposition Methods [13], to equation coupling or to multigrid preconditioning

such as the Full Approximation Storage (FAS) method ([20], development under progress).
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Tables

Simulation iterat. § CPU (s) Memory (Mo)

Ref0 493 1960 20
Refl 1079 27820 280
Chained < 371 2950 40
LDC global 520 2270 40
LDC zoom 520 3270 80

< Requires Ref0 as first stage

Table 1: Efficiency of the // LDC zoom computation.
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Vertical mass flux (embedded zoom) - Left: coarse mesh (standard), Middle: coarse
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68 kg/m2/s; min.: 244 kg/m2/s; max.: 1260 kg/m2/s
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Figure 1: French nuclear steam generator (diagram)
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130 cells

520 cells

Figure 2: Coarse and fine meshes (2D sections of the 3D meshes). Top:

(130 x 41 = 5,330 cells), bottom: fine mesh (520 x 82 = 42,640 cells).
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Figure 3: Meshes and U-tube bundles (detail); 2D side view. Top: partial coarse mesh
(130 x 6 = 780 cells), bottom: partial fine mesh (520 x 12 = 6,240 cells).
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(Detail)

Figure 4: Coarse and fine meshes for the zoom region (2D side view).
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Figure 6: Residual and LDC convergence history, global domain
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Figure 8: Correcting term fields (top: energy balance equ., bottom: momentum balance equ.).
Momentum balance equ.: typical vector length: 1 N; Energy balance equ.: step between isocon-
tours is 200 W; min.: -1020 W; max.: 1300 W.
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Figure 9: Multiplicative (seq.) and additive (//) algorithm
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Specific enthalpy (J/kg) vs Elevation (m); x=R-0.06 m ; y=0.04 m
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Inflow nodes number
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Figure 11: Zoom sub-domain inflow
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Figure 12: Coarse mesh riser section at the elevation of the fine mesh zoom upper interface

Figure 13: Fine mesh zoom upper interface
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Figure 14: Embedded zoom computation mesh (section)
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Figure 16: Zoom convergence history (embedded zoom)
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Figure 17: Zoom sub-domain inflow (embedded zoom)
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Figure 18: Vertical mass flux (embedded zoom) - Left: coarse mesh (standard), Middle: coarse
mesh (LDC 750 nodes), Right: fine mesh Zoom - Step between isocontours is 68 kg/m2/s;
min.: 244 kg/m2/s; max.: 1260 kg/m2/s
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