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Abstract

This paper presents a finite element simulation of the mechanical behaviour of woven fabrics
or textile composites at the mesoscopic scale, i.e. at the scale of contact-friction interactions
between elementary fibers. In our model, each fiber constituting the studied woven sample is
taken is represented by a finite strain 3D beam, while the focus is put on the detection and
taking into account of contact-friction interactions between these beams. The model is first used
to compute the unknown initial configuration, by simulating in a sense the weaving process. In
a second step, once this initial configuration has been computed, an elastic matrix can be added
to the model, in order to simulate and identify the behaviour of the sample under various loading
cases.

1. Introduction

The need of characterization of complex and nonlinear mechanical behaviour of textile compos-
ites is increasing with their growing use in a wide range of technical applications. The complex-
ity of the macroscopic behaviour of these materials is mainly due to phenomenons occuring at
the level of constituting fibers, which can be described as the mesoscopic scale. As long as these
local phenomenons remain difficult to investigate experimentally, an in-depth understanding of
mechanisms at this mesoscopic scale is still lacking.
The modeling strategies presented here shows that the finite element simulation has become an
alternate approach to explore and predict the mechanical behaviour of textile composite materi-
als. To meet such an objective, the simulation has to be able to take into account not only the
behaviour of each individual fiber of the structure, but also the interactions developed between
fibers. The recent development of computational capacities makes this kind of computations
now feasible.
Different approaches to simulate the behaviour of textile structures can be found in the litter-
ature. Some are based on the construction of discrete models, relying on the identification of
spring stiffnesses and some geometrical assumptions [1–3]. An other way of doing is to use
finite element models, in which individual yarns are represented either by 3D or by beam el-
ements [4, 5]. For this kind of simulation, the identification of transverse behaviour of yarns
is a delicate point, with a large influence on the results, which requires a fitting to determine
the parameters governing this behaviour. As an alternative, simulations taking into account
internal fibers inside yarns have been carried out, using an explicit finite element code, to sim-
ulate manufacturing process and mechanical properties of fabrics [6]. In the connected domain
of generalized entangled media, we also suggested a modeling approach at the scale of fibers,
based on an implicit finite element code [7,8].
Not stopping at the yarn level, but going down to the fiber level avoids having to specify any
model for the behaviour of individual yarns. The only mechanical behaviour that has to be
characterized is the one of individual fibers, that can be simply considered as linear elastic.
The purpose of the simulation code we developed, based on an implicit solver, is to consider
small samples of textile composites, made of several hundreds of fibers, possibly coated with
an elastic layer. The data necessary for the computation, i.e. the description of the global
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arrangement of fibers in initially straight yarns, the elastic constants determining the behaviour
of fibers and matrix, and the description of the weave type, are easy to collect and to define.
Furthermore, most of the tasks, especially the meshing of fibers and matrix, and the detection
of different interactions between these parts, are performed automatically by the software. A
particularly important point of the method is that the computation of the initial configuration of
the woven fabric is handled by the simulation code, by solving a mechanical equilibrium while
fulfiling the crossing order between yarns defined by the choosen weaving pattern. This initial
stage, bringing comprehensive description of the fabric internal structure, is followed by loading
steps, involving an elastic matrix, to simulate various loadings such as biaxial tensile tests, shear
tests or bending tests.
In addition to the characterization of the macroscopic behaviour, the simulation at mesoscopic
scale offers an accurate description of what occurs in the core of these fibrous materials, both
from a geometrical and from a mechanical point of view. This tool can therefore reveal very
useful to predict damage and failure caused by various loadings in indiviual fibers. As the
modification of any design parameter of the structure is easy to operate, this simulation code is
of great interest in order to optimize textile composite materials with respect to various purposes.
In the following, Section 2 is devoted to a general presentation of the approach. The detection
and modeling of contact-friction interactions, which are the core of the presented method, are
detailed in Section 3. The mechanical coupling between fibers and the matrix, discretized by the
means of nonconforming meshes are introduced in Section 4. Finally, Section 5 shows results of
the simulation of different loading cases applied to the same initial set of yarns, woven according
to two different weave types.

2. Modelling of individual fibers

Special finite strains 3D beam elements have been developped for the present approach. The
kinematical model used for these elements is based on a first order expansion of the placement
(or displacement) of any material particle of the beam with respect around the line of centroids
of the beam. According to this model, the positionx(ξ, t) of any material particleξ, whose
coordinates in the reference configuration are denoted(ξ1, ξ2, ξ3) (Fig. 1), is assumed to express
by the mean of three vector fields as follows

x(ξ, t) = x0(ξ3, t) + ξ1g1(ξ3, t) + ξ2g2(ξ3, t). (1)

Fig. 1. Description of kinematics

In the above expression,x0(ξ3, t) is the position of the centroid of the beam cross-section, while
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vectorsg1(ξ3, t) andg2(ξ3, t) can be viewed as two director vectors for the section. The expres-
sion of the displacementu(ξ, t) can be derived from the previous expression :

u(ξ, t) = x(ξ, t) − x(ξ, 0) (2)

= u0(ξ3, t) + ξ1h1(ξ3, t) + ξ2h2(ξ3, t) (3)

This last expression shows that, according to the assumed kinematical model, the displacement
of any material particle of the beam is expressed through three vector fields : a vectoru0(ξ3, t)
standing for the translation of the cross-section’s centroids, and the variations of the two sections
vectors,h1(ξ3, t) andh2(ξ3, t). With this model, the kinematics of each cross-section depends on
three vector fields and nine degrees of freedom. Since both norms of section vectors and angles
between them can vary, the model is able to consider planar deformations of each cross-section,
which is an improvement with respect to classical beam models with rigid cross-sections. More-
over this model allows to get rid of the handling of large rotations associated to the assumption
of rigid sections.
The Green-Lagrange strain tensor derived from this kinematical model is a full tensor, where no
component is a priori zero. This point is important since it enables to use a 3D constitutive law,
taking into account all components of the strain tensor. 3D phenomena such as Poisson’s effect
(contraction of the section coupled with the axial stretching of the beam) can now be captured
by the means of this model.

3. Contact detection with an assembly of fibers

3.1. Introduction : use of discrete contact elements

A textile structure appears as an assembly of fibers with contact-friction interactions between
themselves. The detection of these interactions between moving fibers is one of the main issue in
our approach. The handling of contact is based on the construction of discrete contact elements
made of two material particles. For us, a contact element defined at a pointxc is constituted by
the two particles that may be predicted to enter into contact at this location. The question that
underlies this section are where and how to construct these contact elements within an assembly
of fibers.

3.1..1 Limits of classical approaches

Usually, in classic approaches, contact is determined by starting from one point on the surface of
a body, whose position is often at a particular location with respect to the finite elements (node
or integration point), and searching a candidate to contact on the opposite body, usually in the
direction of the normal to one of the surfaces. This method gives good results in many cases, but
does not seem adapted for the situations we are interested in. The first reason for this is that, in
regions where fibers are strongly curved, the normal direction the the surface of one fiber may
point towards a candidate which is actually far from the contact zone that may be predicted.
Furthermore, one important disadvantage of this method is that it does not ensure a symmetrical
treatment of both surfaces : starting from one surface, and using the normal direction to this
surface to determine a candidate on the opposite surface, and then, in a second step, applying
again the same process from this candidate, has very little chance to give the same initial point.
The main objection that may be raised in relation with these two points, is that using as searching
direction the direction normal to only one surface, is, in a sense, like considering only half of the
geometry of contact. What is lacking in this way of doing, is to consider simultaneously both
surfaces involved in the contact. That is precisely the part we assign to intermediate geometries.
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3.1..2 Introduction of intermediate geometries

The part played by the intermediate geometry is to approximate the actual geometry of the con-
tact surface and to provide a geometrical support for the discretization of the contact problem.
By this way, the contact problem is set on the intermediate geometry, and the two interacting
surfaces are considered symmetrically with respect to this third party.
We define the intermediate geometry, in regions where contact may occur, as the average be-
tween the two opposite surfaces that may enter into contact. To do this, such regions have to
be delimited by the means of zones of proximity. The way of averaging the two contacting sur-
faces may be very complex to define in general cases, as it requires the definition of a bijection
between these parts of surfaces. In the case of beams, this problem is simplified by the consider-
ation of lines instead of surfaces. The zones of proximity we intend to determine between fibers
are simply constituted by parts of their centroidal lines, and the average between the two parts
of lines can be defined unambiguously.

3.1..3 Process of determination of contact elements

The goal of this process is to determine pairs of material particles which are predicted to enter
into contact, and which constitute contact elements.

Determination of zones of proximity A zone of proximity is defined as two parts of cen-
troidal lines of fibers whose distance to each other is lower than a given proximity criterion. For
a proximity criterionδ, thek-th zone of proximity between fibersi and j, denotedZk(i, j), may
thus be defined as follows (seeFig. 2) :

Zk(i, j) = [a(i), b(i)] ∪ [a( j), b( j)];∀(ξ(i)
3 , ξ

( j)
3 ) ∈ [a(i), b(i)] × [a( j), b( j)],

‖x(i)
0t

(ξ(i)
3 ) − x( j)

0t
(ξ( j)

3 )‖ ≤ δ,

The determination of these zones of proximity must be fast. For that, for each pair of fibers, the
distance is calculated only between some control points coarsely distributed on one fiber, and
their corresponding closest points determined on the other fiber. Corrections may be needed in
some cases so that the intermediate geometry derived from the zone of proximity has suitable
characteristics for a precise detection of contact.

Fig. 2. Determination of zones of proximity

Intermediate geometry For a given zone of proximity, the intermediate geometry is simply
defined as the average of the two parts of centroidal lines constituting the zone, on which a
relative abscissas is defined. The same abscissa is used to define each pointxint,k(s) of the
intermediate geometry in the following way :

∀s ∈ [0, 1],

xint,k(s) =
1
2

[
x(i)

0t

(
(1 − s)a(i) + sb(i)

)
+ x( j)

0t

(
(1 − s)a( j) + sb( j)

)]
.
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The tangent to the intermediate geometry is calculated similarly as the average of tangents to
the two centroidal lines.

Discretization of the contact problem by contact elements Considering contact between a
pair of fibers, with respect to the intermediate geometry, the question we ask is what particles
of both fibers are likely to enter into contact at a given position on this intermediate geometry.
The discretization of the contact problem is also regarded with respect to this geometry, by
defining some discrete positions where contact elements will be created. The numbernc of
contact elements distributed on the zone of proximityZk(i, j) depends on the discretization size,
and the positioncl of thel-th contact element of the zone is defined as :

cl = xint,k(
l

nc + 1
) (4)

The discretization of the contact problem on the intermediate geometry is thus theoretically
defined independently on the discretization of fibers. However, to have a good approximation
of contact reactions, these different discretization sizes must be kept consistent with respect to
each other.

Determination of pairs of beam cross-sections candidate to contactThe first step to deter-
mine particles of contact elements is to state which cross-sections are likely to enter into contact
at the positioncl of a contact element. The curvilinear abscissasξ(i)

3 andξ( j)
3 of these cross-

sections are fixed at the intersection between the orthogonal plane to the intermediate geometry
at the positioncl of the contact element and the two centroidal lines of fibers, as shown onFig.
3.

Fig. 3. Determination of cross-sections can-
didates to contact

Fig. 4. Determination of material particles
contact elements

Determination of materials particles of the contact elements The last step to localize the
material particles candidates to contact consists in finding their position on the border of cross-
sections. To do this, the direction between the two centroids is projected on each cross-section,
and the seeked particles are positioned at the intersections between this projection and the border
of the section (Fig. 4).
We denoteEc(cl) the contact element constituted by these two particles determined at the posi-
tion cl of the intermediate geometry :

Ec(cl) =
(
ξ(i), ξ( j)

)
(5)

“Finite element modelling of textiles and textile composites”, St-Petersburg, 26-28 September 2007



D. Durville, Finite element simulation of textile materials at mesoscopic scale 6

3.1..4 Nonlinear character of the process of determination of contact elements

The process of determination of contact elements is actually a predictive one and depends on
the relative positions of fibers, and consequently on the solution itself. For this reason, for
each loading step, this process have to be iterated to increase the precision of the determination
of particles candidates to contact. Even if the convergence of this iterative process cannot be
guaranteed, it shows a good algorithmic behaviour and produce very relevant couples of material
particles candidates to contact.

3.2. Mechanical models for contact and friction

3.2..1 Expression of linearized kinematical contact conditions

Normal directions for contact A normal direction has to be set for each contact element
to measure the penetration between fibers and to determine the direction of contact reactions.
This normal direction may be viewed as the orthogonal direction to a plane acting as a shield
between the particles of the contact element, as depicted onFig. 5. The choice of this normal
direction is critical, in particular to prevent fibers from going through each other at crossings. To
be appropriate to the various relative orientations between fibers that may be encountered, this
direction is calculated in function of local geometrical quantities and criteria. In the following,
the contact direction for a contact positionci is denotedN(cl).

Fig. 5. Definition of the normal direction of a contact element

Expression of the gap for a contact element For a contact elementEc(cl) =
(
ξ(i), ξ( j)

)
, the

gap is calculated as the distance between the two constituting particles, measured along the
normal directionN(cl):

gap(cl) =
(
x(i)

t (ξ(i)) − x( j)
t (ξ( j)),N(cl)

)
(6)

3.2..2 Regularized penalty for contact reactions

Using a classic penalty method, normal reactions are assumed to be proportional to the gap
when it is negative. The introduction of a quadratic regularization for very small penetrations
stabilizes the contact algorithm by smoothing the contact behaviour. Denotinggr the penetration
threshold characterizing the quadratic part, andkc the penalty coefficient, the norm of the contact
reactionRN(cl) is expressed as follows in function of the gap :

RN(cl) = 0 if gap(cl) ≥ 0, (7)

RN(cl) =
kc

2

(
gap(cl)

)2
gr

, if gr < gap(cl) < 0, (8)

RN(cl) = kc

(
gap(cl) +

gr

2

)
, if gap(cl) ≤ gr. (9)
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Fig. 6. Representation of the regularized penalty law for contact

3.2..3 Regularized friction law

Fig. 7. Representation of the regularized friction model

Denotingu(i) the current displacement field defined on the fiberi, the relative tangential dis-
placement[u]T(cl) for a contact element expresses :

[u]T(cl) = [I −N(cl) ⊗N(cl)]
(
u(i)(ξ(i)) − u( j)(ξ( j))

)
. (10)

For the tangential reactions, we use a regularized Coulomb’s law, which allows a small reversible
displacement before pure sliding occurs. The tangential reaction is expressed as follows as
function of the tangential relative displacement :

if [u]T(cl) ≤ uT,rev, RT(cl) =
µ‖RN‖

uT,rev
[u]T(cl) (11)

else RT(cl) =
µ‖RN‖

‖[U]T‖
[u]T(cl) (12)

whereµ denotes the Coulomb’s friction coefficient, anduT,rev is the reversible tangential dis-
placement.
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3.3. Algorithmic issues

3.3..1 Iterations on nonlinearities

In the presented method, both the process of determination of contact elements, and the normal
directions for contact depend on the current position of fibers. Since large increments of dis-
placements are expected, these geometrical entities need to be updated during the computation
for each loading step. The convergence of the global algorithm is very sensitive to the order
according to which different quantities are updated. To get a good convergence, the algorithm
we use for each loading step is made of three embedded loops. The first loop is dedicated to
iterations on the determination of contact elements. Then, at a second level, we iterate on the
determination of normal directions for contact. Lastly, the inner loop is constituted by iterations
of Newton-Raphson type on all other nonlinearities of the problem.

3.3..2 Adjustment of the penalty coefficient for contact

The determination of the two parameters governing the normal contact behaviour, namely the
penalty coefficient and the regularization threshold, is a very delicate point of the method. The
quadratic regularization of the penalty method shows its best effectiveness from an algorithmic
point of view when a significant part of contact elements are concerned by this regularization,
that is to say when the gaps of a certain amount of contact elements are lower than the regu-
larization threshold. However, for a given penalty coefficient, the gap of each contact element
is function of the force exerted locally between the two interacting fibers. This local force may
exhibit both spatial variations, depending on the position in the structure, and time variations
related to the evolution of loading. This means that if a unique and constant penalty coefficient
is used, penetrations of very different orders may be registered in the structure, which makes the
penalty regularization totally ineffective, and prevents the convergence of contact algorithms.
The solution we suggest to face this problem is to control locally the maximum penetration
between fibers by adjusting the penalty coefficient. We fix this maximum penetration to a small
value proportional to the regularization threshold, this threshold being calculated as a small
portion of the typical radius of a fiber. As the construction of contact elements is based on the
determination of local zones of proximity, it is easy to assign a particular penalty coefficient
for the set of contact elements belonging to the same zone. This local coefficient can therefore
be adjusted, each time contact normal directions are updated, in order to control the maximum
penetration for each zone.

4. Computation of the initial geometry

One of the interests of the approach presented here is its ability to compute the initial configura-
tion of the woven fabric, only from a description of the arrangement of fibers within each yarn,
and a description of the weaving pattern. The geometry of fibers in the initial configuration can
not be known a priori since it depends on the rearrangement of fibers and deformations of yarns
during the weaving process. The method suggested here to compute this initial configuration
can be viewed as a way to simulate the weaving process.
To do this, we start from an arbitrary configuration (Fig. 8) where all yarns are straight, lying on
the same plane and interpenetrating each other. The task of this initial computation is to make
all yarns respect the superimposing order prescribed by the weaving pattern at each crossing
between yarns. This pattern states which yarn must be above or bellow the other yarns at each
crossing. During steps needed for this stage (around five steps), the same superimposing order
is presribed to contact contact conditions between fibers belonging to different yarns : for such
fibers in contact, the normal contact direction is taken parallel to the vertical direction, and
the sign of the calculated gap is chosen depending on the crossing order between yarns. By
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this way, fibers of different yarns, initially penetrating each other, go progressively above each
other, until fibers from different yarns are really separated. At the end of this process, ordinary
contact conditions can be considered between all fibers. The obtained configuration (Fig. 9)
is thus computed as the solution of a mechanical equilibrium while fulfiling contact conditions
within and between yarns.

Fig. 8. Starting configuration Fig. 9. Computed initial configuration

During this computation of the initial geometry, one end of each yarn is clamped on one side,
while the other end is free to move horizontally and is only submitted to a small axial force to
maintain a tension. By this way weft and warp yarns are free to shrink, as shown onFig. 10.

Fig. 10. Cuts of configurations at different steps during the process of computation of the initial
configuration

Many useful informations can be derived from this computation of the initial configuration. At
the scale of yarns, shrinkages in both weft and warp directions are provided as results of this
simulation. Various geometrical quantities, such as the shape of cross-sections along yarns, or
the local curvatures for all fibers, are also available as results.
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5. Adding of an elastic matrix

In order to consider textile composite samples, it is necessary to add the computed woven struc-
ture an elastic matrix. Because of the small size of the fibers, meshing the matrix with a mesh
exactly conforming with the geometry of fibers would lead to complex geometrical operations
and to expensive computational costs. To overcome these difficulties, the volume of the matrix
is meshed coarsely, in such a way it overlaps slightly the outer fibers of yarns (Fig. 11).

Fig. 11. Mesh of the elastic matrix added to the woven fabric

Doing this way, meshes of the matrix and of the fibers are totally non-conforming, and do not
share any node. To ensure a mechanical coupling between the two structures, junction elements
are automatically constructed in the overlapping area between fibers and matrix. These junctions
elements couple pairs of material particles – one belonging to a fiber, and the other belonging
to the matrix. The difference between the displacements of the two particles is penalized with a
coefficient equal to the Young’s modulus of the matrix.

6. Driving of boundary conditions through rigid bodies

The driving of boundary conditions of the borders of the studied sample is an important issue.
Rigid bodies have been introduced in the model to allow a versatile driving of these conditions.
At a first level, a rigid body is created at each end of a yarn. The role of these rigid bodies is to
gather all ends of fibers of the same yarn. Boundary conditions at the end of fibers are prescribed
with respect to these rigid bodies. Then, at a second level, a rigid body is created for each side
of the sample. All rigid bodies attached to the yarns on this side, and all nodes on the border
of the matrix on this side are linked the rigid body constructed on this yarn. Each of these rigid
bodies can be driven either by displacement/rotation, or by force/moment, which offers a wide
range of combinations for possible boundary conditions.

7. Numerical results

7.1. Presentation of the sample

The same sample has been used for all results presented here. The woven sample is made of 12
yarns (Fig. 8), has each of them being constituted of 28 fibers. Representative figures of this
model are summarized in Tab.1. The high number of degrees of freedom (≈ 335 000) makes
the model a good example of what can be handled by this kind of simulation.
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Number of yarns 12
Number of fibers 336
Number of fiber nodes ≈ 37 000
Number of dofs for fibers ≈ 335 000
Number of matrix nodes ≈ 5 400
Number of dofs for the matrix ≈ 16 000
Total number of dofs ≈ 352 000
Number of contact elements ≈ 75 000

Table 1. Description of the model

7.2. Shear test

The shear test was simulated without coating in order to capture nonlinear phenomena due to
the locking between yarns as the shear angle increases. To perform this test, one side of the
sample isq clamped, while an incremental displacement is prescribed on the oppposite side, in
a direction parallel to this side. Displacements in directions orthogonal to this side are left free.
The two other lateral sides are also left free. The final configuration, after shearing, is shown on
12.

Fig. 12. Deformed mesh of the woven sample after shearing

The shear force (Fig. 13) shows a characteristic nonlinear effect due to the locking between
yarns.

7.3. Bending test

To simulate a bending test, opposite rotations are applied to the rigid bodies attached to two
opposite sides of the sample, while horizontal displacements are left free for one of these rigid
bodies. The view of the deformed mesh after bending is shown onFig. 14. On the cut of
the final configuration (Fig. ??), voids appearing on the side of the composite which is under
compression can be observed. This example shows the ability of the simulation to capture
interesting local phenomena.
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Fig. 13. Loading curve for the shear test

Fig. 14. Deformed mesh of the textile composite sample after bending

7.4. Twisting test

For the twisting test, two opposite rotations are applied to two opposite sides of the sample,
around the directions normal to these sides. The view of the final configuration (Fig. 16) shows
another example of a loading inducing large displacments.

7.5. CPU costs

The computations for the presented tests have been run on a cluster, using 6 processors. The
simulation of each step requires about 30 to 40 global iterations, leading to an average of 2 hours
CPU time per step for the sample of woven fabric without coating, and 3 hours for the textile
composite sample. The simulation of the shear test, with 30 loading steps took around 60 hours,
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Fig. 15. Cut of the final configuration of the sample submitted to bending

Fig. 16. Deformed mesh of the textile composite sample submitted to a twistng test

while simulations of the bending and twisting tests, carried out with 15 increments, took about
45 hours.

8. Conclusion

The models and algorithms developed to take into account contact-friction interactions taking
place within assemblies of fibers undergoing large deformations find an application with the
simulation of woven fabric and textile composite samples. The results presented above show
that the suggested methodology makes the finite element simulation available to study the me-
chanical behaviour of textile structures at the scale of interactions between individual fibers.
Thanks to this method, the behaviour of textile structures
The results show that, thanks to the development of accurate, robust and effective methods
to take into account contact-friction interactions between fibers, numerical simulation appears
nowadays as a possible means to explore the mechanical behaviour of textile composites at the
scale of fibers.
The comprehensive approach we suggest lies on the one hand on original geometrical processes,
based on the construction of intermediate geometries in contact zones, to detect and discretize
contact interactions, and on the other hand on adapted mechanical models associated with fine-
tuned algorithms to solve global problems involving numerous nonlinearities. Using an implicit
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solver, the developed software allows the simulation of complex structures, characterized by
high numbers of degrees of freedom and of contact elements, with a reasonable CPU time.
The main interest of this kind of simulation at mesoscopic scale, beyond the identification
of macroscopic behaviour of textile composites, is to provide an in-depth description of phe-
nomenons occuring at this scale, which would remain otherwise out of reach of experiment.
The estimation of curvatures, strains and stresses at the level of individual fibers is a major
benefit of the approach to study local phenomenons such as damage. This approach should
therefore be helpful to optimize the structure of textile composite materials with respect to both
global and local criteria.
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