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MARGIN-ADAPTIVE MODEL SELECTION IN STATISTICAL LEARNING

By Sylvain Arlot, and Peter L. Bartlett

Universite Paris-Sud and University of California, Berkeley

A classical condition for fast learning rates is the margin condi-
tion, first introduced by Mammen and Tsybakov. We tackle in this
paper the problem of adaptivity to this condition in the context of
model selection, in a general learning framework. Actually, we con-
sider a weaker version of this condition that allows us to take into
account that learning within a small model can be much easier than
in a large one. Requiring this “strong margin adaptivity” makes the
model selection problem more challenging. We first prove, in a very
general framework, that some penalization procedures (including lo-
cal Rademacher complexities) exhibit this adaptivity when the mod-
els are nested. Contrary to previous results, this holds with penalties
that only depend on the data. Our second main result is that strong
margin adaptivity is not always possible when the models are not
nested: for every model selection procedure (even a randomized one),
there is a problem for which it does not demonstrate strong margin
adaptivity.

1. Introduction. We consider in this paper the model selection problem in a quite general
framework. Since our main motivation comes from the supervised binary classification setting,
we focus on this framework in this introduction. Section 2 introduces the natural generalization
to risk minimization problems, which we consider in the remainder of the paper.

We observe independent realizations (Xi, Yi) ∈ X × Y for i = 1, . . . , n of a random variable
with distribution P , with Y = {0, 1}. Our goal is to build a (data-dependent) predictor t
(i.e. a measurable function X 7→ Y) such that t(X) is as often as possible equal to Y , where
(X,Y ) ∼ P is independent from the data. This is the prediction problem, in the setting of
supervised binary classification. Our goal is to find t minimizing the prediction error Pγ ( t; ·) :=
P(X,Y )∼P ( t(X) 6= Y ), where γ is the 0-1 loss.

The minimizer of the prediction error, when it exists, is called the Bayes predictor s. Define
the regression function η(X) = P(X,Y )∼P (Y = 1 | X ). Then, a classical argument shows that
s(X) = 1η(X)≥1/2. However, s is unknown, since it depends on the unknown distribution P . Our
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2 ARLOT, S. AND BARTLETT, P.

goal is to build some predictor t from the data minimizing the prediction error, or equivalently
the excess loss ℓ(s, t) := Pγ ( t) − Pγ (s).

A classical approach to this problem is empirical risk minimization. Let Pn = n−1∑n
i=1 δ(Xi,Yi)

be the empirical measure and Sm be any set of predictors, which is called a model. The empirical
risk minimizer over Sm is then defined as

ŝm ∈ arg min
t∈Sm

Pnγ ( t) = arg min
t∈Sm

{
1

n

n∑

i=1

1t(Xi)6=Yi

}
.

We hope that the risk of ŝm is close to that of

sm ∈ arg min
t∈Fm

Pγ (t) ,

assuming that such a minimizer exists.

1.1. Margin condition. Depending on some properties of P and the complexity of Sm, the
prediction error of ŝm is more or less distant from that of sm. For instance, when Sm has a finite
Vapnik-Chervonenkis dimension Vm [24, 23] and s ∈ Sm, it has been proven (e.g. [16]) that

E [ℓ(s, ŝm) ] ≤ C

√
Vm

n

for some numerical constant C > 0. This is optimal without any assumption on P , in the
minimax sense: no estimator can have a smaller prediction risk (up to a numerical factor in front
of C) uniformly over all distributions P [12].

However, there exist favorable situations where much smaller prediction errors (“fast rates,” up
to n−1 instead of n−1/2) can be obtained. A sufficient condition, the so-called “margin condition,”
has been introduced by Mammen and Tsybakov [18]. If, for some ǫ0, C0 > 0 and α ≥ 1,

(1) ∀ǫ ∈ (0, ǫ0], P ( |2η(X) − 1| ≤ ǫ) ≤ C0ǫ
α,

if the Bayes predictor s is in Sm, and if Sm is a VC-class of dimension Vm, then the prediction
error of ŝm is smaller than L(C0, ǫ0, α) ln(n) (Vm/n)

κ
2κ−1 in expectation, where κ = (1 + α)/α

and L(C0, ǫ0, α) > 0 only depends on C0, ǫ0 and α. Minimax lower bounds [20] and other upper
bounds can be obtained under other complexity assumptions (e.g. assumption (A2) of Tsybakov
[21], involving bracketing entropy). In the extreme situation where α = +∞, i.e., for some h > 0,

(2) P ( |2η(X) − 1| ≤ h) = 0,

then the same result holds with κ = 1 and L(h) ∝ h−1. More precisely,

E [ℓ(s, ŝm) ] ≤ C

(
Vm

(
1 + ln

(
nh2V −1

m

))

nh

)
∧
√

V

n
.
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MARGIN-ADAPTIVE MODEL SELECTION 3

Following the approach of Koltchinskii [14] (as well as Massart and Nédélec [20] for instance),
we will consider the following generalization of the margin condition:

(3) ∀t ∈ S, ℓ(s, t) ≥ ϕ

(√
varP (γ (t; · ) − γ (s; ·))

)
,

where S is the set of predictors, and ϕ is a convex non-decreasing function on [0,∞) with
ϕ(0) = 0. Indeed, the proofs of the above upper bounds on the prediction error of ŝm use only
that (1) implies (3) with ϕ(x) = L(C0, ǫ0, α)x2κ and κ = (1 + α)/α, and that (2) implies (3)
with ϕ(x) = hx2. (See, for instance, Proposition 1 in [21].)

All these results show that the empirical risk minimizer is adaptive to the margin condition,
since it leads to an optimal excess risk under various assumptions on the complexity of Sm.
However, obtaining such rates of estimation requires knowledge of some Sm to which the Bayes
predictor belongs, which is a very strong assumption.

A less restrictive framework is the following. First, we do not assume that s ∈ Sm, but only
that s is “not too far” from it, in the sense that ℓ(s, sm) is small. Second, we do not assume that
the margin condition (3) is satisfied for all t ∈ S, but only for t ∈ Sm, which can be seen as a
“local” margin condition:

(4) ∀t ∈ Sm, ℓ(s, t) ≥ ϕm

(√
varP (γ (t; ·) − γ (s; · ))

)
,

where ϕm is a convex non-decreasing function on [0,∞) with ϕm(0) = 0. The fact that ϕm

can depend on m allows situations where we are lucky to have a strong margin condition for
some small models but the only global margin condition is loose. As proven in Section 5.2
(Proposition 2), such situations certainly exist.

1.2. Adaptive model selection. Assume now that we are not given a single model but a whole
family (Sm )m∈Mn

. By empirical risk minimization, we obtain a family ( ŝm )m∈Mn
of predictors,

from which we would like to select some ŝm̂ with a prediction error Pγ
(
ŝm̂

)
as small as possible.

The aim of such a model selection procedure ((X1, Y1), . . . , (Xn, Yn)) 7→ m̂ ∈ Mn is to satisfy an
oracle inequality of the form

(5) ℓ(s, ŝm) ≤ C inf
m∈Mn

{ℓ(s, sm) + Rm,n } ,

where the leading constant C ≥ 1 should be close to one and the remainder term Rm,n should be
close to the value Pγ ( ŝm )−Pγ (sm ). Typically, one proves that (5) holds either in expectation,
or with high probability.

Assume for instance that ϕm(x) = hmx2 for some hm > 0 and Sm has a finite VC-dimension
Vm ≥ 1. In view of the aforementioned minimax lower bounds, one cannot hope to prove an
oracle inequality (5) with a remainder Rm,n smaller than

Vm

nhm
∧
√

Vm

n
.
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4 ARLOT, S. AND BARTLETT, P.

Then, adaptive model selection occurs when m̂ satisfies an oracle inequality (5) with Rm,n of
the order of this minimax lower bound. More generally, let Cm be some complexity measure of
Sm (such as its VC-dimension, the ρ appearing in Tsybakov’s assumption [21], etc.) and define
Rn(Cm, ϕm) as the minimax prediction error over the set of distributions P such that s ∈ Sm,
Sm has a complexity at most Cm and the local margin condition (4) is satisfied with ϕm. A
margin adaptive model selection procedure should satisfy an oracle inequality of the form

(6) ℓ(s, ŝm̂) ≤ C inf
m∈Mn

{ℓ(s, sm) + Rn(Cm, ϕm)}

without using the knowledge of Cm and ϕm. We call this property “strong margin adaptivity”,
to emphasize the fact that this is more challenging than adaptivity to a margin condition that
holds uniformly over the models.

1.3. Penalization. We focus in particular in this article on penalization procedures, which
are defined as follows. Let pen : Mn 7→ [0,∞) be a (data-dependent) function, and define

m̂ ∈ arg min
m∈Mn

{Pnγ ( ŝm ) + pen(m)} .

Since our goal is to minimize the prediction error of ŝm, the ideal penalty would be

(7) penid(m) := Pγ ( ŝm ) − Pnγ ( ŝm ) ,

but it is unknown because it depends on the distribution P . A classical way of designing a
penalty is to estimate penid(m), or at least a tight upper bound on it.

We consider in particular local complexity measures [17, 9, 7, 14], because they estimate
penid tightly enough to achieve fast estimation rates when the margin condition holds true. See
Section 3.2 for a detailed definition of these penalties.

1.4. Related results. There is a considerable literature on margin adaptivity, in the context
of model selection as well as model aggregation. First, notice that the results of Massart and
Nédélec [20] show that with the knowledge of Cm and ϕm, one can choose a model realizing
the bias-complexity trade-off, so that (6) is satisfied (maybe up to some ln(n) factor in front of
the remainder term; these results are stated with the margin condition (3) but actually use its
local version (4) only). Hence, the challenge of strong margin adaptivity (6) is mainly to find a
completely data-driven procedure having a similar performance.

Most of the papers consider the uniform margin condition, i.e. with ϕm ≡ ϕ. Penalization
methods have been studied in [17, 9, 7, 14] (with localized random penalties) and [22] (with
other penalties, in a particular framework). Adaptivity to the margin has also been considered
with a regularized boosting method [10], the hold-out [11] and in a PAC-Bayes framework [5].
Aggregation methods have been studied in [21, 15]. Notice also that a completely different
approach is possible: estimate first the regression function η (possibly through model selection),
then use a plug-in classifier, and this works provided η is smooth enough [6].
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MARGIN-ADAPTIVE MODEL SELECTION 5

It is quite unclear whether any of these results can be extended to strong margin adaptivity
(actually, we will prove that this needs additional restrictions in general). To our knowledge,
the only results allowing ϕm to depend on m can be found in [14]. First, when the models are
nested, a comparison method based on local Rademacher complexities attains strong margin
adaptivity, assuming that s ∈ ⋃m∈Mn

Sm (Theorem 7; and it is quite unclear whether this still
holds without the latter assumption). Second, a penalization method based on local Rademacher
complexities has the same property in the general case, but it uses the knowledge of (ϕm )m∈Mn

(Theorems 6 and 11).
Our claim is that when ϕm does strongly depend on m, it is crucial to take it into account

to choose the best model in Mn. And such situations occur, as proven by our Proposition 2 in
Section 5.2. But assuming either s ∈ ⋃m∈Mn

Sm or that ϕm is known is not realistic. Our goal is
to investigate the kind of results which can be obtained with completely data-driven procedures,
in particular when s /∈ ⋃m∈Mn

Sm.

1.5. Our results. In this paper, we aim to understand when strong margin adaptivity can be
obtained for data-dependent model selection procedures. Notice that we do not restrict ourselves
to the classification setting. We consider a much more general framework (as in [14] for instance),
which is described in Section 2. We prove two kinds of results. First, when models are nested, we
show that some penalization methods are strongly margin adaptive (Theorem 1). In particular,
this result holds for the local Rademacher complexities (Corollary 1). Compared to previous
results (in particular the ones of [14]), our main advance is that our penalties do not require the
knowledge of (ϕm )m∈Mn

, and we do not assume that the Bayes predictor belongs to any of the
models.

Our second result probes the limits of strong margin adaptivity, without the nested assump-
tion. For every sample size n, there is a distribution P and a family of models such that any
“reasonable” penalization procedure fails to be strongly margin adaptive with a positive proba-
bility (Theorem 2). In addition, the same negative result holds for any model selection procedure
— even a randomized one — provided that the distribution P is allowed to depend on the model
selection rule (Theorem 3). Hence, the previous positive results can not be extended outside of
the nested case for a general distribution P .

Where is the boundary between these two extremes? Obviously, the nested assumption is not
necessary. For instance, when the global margin assumption is indeed tight (ϕ = ϕm for every
m ∈ Mn), margin adaptivity can be obtained in several ways, as mentioned in the previous
section. We try in Section 5 to sketch some situations where strong margin adaptivity is possible.
More precisely, we state a general oracle inequality (Theorem 4), valid for any family of models
and any distribution P . We then discuss assumptions under which its remainder term is small
enough to imply strong margin adaptivity.

This paper is organized as follows. We describe the general setting in Section 2. We consider
in Section 3 the nested case, in which strong margin adaptivity holds. Negative results (i.e. lower
bounds on the prediction error of a general model selection procedure) are stated in Section 4.
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6 ARLOT, S. AND BARTLETT, P.

The line between these two situations is sketched in Section 5. We discuss our results in Section 6.
All the proofs are given in Section 7.

2. The general empirical risk minimization framework. Although our main motiva-
tion comes from the classification problem, it turns out that all our results can be proven in
the much more general setting of empirical risk minimization. As explained below, this setting
includes binary classification with the 0-1 loss, bounded regression and several other frameworks.
In the rest of the paper, we will use the following general notation, in order to emphasize the
generality of our results.

We observe independent realizations ξ1, . . . , ξn ∈ Ξ of a random variable with distribution P ,
and we are given a set F of measurable functions Ξ 7→ [0, 1]. Our goal is to build some (data-
dependent) f such that P (f) := Eξ∼P [f(ξ) ] is as small as possible. For the sake of simplicity,
we assume that there is a minimizer f⋆ of P (f) over F .

This includes the prediction framework, in which Ξ = X × Y, ξi = (Xi, Yi),

F := {ξ 7→ γ ( t; ξ ) s.t. t ∈ S } ,

where γ : S×Ξ 7→ [0, 1] is any contrast function. Then, f⋆ is equal to γ (s; · ), where s is the Bayes
predictor. In the binary classification framework,Y = {0, 1} and we can take the 0-1 contrast
γ(t; (x, y)) = 1t(x)6=y for instance. This is the case that we have considered in introduction. In the
bounded regression framework, assuming that Y = [0, 1], we can take the least-squares contrast,

γ(t; (x, y)) = ( t(x) − y )2 .

Notice that many other contrast functions γ can be considered, provided that they take their
values in [0, 1]. Because of the one-to-one correspondence between predictors t and functions
ft := γ (t; ·) in the prediction framework, in the following we will call functions f ∈ F predictors,
even if we do not restrict ourselves to the prediction problem.

The empirical risk minimizer over Fm ⊂ F (called a model) can then be defined as

f̂m ∈ arg min
f∈Fm

Pn(f) .

We hope that its risk is close to that of fm ∈ arg minf∈Fm P (f), assuming that such a minimizer

exists. In the prediction case, defining Fm := {ft s.t. t ∈ Sm}, we have f̂m = fŝm
and fm = fsm.

We can now write the global margin condition as follows:

(8) ∀f ∈ F , P (f − f⋆) ≥ ϕ

(√
varP (f − f⋆)

)
,

where ϕ is a convex non-decreasing function on [0,∞) with ϕ(0) = 0. Similarly, the local margin
condition is

(9) ∀f ∈ Fm, P (f − f⋆) ≥ ϕm

(√
varP (f − f⋆)

)
.
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MARGIN-ADAPTIVE MODEL SELECTION 7

Notice that most of the upper and lower bounds on the risk under the margin condition given
in the introduction stay valid in the general empirical minimization framework, at least when
ϕm(x) = (hmx2)κm for some hm > 0 and κm ≥ 1 (see for instance [20, 14]). Assume that Sm is
a VC-class of dimension Vm. If ϕm(x) = hmx2,

E [ℓ(s, ŝm) ] ≤ 2ℓ(s, sm) + C

(
ln(n)Vm

nhm

)
∧
√

Vm

n

for some numerical constant C > 0. If ϕm(x) =
(
hmx2

)κm for some hm > 0 and κm ≥ 1,

E [ℓ(s, ŝm) ] ≤ 2ℓ(s, sm) + C

[
L(hm, κm) ln(n)

(
Vm

nhm

) 2κm
κm−1

]
∧
√

Vm

n

for some constant L(hm, κm) > 0.

Given a collection (Fm )m∈Mn
of models, we are looking for a model selection procedure

(ξ1, . . . , ξn) 7→ m̂ ∈ Mn satisfying an oracle inequality of the form

(10) P
(
f̂m̂ − f⋆

)
≤ C inf

m∈Mn

{
P
(
f̂m − f⋆

)
+ Rm,n

}
,

with a leading constant C close to 1 and a remainder term Rm,n as small as possible. Similarly
to (6), we define a strongly margin adaptive procedure as any m̂ such that (10) holds with some
constant C and Rm,n of the order of the minimax risk Rn(Cm, ϕm).

Defining penalization methods as

(11) m̂ ∈ arg min
m∈Mn

{
Pn

(
f̂m

)
+ pen(m)

}

for some data-dependent pen : Mn 7→ R, the ideal penalty is penid(m) := (P − Pn)
(
f̂m

)
.

3. Margin adaptive model selection for nested models.

3.1. General result. Our first result is a sufficient condition for penalization procedures to
attain margin adaptivity when the models are nested (Theorem 1). Since this condition is satis-
fied by local Rademacher complexities, this leads to a completely margin adaptive penalization
procedure (Corollary 1).

Theorem 1. Fix (ϕm )m∈Mn
such that the local margin conditions (9) hold. Let t > 0 and

assume that there are constants c, η ∈ (0, 1) and C1, C2 ≥ 0 such that the following holds:

• the models Fm are nested and Mn is finite.
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8 ARLOT, S. AND BARTLETT, P.

• lower bounds on the penalty: with a probability at least 1 − η, for every m,m′ ∈ Mn,

(1 − c) pen(m) ≥ (P − Pn)
(
f̂m − fm

)
+

t

n
≥ 0(12)

Fm′ ⊂ Fm ⇒ cpen(m) ≥ v(m) − C1v(m′) − C2P (fm′ − f⋆) ,(13)

where v(m) :=

√
2t

n
varP (fm − f⋆) .

Then, if m̂ is defined by (11), with probability at least 1 − η − Card(Mn)e−t, we have for every
ǫ ∈ (0, 1)

P
(
f̂m̂ − f⋆

)
≤ 1

1 − ǫ
inf

m∈Mn

{(1 + ǫ + C2)P (fm − f⋆ ) + (2 − c) pen(m)

+(1 + C1)ϕ
⋆
m

(√
2t

ǫ2n

)
∧ 1√

n
+

2t

3n

}
,

(14)

where ϕ⋆
m(x) := supy≥0 {xy − ϕm(y)} is the convex conjuguate of ϕm.

Remark 1. 1. If pen(m) is of the right order, i.e. not much larger than E [penid(m) ], then
Theorem 1 is a strong margin adaptivity result. Indeed, assuming that ϕm(x) =

(
hmx2

)κm,
the remainder term is not too large, since ϕ⋆

m(n−1) = L(hm, κm)x2κm/(2κm−1) for some
positive constant L(hm, κm). Hence, choosing ǫ = 1/2 for instance, we can rewrite (14) as

P
(
f̂m̂ − f⋆

)
≤ L(C2, C1) inf

m∈Mn

{
P (fm − f⋆ ) + pen(m) + L(hm, κm)

(
t

n

) κm
2κm−1

}
,

for some positive constants L(C2, C1) and L(hm, κm). When ϕm is a general convex func-
tion, minimax estimation rates are no longer available, so that we do not know whether
the remainder term in (14) is of the right order. However, no better risk bound is known,
even for a single model to which s belongs.

2. In the case that the ϕm are known, methods involving local Rademacher complexities and
(ϕm )m∈Mn

satisfy oracle inequalities similar to (14) (see Theorems 6 and 11 in [14]). Also,
Theorem 7 of [14] shows that adaptivity is possible using a comparison method, provided
that f⋆ belongs to one of the models. It is not clear whether this method achieves the
optimal bias-variance trade-off in the general case, as in our result.

3. In Theorem 1, we cannot make t depend on m. If we want the probability bound to be good
enough, we have to choose t ≥ ln Card(Mn)+2 ln(n), so that the result is only meaningful
when Mn does not grow exponentially with n. We do not know whether Theorem 1 can be
extended to very large collections Mn, assuming for instance that t = tm is a nondecreasing
function of m.
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MARGIN-ADAPTIVE MODEL SELECTION 9

3.2. Local Rademacher complexities. Although Theorem 1 applies to any penalization proce-
dure that satisfies assumptions (12) and (13), we focus on methods based on local Rademacher
complexities. Let us define precisely these complexities. We mainly use the notation of [14]:

• for every δ > 0, the δ minimal set of Fm w.r.t the distribution P is

Fm,P (δ) :=

{
f ∈ Fm s.t. P (f) − inf

g∈Fm

P (g) ≤ δ

}

• the L2(P ) diameter of the δ minimal set:

DP (Fm; δ) = sup
f,g∈Fm,P (δ)

P
(
(f − g)2

)

• the expected modulus of continuity of (P − Pn) over Fm:

φn(Fm;P ; δ) = E sup
f,g∈Fm,P (δ)

|(Pn − P )(f − g)| .

We then define

Un(Fm; δ; t) := K

(
φn(Fm;P ; δ) + DP (Fm; δ)

√
t

n
+

t

n

)
,

where K > 0 is a numerical constant (to be chosen later). The (ideal) local complexity δn(Fm; t)
is (roughly) the smallest positive fixed-point of r 7→ Un(Fm; r; t). More precisely,

(15) δn(Fm; t) := inf

{
δ > 0 s.t. sup

σ≥δ

{
Un(Fm;σ; t)

σ

}
≤ 1

2q

}

where q > 1 is a numerical constant.
Two important points, which follow from Theorem 1 and 3 of Koltchinskii [14], are that:

1. δn(Fm; t) is large enough to satisfy assumption (12) with a probability at least 1 −
logq (n/t) e−t for each model m ∈ Mn.

2. there is a completely data-dependent δ̂n(Fm; t) such that

∀m ∈ Mn, P

(
δ̂n(Fm; t) ≥ δn(Fm; t)

)
≥ 1 − 5 lnq

(
n

t

)
e−t .

This data-dependent δ̂n(Fm; t) is a resampling estimate of δn(Fm; t), called the “local
Rademacher complexity”.

Before stating the main result of this section, let us recall the definition of δ̂n(Fm; t), as in
[14]. We need the following additional notation:
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10 ARLOT, S. AND BARTLETT, P.

• for every δ > 0, the empirical δ minimal set of Fm w.r.t the distribution P is

F̂n,m,P (δ) :=

{
f ∈ Fm s.t. Pn(f) − inf

g∈Fm

Pn(g) ≤ δ

}

• the empirical L2(P ) diameter of the empirical δ minimal set:

Dn,P (Fm; δ) = sup
f,g∈F̂n,m,P (δ)

Pn

(
(f − g)2

)

• the modulus of continuity of (P − Pn) over Fm:

φ̂n(Fm;P ; δ) = sup
f,g∈F̂n,m,P (δ)

∣∣∣∣∣
1

n

n∑

i=1

ǫi(f(ξi) − g(ξi))

∣∣∣∣∣ ,

where ǫ1, . . . , ǫn are i.i.d. Rademacher random variables (i.e., ǫi takes the values +1 and
−1 with probability 1/2 each).

Defining

Ûn(Fm; δ; t) := K̂

(
φ̂n(Fm;P ; ĉδ) + D̂n,P (Fm; ĉδ)

√
t

n
+

t

n

)

(where K̂, ĉ > 0 are numerical constants, to be chosen later), the local Rademacher complexity
δ̂n(Fm; t) is (roughly) the smallest positive fixed-point of r 7→ Ûn(Fm; r; t). More precisely,

(16) δ̂n(Fm; t) := inf

{
δ > 0 s.t. sup

σ≥δ

{
Ûn(Fm;σ; t)

σ

}
≤ 1

2q

}

where q > 1 is a numerical constant.

Corollary 1 (Margin adaptivity for local Rademacher complexities). There exist numer-
ical constants L > 0, K > 0 and q > 1 such that the following holds. Assume that

(17) ∀m ∈ Mn, pen(m) ≥ 7

2
δn(Fm; t) ,

where δn(Fm; t) is defined by (15) (and depends on both K and q). Assume moreover that the
models (Fm )m∈Mn

are nested and

m̂ ∈ arg min
m∈Mn

{
Pn

(
f̂m

)
+ pen(m)

}
.
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MARGIN-ADAPTIVE MODEL SELECTION 11

Then, with probability at least 1 − L lnq
( n

t

)
Card(Mn)e−t, for every ǫ ∈ (0, 1),

P
(
f̂m̂ − f⋆

)
≤ 1

1 − ǫ
inf

m∈Mn

{(
1 + ǫ +

2

Kq

)
P (fm − f⋆ ) +

9

7
pen(m)

+(1 +
√

2)ϕ⋆
m

(√
2t

ǫ2n

)
+

2t

3n

}
.

(18)

In particular, this holds when pen(m) = 7
2 δ̂n(Fm; t), provided that K̂, ĉ > 0 are larger than some

constants depending only on K, q.

Remark 2. One can always enlarge the constants K and q, making the leading constant
of the oracle inequality (18) closer to one, at the price of enlarging δn(Fm; t) (hence pen(m) or
δ̂n(Fm; t)). We do not know whether it is possible to make the leading constant closer to one
without changing the penalization procedure itself.

As we show in Section 5.2, there are distributions P and collections of models (Fm )m∈Mn
such

that this is a strong improvement over the “uniform margin” case, in terms of prediction error.
It seems reasonable to expect that this happens in a significant number of practical situations.

In Section 5, we state a more general result (from which Theorem 1 is a corollary) which
suggests why it is more difficult to prove Corollary 1 when ϕm really depends on m. This
general result is also useful to understand how the nestedness assumption might be relaxed in
Theorem 1.

The reason why Corollary 1 implies margin adaptivity is that the local Rademacher complex-
ities are not too large when the local margin condition is satisfied, together with a complexity
assumption on Fm. Indeed, there exists a distribution-dependent δ̃n(Fm; t) (defined as δn(Fm; t)
with Un(Fm; δ; t) replaced by K1Un(Fm;K2δ; t) for some numerical constants K1,K2 > 0, re-
lated to K̂ and ĉ) such that

∀m ∈ Mn, P

(
δ̃n(Fm; t) ≥ δ̂n(Fm; t) ≥ δn(Fm; t)

)
≥ 1 − 5 lnq

(
n

t

)
e−t .

(See Theorem 3 of [14].) This leads to several upper bounds on δ̂n(Fm; t) under the local margin
condition (9) (combining Lemma 5 of [14] with the examples of its Section 2.5). For instance,
in the binary classification case, when Fm is the class of 0-1 loss functions associated with a
VC-class Sm of dimension Vm, such that the margin condition (9) holds with ϕm(x) = hmx2, we
have for every t > 0 and ǫ ∈ (0, 1],

(19) δn(Fm; t) ≤ ǫP (fm − f⋆ ) +
K3

nhm

[
ǫ−1t + ǫ−2Vm ln

(
nǫ2hm

K4Vm

)]
,

where K3 and K4 depend only on K. (Similar upper bounds hold under several other complexity
assumptions on the models Fm, cf. [14].) In particular, when each model Sm is a VC-class of
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12 ARLOT, S. AND BARTLETT, P.

dimension Vm, ϕm(x) = hmx2, pen(m) = 7
2 δ̂n (Fm; t) and t = ln(Card(Mn)) + 3 ln(n), (18)

implies that

P
(
f̂m̂ − f⋆

)
≤ C inf

m∈Mn

{
P (fm − f⋆ ) +

ln (Card(Mn)) + ln(n) + Vm ln (enhm/Vm )

nhm

}

with probability at least 1 − Kn−2, for some numerical constants C,K > 0. Up to some ln(n)
factor, this is a margin adaptive model selection result, provided that Card(Mn) is not larger
than some power of n. Notice that the ln(n) factor is sometimes necessary (as shown by [20]),
meaning that this upper bound is optimal.

4. Lower bounds for some non-nested models. In this section, we investigate the
assumption in Theorem 1 that the models Fm are nested. We show that (strong) margin adaptive
model selection is not always possible, even for randomized model selection procedures, if we
relax this assumption.

4.1. “Reasonable” penalization procedures. First assume that m̂ is obtained from a penal-
ization procedure that assigns a null penalty to singletons. This is, for instance, the case when
pen(m) is proportional to the expectation of penid, or when pen(m) is any quantile of the distri-
bution of (P −Pn)(f̂m−fm). Then, the following result shows that there exists a model selection
problem for which such a method fails with positive probability.

Theorem 2. If Card(X ) ≥ 2, there are two classes F0 and F1 of functions X×{0, 1} 7→ [0, 1]
and a numerical constant κ > 0 such that the following holds. For every γ > 0, there is a constant
Lγ such that for every n ≥ 1 and t0, t1 ∈ [0, γ ln(n)], there is a distribution P such that for any
penalization procedure satisfying

(20) Card(Fm) = 1 ⇒ pen(m) = 0

and any

m̂ ∈ arg min
m∈{ 0,1}

{
Pn

(
f̂m

)
+ pen(m)

}
,

we have

P

(
P
(
f̂m̂ − f⋆

)
≥ Lγ

√
n

ln(n)
min

m∈{ 0,1}

{
P
(
f̂m − f⋆

)
+ v(m) +

tm
nhm

})
≥ κ > 0 ,(21)

where ∀m ∈ {0, 1} , hm := inf
f∈Fm

{
P (f − f⋆)

varP (f − f⋆)

}
.

In addition, (21) implies

(22) E

[
P
(
f̂m̂ − f⋆

)]
≥ κLγ

√
n

ln(n)
min

m∈{ 0,1}

{
E

[
P
(
f̂m − f⋆

)]
+ v(m) +

tm
nhm

}
.
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MARGIN-ADAPTIVE MODEL SELECTION 13

In other words, Theorem 1 cannot be generalized to non-nested models without some other
assumption on P or on the models.

Remark 3. 1. The counterexample in the proof of Theorem 2 holds in the classification
case with the 0-1 loss.

2. Assumption (20) holds for pen(m) = (P − Pn)(f̂m − fm) as well as any quantile of its
distribution and its expectation

E

[
(P − Pn)(f̂m − fm)

]
= E [penid(m) ] .

It also holds for the local Rademacher complexities δn(Fm; tm) and δ̂n(Fm; tm) (up to the
tm/n term, but tm should not depend on m when there are only two models).

3. Assumption (20) is reasonable if we do not have more information on P : when a model
Fm is a singleton, there is no hope to estimate its “complexity.” Without additional infor-
mation about P , comparing the prediction abilities of two singletons can only be made by
comparing their empirical risks.

4. We consider margin adaptivity with ϕm(x) = hmx2, whereas the margin condition is also
satisfied with other functions ϕm. This is both for simplicity reasons, and because this
choice emphasizes that one can hope for learning rates of order 1/(nhm). The meaning of
Theorem 2 is then mainly that one can not guarantee to learn at a rate better than 1/

√
n,

whereas the best model has an excess loss of order 1/n, even with the additional term
1/(nhm).

5. The counterexample given in the proof of Theorem 2 is highly nonasymptotic, in the
sense that the distribution P strongly depends on n. If P and F0,F1 were fixed, it is well
known that empirical risk minimization leads to asymptotic optimality. This illustrates a
significant difference between the asymptotic and non-asymptotic frameworks.

4.2. Lower bound for any model selection procedure. More precisely, we can modify the proof
of Theorem 2 in order to make it valid for any model selection procedure, at the price of making
the distribution P depend on it (otherwise, for any P , one among the deterministic choices
m̂ ≡ 0 and m̂ ≡ 1 is optimal). In other words, we have the following “minimax model selection
lower bound”:

Theorem 3. If Card(X ) ≥ 2, there are two classes F0 and F1 of functions X×{0, 1} 7→ [0, 1]
and a numerical constant κ′ > 0 such that the following holds. For any γ > 0, there is a constant
Lγ > 0 such that for every n ∈ N, t0, t1 ∈ [0, γ ln(n)] and m̂ a model selection procedure ( i.e. a
function (X × Y )n 7→ M = {0, 1}), there is a distribution P such that

P

(
P
(
f̂m̂ − f⋆

)
≥ Lγ

√
n

ln(n)
min

m∈{ 0,1}

{
P
(
f̂m − f⋆

)
+ v(m) +

tm
nhm

})
≥ κ′(23)

E

[
P
(
f̂m̂ − f⋆

)]
≥ κ′Lγ

√
n

ln(n)
min

m∈{ 0,1}

{
E

[
P
(
f̂m − f⋆

)
+ v(m) +

tm
nhm

]}
,(24)
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14 ARLOT, S. AND BARTLETT, P.

where

hm := inf
f∈Fm

{
P (f − f⋆)

varP (f − f⋆)

}
.

This generalizes the conclusions of the previous subsection, since we have proven that Theo-
rem 1 cannot be generalized to non-nested models without further assumptions on P or on the
models.

Remark 4. The same result holds for randomized rules m̂ : (X × Y )n 7→ [0, 1] (where the
value of m̂((Xi, Yi)1≤i≤n) is the probability assigned to the choice of the model F1). Hence,
aggregating models instead of selecting one does not modify the conclusion of Theorem 3.

4.3. Comments. With Theorem 1, we have proven a margin adaptivity result for nested
models, which holds true when the penalty is built upon local Rademacher complexities. This
means that adaptive model selection is attainable for nested models, whatever the distribution
of the data. On the other hand, Theorem 2 gives a simple example where no “reasonable”
penalty can satisfy an oracle inequality (10) with a leading constant smaller than nβ, where β
can be made arbitrarily close to 1/2. By “reasonable”, we mean that we do not penalize two
singletons in a different way, which would imply choosing a model with larger empirical risk.
Even if we admit “unreasonable” model selection rules, Theorem 3 shows that we cannot attain
our adaptive model selection goals uniformly over all distributions.

Looking carefully at the examples given in the proofs of Theorem 2 and 3, it appears that the
main reason why they are particularly tough is that we are quite “lucky” with one of the models:
it has simultaneously a very small bias, a very small size and a large margin parameter, while
other models with very similar appearance are much worse. See also Remark 5 in Section 7.2.
When looking for more general margin adaptivity result, we then must keep in mind that this
is a hopeless task in such situations.

5. General collections of models. As proven in Section 4, we cannot hope to obtain
margin adaptivity without any assumption on either P or the models. The purpose of this
section is to explain what can still be proven in the general case, and why this is weaker than
our Theorem 1.

5.1. A general oracle inequality. We start with a general result for penalties satisfying the
lower bound (12).

Theorem 4. Let ( tm )m∈Mn
be any sequence of positive numbers. Let m̂ be defined by (11)

and assume that there is some c ∈ (0, 1) such that

(25) ∀m ∈ Mn, (1 − c) pen(m) ≥ (P − Pn)
(
f̂m − fm

)
+

tm
n

≥ 0
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MARGIN-ADAPTIVE MODEL SELECTION 15

on an event of probability at least 1 − η.
Then, there is an event of probability at least 1 − η −∑

m∈Mn
e−tm on which the following

holds: for every ǫ ∈ (0, 1),

P
(
f̂m̂ − f⋆

)
≤ 1

1 − ǫ
inf

m∈Mn

{
P
(
f̂m − f⋆

)
+ pen(m) + v(m) +

2tm
3n

}
+ Vn(26)

where Vn :=
1

1 − ǫ
sup

m∈Mn

{v(m) − ǫP (fm − f⋆ ) − cpen(m)}

and v(m) :=

√
2tm
n

varP (fm − f⋆) .

Let us make a few comments.
First, without Vn, (26) is the kind of oracle inequality we are looking for, since the leading

constant is close to 1 (provided ǫ is small enough). For the sake of simplicity, assume that a
margin condition (9) holds for every model m ∈ Mn, with ϕm(x) = hmx2. We then have

v(m) ≤
√

2tmP (fm − f⋆ )

hmn
≤ ǫP (fm − f⋆ ) +

tm
2ǫhmn

,

for any ǫ ∈ (0, 1). Hence, applying (25), the first term of the right-hand side of (26) is smaller
than

1 + ǫ

1 − ǫ
inf

m∈Mn

{
P (fm − f⋆ ) + (2 − c) pen(m) +

tm
2ǫhmn

}
,

which is the right-hand side of a margin adaptive oracle inequality (6) (at least when the penalty
is itself of the right order). A similar result holds for a more general ϕm; see the proof of
Theorem 1.

Once we have a penalty satisfying (25) (for instance, a local Rademacher penalty), the main
difficulty for proving a strong margin adaptivity result then lies in Vn. It arises from the presence
of (P − Pn)(fm) in the ideal penalty but not in the right-hand side of the lower bound (25).
This random quantity is centered, and (up to a quantity independent of m) has deviations of
order v(m), Bernstein’s inequality being unimprovable. Then, if v(m) happens to be much larger
than P (fm − f⋆) + pen(m), m is selected with a positive probability, whatever the quality of m
for prediction. In that case, our risk is worse than the oracle by at least v(m) (for any of these
“bad” models). In that sense, Vn is unavoidable in (26).

As shown by Theorem 2 and 3, Vn can be much larger than the prediction risk of a margin
adaptive procedure. However, Vn is not always the main term in the right-hand side of (26). Let
us now describe a set of favorable situations, in which it is possible to prove that Vn is small
enough.

1. Models are nested, tm ≡ t, and pen satisfies the additional condition (13): see Section 3.
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16 ARLOT, S. AND BARTLETT, P.

2. Models are nested, tm ≡ t and v(m) is decreasing (or at least not increasing too much)
when m increases. Indeed, when models are nested, either Fm⋆ ⊂ Fm so that v(m) ≤
supm′≥m⋆ {v(m′)}, or Fm ⊂ Fm⋆ so that ϕm⋆ ≤ ϕm hence ϕ⋆

m ≤ ϕ⋆
m⋆ . In the second case,

v(m) − ǫP (fm − f⋆) ≤ ϕ⋆
m

(√
2t

ǫ2n

)
≤ ϕ⋆

m⋆

(√
2t

ǫ2n

)
.

As a consequence,

Vn ≤ max

{
sup

m′≥m⋆

{
v(m′)

}
;ϕ⋆

m⋆

(√
2t

ǫ2n

)}
,

which is not too large provided that v(m) never increases too much. Notice that we can
view assumption (13) as ensuring that the penalty compensates a possible increase of v(m).

3. The oracle model prediction error does not decrease to zero faster than n−1/2 and tm ≡ t.
Indeed, the straightforward upper bound v(m) ≤

√
2tm/n shows that Vn ≤

√
2t/n.

4. The margin condition does not depend on n and tm ≡ t. Indeed, when ϕm ≡ ϕ (or
infm ϕm ≥ ϕ), we have

Vn ≤ sup
m∈Mn

{
ϕ⋆

m

(√
2tm
ǫ2n

)}
≤ ϕ⋆

(√
2t

ǫ2n

)
.

5. The penalty satisfies cpen(m) ≥ v(m) for every m ∈ Mn, which can be ensured for instance
by adding c−1v(m) (or an estimate of it) to a penalty satisfying (25). This method is for
instance the one proposed by Koltchinskii [14] (Section 5.2), and in that case (26) coincides
with his Theorem 6.

Points 3 and 4 above show that the challenging situations are the ones where the margin
condition indeed depends on the model, and fast rates of estimation are attainable. We prove in
Section 5.2 that such situations can occur, enlightening how our Theorem 1 is an improvement
on existing results and straightforward consequences of them.

On the other hand, point 5 may seem contradictory with the negative results of Section 4.
The explanation is that using v(m) in the penalty means that m̂ is not only a function of the
data, but also of the unknown distribution P . Then, it cannot be considered adaptive. A more
surprising consequence of this remark combined with Theorem 3 is that it is not possible to
estimate v(m) accurately enough uniformly over the set of all distributions P . Consider the
proposal, in Section 5.1 of [14], to add

L

√
tmPn(f̂m)

n

to the penalty, which is sufficient to give a result like (14). The point is that such a penalty is
generally much too large (at least for “not too large” models), which often results in an upper
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MARGIN-ADAPTIVE MODEL SELECTION 17

bound of order n−1/2. In the examples we have in mind (as well as in the counterexamples
of Section 4), the excess risk of the oracle is much smaller, typically of order n−β for some
β ∈ (1/2; 1].

5.2. The local margin conditions can be significantly tighter than the global one. In this sec-
tion, we show that there exist challenging situations, in which the margin condition holds for
functions ϕm strongly depending on m.

Proposition 2. Let κ ∈ (2;+∞) and assume that X is infinite. Then, there is a probability
distribution P on X × {0, 1} and two constants C,L > 0 (depending on κ only) such that the
global margin condition (8) is satisfied with ϕ(x) = Cxκ. In addition, for every ǫ > 0, there exist
f0,ǫ, f1,ǫ ∈ F such that

0 < P (f1,ǫ − f⋆ ) = P (f0,ǫ − f⋆ ) ≤ ǫ(27)

varP (f1,ǫ − f⋆ )

varP (f0,ǫ − f⋆ )
≤ ǫ(28)

P (f0,ǫ − f⋆ ) ≥ ϕ

(√
varP (f0,ǫ − f⋆ )

)
≥ LP (f0,ǫ − f⋆ ) .(29)

This result means that the global margin condition (8) is tight at any scale (29), but not
uniformly over F (28). In particular, for every ǫ ∈ (0, 1), we have

ϕ

(√
varP (f1,ǫ − f⋆ )

)
≤ ϕ

(√
ǫ varP (f0,ǫ − f⋆ )

)
≤

√
ǫϕ

(√
varP (f0,ǫ − f⋆ )

)

≤
√

ǫP (f0,ǫ − f⋆ ) =
√

ǫP (f1,ǫ − f⋆ ) .

Defining F1 := {f1,ǫ} and F2 := {f0,ǫ, f1,ǫ}, the local margin condition (9) is then satisfied with
ϕ1 ≥ ǫ−1/2ϕ and ϕ2 ≤ L−1ϕ. With the particular formula for ϕ given in Proposition 2 (which is
not improvable in general), we have

∀x > 0, ϕ⋆(x) =
κ − 1

κκ/(κ−1)C1/(κ−1)
xκ/(κ−1) and ϕ⋆

1(x) ≤ ǫ1/(2(κ−1))L−1/(κ−1)ϕ⋆
2(x) .

Hence, an oracle inequality with remainder terms of order ϕ⋆
m(tm/n) is much better than an

oracle inequality with remainder terms of order ϕ⋆(tm/n).

6. Discussion.

6.1. Large collection of models. As noticed in Remark 3, Theorem 1 may not be meaningful
when Mn is very large, i.e. when ln(Card(Mn)) is much larger than ln(n). Can a similar result
be obtained in this case by replacing t by some tm, a nondecreasing function of m? This would be
interesting for instance in the ordered variable selection problem when the number of variables
is much larger than the sample size n.
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18 ARLOT, S. AND BARTLETT, P.

6.2. Other penalization procedures. Throughout this paper, we have focused on penalties
defined in terms of local Rademacher complexities. However, most of our results are stated for
general penalization procedures, the assumption (12) meaning essentially that the penalty is
larger than the expectation of the ideal one with a large probability.

For instance, it is natural to think of estimating penid(m) itself by resampling, instead of the
local complexity δn(Fm; t). Such penalties, with several kinds of resampling schemes, have been
proposed by Arlot [3, 2] and called “Resampling Penalties” (RP), generalizing the bootstrap
penalty suggested by Efron [13]. Compared to the local Rademacher complexities, RP have two
main interests. First, they can be computed much faster, because they are not defined as a fixed
point of the resampling estimate of a function. In particular, the V -fold penalties defined in [3]
have the same computational cost as V -fold cross-validation. Second, RP mainly depend on a
single tuning parameter, which is a multiplicative factor in front of it. Hence, it is much easier to
calibrate them than the local Rademacher complexities, which depend on two more constants,
whose theoretical values are certainly too large for practical application. See for instance [4] for
a completely data-driven calibration procedure for the multiplicative factor in front of a penalty.

It would therefore be interesting to prove that RP satisfy the assumptions of Theorem 1 (and
are not too large), in order to obtain a margin adaptive penalization procedure with a much
smaller computation time. Unfortunately, this is still a seemingly hard open problem, for which
partial results can be found in Chapter 7 of [1], together with an agenda for a complete proof.
In particular, controlling the expectation of RP is quite hard compared to local Rademacher
complexities, since we can no longer use a symmetrization argument.

6.3. Should we make collections of models nested?. A natural question coming from our
results is whether one should make any collection of models nested before performing model
selection, in order to improve performance. Let us consider the counterexamples of Section 4
and look at what would happen if we made the models nested.

Assume that P = P1 is the distribution defined in the proof of Theorem 2. Then, comparing F0

and F0∪F1, the model selection problem would be easy because the margin parameter hm would
be the same in both models, making the remainder term of order n−1/2 (the remainder term
(nhm)−1 can be replaced by n−1/2 when hm ≤ n−1/2 because of the upper bound varP (fm−f⋆) ≤
1/4). And margin adaptivity is not challenging when the margin condition is merely not satisfied.
On the other hand, when P = P1, comparing F1 and F0 ∪ F1 is more challenging because
F1 is really better than F0. Here, contrary to the non-nested case, the large increase of the
term varP (fm − f⋆) induces a similar increase in the L2(P1) diameter of the class. Hence, local
Rademacher complexities can detect it, as shown by Theorem 1.

This shows that the final performance strongly depends on how we make the models nested.
Without the knowledge of which model is indeed less complex with respect to the distribution
P , we can not make the right choice with a probability going to 1 when n goes to infinity.

7. Proofs.
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7.1. Oracle inequalities. We give the proofs in a logical order, that is first Theorem 4, then
Theorem 1 (which is a corollary of it), and finally Corollary 1.

proof of Theorem 4. First, by definition of m̂, for every m ∈ Mn we have

Pn

(
f̂m̂

)
+ pen(m̂) ≤ Pn

(
f̂m

)
+ pen(m) ,

which can be rewritten as

P
(
f̂m̂ − f⋆

)
+ (Pn − P )

(
f̂m̂ − fm̂

)
+ (Pn − P )

(
fm̂ − f⋆ )+ pen(m̂)

≤ P
(
f̂m − f⋆

)
+ (Pn − P )

(
f̂m − fm

)
+ (Pn − P ) (fm − f⋆ ) + pen(m) .

On the event where (25) holds, we then have

P
(
f̂m̂ − f⋆

)
+ (Pn − P )

(
fm̂ − f⋆ )+ cpen(m̂) +

tm̂
n

≤ inf
m∈Mn

{
P
(
f̂m − f⋆

)
+ (Pn − P ) (fm − f⋆ ) + pen(m)

}
.

(30)

By Bernstein’s inequality (see for instance Proposition 2.9 in [19]), for every m ∈ Mn, there
is an event of probability 1 − e−tm on which

|(Pn − P ) (fm − f⋆ )| ≤ v(m) +
2tm
3n

.

On the intersection of these events with the one on which (25) holds, we derive from (30) that

P
(
f̂m̂ − f⋆

)
− v(m̂) + cpen(m̂) ≤ inf

m∈Mn

{
P
(
f̂m − f⋆

)
+ pen(m) + v(m) +

2tm
3n

}
.

For any ǫ > 0, the left-hand side is larger than

(1 − ǫ)P
(
f̂m̂ − f⋆

)
+ ǫP

(
fm̂ − f⋆ )+ cpen(m̂) − v(m̂)

≥ (1 − ǫ)P
(
f̂m̂ − f⋆

)
− sup

m∈Mn

{v(m) − ǫP (fm − f⋆ ) − cpen(m)} .

The result follows.

proof of Theorem 1. We consider the event on which (26) holds. By Theorem 4, we know
that it has probability at least 1−η−Card(M)e−t. We first bound the first term in the right-hand
side of (26). From (9), we have

∀m ∈ Mn, v(m) ≤
√

2tm
n

ϕ−1
m (P (fm − f⋆ )) .
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Then, using that xy ≤ ϕm(x) + ϕ⋆
m(y) for every x, y ≥ 0,

v(m) ≤ ϕ⋆
m

(√
2tm
ǫ2n

)
+ ϕm

(
ǫϕ−1

m (P (fm − f⋆ ))
)

.

Since ϕm is convex with ϕm(0) = 0, we have ϕm(λx) ≤ λϕm(x) for every λ ∈ (0, 1) and x ≥ 0.
Then,

(31) v(m) ≤ ϕ⋆
m

(√
2tm
ǫ2n

)
+ ǫP (fm − f⋆ ) ,

and using once more (25), the right-hand side of (26) is smaller than

(32)
1

1 − ǫ
inf

m∈Mn

{
(1 + ǫ)P (fm − f⋆ ) + (2 − c) pen(m) + ϕ⋆

m

(√
2t

ǫ2n

)
+

2t

3n

}
+ Vn .

It now remains to upperbound Vn.
Let m⋆ be any model which realizes the infimum in (32). For any m ∈ Mn, there can be two

situations:

1. Fm ⊂ Fm⋆ , which implies ϕm ≥ ϕm⋆ , hence their conjugates satisfy ϕ⋆
m ≤ ϕ⋆

m⋆ . Using
again (31), we have

v(m) ≤ ϕ⋆
m

(√
2t

ǫ2n

)
+ ǫP (fm − f⋆ ) ≤ ϕ⋆

m⋆

(√
2t

ǫ2n

)
+ ǫP (fm − f⋆ ) .

2. Fm⋆ ⊂ Fm. Using (13) (with m′ = m⋆), this implies that

v(m) ≤ C1v(m⋆) + C2P (fm⋆ − f⋆) + cpen(m) .

Combining those two upper bounds on v(m), we get that Vn is of the same order as the first
term of (32). The result follows.

proof of Corollary 1. From [14] (Theorem 1 and (9.2) in the proof of its Lemma 2), we
know that there exist numerical constants K > 0 and q > 1 such that (12) holds with c = 5/7
and η = L lnq

( n
t

)
Card(Mn)e−t.

In addition, Lemma 3 below shows that (13) holds with C1 =
√

2 and C2 = 2/(Kq).
The result follows from Theorem 1.

Lemma 3. Let Fm′ ⊂ Fm and δn be defined by (15). Then,

(33) v(m) ≤ 2δn(Fm; t) +
√

2v(m′) +
2P (fm′ − f⋆)

qK
.
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proof of Lemma 3. Since Fm′ ⊂ Fm, fm′ ∈ Fm (as well as fm), showing that

DP (Fm;P (fm′ − fm)) ≥ P (fm − fm′ ) ≥
√

varP (fm − fm′ )

≥
√

varP (fm − f⋆ )

2
−
√

varP (fm′ − f⋆ ) .(34)

For the last inequality, we used that var(X) ≤ 2 var(X +Y )+2var(Y ) for any random variables
X,Y , and the inequality

√
x − y ≤ √

x −√
y for every x ≥ y ≥ 0.

First, assume that the lower bound in (34) is nonpositive. This implies

v(m) =

√
t

n
varP (fm − f⋆ ) ≤

√
2v
(
m′ ) ,

so that (33) holds.
Otherwise, the assumptions of Lemma 4 hold with

D0 =

√
varP (fm − f⋆ )

2
−
√

varP (fm′ − f⋆ ) > 0 and σ0 = P (fm′ − fm) .

We deduce from (35) that

v(m)

2
− v(m′)√

2
≤ δn(Fm; t) +

P (fm′ − fm)

qK
≤ δn(Fm; t) +

P (fm′ − f⋆)

qK
,

and (33) holds also.

Lemma 4. Let δn(Fm; t) be defined by (15). Assume that there is some D0, σ0 > 0 such that
DP (Fm;σ0) ≥ D0. Then, we have the following lower bound:

(35) max

{
δn(Fm; t);

σ0

qK

}
≥ D0

√
t

n
.

proof of Lemma 4. First, (35) clearly holds when σ0

qK
≥ D0

√
t/n. Otherwise, let σ1 =

qKD0

√
t/n > σ0. From the definition of Un, we have

Un(Fm;σ1)

σ1
≥ KDP (Fm;σ1)

σ1

√
t

n
≥ KD0

qKD0

√
t/n

√
t

n
=

1

q
>

1

2q
.

Then, according to the definition (15) of δn(Fm; t), δn(Fm; t) ≥ D0

√
t/n and the result follows.
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proof of Proposition 2. Let (xj )j∈N
be any infinite sequence of elements of X , and p ∈

(0, 1) and λ > 0 to be chosen later. We define P as follows ((X,Y ) denotes a pair of random
variables with joint distribution P ). For every k ∈ N, P(X = x2k) = pkqk and P(X = x2k+1) =
pk(1 − qk), where pk = pk(1 − p) and qk ∈ [0, 1] are to be chosen later, so that

∑
k∈N pk =

1. For every k ∈ N, P (Y = 1 | X = x2k ) = 0 and P (Y = 1 | X = x2k+1 ) = (1 + δk)/2 with
δk = pkλ. As a consequence, the Bayes predictor is s := 1{x2k+1 s.t. k∈N}. Moreover, defining
η(x) = P (Y = 1 | X = x), we have for every t > 0

(36) P ( |2η(X) − 1| ≤ t) ≤
∑

k s.t. δk≤t

pk(1 − qk) ≤
∑

k s.t. pkλ≤t

pk(1 − p) ≤ t1/λ .

According to Lemma 9 of [8], this implies the global margin condition

∀f ∈ F , varP (f − f⋆ ) ≤ P (f − f⋆ )2 ≤ P (f 6= f⋆) ≤ Cλ [P (f − f⋆ ) ]1/(1+λ)

where Cλ > 0 only depends on λ. As a consequence, (8) is satisfied with

ϕ(x) = C
−(1+λ)
λ x2(λ+1) .

We now take λ = κ/2 − 1 and C = C
−(1+λ)
λ , so that the first statement of Proposition 2 holds

true.

We now define, for every k ∈ N,

tk,1(x) :=

{
s(x) if x /∈ Ik

1 if x ∈ Ik

tk,0(x) :=

{
s(x) if x /∈ Ik

0 if x ∈ Ik

and fk,0 = γ (tk,0; ·), fk,1 = γ (tk,1; ·). It follows that

P (fk,0 − f⋆ ) = δkpk(1 − qk) P (fk,1 − f⋆ ) = pkqk

varP (fk,0 − f⋆ ) = pk(1 − qk) − (δkpk(1 − qk))
2 varP (fk,1 − f⋆ ) = pkqk − (pkqk )2 .

As a consequence, choosing qk = δk/(1 + δk), we have P (fk,0 − f⋆ ) = P (fk,1 − f⋆ ), and (27)
holds as soon as pkqk ≤ pk(1 − p) ≤ ǫ, which holds when k is large enough.

Moreover,

varP (fk,1 − f⋆ )

varP (fk,0 − f⋆ )
=

qk

1 − qk

1 − pkqk

1 − δ2
kpk(1 − qk)

= δk
1 − pkqk

1 − δkpkqk
≤ δk = pkλ ,

so that (28) holds when k is large enough.
We now have to check (29). When k is large enough, qk ≤ 1/2 so that

ϕ
(√

varP (f0,ǫ − f⋆ )
)

P (f0,ǫ − f⋆ )
=

C (pk(1 − qk)(1 − δkqkpk))
κ/2

pkqk

=
C(1 + δk)(1 − qk)

κ/2(1 − δkqkpk)
κ/2

2
≥ C

2κ+1
.
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7.2. Lower bounds.

proof of Theorem 2. Let t0 : X 7→ {0, 1} and t1 : X 7→ {0, 1} defined by t0(x) ≡ 0
and t1(x) ≡ 1. Let γ(t; (x, y)) := 1t(x)6=y be the 0-1 loss, and ∀m ∈ {0, 1}, Fm = {fm} with

fm : (x, y) 7→ γ (t; (x, y) ). Since these models are singletons, we have fm = f̂m a.s. for every
m ∈ {0, 1}.

Let α, h > 0 to be chosen later, and P the probability distribution on X × {0, 1} defined by
P (X = a) = α, P (X = b) = 1 − α, P (Y = 1 | X = a) = 0 and P (Y = 1 | X = b) = 1

2 + h.
The Bayes predictor (w.r.t. the 0-1 loss) is then defined by s(a) = 0 and s(b) = 1, and its values
outside supp(X) = {a, b} do not matter. Defining f⋆ : (x, y) 7→ γ (s; (x, y) ), we have

P (f⋆ ) = (1 − α)

(
1

2
− h

)
P (f0 − f⋆ ) = 2(1 − α)h P (f1 − f⋆ ) = α

varP (f0 − f⋆ ) = 1 − α − (2(1 − α)h)2 and varP (f1 − f⋆ ) = α − α2 .

Then,
h0 ≥ h and h1 ≥ 1 ,

so that with probability one (since f̂m is deterministic),

(37) min
m∈{ 0,1}

{
P
(
f̂m − f⋆

)
+ v(m) +

tm
nhm

}
≤ 2α +

√
2γ ln(n)α

n
+

γ ln(n)

n
≤ 3α +

3γ ln(n)

2n
.

Since both F0 and F1 are singletons, (20) means that m̂ ∈ arg minm∈{ 0,1} Pn (fm ). Now,
notice that Pn(f0) = 1 − Pn(f1), so that we choose the model m̂ = 0 if and only if this random
variable is smaller than n/2. In addition, nPn(f0) is a binomial random variable with parameters
(n, p), where

p = P(Y = 0) = α + (1 − α)

(
1

2
− h

)
=

1

2
+

α

2
− h(1 − α) .

From Lemma 5 with a = 1, we have P(nPn(f0) = k) ≥ C(1, b, c)n−1/2 > 0 for every n/2−√
n ≤

k < n/2, as soon as

(38)

∣∣∣∣
α

2
− h(1 − α)

∣∣∣∣ ≤ min

{
b√
n

, c

}
<

1

2
.

Summing these probabilities, it follows that for n ≥ 1, P(Pn(f0) = k) ≥ C(1, b, c)2−1/2 =: κ > 0.
On the corresponding event, m̂ = 0 so that

P (f̂m̂ − f⋆) = P (f0 − f⋆) = 2(1 − α)h .

Now compare this risk with (37). If α = (2n)−1 and h = (2n)−1/2, then for n ≥ 1, (38) is
satisfied with b = 1, c = 1/4 and

2(1 − α)h ≥
√

2n

3(1 + γ ln(n))

(
3α +

3γ ln(n)

2n

)
.
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Combined with (37), this gives the first result.
In order to prove (22), we just remark that the quantity in the min is deterministic on the

right-hand side of the inequality (because both models are singletons), and the quantity on the
left-hand side of (21) is a.s. nonnegative.

Remark 5 (on the proof of Theorem 2). The example built in the proof of Theorem 2 is a
typical situation where model selection is really hard. Indeed, we are comparing two singletons,
so that the only information we have on the models is their empirical risks at X = a and X = b.
Most of the points we observe are for X = b, but they are not significantly far from pure noise,
because h is too close to 0. As a matter of fact, we have a positive probability of making a
mistake at X = b, so that we cannot hope to make the right choice for X = b. On the other
hand, we have very few points such that X = a, but we are sure to make no mistake since Y is
deterministic at this point. Combining these two facts, it seems impossible to choose t1 with a
probability close to 1, since this predictor fails at the “infrequent but easy” point a, and seems
worse than t0 at point b with a positive probability (even if it is not significant). Hence, any
“reasonable” method should choose t1, i.e. be suboptimal within a very large factor.

proof of Theorem 3. This relies on a similar argument to the one of the proof of Theo-
rem 2. Let F0 and F1 be as in the proof of Theorem 2, P1 be the distribution on X ×{0, 1} of the
proof of Theorem 2 (i.e. P1(X = a) = α, P1(X = b) = 1−α, P(X,Y )∼P1

(Y = 1 | X = a) = 0 and

P(X,Y )∼P1
(Y = 1 | X = b) = 1

2 +h, where α, h are chosen at the end of the proof of Theorem 2),
and P2 be the distribution of (X, 1 − Y ) when (X,Y ) ∼ P1. In other words, we exchange the
roles of F0 and F1 when switching from P1 to P2.

Under P1, the proof of Theorem 2 shows that for n large enough, m̂ = 0 implies that

P
(
f̂m̂ − f⋆

)
≥ nβ min

m∈{ 0,1}

{
P
(
f̂m − f⋆

)
+ v(m) +

tm
nhm

}
.

Similarly, under P2, this holds as soon as m̂ = 1. What we have to prove is that for every model
selection rule m̂,

max
{

P(Xi,Yi)1≤i≤n∼P n
1

(m̂ ((Xi, Yi)1≤i≤n ) = 0) , P(Xi,Yi)1≤i≤n∼P n
2

(m̂ ((Xi, Yi)1≤i≤n ) = 1)
}

≥ κ′ > 0 .(39)

Since we have chosen α = (2n)−1, under both P1 and P2, for every n ≥ 1,

(40) P (∀i, Xi = b) =

(
1 − 1

2n

)n

≥ e−1/4 > 0 .

Conditioned on this event, Card { i s.t. Yi = 1} is a binomial random variable with parameters
(n, pj) under the distribution Pj , j ∈ {1, 2}, with |pj − 1/2| ≤ h. As a consequence, the choice
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of h in the proof of Theorem 2 ensures that for every j ∈ {1, 2} and k ∈ N∩
[ n

2 −√
n, n

2 +
√

n
]
,

(41) P(Xi,Yi)1≤i≤n∼P n
j

(Card { i s.t. Yi = 1} = k | ∀i, Xi = b) ≥ C√
n

> 0,

where C is numerical (it comes from Lemma 5).

We now explain which distribution has to be considered, according to the rule m̂, so that (39)
holds true. For every k ∈ {0, . . . , n}, define

pk := P(Xi,Yi)1≤i≤n∼P n (m̂ ( (Xi, Yi)1≤i≤n ) = 1 | ∀i, Xi = b and Card { i s.t. Yi = 1} = k ) ,

where P is the uniform distribution on {a, b} × {0, 1}. Actually, this quantity would be the
same with any distribution assigning positive probabilities to both (b, 0) and (b, 1) (e.g. P1 and
P2), since the product measure does not give different weights when the ordering of the variables
change (although m̂ is allowed to change its outcome according to the order of the variables).
In addition, this definition stays valid when m̂ is a randomized selection rule, which proves the
generalization of Theorem 3 pointed out in Remark 4. For any given m̂,

Card

{
k ∈ N ∩

[
n

2
−

√
n,

n

2
+
√

n

]
s.t. pk >

1

2

}

is either larger or smaller than
√

n/2. If it is larger, (40), (41) and the definition of the pk shows
that

P(Xi,Yi)1≤i≤n∼P n
2

(m̂ ((Xi, Yi)1≤i≤n ) = 1) ≥
√

n

2

C√
n

e−1/4 = κ′ > 0 ,

so that (39) is satisfied. In the second situation, the same holds by choosing P1 instead of P2,
showing that (39) is satisfied also.

This proves (23), which clearly implies (24), since everything inside the expectation on the
right-hand side of the inequality is deterministic, and the quantity on the left-hand side is a.s.
nonnegative.

Finally, a key tool in the proofs of Theorem 2 and 3 is the following uniform lower bound on
the density of the binomial distribution w.r.t. the counting measure on N.

Lemma 5. For every n ∈ N and p ∈ [0, 1], let B(n, p) denote the binomial distribution with
parameters (n, p). For every a, b > 0 and c ∈ (0, 1/2), there is a positive constant C(a, b, c) such
that

(42) ∀n ∈ N\ {0} , inf
k∈N, |k−n

2 |≤min{an−1/2, n
2 }

|p− 1

2 |≤min{ bn−1/2,c}

{√
nPZ∼B(n,p) (Z = k )

}
≥ C(a, b, c) > 0 .
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proof of Lemma 5. Let n, k, p satisfy the above conditions, Z ∼ B(n, p), and define

η :=
2k

n
− 1 δ := p − 1

2
.

The assumption on k and p becomes |η| ≤ min
{

an−1/2, 1/2
}

and |δ| ≤ min
{

bn−1/2, c
}
. In

addition,

P (Z = k ) = pk(1 − p)n−k

(
n

k

)
=

(
1

2
+ δ

)k ( 1

2
+ δ

)n−k n!

k!(n − k)!
.

We now use Stirling’s formula:

ln(n!) = n ln(n) − n +
1

2
ln(2πn) + ǫn

for some sequence ǫn → 0 when n → +∞ (one has (12n + 1)−1 ≤ ǫn ≤ (12n)−1). Then,

ln P (Z = k ) = k ln

(
1

2
+ δ

)
+ (n − k) ln

(
1

2
− δ

)
+ ln

n!

k!(n − k)!

=
n

2

[
(1 − η) ln

(
1 − 2δ

1 − η

)
+ (1 + η) ln

(
1 + 2δ

1 + η

)]

− 1

2
ln(n) +

1

2
ln

(
2

π

)
− 1

2
ln
(
1 − η2

)
+ ǫn − ǫk − ǫn−k .

Define h : (−1,+∞) 7→ R by h(x) := x−1 ln(1 + x) − 1, so that

∀x > −1, ln(1 + x) = x (1 + h(x) ) .

Recall that |h(x)| ≤ 2 |x| as soon as x ≥ −1/2, by the Taylor-Lagrange formula. In particular,
limx→0 h(x) = 0. We then have

ln P (Z = k )

=
n

2

[
4δη − 2η2 − 2δ(1 − η)h(−2δ) + η(1 − η)h(−η) + 2δ(1 + η)h(2δ) − η(1 + η)h(η)

]

− 1

2
ln(n) +

1

2
ln

(
2

π

)
+

η2

2
h(−η2) + ǫn − ǫk − ǫn−k .

Assuming that n ≥ n0 such that max {a, b}n−1/2 ≤ 1/2, it follows that

ln P (Z = k ) = −1

2
ln(n) + R(k, n, p)

with
R(k, n, p) ≥ L

(
1 + a2 + ab + b2

)

imsart-aos ver. 2007/09/18 file: margin.hyper8109.tex date: April 18, 2008



MARGIN-ADAPTIVE MODEL SELECTION 27

for some numerical positive L > 0, and this lower bound is uniform over n ≥ n0 and k, p such
that the conditions of the infimum in (42) are satisfied. On the other hand,

inf
n≤n0, 1≤k≤n

{
PZ∼B(n,p) (Z = k )

}
≥ κ(p) > 0

as soon as p ∈ (0, 1). Since PZ∼B(n,p) (Z = k ), seen as a function of p, is increasing on (0, k/n)
and decreasing on (k/n, 1), κ(p) is uniformly larger than min {κ(1/2 − c), κ(1/2 + c)}. The result
follows.
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[20] Pascal Massart and Élodie Nédélec. Risk bounds for statistical learning. Ann. Statist., 34(5):2326–2366,
2006.

[21] Alexandre B. Tsybakov. Optimal aggregation of classifiers in statistical learning. Ann. Statist., 32(1):135–166,
2004.

[22] Alexandre B. Tsybakov and Sara A. van de Geer. Square root penalty: adaptation to the margin in classifi-
cation and in edge estimation. Ann. Statist., 33(3):1203–1224, 2005.

[23] Vladimir N. Vapnik. Statistical learning theory. John Wiley & Sons Inc., New York, 1998.

[24] Vladimir N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies of events
to their probabilities. Theory of Probability and its Applications, 16(2):264–280, 1971.

Sylvain Arlot

Univ Paris-Sud, UMR 8628,

Laboratoire de Mathematiques,

Orsay, F-91405 ; CNRS, Orsay, F-91405 ;

INRIA-Futurs, Projet Select

E-mail: sylvain.arlot@math.u-psud.fr

Peter L. Bartlett

University of California, Berkeley

Computer Science Division and Department of Statistics

367 Evans Hall #3860

Berkeley, CA 94720-3860

USA

E-mail: bartlett@cs.berkeley.edu

imsart-aos ver. 2007/09/18 file: margin.hyper8109.tex date: April 18, 2008

mailto:sylvain.arlot@math.u-psud.fr
mailto:bartlett@cs.berkeley.edu

