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Abstract: A classical condition for fast learning rates is the margin condi-
tion, first introduced by Mammen and Tsybakov. We tackle in this paper
the problem of adaptivity to this condition in the context of model se-
lection, in a general learning framework. Actually, we consider a weaker
version of this condition that allows one to take into account that learning
within a small model can be much easier than within a large one. Requiring
this “strong margin adaptivity” makes the model selection problem more
challenging. We first prove, in a general framework, that some penalization
procedures (including local Rademacher complexities) exhibit this adap-
tivity when the models are nested. Contrary to previous results, this holds
with penalties that only depend on the data. Our second main result is that
strong margin adaptivity is not always possible when the models are not
nested: for every model selection procedure (even a randomized one), there
is a problem for which it does not demonstrate strong margin adaptivity.

AMS 2000 subject classifications: Primary 68T05, 62H30; secondary
68Q32, 62G08.
Keywords and phrases: adaptivity, classification, empirical minimiza-
tion, empirical risk minimization, local Rademacher complexity, margin
condition, model selection, oracle inequalities, statistical learning.

1. Introduction

We consider in this paper the model selection problem in a general framework.
Since our main motivation comes from the supervised binary classification set-
ting, we focus on this framework in this introduction. Section 2 introduces the
natural generalization to empirical (risk) minimization problems, which we con-
sider in the remainder of the paper.

1

imsart-generic ver. 2007/09/18 file: margin.tex date: February 7, 2010



Arlot, S. and Bartlett, P./Margin-adaptive model selection 2

We observe independent realizations (Xi, Yi) ∈ X × Y for i = 1, . . . , n of a
random variable with distribution P , where Y = {0, 1}. The goal is to build
a (data-dependent) predictor t (i.e., a measurable function X 7→ Y) such that
t(X) is as often as possible equal to Y , where (X,Y ) ∼ P is independent from
the data. This is the prediction problem, in the setting of supervised binary
classification. In other words, the goal is to find t minimizing the prediction
error Pγ ( t; · ) := P(X,Y )∼P ( t(X) 6= Y ), where γ is the 0-1 loss.

The minimizer s of the prediction error, when it exists, is called the Bayes
predictor. Define the regression function η(X) = P(X,Y )∼P (Y = 1 | X ). Then,
a classical argument shows that s(X) = 1η(X)≥1/2. However, s is unknown, since
it depends on the unknown distribution P . Our goal is to build from the data
some predictor t minimizing the prediction error, or equivalently the excess loss
ℓ(s, t) := Pγ ( t )− Pγ (s ).

A classical approach to the prediction problem is empirical risk minimization.
Let Pn = n−1

∑n
i=1 δ(Xi,Yi) be the empirical measure and Sm be any set of

predictors, which is called a model. The empirical risk minimizer over Sm is
then defined as

ŝm ∈ arg min
t∈Sm

Pnγ ( t ) = arg min
t∈Sm

{
1

n

n∑

i=1

1t(Xi) 6=Yi

}
.

We expect that the risk of ŝm is close to that of

sm ∈ arg min
t∈Fm

Pγ ( t ) ,

assuming that such a minimizer exists.

1.1. Margin condition

Depending on some properties of P and the complexity of Sm, the prediction
error of ŝm is more or less distant from that of sm. For instance, when Sm has
a finite Vapnik-Chervonenkis dimension Vm [27, 26] and s ∈ Sm, it has been
proven (see for instance [19]) that

E [ℓ(s, ŝm) ] ≤ C

√
Vm

n

for some numerical constant C > 0. This is optimal without any assumption
on P , in the minimax sense: no estimator can have a smaller prediction risk
uniformly over all distributions P such that s ∈ Sm, up to the numerical factor
C [14].

However, there exist favorable situations where much smaller prediction er-
rors (“fast rates”, up to n−1 instead of n−1/2) can be obtained. A sufficient
condition, the so-called “margin condition”, has been introduced by Mammen
and Tsybakov [21]. If, for some ε0, C0 > 0 and α ≥ 1,

∀ε ∈ (0, ε0], P ( |2η(X)− 1| ≤ ε) ≤ C0ε
α, (1)
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if the Bayes predictor s belongs to Sm, and if Sm is a VC-class of dimension Vm,
then the prediction error of ŝm is smaller than L(C0, ε0, α) ln(n) (Vm/n )

κ
2κ−1 in

expectation, where κ = (1 + α)/α and L(C0, ε0, α) > 0 only depends on C0,
ε0 and α. Minimax lower bounds [23] and other upper bounds can be obtained
under other complexity assumptions (for instance assumption (A2) of Tsybakov
[24], involving bracketing entropy). In the extreme situation where α = +∞,
i.e., for some h > 0,

P ( |2η(X)− 1| ≤ h) = 0 , (2)

then the same result holds with κ = 1 and L(h) ∝ h−1. More precisely, as
proved in [23]

E [ℓ(s, ŝm) ] ≤ Cmin

{(
Vm

(
1 + ln

(
nh2V −1

m

))

nh

)
,

√
V

n

}
.

Following the approach of Koltchinskii [16], we will consider the following
generalization of the margin condition:

∀t ∈ S, ℓ(s, t) ≥ ϕ
(√

varP (γ ( t; · )− γ (s; · ) )
)

, (3)

where S is the set of predictors, and ϕ is a convex non-decreasing function on
[0,∞) with ϕ(0) = 0. Indeed, the proofs of the above upper bounds on the
prediction error of ŝm use only that (1) implies (3) with ϕ(x) = L(C0, ε0, α)x

2κ

and κ = (1+α)/α, and that (2) implies (3) with ϕ(x) = hx2. (See, for instance,
Proposition 1 in [24].)

All these results show that the empirical risk minimizer is adaptive to the
margin condition, since it leads to an optimal excess risk under various assump-
tions on the complexity of Sm. However, obtaining such rates of estimation
requires knowledge of some Sm to which the Bayes predictor belongs, which is
a strong assumption.

A less restrictive framework is the following. First, we do not assume that
s ∈ Sm . Second, we do not assume that the margin condition (3) is satisfied for
all t ∈ S , but only for t ∈ Sm , which can be seen as a “local” margin condition:

∀t ∈ Sm , ℓ(s, t) ≥ ϕm

(√
varP (γ ( t; ·)− γ (s; · ) )

)
, (4)

where ϕm is a convex non-decreasing function on [0,∞) with ϕm(0) = 0 . The
fact that ϕm can depend on m allows situations where we are lucky to have a
strong margin condition for some small models but the global margin condition
is loose. As proven in Section 5.2 (Proposition 2), such situations certainly exist.

Note that when ϕm(x) = hmx2, (3) and (4) can be traced back to mean-
variance conditions on γ which where used in several papers for deriving con-
vergence rates of some minimum contrast estimators on some given model Sm

(see for instance [11] and references therein).
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1.2. Adaptive model selection

Assume now that we are not given a single model but a whole family (Sm )m∈Mn
.

By empirical risk minimization, we obtain a family ( ŝm )m∈Mn
of predictors,

from which we would like to select some ŝm̂ with a prediction error Pγ ( ŝm̂ ) as
small as possible. The aim of such amodel selection procedure ((X1, Y1), . . . , (Xn, Yn)) 7→
m̂ ∈ Mn is to satisfy an oracle inequality of the form

ℓ(s, ŝm) ≤ C inf
m∈Mn

{ ℓ(s, sm) +Rm,n } , (5)

where the leading constant C ≥ 1 should be close to one and the remainder term
Rm,n should be close to the value Pγ ( ŝm ) − Pγ (sm ). Typically, one proves
that (5) holds either in expectation, or with high probability.

Assume for instance that ϕm(x) = hmx2 for some hm > 0 and Sm has a finite
VC-dimension Vm ≥ 1. In view of the aforementioned minimax lower bounds
of [23], one cannot hope in general to prove an oracle inequality (5) with a
remainder Rm,n smaller than

min

{
ln(n)Vm

nhm
,

√
Vm

n

}
,

where the ln(n) term may only be necessary for some VC classes Sm (see [23]).
Then, adaptive model selection occurs when m̂ satisfies an oracle inequality

(5) with Rm,n of the order of this minimax lower bound. More generally, let
Cm be some complexity measure of Sm (for instance its VC-dimension, or the
ρ appearing in Tsybakov’s assumption [24]). Then, define Rn(Cm, ϕm) as the
minimax prediction error over the set of distributions P such that s ∈ Sm and
the local margin condition (4) is satisfied in Sm with ϕm, where Sm has a
complexity at most Cm. Massart and Nédélec [23] have proven tight upper and
lower bounds on Rn(Cm, ϕm) with several complexity measures; their results
are stated with the margin condition (3), but they actually use its local version
(4) only.

A margin adaptive model selection procedure should satisfy an oracle in-
equality of the form

ℓ(s, ŝm̂) ≤ C inf
m∈Mn

{ℓ(s, sm) +Rn(Cm, ϕm)} (6)

without using the knowledge of Cm and ϕm.We call this property “strong margin
adaptivity”, to emphasize the fact that this is more challenging than adaptivity
to a margin condition that holds uniformly over the models.

1.3. Penalization

We focus in particular in this article on penalization procedures, which are
defined as follows. Let pen : Mn 7→ [0,∞) be a (data-dependent) function,
and define

m̂ ∈ arg min
m∈Mn

{Pnγ ( ŝm ) + pen(m)} .
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Since our goal is to minimize the prediction error of ŝm, the ideal penalty would
be

penid(m) := Pγ ( ŝm )− Pnγ ( ŝm ) , (7)

but it is unknown because it depends on the distribution P . A classical way of
designing a penalty is to estimate penid(m), or at least a tight upper bound on
it.

We consider in particular local complexity measures [20, 10, 8, 16], because
they estimate penid tightly enough to achieve fast estimation rates when the
margin condition holds true. See Section 3.2 for a detailed definition of these
penalties.

1.4. Related results

There is a considerable literature on margin adaptivity, in the context of model
selection as well as model aggregation. Most of the papers consider the uniform
margin condition, that is when ϕm ≡ ϕ. Barron, Birgé and Massart [7] have
proven oracle inequalities for deterministic penalties, under some mean-variance
condition on γ close to (3) with ϕ(x) = hx2. Following a similar approach,
margin adaptive oracle inequalities (with more general ϕ) have been proven
with localized random penalties [20, 10, 8, 16], and in [25] with other penalties
in a particular framework.

Adaptivity to the margin has also been considered with a regularized boosting
method [12], the hold-out [13] and in a PAC-Bayes framework [5]. Aggregation
methods have been studied in [24, 17]. Notice also that a completely different
approach is possible: estimate first the regression function η (possibly through
model selection), then use a plug-in classifier, and this works provided η is
smooth enough [6].

It is quite unclear whether any of these results can be extended to strong
margin adaptivity (actually, we will prove that this needs additional restrictions
in general). To our knowledge, the only results allowing ϕm to depend on m can
be found in [16]. First, when the models are nested, a comparison method based
on local Rademacher complexities attains strong margin adaptivity, assuming
that s ∈ ⋃m∈Mn

Sm (Theorem 7; and it is quite unclear whether this still holds
without the latter assumption). Second, a penalization method based on local
Rademacher complexities has the same property in the general case, but it uses
the knowledge of (ϕm )m∈Mn

(Theorems 6 and 11).
Our claim is that when ϕm does strongly depend on m, it is crucial to take

it into account to choose the best model in Mn. And such situations occur, as
proven by our Proposition 2 in Section 5.2. But assuming either s ∈ ⋃m∈Mn

Sm

or that ϕm is known is not realistic. Our goal is to investigate the kind of results
which can be obtained with completely data-driven procedures, in particular
when s /∈ ⋃m∈Mn

Sm.
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1.5. Our results

In this paper, we aim at understanding when strong margin adaptivity can
be obtained for data-dependent model selection procedures. Notice that we do
not restrict ourselves to the classification setting. We consider a much more
general framework (as in [16] for instance), which is described in Section 2. We
prove two kinds of results. First, when models are nested, we show that some
penalization methods are strongly margin adaptive (Theorem 1). In particular,
this result holds for the local Rademacher complexities (Corollary 1). Compared
to previous results (in particular the ones of [16]), our main advance is that our
penalties do not require the knowledge of (ϕm )m∈Mn

, and we do not assume
that the Bayes predictor belongs to any of the models.

Our second result probes the limits of strong margin adaptivity, without the
nested assumption. A family of models exists such that, for every sample size
n and every (model) selection procedure m̂ , a distribution P exists for which
m̂ fails to be strongly margin adaptive with a positive probability (Theorem 2).
Hence, the previous positive results (Theorem 1 and Corollary 1) cannot be
extended outside of the nested case for a general distribution P .

Where is the boundary between these two extremes? Obviously, the nested
assumption is not necessary. For instance, when the global margin assumption
is indeed tight (ϕ = ϕm for every m ∈ Mn), margin adaptivity can be obtained
in several ways, as mentioned in Section 1.4. We sketch in Section 5 some sit-
uations where strong margin adaptivity is possible. More precisely, we state a
general oracle inequality (Theorem 3), valid for any family of models and any
distribution P . We then discuss assumptions under which its remainder term is
small enough to imply strong margin adaptivity.

This paper is organized as follows. We describe the general setting in Sec-
tion 2. We consider in Section 3 the nested case, in which strong margin adaptiv-
ity holds. Negative results (i.e., lower bounds on the prediction error of a general
model selection procedure) are stated in Section 4. The line between these two
situations is sketched in Section 5. We discuss our results in Section 6. All the
proofs are given in Section 7.

2. The general empirical minimization framework

Although our main motivation comes from the classification problem, it turns
out that all our results can be proven in the general setting of empirical min-
imization. As explained below, this setting includes binary classification with
the 0-1 loss, bounded regression and several other frameworks. In the rest of
the paper, we will use the following general notation, in order to emphasize the
generality of our results.

We observe independent realizations ξ1, . . . , ξn ∈ Ξ of a random variable with
distribution P , and we are given a set F of measurable functions Ξ 7→ [0, 1].
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Our goal is to build some (data-dependent) f such that its expectation P (f) :=
Eξ∼P [f(ξ) ] is as small as possible. For the sake of simplicity, we assume that
there is a minimizer f⋆ of P (f) over F .

This includes the prediction framework, in which Ξ = X × Y, ξi = (Xi, Yi),

F := {ξ 7→ γ ( t; ξ ) s.t. t ∈ S } ,

where γ : S × Ξ 7→ [0, 1] is any contrast function. Then, f⋆ is equal to γ (s; · ),
where s is the Bayes predictor. In the binary classification framework, Y =
{0, 1} and we can take the 0-1 contrast γ(t; (x, y)) = 1t(x) 6=y for instance.
We then recover the setting described in Section 1. In the bounded regression
framework, assuming that Y = [0, 1], we can take the least-squares contrast,

γ(t; (x, y)) = ( t(x) − y )
2
.

Many other contrast functions γ can be considered, provided that they take
their values in [0, 1]. Notice the one-to-one correspondence between predictors t
and functions f t := γ ( t; · ) in the prediction framework.

The empirical minimizer over Fm ⊂ F (called a model) can then be defined
as

f̂m ∈ arg min
f∈Fm

Pn(f) .

We expect that its expectation P (f̂m) is close to that of fm ∈ argminf∈Fm P (f),
assuming that such a minimizer exists. In the prediction framework, defining
Fm :=

{
f t s.t. t ∈ Sm

}
, we have f̂m = f ŝm and fm = f sm .

We can now write the global margin condition as follows:

∀f ∈ F , P (f − f⋆) ≥ ϕ
(√

varP (f − f⋆)
)

, (8)

where ϕ is a convex non-decreasing function on [0,∞) with ϕ(0) = 0. Similarly,
the local margin condition is

∀f ∈ Fm , P (f − f⋆) ≥ ϕm

(√
varP (f − f⋆)

)
. (9)

Notice that most of the upper and lower bounds on the risk under the margin
condition given in the introduction stay valid in the general empirical minimiza-
tion framework, at least when ϕm(x) = (hmx2)κm for some hm > 0 and κm ≥ 1
(see for instance [23, 16]). Assume that Fm is a VC-type class of dimension Vm.
If ϕm(x) = hmx2,

E

[
P
(
f̂m − f⋆

)]
≤ 2P (fm − f⋆) + Cmin

{(
ln(n)Vm

nhm

)
,

√
Vm

n

}

for some numerical constant C > 0. If ϕm(x) =
(
hmx2

)κm
for some hm > 0

and κm ≥ 1,

E

[
P
(
f̂m − f⋆

)]
≤ 2P (fm−f⋆)+Cmin

{[
L(hm, κm) ln(n)

(
Vm

nhm

) κm
2κm−1

]
,

√
Vm

n

}
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for some constant L(hm, κm) > 0.

Given a collection (Fm )m∈Mn
of models, we are looking for a model selection

procedure (ξ1, . . . , ξn) 7→ m̂ ∈ Mn satisfying an oracle inequality of the form

P
(
f̂m̂ − f⋆

)
≤ C inf

m∈Mn

{P (fm − f⋆ ) +Rm,n } , (10)

with a leading constant C close to 1 and a remainder term Rm,n as small as
possible. Similarly to (6), we define a strongly margin adaptive procedure as
any m̂ such that (10) holds with some numerical constant C, and Rm,n of the
order of the minimax risk Rn(Cm, ϕm).

Defining penalization methods as

m̂ ∈ arg min
m∈Mn

{
Pn

(
f̂m

)
+ pen(m)

}
(11)

for some data-dependent pen : Mn 7→ R, the ideal penalty is penid(m) :=

(P − Pn)
(
f̂m

)
.

3. Margin adaptive model selection for nested models

3.1. General result

Our first result is a sufficient condition for penalization procedures to attain
strong margin adaptivity when the models are nested (Theorem 1). Since this
condition is satisfied by local Rademacher complexities, this leads to a data-
driven margin adaptive penalization procedure (Corollary 1).

Theorem 1. Fix (Fm )m∈Mn
and (ϕm )m∈Mn

such that the local margin condi-
tions (9) hold. Let ( tm )m∈Mn

be a sequence of positive reals that is nondecreas-
ing (with respect to the inclusion ordering on Fm). Assume that some constants
c, η ∈ (0, 1) and C1, C2 ≥ 0 exist such that the following holds:

• the models (Fm )m∈Mn
are nested.

• lower bounds on the penalty: with probability at least 1 − η, for every
m,m′ ∈ Mn,

(1− c) pen(m) ≥ (P − Pn)
(
f̂m − fm

)
+

tm
n

≥ 0 (12)

Fm′ ⊂ Fm ⇒ c pen(m) ≥ v(m)− C1v(m
′)− C2P (fm′ − f⋆) , (13)

where v(m) :=

√
2tm
n

varP (fm − f⋆) .

Then, if m̂ is defined by (11), with probability at least 1 − η − 2
∑

m∈Mn
e−tm ,

we have for every ε ∈ (0, 1)

P
(
f̂m̂ − f⋆

)
≤ 1

1− ε
inf

m∈Mn

{(1 + ε+ C2 + εC1)P (fm − f⋆ ) + pen(m)

+ (1 + max {1, C1 })min

{
ϕ⋆
m

(√
2tm
ε2n

)
,

√
2tm
n

}
+

tm
3n

}
,

(14)
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where ϕ⋆
m(x) := supy≥0 {xy − ϕm(y)} is the convex conjuguate of ϕm.

Theorem 1 is proved in Section 7.1.

Remark 1. 1. If pen(m) is of the right order, i.e., not much larger than
E [ penid(m) ], then Theorem 1 is a strong margin adaptivity result. In-
deed, assuming that ϕm(x) =

(
hmx2

)κm
, the remainder term is not too

large, since
ϕ⋆
m(x) = L(hm, κm)x2κm/(2κm−1)

for some positive constant L(hm, κm). Hence, choosing ε = 1/2 for in-
stance, we can rewrite (14) as

P
(
f̂m̂ − f⋆

)

≤ L(C1, C2) inf
m∈Mn

{
P (fm − f⋆ ) + pen(m) + L(hm, κm)

(
tm
n

) κm
2κm−1

}
,

for some positive constants L(C1, C2) and L(hm, κm). When ϕm is a gen-
eral convex function, minimax estimation rates are no longer available, so
that we do not know whether the remainder term in (14) is of the right
order. Nevertheless, no better risk bound is known, even for a single model
to which s belongs.

2. In the case that the ϕm are known, methods involving local Rademacher
complexities and (ϕm )m∈Mn

satisfy oracle inequalities similar to (14) (see
Theorems 6 and 11 in [16]). On the contrary, the ϕm are not assumed to
be known in Theorem 1, and conditions (12) and (13) are satisfied by
completely data-dependent penalties, as shown in Section 3.2.
Also, Theorem 7 of [16] shows that adaptivity is possible using a compar-
ison method, provided that f⋆ belongs to one of the models. However, it
is not clear whether this comparison method achieves the optimal bias-
variance trade-off in the general case, as in Theorem 1.

3.2. Local Rademacher complexities

Although Theorem 1 applies to any penalization procedure satisfying assump-
tions (12) and (13), we now focus on methods based on local Rademacher com-
plexities. Let us define precisely these complexities. We mainly use the notation
of [16]:

• for every δ > 0, the δ minimal set of Fm w.r.t the distribution P is

Fm,P (δ) :=

{
f ∈ Fm s.t. P (f)− inf

g∈Fm

P (g) ≤ δ

}

• the L2(P ) diameter of the δ minimal set of Fm:

D2
P (Fm; δ) = sup

f,g∈Fm,P (δ)

P
(
(f − g)2

)
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• the expected modulus of continuity of (P − Pn) over Fm:

φn(Fm;P ; δ) = E sup
f,g∈Fm,P (δ)

|(Pn − P )(f − g)| .

We then define

Un(Fm; δ; t) := K

(
φn(Fm;P ; δ) +DP (Fm; δ)

√
t

n
+

t

n

)
,

where K > 0 is a numerical constant (to be chosen later). The (ideal) lo-
cal complexity δn(Fm; t) is (roughly) the smallest positive fixed-point of r 7→
Un(Fm; r; t). More precisely,

δn(Fm; t) := inf

{
δ > 0 s.t. sup

σ≥δ

{
Un(Fm;σ; t)

σ

}
≤ 1

2q

}
(15)

where q > 1 is a numerical constant.
Two important points, which follow from Theorems 1 and 3 of Koltchinskii

[16], are that:

1. δn(Fm; t) is large enough to satisfy assumption (12) with a probability at
least 1− logq (n/t ) e

−t for each model m ∈ Mn.

2. there is a completely data-dependent δ̂n(Fm; t) such that

∀m ∈ Mn, P

(
δ̂n(Fm; t) ≥ δn(Fm; t)

)
≥ 1− 5 lnq

( n

t

)
e−t .

This data-dependent δ̂n(Fm; t) is a resampling estimate of δn(Fm; t), called
the “local Rademacher complexity”.

Before stating the main result of this section, let us recall the definition of
δ̂n(Fm; t), as in [16]. We need the following additional notation:

• for every δ > 0, the empirical δ minimal set of Fm is

F̂n,m(δ) :=

{
f ∈ Fm s.t. Pn(f)− inf

g∈Fm

Pn(g) ≤ δ

}
= Fm,Pn(δ)

• the empirical L2(P ) diameter of the empirical δ minimal set of Fm:

D̂n(Fm; δ) = sup
f,g∈F̂n,m(δ)

Pn

(
(f − g)2

)

• the modulus of continuity of the Rademacher process f 7→ n−1
∑n

i=1 εif(ξi)
over Fm, where ε1, . . . , εn are i.i.d. Rademacher random variables (i.e., εi
takes the values +1 and −1 with probability 1/2 each):

φ̂n(Fm; δ) = sup
f,g∈F̂n,m(δ)

∣∣∣∣∣
1

n

n∑

i=1

εi(f(ξi)− g(ξi))

∣∣∣∣∣ .
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Defining

Ûn(Fm; δ; t) := K̂

(
φ̂n(Fm;P ; ĉδ) + D̂n(Fm; ĉδ)

√
t

n
+

t

n

)

(where K̂, ĉ > 0 are numerical constants, to be chosen later), the local Rademacher

complexity δ̂n(Fm; t) is (roughly) the smallest positive fixed-point of r 7→ Ûn(Fm; r; t).
More precisely,

δ̂n(Fm; t) := inf

{
δ > 0 s.t. sup

σ≥δ

{
Ûn(Fm;σ; t)

σ

}
≤ 1

2q

}
(16)

where q > 1 is a numerical constant.

Corollary 1 (Strong margin adaptivity for local Rademacher complexities).
There exist numerical constants K > 0 and q > 1 such that the following holds.
Let t > 0. Assume that a numerical constant L > 0 exists and an event of
probability at least 1− L logq(n/t)Card(Mn)e

−t exists on which

∀m ∈ Mn, pen(m) ≥ 7

2
δn(Fm; t) , (17)

where δn(Fm; t) is defined by (15) (and depends on both K and q). Assume
moreover that the models (Fm )m∈Mn

are nested and

m̂ ∈ arg min
m∈Mn

{
Pn

(
f̂m

)
+ pen(m)

}
.

Then, an event of probability at least 1 − [ 2 + (L+ 1) logq
(
n
t

)
] Card(Mn)e

−t

exists on which, for every ε ∈ (0, 1),

P
(
f̂m̂ − f⋆

)
≤ 1

1− ε
inf

m∈Mn

{(
1 +

2

Kq
+ ε

(
1 +

√
2
))

P (fm − f⋆ ) + pen(m)

+(1 +
√
2)min

{
ϕ⋆
m

(√
2t

ε2n

)
,

√
2t

n

}
+

t

3n

}
.

(18)

In particular, this holds when pen(m) = 7
2 δ̂n(Fm; t), provided that K̂, ĉ > 0 are

larger than some constants depending only on K, q.

Corollary 1 is proved in Section 7.1.

Remark 2. One can always enlarge the constants K and q, making the leading
constant of the oracle inequality (18) closer to one, at the price of enlarging

δn(Fm; t) (hence pen(m) or δ̂n(Fm; t)). We do not know whether it is possible
to make the leading constant closer to one without changing the penalization
procedure itself.
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As we show in Section 5.2, there are distributions P and collections of models
(Fm )m∈Mn

such that this is a strong improvement over the “uniform margin”
case, in terms of prediction error. It seems reasonable to expect that this happens
in a significant number of practical situations.

In Section 5, we state a more general result (from which Theorem 1 is a
corollary) which suggests why it is more difficult to prove Corollary 1 when ϕm

really depends on m. This general result is also useful to understand how the
nestedness assumption might be relaxed in Theorem 1 and Corollary 1.

The reason why Corollary 1 implies strong margin adaptivity is that the local
Rademacher complexities are not too large when the local margin condition is
satisfied, together with a complexity assumption on Fm. Indeed, there exists
a distribution-dependent δ̃n(Fm; t) (defined as δn(Fm; t) with Un(Fm; δ; t) re-
placed by K1Un(Fm;K2δ; t) for some numerical constants K1,K2 > 0, related

to K̂ and ĉ) such that

∀m ∈ Mn, P

(
δ̃n(Fm; t) ≥ δ̂n(Fm; t) ≥ δn(Fm; t)

)
≥ 1− 5 logq

( n

t

)
e−t .

(See Theorem 3 of [16].) This leads to several upper bounds on δ̂n(Fm; t) under
the local margin condition (9), by combining Lemma 5 of [16] with the examples
of its Section 2.5. For instance, in the binary classification case, when Fm is the
class of 0-1 loss functions associated with a VC-class Sm of dimension Vm, such
that the margin condition (9) holds with ϕm(x) = hmx2, we have for every t > 0
and ε ∈ (0, 1],

δn(Fm; t) ≤ εP (fm − f⋆ ) +
K3

nhm

[
ε−1t+ ε−2Vm ln

(
nε2hm

K4Vm

)]
, (19)

where K3 and K4 depend only on K. (Similar upper bounds hold under several
other complexity assumptions on the models Fm, see [16].) In particular, when
each model Sm is a VC-class of dimension Vm, ϕm(x) = hmx2, pen(m) =
7
2 δ̂n (Fm; t ) and t = ln(Card(Mn)) + 3 ln(n), (18) implies that

P
(
f̂m̂ − f⋆

)
≤ C inf

m∈Mn

{
P (fm − f⋆ ) +

ln (Card(Mn) ) + ln(n) + Vm ln (enhm/Vm )

nhm

}

with probability at least 1−Kn−2, for some numerical constants C,K > 0. Up
to some ln(n) factor, this is a strong margin adaptive model selection result,
provided that Card(Mn) is smaller than some power of n. Notice that the ln(n)
factor is sometimes necessary (as shown by [23]), meaning that this upper bound
is then optimal.

4. Lower bound for some non-nested models

In this section, we investigate the assumption in Theorem 1 that the models
Fm are nested. To this aim, let us consider the case where models are singletons
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Fm = {fm }. Then, any estimator f̂m ∈ Fm is deterministic and equal to fm, so
that model selection amounts to selecting among a family {fm s.t. m ∈ Mn } of
functions. Theorem 2 below shows that no selection procedure can be strongly
margin adaptive in general.

Theorem 2. Let γ be the 0-1 loss and F0−1 := {γ (u; ·) s.t. u : X 7→ {0, 1} is measurable}
be the associated loss function class. If Card(X ) ≥ 2, two functions f0, f1 ∈
F0−1 and absolute constants C3, C4 > 0 exist such that the following holds. For
every integer n ≥ 2 and m̂ a selection procedure (that is, a function (X × Y )

n 7→
M = {0, 1} ), a distribution P exists such that

P

(
P (fm̂ − f⋆ ) ≥ C4

√
n

ln(n)
min

m∈{ 0,1}

{
P (fm − f⋆ ) + v(m) +

ln(n)

nhm

})
≥ C3

(20)

and E [P (fm̂ − f⋆ ) ] ≥ C3C4
√
n

ln(n)
min

m∈{0,1}

{
P (fm − f⋆ ) + v(m) +

ln(n)

nhm

}

(21)

where ∀m ∈ {0, 1} , v(m) :=

√
2 ln(n)

n
varP (fm − f⋆) and hm :=

P (fm − f⋆)

varP (fm − f⋆)
.

Theorem 2 is proved in Section 7.2. A straightforward corollary of Theorem 2
is that in the classification setting with the 0-1 loss, strong margin adaptive
model selection is not always possible when the models are not nested. Indeed,
when Fm = {fm } for every m ∈ Mn = {0, 1}, (20) shows that for any model
selection procedure m̂, some distribution P exist such that results like Theorem 1
or Corollary 1 do not hold if tm = ln(n) for every m .

Remark 3. 1. Theorem 2 (and its corollary for model selection) also hold for
randomized rules m̂ : (X × Y )

n 7→ [0, 1] (where the value of m̂((Xi, Yi)1≤i≤n)
is the probability assigned to the choice of f1). Hence, aggregating models
instead of selecting one does not modify the conclusion of Theorem 2.

2. The most reasonable selection procedure among two functions f0 and
f1 (or two models {f0 } and {f1 }) clearly is empirical minimization.
The proof of Theorem 2 yields explicitly some distribution P , called P1 ,
such that (20) and (21) hold for empirical minimization. Note that when
models are singletons, most penalization procedures coincide with empir-
ical minimization, for instance when pen(m) is proportional to the local

Rademacher complexity δ̂n(Fm; t), or to the ideal penalty penid(m) =

(P − Pn)(f̂m − fm), its expectation or some quantile of penid(m).
3. Theorem 2 focuses on margin adaptivity with ϕm(x) = hmx2, whereas

the margin condition is also satisfied with other functions ϕm. This is
both for simplicity reasons, and because this choice emphasizes that one
could hope for learning rates of order 1/(nhm) if strong margin adaptivity
were possible. The meaning of Theorem 2 is then mainly that one cannot
guarantee to learn at a rate better than 1/

√
n, whereas for some model,

the excess loss and 1/(nhm) both are of order 1/n .

imsart-generic ver. 2007/09/18 file: margin.tex date: February 7, 2010



Arlot, S. and Bartlett, P./Margin-adaptive model selection 14

4. The counterexample given in the proof of Theorem 2 is highly nonasymp-
totic, since the distribution P strongly depends on n. If P and f0, f1
were fixed, it is well known that empirical minimization leads to asymp-
totic optimality, because (fm )m∈{0,1} is finite and fixed when n grows.
This illustrates a significant difference between the asymptotic and non-
asymptotic frameworks.
Another example of such a difference occurs when the number of candi-
date functions (or models) is infinite, or grows to infinity with the sample
size, see (iv) in Proposition 2 in Section 5.2.

With Theorem 1, we have proven a strong margin adaptivity result for nested
models, which holds true when the penalty is built upon local Rademacher com-
plexities. Therefore, adaptive model selection is attainable for nested models,
whatever the distribution of the data. On the other hand, Theorem 2 gives a sim-
ple example where no model selection procedure can satisfy an oracle inequality
(10) with a leading constant smaller than C4

√
n/(ln(n)) .

Looking carefully at the selection problems considered in the proof of Theo-
rem 2, it appears that the main reason why they are particularly tough is that
we are quite “lucky” with one of the models: it has simultaneously a very small
bias, a very small size and a large margin parameter, while other models with
very similar appearance are much worse. When looking for more general strong
margin adaptivity result, we then must keep in mind that this is a hopeless task
in such situations.

Let us finally mention a related result in a close but slightly different frame-
work. In the classification framework, under a global margin condition with
ϕ(x) ∝ x2κ with κ ≥ 1, Theorem 3 in [18] shows that for any Mn ≥ 2 , a family
(um )m∈Mn

of Mn classifiers exists for which, for any selection procedure m̂,
some distribution P exists such that

E [P (fm̂ − f⋆) ] ≥ inf
m∈Mn

{P (fm − f⋆)}+ C

(
ln(Mn)

n

)κ/(2κ−1)

,

where fm = γ(um; ·) for some loss function γ. When m̂ is (penalized) empirical
minimization, the remainder term is shown to be as large as C

√
ln(Mn)/n when

the margin condition holds with κ > 1.
This result and Theorem 2 focus on different problems. In [18], the margin

condition is only assumed to hold globally, and the focus is on the dependence of
the remainder term on the cardinality Mn of Mn . Therefore, the counterexam-
ple given in [18] implies nothing about local margin conditions for (fm)m∈Mn .
Note that using these arguments, we could probably generalize Theorem 2 to a
family of Mn ≥ 2 functions and obtain a lower bound depending on Mn as in
[18].
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5. General collections of models

As proven in Section 4, we cannot hope to obtain margin adaptivity without any
assumption on either P or the models. The purpose of this section is to explain
what can still be proven in the general case, and why this is weaker than our
Theorem 1.

5.1. A general oracle inequality

We start with a general result for penalties satisfying the lower bound (12).

Theorem 3. Let (Fm )m∈Mn
be any countable family of models, and ( tm )m∈Mn

be any sequence of positive numbers. Let m̂ be defined by (11) and assume that
some c ∈ (0, 1) exists such that

∀m ∈ Mn, (1− c) pen(m) ≥ (P − Pn)
(
f̂m − fm

)
+

tm
n

≥ 0 (22)

on an event of probability at least 1− η.
Then, there exists an event of probability at least 1− η − 2

∑
m∈Mn

e−tm on
which the following holds: for every ε ∈ (0, 1),

P
(
f̂m̂ − f⋆

)
≤ 1

1− ε
inf

m∈Mn

{
P (fm − f⋆ ) + pen(m) + v(m) +

tm
3n

}
+ Vn

(23)

where Vn :=
1

1− ε
sup

m∈Mn

{v(m)− εP (fm − f⋆ )− c pen(m)}

and v(m) :=

√
2tm
n

varP (fm − f⋆) .

Theorem 3 is proved in Section 7.1. Let us make a few comments.
First, without Vn, (23) is the kind of oracle inequality we are looking for,

since the leading constant is close to 1 (provided ε is small enough). For the
sake of simplicity, assume that a margin condition (9) holds for every model
m ∈ Mn, with ϕm(x) = hmx2. Then,

v(m) ≤
√

2tmP (fm − f⋆ )

hmn
≤ εP (fm − f⋆ ) +

tm
2εhmn

,

for any ε ∈ (0, 1). Hence, the first term of the right-hand side of (23) is smaller
than

1 + ε

1− ε
inf

m∈Mn

{
P (fm − f⋆ ) + pen(m) +

tm
2εhmn

+
tm
3n

}
,

which is the right-hand side of a margin adaptive oracle inequality like (6) (at
least when the penalty is itself of the right order). A similar result holds for a
more general ϕm; see the proof of Theorem 1.
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Once we have a penalty satisfying (22) (for instance, a local Rademacher
penalty), the main difficulty for proving a strong margin adaptivity result then
lies in Vn. It arises from the difference between the ideal penalty and the right-
hand side of the lower bound (22), that is (P −Pn)(fm). This random quantity
is centered, and (up to a quantity independent of m) has deviations of order
v(m), Bernstein’s inequality being unimprovable. Then, if v(m) happens to be
much larger than P (fm−f⋆)+pen(m), m is selected with a positive probability,

whatever the value of P (f̂m − f⋆) . In that case, the expectation of f̂m̂ is worse
than the oracle by at least v(m) (for any of these “bad” models). Hence, Vn

certainly is unavoidable in (23).

As shown by Theorem 2, Vn can be much larger than the expectation of a
strong margin adaptive estimator. Nevertheless, Vn is not always the main term
in the right-hand side of (23). Let us now describe a set of favorable situations,
in which it is possible to prove that Vn is small enough.

1. Models are nested, tm is nondecreasing (with respect to the inclusion or-
dering on Fm), and pen satisfies the additional condition (13): see Sec-
tion 3.

2. Models are nested, tm is nondecreasing and v(m) is decreasing (or at least
not increasing too much) when Fm increases. Indeed, let us fix m,m⋆ ∈
Mn (think of m⋆ as a minimizer of the infimum in the right-hand side
of (23)). When models are nested, either Fm⋆ ⊂ Fm so that v(m) ≤
supFm⋆⊂Fm′

{v(m′)} , or Fm ⊂ Fm⋆ so that ϕm⋆ ≤ ϕm hence ϕ⋆
m ≤ ϕ⋆

m⋆ .
In the second case,

v(m)−εP (fm−f⋆) ≤ ϕ⋆
m

(√
2tm
ε2n

)
≤ ϕ⋆

m⋆

(√
2tm
ε2n

)
≤ ϕ⋆

m⋆

(√
2tm⋆

ε2n

)

since tm ≤ tm⋆ and ϕ⋆
m⋆ is nondecreasing. As a consequence, for any

m⋆ ∈ Mn ,

Vn ≤ 1

1− ε
max

{
sup

Fm⋆⊂Fm′

{v(m′)} ;ϕ⋆
m⋆

(√
2tm⋆

ε2n

)}
,

which is not too large provided that v(m) never increases too much. Notice
that we can understand assumption (13) as ensuring that the penalty
compensates a possible increase of v(m).

3. The oracle model prediction error does not decrease to zero faster than
n−1/2 and tm ≤ t. Indeed, the straightforward upper bound v(m) ≤√
2tm/n shows that Vn ≤ (1− ε)−1

√
2t/n.

4. The margin condition does not depend on m and tm ≤ t. Indeed, when
ϕm ≡ ϕ (or infm ϕm ≥ ϕ), we have

Vn ≤ 1

1− ε
sup

m∈Mn

{
ϕ⋆
m

(√
2tm
ε2n

)}
≤ 1

1− ε
ϕ⋆

(√
2t

ε2n

)
.
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5. The penalty satisfies c pen(m) ≥ v(m) for every m ∈ Mn, which can
be ensured for instance by adding c−1v(m) (or an estimate of it) to a
penalty satisfying (22). This method is for instance the one proposed by
Koltchinskii [16] (Section 5.2), and in that case (23) coincides with his
Theorem 6.

Points 3 and 4 above show that the challenging situations are the ones where
the margin condition indeed depends on the model, and fast rates of estima-
tion are attainable. We prove in Section 5.2 that such situations can occur,
enlightening how our Theorem 1 is an improvement on existing results and
their straightforward consequences.

On the other hand, point 5 may seem contradictory with the negative results
of Section 4. The explanation is that using v(m) in the penalty means that
m̂ is not only a function of the data, but also of the unknown distribution P .
Then, it cannot be considered adaptive. A more surprising consequence of this
remark combined with Theorem 2 is that v(m) cannot be estimated accurately
enough uniformly over the set of all distributions P . Consider the proposal, in
Section 5.1 of [16], to add

C

√
tmPn(f̂m)

n

to the penalty, which is sufficient to give a result like (14). The point is that
such a penalty is generally much too large (at least for small models), which
often results in an upper bound of order n−1/2. In the examples we have in mind
(as well as in the counterexamples of Section 4), the excess risk of the oracle is
much smaller, typically of order n−β for some β ∈ (1/2; 1].

5.2. The local margin conditions can be significantly tighter than
the global one

In this section, we show that there exist challenging situations, in which the
margin condition holds for functions ϕm strongly depending on m.

Proposition 2. Let κ ∈ (1;+∞) and assume that X is infinite. Let γ be the
0-1 loss and F0−1 := {γ (u; · ) s.t. u : X 7→ {0, 1} is measurable} be the as-
sociated loss function class. Then, there exist a probability distribution P on
X × {0, 1} , a sequence (fj)j∈N of elements of F0−1 , and positive constants
(Ci)5≤i≤7 (depending on κ only) such that

(i) ∀k ∈ N , P (f2k+1−f⋆) = P (f2k−f⋆) = b(k) and 2−kκ−2 ≤ b(k) ≤ 2−kκ−1 .
(ii) The global margin condition (8) is satisfied over F = F0−1 with ϕ(x) =

C5x
2κ , and it is tight: ∀k ∈ N , ϕ

(√
var (f2k+1 − f⋆ )

)
≥ C6P (f2k+1 −

f⋆) .
(iii) A tighter local margin condition (9) holds over {f2k s.t. k ∈ N} : ∀k ∈ N ,

P (f2k − f⋆) ≤ varP (f2k − f⋆) .
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(iv) For every m ∈ N , define Fm = {fm } and consider the model selection
problem among (Fm )0≤m≤Mn

with Mn ≥ 2 ln2(n) . Then, the right-hand
side of a strong margin adaptive oracle inequality of the form (10) is at
most proportional to

inf
0≤2k≤Mn

{
P (f2k − f⋆) +

ln(n)

n

}
≤ 2 ln(n)

n
,

whereas the right-hand side of a global margin adaptive oracle inequality
is larger than C7n

−κ/(2κ−1) ≫ (ln(n))/n .

Proposition 2 is proved in Section 7.3. It gives an example of a model se-
lection problem where strong margin adaptivity implies a faster rate of con-
vergence than adapativity to the global margin condition. Note that the same
argument works with many other model selection problems, such as selecting
among ({f2k+1 s.t. 0 ≤ k ≤ m})m∈{ 1,...,(ln(n))2 } .

6. Discussion

6.1. Other penalization procedures

We have focused in Section 3.2 on penalties defined in terms of local Rademacher
complexities, in order to prove that strong margin adaptivity is attainable for
some data-driven penalties. An interesting question is whether such a result can
be extended to penalties that can be computed faster.

For instance, it is natural to think of estimating penid(m) itself by resampling,
instead of the local complexity δn(Fm; t). Such penalties, with several kinds
of resampling schemes, have been proposed in [2, 3] and called “Resampling
Penalties” (RP), generalizing the bootstrap penalty suggested by Efron [15].
RP can be computed faster than local Rademacher complexities, because they
are not defined as a fixed point of the resampling estimate of a function. In
particular, the V -fold penalties defined in [2] have the same computational cost
as V -fold cross-validation.

In addition, RP are easy to calibrate, since they depend on a single tun-
ing parameter—the multiplicative factor in front of it—which can for instance
be estimated from the data by using the “slope heuristics” (see [4]). On the
contrary, local Rademacher complexities depend on two more constants, whose
theoretical values are certainly too large for practical application.

Extending Corollary 1 to RP would require to prove that RP satisfy both
assumptions (12) and (13). On the one hand, (12) means essentially that the
penalty is larger than the expectation of the ideal penalty with large probability.
Hence, one can conjecture that (12) holds for RP; a partial proof of (12) for RP
in our general setting can be found in Chapter 7 of [1], together with an agenda
for a complete proof, which seems to be a difficult theoretical problem. On the
other hand, (13) seems less likely to hold for RP, and we may have to modify
RP so that (13) can be satisfied in general.
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Proving such results would be quite interesting, since it would provide a
strong margin adaptive penalization procedure with a reasonably small compu-
tational cost.

6.2. Should we make collections of models nested?

A natural question coming from our results is whether one should make any
collection of models nested before performing model selection, in order to im-
prove performance. Let us consider the counterexample of Theorem 2 and look
at what would happen if we make the models nested.

Assume that P = P1 is the distribution defined in the proof of Theorem 2. On
the one hand, comparing {f0 } and {f0 , f1 } , the model selection problem would
be easy because the margin parameter hm is the same in both models, making
the remainder term of order n−1/2 (the remainder term (nhm)−1 can be replaced
by n−1/2 when hm ≤ n−1/2 because of the upper bound varP (fm − f⋆) ≤
1/4). And margin adaptivity is not challenging when the margin condition is
merely not satisfied. On the other hand, when P = P1, comparing {f1 } and
{f0 , f1 } is more challenging because f1 is really better than f0 . Here, contrary
to the non-nested case, the large increase of the term varP (fm − f⋆) induces a
similar increase in the L2(P1) diameter of the class. Hence, local Rademacher
complexities can detect it, as shown by Theorem 1.

To conclude, improving significantly the prediction performance of the final
estimator by making the models nested requires some prior knowledge, such
as a natural ordering between the (non-nested) models. Otherwise, Theorem 2
shows that choosing from data—or randomly—how to make the models nested
is not successful with probability at least C3 > 0 , whatever the sample size.

7. Proofs

7.1. Oracle inequalities

We give the proofs in a logical order, that is, first Theorem 3, then Theorem 1
(which is a corollary of it), and finally Corollary 1.

proof of Theorem 3. First, by definition of m̂, for every m ∈ Mn we have

Pn

(
f̂m̂

)
+ pen(m̂) ≤ Pn

(
f̂m

)
+ pen(m) ,

which can be rewritten as

P
(
f̂m̂ − f⋆

)
+ (Pn − P )

(
f̂m̂ − fm̂

)
+ (Pn − P ) (fm̂ − f⋆ ) + pen(m̂)

≤ P (fm − f⋆ ) + Pn

(
f̂m − fm

)
+ (Pn − P ) (fm − f⋆ ) + pen(m)

≤ P (fm − f⋆ ) + (Pn − P ) (fm − f⋆ ) + pen(m) .
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On the event where (22) holds, we then have

P
(
f̂m̂ − f⋆

)
+ (Pn − P ) (fm̂ − f⋆ ) + c pen(m̂) +

tm̂
n

≤ inf
m∈Mn

{P (fm − f⋆ ) + (Pn − P ) (fm − f⋆ ) + pen(m)} .
(24)

By Bernstein’s inequality (see for instance Proposition 2.9 in [22]), for every
m ∈ Mn, there is an event of probability 1− 2e−tm on which

|(Pn − P ) (fm − f⋆ )| ≤ v(m) +
tm
3n

.

On the intersection of these events with the one on which (22) holds, we derive
from (24) that

P
(
f̂m̂ − f⋆

)
−v(m̂)+c pen(m̂) ≤ inf

m∈Mn

{
P (fm − f⋆ ) + pen(m) + v(m) +

tm
3n

}
.

For any ε > 0, the left-hand side is larger than

(1− ε)P
(
f̂m̂ − f⋆

)
+ εP (fm̂ − f⋆ ) + c pen(m̂)− v(m̂)

≥ (1− ε)P
(
f̂m̂ − f⋆

)
− sup

m∈Mn

{v(m)− εP (fm − f⋆ )− c pen(m)} .

The result follows.

proof of Theorem 1. We consider the event on which (23) holds. By Theorem 3,
we know that it has probability at least 1− η− 2

∑
m∈Mn

e−tm . We first bound
the first term in the right-hand side of (23). From (9), we have

∀m ∈ Mn, v(m) ≤
√

2tm
n

ϕ−1
m (P (fm − f⋆ ) ) .

Then, using that xy ≤ ϕm(x) + ϕ⋆
m(y) for every x, y ≥ 0,

∀m ∈ Mn, v(m) ≤ ϕ⋆
m

(√
2tm
ε2n

)
+ ϕm

(
εϕ−1

m (P (fm − f⋆ ) )
)

.

Since ϕm is convex with ϕm(0) = 0, we have ϕm(λx) ≤ λϕm(x) for every
λ ∈ (0, 1) and x ≥ 0. Then, using also that varP (fm − f⋆) ≤ 1,

∀m ∈ Mn, v(m) ≤ min

{√
2tm
n

, ϕ⋆
m

(√
2tm
ε2n

)
+ εP (fm − f⋆ )

}
, (25)

and the right-hand side of (23) is smaller than

1

1− ε
inf

m∈Mn

{
(1 + ε)P (fm − f⋆ ) + pen(m) + min

{
ϕ⋆
m

(√
2tm
ε2n

)
,

√
2tm
n

}
+

tm
3n

}
+Vn .

(26)
It now remains to upperbound Vn.

Let m,m′ ∈ Mn. Since models Fm are nested, two cases can occur:
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1. Fm ⊂ Fm′ , which implies tm ≤ tm′ and ϕm ≥ ϕm′ , hence ϕ⋆
m ≤ ϕ⋆

m′ .
Using in addition (25) and that ϕ⋆

m′ is nondecreasing , we have

v(m) ≤ min

{√
2tm′

n
, ϕ⋆

m′

(√
2tm′

ε2n

)}
+ εP (fm − f⋆ ) .

2. Fm′ ⊂ Fm. Using (13) and (25),

v(m) ≤ C1v(m
′) + C2P (fm′ − f⋆) + c pen(m)

≤ C1 min

{√
2tm′

n
, ϕ⋆

m′

(√
2tm′

ε2n

)}
+ (C2 + C1ε)P (fm′ − f⋆) + c pen(m) .

Therefore,

Vn ≤ 1

1− ε
inf

m′∈Mn

{
max {1, C1 }min

{√
2tm′

n
, ϕ⋆

m′

(√
2tm′

ε2n

)}
+ (C2 + C1ε)P (fm′ − f⋆)

}

and the result follows.

proof of Corollary 1. From [16] (Theorem 1 and (9.2) in the proof of its Lemma 2),
we know that there exist numerical constants K > 0 and q > 1 such that (12)
holds with tm = t, c = 5/7 and η = (L+ 1) lnq

(
n
t

)
Card(Mn)e

−t.

In addition, Lemma 3 below shows that (13) holds with C1 =
√
2 and C2 =

2/(Kq).
The result follows from Theorem 1 with tm = t.

Lemma 3. Let Fm′ ⊂ Fm and δn be defined by (15). Then,

v(m) ≤ 2δn(Fm; t) +
√
2v(m′) +

2P (fm′ − f⋆)

qK
. (27)

proof of Lemma 3. Since Fm′ ⊂ Fm, fm′ ∈ Fm (as well as fm), so that

DP (Fm;P (fm′ − fm)) ≥
√
P (fm − fm′ )

2 ≥
√
varP (fm − fm′ )

≥
√

varP (fm − f⋆ )

2
−
√
varP (fm′ − f⋆ ) . (28)

For the last inequality, we used that var(X) ≤ 2 var(X + Y ) + 2 var(Y ) for any
random variablesX,Y , and the inequality

√
x+ y ≤ √

x+
√
y for every x, y ≥ 0.

First, assume that the lower bound in (28) is nonpositive. This implies

v(m) =

√
2t

n
varP (fm − f⋆ ) ≤

√
2v (m′ ) ,

so that (27) holds.
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Otherwise, the assumptions of Lemma 4 below hold with

D0 =

√
varP (fm − f⋆ )

2
−
√
varP (fm′ − f⋆ ) > 0 and σ0 = P (fm′ − fm) .

We deduce from (29) that

v(m)

2
− v(m′)√

2
≤ δn(Fm; t) +

P (fm′ − fm)

qK
≤ δn(Fm; t) +

P (fm′ − f⋆)

qK
,

and (27) holds also.

Lemma 4. Let δn(Fm; t) be defined by (15). Assume that there is some D0, σ0 >
0 such that DP (Fm;σ0) ≥ D0. Then, we have the following lower bound:

max

{
δn(Fm; t);

σ0

qK

}
≥ D0

√
t

n
. (29)

proof of Lemma 4. First, (29) clearly holds when σ0

qK
≥ D0

√
t/n. Otherwise, let

σ1 = max
{
qK , 1

}
D0

√
t/n > σ0. From the definition of Un , we have

Un(Fm;σ1; t)

σ1
≥ KDP (Fm;σ1)

σ1

√
t

n
≥ KD0

qKD0

√
t/n

√
t

n
=

1

q
>

1

2q
.

Then, according to the definition (15) of δn(Fm; t), δn(Fm; t) ≥ σ1 ≥ D0

√
t/n

and the result follows.

7.2. Lower bounds (proof of Theorem 2)

For every m ∈ {0, 1} , let fm : (x, y) 7→ 1y 6=m ; fm ∈ F0−1 since fm = γ (um; · )
where for every x ∈ X , um(x) = m . Let α = (2n)−1 and h = (2n)−1/2 . Let
a 6= b be any two elements of X . We define a probability distribution P1 on
X × {0, 1} as follows: if (X,Y ) ∼ P1 , then P(X = a) = α , P(X = b) = 1− α ,
P (Y = 1 | X = a ) = 0 and P (Y = 1 | X = b ) = 1

2 + h . We also define P0

as the distribution of (X, 1 − Y ) where (X,Y ) ∼ P1 . In the following, for
any distribution Q on X × {0, 1} , we use the notation PQ as a shortcut for
P(Xi,Yi)1≤i≤n∼Q⊗n .

First, under distribution P1 , the Bayes predictor is s = 1b ,

P1 (f0 − f⋆ ) = 2(1− α)h , P1 (f1 − f⋆ ) = α and varP1
(f1 − f⋆ ) = α− α2 .

Hence,

min
m∈{ 0,1}

{
P1 (fm − f⋆ ) + v(m) +

ln(n)

nhm

}

≤ P1(f1 − f⋆) + v(1) +
ln(n)

nh1
≤ α+

√
2α ln(n)

n
+

ln(n)

n
≤ 2 + 3 ln(n)

2n
.
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Therefore, if PP1
(m̂ = 0) ≥ C3 , then (20) holds when P = P1 , with C4 = 1/3 .

Similarly, PP0
(m̂ = 1) ≥ C3 implies (20) with P = P0 and C4 = 1/3 . So, in

order to prove (20), we only need to prove that

max
j∈{ 0,1}

{
PPj (m̂ = 1− j )

}
≥ C3 > 0 . (30)

The proof of (30) relies on three main facts. First,

∀j ∈ {0, 1} , PPj (∀i ,Xi = b ) = (1− α )
n
=

(
1− 1

2n

)n

≥ 1

2
. (31)

Second, for every j ∈ {0, 1} , under Pj , conditionally to {∀i , Xi = b} ,
Card { i s.t. Yi = 1} is a binomial random variable with parameters (n, pj) ,
where

pj = P(X,Y )∼Pj
(Y = 1) =

1

2
+ (−1)j+1h .

So, Lemma 5 shows that for every j ∈ {0, 1} and every k ∈ N∩
[
n
2 −√

n, n
2 +

√
n
]
,

PPj (Card { i s.t. Yi = 1} = k | ∀i , Xi = b) ≥ C√
n
> 0 , (32)

where C is an absolute constant.
Third, let us define, for every k ∈ {0, . . . , n} ,

πk := PPU (m̂ ( (Xi, Yi)1≤i≤n ) = 1 | Card { i s.t. Yi = 1} = k and ∀i , Xi = b ) ,

where PU is the uniform distribution on {a, b}×{0, 1}. A crucial remark is that
PU can be replaced by either P0 and P1 in the definition of πk , since the condi-
tioning event determines (Xi, Yi)1≤i≤n up to the ordering of the observations; in
the definition of πk , the probability only refers to the ordering of the (Xi, Yi) ,
and any product measure on X × {0, 1} assigns equal probabilities to the n!
permutations of the n observations. Note also that the definition of πk stays
valid when m̂ is a randomized selection rule, which proves the generalization of
Theorem 2 pointed out in Remark 3. For any given selection rule m̂ ,

Card

{
k ∈ N ∩

[ n
2
−
√
n,

n

2
+
√
n
]
s.t. πk >

1

2

}

is either larger or smaller than
√
n . If it is larger, (31), (32) and the definition

of the πk (with P0 instead of PU ) show that

PP0
(m̂ ( (Xi, Yi)1≤i≤n ) = 1) ≥

√
n× C√

n
× 1

2
=

C

2
= C3 > 0 ,

so that (30) is satisfied. Otherwise, choosing P1 instead of P0 shows that (30)
holds true. This proves (20), which clearly implies (21), since P (fm̂ − f⋆) ≥ 0
a.s.

A key tool in the proof of Theorem 2 is the following uniform lower bound
on the density of the binomial distribution w.r.t. the counting measure on N.
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Lemma 5. For every n ∈ N and p ∈ [0, 1], let B(n, p) denote the binomial
distribution with parameters (n, p). For every a, b > 0 and c ∈ (0, 1/2), a positive
constant C(a, b, c) exists such that for any positive integer n ,

inf
k∈N, |k−n

2 |≤min{an1/2,n
2 }

|p− 1
2 |≤min{ bn−1/2,c}

{√
nPZ∼B(n,p) (Z = k )

}
≥ C(a, b, c) > 0 . (33)

proof of Lemma 5. Let n, k, p satisfy the above conditions, Z ∼ B(n, p), and
define

η :=
2k

n
− 1 δ := p− 1

2
.

The assumption on k and p becomes |η| ≤ min
{
an−1/2, 1/2

}
and |δ| ≤ min

{
bn−1/2, c

}
.

In addition,

P (Z = k ) = pk(1 − p)n−k

(
n

k

)
=

(
1

2
+ δ

)k (
1

2
+ δ

)n−k
n!

k!(n− k)!
.

We now use Stirling’s formula:

ln(n!) = n ln(n)− n+
1

2
ln(2πn) + εn

for some sequence εn → 0 when n → +∞ (one has (12n+1)−1 ≤ εn ≤ (12n)−1).
Then,

lnP (Z = k ) = k ln

(
1

2
+ δ

)
+ (n− k) ln

(
1

2
− δ

)
+ ln

n!

k!(n− k)!

=
n

2

[
(1− η) ln

(
1− 2δ

1− η

)
+ (1 + η) ln

(
1 + 2δ

1 + η

)]

− 1

2
ln(n) +

1

2
ln

(
2

π

)
− 1

2
ln
(
1− η2

)
+ εn − εk − εn−k .

Define h : (−1,+∞) 7→ R by h(x) := x−1 ln(1 + x)− 1, so that

∀x > −1, ln(1 + x) = x (1 + h(x) ) .

Recall that |h(x)| ≤ 2 |x| as soon as x ≥ −1/2, by the Taylor-Lagrange formula.
In particular, limx→0 h(x) = 0. We then have

lnP (Z = k )

=
n

2

[
4δη − 2η2 − 2δ(1− η)h(−2δ) + η(1− η)h(−η) + 2δ(1 + η)h(2δ)− η(1 + η)h(η)

]

− 1

2
ln(n) +

1

2
ln

(
2

π

)
+

η2

2
h(−η2) + εn − εk − εn−k .

Assuming that n ≥ n0 such that max {a, b}n−1/2 ≤ 1/2, it follows that

lnP (Z = k ) = −1

2
ln(n) +R(k, n, p)
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with
R(k, n, p) ≥ L

(
1 + a2 + ab+ b2

)

for some numerical constant L > 0, and this lower bound is uniform over n ≥ n0

and k, p such that the conditions of the infimum in (33) are satisfied. On the
other hand,

inf
n≤n0, 1≤k≤n

{
PZ∼B(n,p) (Z = k )

}
≥ K(p) > 0

as soon as p ∈ (0, 1). Since PZ∼B(n,p) (Z = k ), seen as a function of p, is in-
creasing on (0, k/n) and decreasing on (k/n, 1), K(p) is uniformly larger than
min {K(1/2− c),K(1/2 + c)}. The result follows.

7.3. Proof of Proposition 2

Let (xj )j∈N
be any infinite sequence of distinct elements of X and λ > 0 to

be chosen later. We define P as follows, by denoting (X,Y ) a pair of random
variables with joint distribution P . For every k ∈ N, P(X = x2k) = pkqk and
P(X = x2k+1) = pk(1 − qk) , where pk = 2−k−1 and qk ∈ [0, 1] is to be chosen
later; note that

∑
k∈N

pk = 1 . For every k ∈ N, P (Y = 1 | X = x2k ) = 0 and

P (Y = 1 | X = x2k+1 ) = (1 + δk)/2 where δk = 2−kλ . As a consequence, the
Bayes predictor is s := 1{x2k+1 s.t. k∈N } . Let us define for every j ∈ N ,

uj(x) :=

{
s(x) if x 6= xj

1− s(x) if x = xj

and fj = γ (uj ; · )

where γ is the 0-1 loss. Then, for any k ∈ N ,

P (f2k+1 − f⋆ ) = δkpk(1− qk) P (f2k − f⋆ ) = pkqk (34)

varP (f2k+1 − f⋆ ) = pk(1− qk)− (δkpk(1− qk) )
2

(35)

varP (f2k − f⋆ ) = pkqk − (pkqk )
2

. (36)

We can now prove the four statements of Proposition 2.

(i) By (34), choosing qk = δk/(1 + δk) and λ = κ − 1 > 0 implies (i) with
b(k) = pkqk .

(ii) For every t ∈ (0, 1) ,

P ( |2η(X)− 1| ≤ t ) =
∑

k∈N

P(X = x2k+1)1δk≤t ≤
∑

k s.t. 2−kλ≤t

2−k−1 ≤ t1/λ .

(37)
By Lemma 9 of [9], (37) implies the global margin condition overF0−1 with
function ϕ(x) = C5x

2(λ+1) , where C5 only depends on λ . This implies the
first part of (ii) since λ = κ−1 > 0. For the second part, (35) implies that

varP (f2k+1 − f⋆ ) ≥ pk(1− qk) (1− pk ) ≥
pk(1 − qk)

2
≥ pk

4
= 2−k−3 ,

hence the second part of (ii) holds with C6 = C52
2−3κ .
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(iii) By (36), varP (f2k − f⋆) = pkqk(1 − pkqk) ≤ pkqk = P (f2k − f⋆) .
(iv) By (iii), for every k ∈ N , a local margin condition holds on F2k with

function ϕ2k : x 7→ x2 . So, the right-hand side of a strong margin adaptive
oracle inequality is at most (keeping only even values of m) proportional
to

inf
0≤k≤Mn/2

{
P (f2k − f⋆) +

ln(n)

n

}
≤ 2− ln2(n)−1 +

ln(n)

n
≤ 2 ln(n)

n
.

Note that the ln(n) factor may be replaced by a smaller quantity depend-
ing on the framework. The last statement on global margin adaptivity
holds according to (ii), since ϕ⋆(x) = L(κ)x2κ/(2κ−1) , where L(κ) > 0
only depends on κ .

Acknowledgments The authors gratefully acknowledge the support of the
NSF under award DMS-0434383. The first author’s research was mostly carried
out at Univ Paris-Sud (Laboratoire de Mathematiques, CNRS - UMR 8628),
with the additional support of Inria Saclay (Select Project).

References

[1] Sylvain Arlot. Resampling and Model Selection. PhD thesis, University
Paris-Sud 11, December 2007. oai:tel.archives-ouvertes.fr:tel-00198803 v1.

[2] Sylvain Arlot. V -fold cross-validation improved: V -fold penalization, Febru-
ary 2008. arXiv:0802.0566v2.

[3] Sylvain Arlot. Model selection by resampling penalization. Electron. J.
Stat., 3:557–624 (electronic), 2009.

[4] Sylvain Arlot and Pascal Massart. Data-driven calibration of penalties
for least-squares regression. J. Mach. Learn. Res., 10:245–279 (electronic),
2009.

[5] Jean-Yves Audibert. Classification under polynomial entropy and margin
assumptions and randomized estimators. Preprint, Laboratoire de Proba-
bilites et Modeles Aleatoires, 2004.

[6] Jean-Yves Audibert and Alexandre B. Tsybakov. Fast learning rates for
plug-in classifiers. Ann. Statist., 35(2):608–633, 2007.
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[12] Gilles Blanchard, Gábor Lugosi, and Nicolas Vayatis. On the rate of con-
vergence of regularized boosting classifiers. J. Mach. Learn. Res., 4(5):861–
894, 2004.

[13] Gilles Blanchard and Pascal Massart. Discussion: “Local Rademacher com-
plexities and oracle inequalities in risk minimization” [Ann. Statist. 34
(2006), no. 6, 2593–2656] by V. Koltchinskii. Ann. Statist., 34(6):2664–
2671, 2006.

[14] Luc Devroye and Gábor Lugosi. Lower bounds in pattern recognition and
learning. Pattern Recognition, 28(7):1011–1018, 1995.

[15] Bradley Efron. Estimating the error rate of a prediction rule: improvement
on cross-validation. J. Amer. Statist. Assoc., 78(382):316–331, 1983.

[16] Vladimir Koltchinskii. Local Rademacher complexities and oracle inequal-
ities in risk minimization. Ann. Statist., 34(6):2593–2656, 2006.
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