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ABSTRACT. For a given p > 0 we consider sequences that are random with respect to
p-Bernoulli distribution and sequences that can be obtained from them by replacing ones
by zeros. We call these sequences sparse and study their properties. They can be used in
the robustness analysis for tilings or computations and in percolation theory.

This talk is a report on an (unfinished) work and is based on the discussions with
many people in Lyon and Marseille (B. Durand, P. Gacs, D. Regnault, G. Richard a.o.)
and Moscow (at the Kolmogorov seminar: A. Minasyan, M. Raskin, A. Rumyantsev,
N. Vereshchagin, D. Hirschfeldt a.o.).

1. Motivation

There are several results which say, intuitively speaking, that “if errors are sparse
enough, they do not destroy the intended behavior of the system”. For example, percolation
theory says that if every edge of a planar conducting grid is cut with probability e, cuts
of different edges are independent and ¢ is small enough, then the grid remains mostly
connected (there is an infinite connected component). Similar statements can be done for
cellular automata computations with independent random errors, for tiling with errors etc.

It would be nice to translate these results into the language of algorithmic information
theory and define the notion of “individual sparse set” (for a given ). This notion could
be used to split the above mentioned results into two parts: first, we note that with prob-
ability 1 with respect to the Bernoulli distribution the resulting set and any its subset is
sparse; second, we prove that a sparse set of errors does not destroy the desired behavior
(connectivity of the grid, computation of the error-correcting automaton etc.)
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Note that the notion of sparse set should take into account not only the overall density
of errors but also their distribution. For example, if we cut all the conductors along some
line in a grid, we may destroy the connectivity though the fraction of destroyed conductors
is negligible (density in a N x N square tends to 0 as N — 00).

In this paper we suggest such a definition of p-sparse set and outline some its properties
as well as possible applications.

2. Definition of sparse sets

Let p > 0 be some rational number. Consider a Bernoulli distribution B, on the space
Q of all infinite sequences of zeros and ones where bits are independent and each bit equals
1 with probability p. This is a computable distribution on €2, so the notion of Martin-Lof
random sequence with respect to this distribution is well defined (see, e.g., [2, 6]).

Identifying each sequence w with a subset of N that consists of all ¢ such that w; = 1,
we get a notion of a random subset of N according to this distribution. Let us call p-sparse
all these sets and all their subsets. The following proposition justifies this definition:

Theorem 2.1. Let 0 < p1 < pa < 1 be two rational numbers. Then every pi-sparse set is
Pa-sparse.

Proof. We need to prove that any pi-random sequence « can be converted to a ps-random
sequence by replacing some zeros by ones. Informally, we want to replace each 0 by 1 with
probability ¢ = (p2 — p1)/(1 — p1); if this replacement is directed by a g-random (with
respect to a-oracle) sequence [ then the result will be pe-random. To prove this, we may
use van Lambalgen theorem; it says that the pair (a,3) is random with respect to the
product distribution, and the replacement result is therefore random with respect to the
image distribution, i.e., po-Bernoulli distribution. (We do not go into the details since we
prove more general result about coupling below.) ]

Remark. We have defined the notion of a p-sparse set for subsets of N, but the Bernoulli
distribution is invariant under permutations and Bernoulli-random sequences remain Ber-
noulli-random after computable permutations of the domain. Therefore this notion can be
defined for subsets of Z, ZF, sets of strings etc.

By definition, every p-Bernoulli random sequence « is p-sparse. The next theorem
shows that there could be another reason of a to be p-sparse:

Theorem 2.2. For every computable p € (0,1) and every p-Bernoulli random sequence «
one could replace infinitely many zeros in « by ones but still have p-Bernoulli random
sequence (for the same p).

Proof. (Discovered independently by Peter Gacs.) Consider a diverging series with con-
verging squares, say, ¢; = 1/i. Then consider a sequence [ that is random with respect to
the distribution of independent bits where ith bit is 1 with probability ¢;. Moreover, let
us assume that 3 is random even relative to the oracle a. Then we can check that «; V 3;
will contain infinitely many additional ones compared to « (since > ¢; diverges and [ is
independent of o). On the other hand, «; V f; is still random with respect to p-Bernoulli
distribution since its natural distribution (p + (1 — p)g;) is equivalent to p-Bernoulli distri-
bution due to the effective version of Kakutani’s theorem (because the sum of squares of
the differences between probabilities of the two Bernoulli measures converges). L
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3. Criteria

One would like to have a more straightforward definition for p-sparse sets that does not
involves the existential quantifier (“there exists a random sequence such that...”). Such
a criterion indeed can be obtained if we restrict ourselves to monotone cylinders in the
Martin-Lof definition of randomness.

Let X be a finite subset of N. Consider the set I'x of all w € Q that have ones at all
positions in X. The p-Bernoulli measure of I'y equals p* where k is the cardinality of X.

Let us call a set N C Q effectively p-monotone null set if there exists an algorithm
that given rational € > 0 enumerates a sequence X1, Xo, ... of finite subsets of N such that
the union of corresponding monotone cylinders I'x, has measure at most ¢ (with respect to
p-Bernoulli distribution) and covers N.

Theorem 3.1.

A. For every rational p > 0 there exists the mazimal effectively p-monotone null set
that contains all effectively p-monotone null sets.

B. A sequence w is p-sparse if and only if w does not belong to the maximal effectively
p-monotone null set.

Proof. A. This can be proved in the same way as Martin-Lof theorem about the existence
of the maximal effectively null set: one can enumerate all algorithms, modify them to
guarantee the bound for the measure and then take the union of all corresponding sets.

B. (See [3].) Let us note that every effectively p-monotone null set N is an effectively
null set by definition; moreover, all the sequences obtained from the elements of N by
replacing zeros with ones still form an effectively null set. Therefore, the elements of N are
not p-sparse.

On the other hand, we have to prove that the set U of all sequences that cannot be made
p-random by replacing zeros by ones is an effectively p-monotone null set. By definition, a
sequence w belongs to U if the set F,, of all sequences that can be obtained from w by such
a replacement is a subset of the maximal effectively null set M (with respect to p-Bernoulli
measure). We need (for a given € > 0) to cover U by the sequence of monotone cylinders of
total measure at most . Consider the enumerable union of (non-monotone) cylinders that
covers M and has total measure at most . This union covers the closed (and therefore
compact) set E,,, therefore a finite union of these cylinders also covers E,,. Those cylinders
deal with finitely many positions in E,,, therefore there exists a monotone cylinder that
contains w and is covered by that union. The set of all monotone cylinders covered by
some finite union of (non-monotone) cylinders in the sequence is enumerable, and we get
the required enumerable family of monotone cylinders of total measure at most ¢. ]

Remark. This criteria can be used to prove Theorem 2.1: it remains to show that for
a monotone set X its p-Bernoulli measure B,(X) is a monotone function of p. (This is a
standard result in classical probability theory that is proved essentially in the same way, by
coupling p1- and pe-Bernoulli random variables, see below Theorem 4.4.)

It would be interesting to find another equivalent definition of p-sparse sets. One may
look for a martingale criterion of sparseness. Recall [4] that a sequence is random if and only
if every lower semicomputable martingale is bounded on its prefixes. Trying to characterize
sparse sequences, one may try to find the corresponding class of martingales.
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Formally speaking, a p-martingale (in the algorithmic information theory) is defined as
a function x — m(x) defined on binary strings with non-negative real values such that

m(x) = pm(z1) + (1 — p)m(z0).
If m(x) is interpreted as the capital of the player after bits of x appear during the game
(from left to right), this equation says that the game is fair, i.e., the expected capital after

the next round equals the capital before it. We say that martingale m makes bets only on
ones if the outcome 1 is always more profitable than 0, i.e., if

m(z0) < m(zxl)

for every binary string x. A stronger condition: a martingale m is monotone if m(z) < m(y)
when x < y, i.e., when y can be obtained from z by replacing some zeros by ones. It
turns out that monotone martingales can be used for defining sparse sets (sequences) while
martingales that bet only on 1’s are not suitable (there are too many of them).

Recall that a martingale m is lower semicomputable if there exists a computable function
(z,n) — M (x,n) with rational values (here z is a string and n is a natural number) such
that for every x the sequence M (z,0), M(z,1),... is non-decreasing and converges to m(z).

Theorem 3.2.

A. If a sequence a is not p-sparse, there exists a monotone lower semicomputable
martingale m that tends to infinity on the prefixes of «.

B. If there exists a monotone lower semicomputable martingale m that is unbounded
on the prefixes of «, then a is not p-sparse.

C. There exists a p-sparse sequence a and a lower semicomputable martingale m that
makes bets only on ones and still tends to infinity on the prefixes of «.

Proof. A. For every enumerable union 7' of monotone cylinders we may consider a lower
semicomputable martingale mp by letting mp(z) be the conditional probability to get
a sequence in T starting from x (and adding independent p-Bernoulli bits). Since T is
monotone, this martingale is also monotone; it starts from the measure of 7" and reaches 1
at any sequence in 7. Adding up these martingales (say, take 1), of measure at most 4=" and
multiply the corresponding martingale by 2™), we get a lower semicomputable martingale
that tends to infinity on the prefixes of all elements of given monotone effectively null set.

B. Let m be any lower semicomputable monotone martingale. For a given ¢ we may
consider the enumerable set of all z such that m(z) > ¢, and all (non-monotone) cylinders
rooted at these z. The union of these cylinder has measure at most 1/c¢ due to martingale
inequality. Since the martingale is monotone, we can replace non-monotone cylinders by
the monotone ones not changing the union. Doing this for large ¢, we get the required
covering by an enumerable union of monotone cylinders that has small measure.

C. To construct a required counterexample, let us consider a p-Bernoulli random se-
quence and split its elements into pairs. Then let us modify this sequence replacing pairs
01 and 10 by 00 (and leaving 00 and 11 unchanged). This gives us a p-sparse sequence since
we replace ones by zeros in a random sequence. However, the player can make a safe bet
on the second bit of each pair if she sees that the first bit is 1, and this happens infinitely
many times since we have started from a random sequence. =
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4. Coupling

In this section we review a well known technique that can be then adapted to prove
that some operation produce sparse sets.

Let A and B be two finite sets and let R C A x B be a binary relation; we write aRb
if (a,b) € R. Consider two random variables o and 3 that range over A and B. defined
on unrelated probability spaces. We say that aR3 (abusing slightly the notation) if there
exist random variables o/ and ' defined on some common probability space M such that

e o' has the same distribution as «;
e (3 has the same distribution as 3;
e o/ (m)RG' (m) for every m € M.

This definition refers not to a and (@ themselves, but only to the corresponding prob-
ability distributions on A and B, so it defines a relation between probability distributions
on A and B.

In other terms, we are looking for a matrix of non-negative reals (a distribution on
A x B) that has given sums for all rows and columns. This task can be reformulated in
terms of network flows. Indeed, consider a bipartite graph that has A on the left and B
on the right. The source s is connected with all elements of A by edges whose capacities
are given probabilities of the elements in A; all elements of B are connected to the sink ¢
by edges whose capacities are probabilities of the elements of B. The edges between A and
B have unlimited capacities and correspond to the elements of R. Then aR3 means that
this network has a flow of size 1. The Ford—Fulkerson theorem provides a criterion for the
existence of such a flow; this criterion describes the obstacles for aR3. A pair of sets S C A
and T C B is an obstacle if

e all R-neighbors of all elements in .S belong to T'
o Prla € S]>Pr[B eT]
It is evident that if such an obstacle exists, then R is not possible, and Ford—Fulkerson
duality says that this condition is necessary and sufficient:

Theorem 4.1. aRS if and only if there are no obstacles of described type.

Now we extend this result to infinite sequences. Consider two random variables o and
[ that range over A and B (here X ° stands for the set of all sequences g, z1, ... where
x; € X). We say that a«Rf if there exist @’ and (3’ that share the same probability space M,
have the same distribution as o and (3, and o} (m)Rp;(m) for every m € M and for every
1€ N.

Note that this definition refers only to the distributions on A*° and B and that the
relation on A% x B is defined coordinate-wise (separately for each 7). It turns out that
the statement about possible obstacles remains true for this definition.

Theorem 4.2. The relation aR( is false if and only if there exist Borel sets S C A and
T C B* such that:

e for every apay ... € S every boby ... € B> such that Vi (a;Rb;) belongs to T';
e Prjac € S] > Pr[f € T]

Proof. 1t is evident that the existence of S and T with these properties is indeed an obstacle
for aRB. In the other direction we cannot use just the Ford—Fulkerson argument since the
spaces are infinite. However, the relation is defined coordinate-wise, and we may for every
N find a joint distribution on AN x BY that has the same projections on AV and BY as «
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and [, and has the required property with respect to R. (Indeed, an obstacle to this finite
task as described in Theorem 4.1 at the same time is an obstacle in our current sense.) It
remains to find limit point as N — oo using the standard compactness argument. =

Note that the existential quantifier for one of the sets S and T can be eliminated:
the obstacle can be defined as the set S such that the set of all its neighbors have (-
probability less than the a-probability of T'. This evident remark shows that defined relation
is transitive:

Theorem 4.3. Let A, B,C be finite sets; let Ri C AXx B and Ry C B x C be two binary
relations and R = Ry o Ry be its composition. Then aR1BN\GBRyy = «aRy for any random
variables o, 3,7 that range over A%, B>®, C'™ respectively.

We will mostly deal with the special case where A = B = {0, 1} and the relation R
is linear order <. Let us denote the corresponding relation between two random variables
a and ( that range over Q = {0,1}*° by a < (. (The same notation will be used for
corresponding distributions.) In this case the description of obstacle can be simplified
further:

Theorem 4.4. « <X 3 if and only if Prla € Z] < Pr[ € Z] for every monotone Borel set
Z C Q.

(A set Z C Q is monotone if « € Z and Vi (a; < 3;) implies 5 € Z.)

Proof. One could argue that the set T'(S) of neighbors (as defined above) for every set S C Q

is monotone and contains S, so S can be replaced by T'(S). (Note that T'(7'(S)) = T'(5).)
However, there is a technical problem since we need T to be a Borel set. This can be

avoided if we use this argument for finite case {0,1}" and take a limit point after that. m

Remark. Similar statements can be made for any finite set and partial preordering on
it (instead of the standard ordering of {0, 1}).

5. Coupling and algorithmic randomness

We want to apply coupling technique to establish results about random and sparse sets.
The following two statements will be used as main technical tools for this.

Let M be an oracle machine that accepts or rejects its input (natural number) n asking
questions of type “m € L?” for different natural numbers m and oracle L. Such a machine
defines a mapping that maps the oracle set L into the set accepted by M when oracle L is
used.

More precisely, this is a partial map, since it may happen that for some oracles L the
machine M’ does not terminate for some inputs. We are not interested in the partial
functions and consider M(L) as undefined in these cases. Recall also that we identify sets
X C N and their characteristic sequences, so an oracle machine defines a (partial) mapping
Q- Q.

Let P be a computable probability distribution on 2 and let M be an oracle machine.
For a random variable a that ranges over 2 we consider the image distribution M(P) on
, i.e., the distribution for the variable M(«). This distribution is well defined if M(w)
is defined with probability 1. We assume that this is the case; then Q@ = M(P) is a
computable distribution on 2. The following natural connection between P-randomness
and @Q-randomness [5] holds:
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Theorem 5.1.

A. If w is Martin-Lof P-random sequence, then M(w) is Martin-Lof Q-random se-
quence.

B. Any Martin-Léf Q-random sequence T equals M(w) for some Martin-Lif P-random
sequence w.

Proof. A. If w is Martin-Lof P-random and M (w) is defined, this is a direct corollary of
the definitions: if Z is a Q-effectively null set containing M(w) then its preimage M~1(2)
is a P-effectively null set containing w (it is an effectively null set since the preimage of
an effectively open set of ()-measure less than ¢ is an effectively open set of the same
P-measure).

However, there is one more thing to prove: we need to show that M (w) is defined on
every P-random w. Indeed, for every n the set of all oracles w such that M% is defined
on n is an effectively open set of full measure. It is easy to see that its complement is an
effectively null set and therefore cannot contain a Martin-Lo6f random sequence.

B. Let N be the maximal P-effectively null subset of 2. We need to prove that every
@-random sequence has a M-preimage outside N. In other terms, we have to prove that
the set N’ of sequences that do not have preimages outside N is a Q-effectively null set.

Assume that some rational € > 0 is given. We have to find an effectively open set of
Q-measure less than e that covers N'. First, let us consider an effectively open set N. that
covers N and has P-measure less than €. We want to show that the set of sequences that
have no preimages outside N; is an effectively open set. (Note that QQ-measure of this set
is less than ¢ since @ is the image of P.)

Indeed, consider a sequence w that has no preimages outside N.. As we have seen,
M is defined everywhere outside N (and therefore outside N;). So for every 7 ¢ N,
the infinite sequence M(7) deviates from w at some place. The set of all 7 for which
this happens at ¢th place is open, and these sets together with the open set N, form a
covering of 2. Compactness allows to replace this covering by its finite part, and this gives
some neighborhood of w; all elements of this neighborhood have no preimages outside V..
Moreover, we can search for all finite coverings of this type, so the set of all sequences that
have no preimage outside N, is effectively open (and has @-measure less than ¢ as we have
discussed).

This finishes the argument (which is an effective version of a classical argument proving
that if a continuous function is defined everywhere on a compact set, then the image of this
set is also compact). ]

This statement has a simple intuitive meaning: if we have a source of random bits
composed of a P-random bit source and an oracle machine M using those bits as an oracle,
what sequences should we expect at the output? There are two possible answers. First, we
can say that the internal P-random source can produce any P-random sequence, so we can
get images of those sequences at the output. On the other hand, we can ignore the internal
structure and say that we altogether have a random bits generator with distribution @, so
@-random sequences are expected at its output. Theorem 5.1 says that these two classes
coincide.

Remark. This question is more difficult (and is not solved yet, as far as we know) if
the machine M is undefined with positive probability. Then we get only a semimeasure as
output distribution; one would like to prove that the image of the set of P-random sequences
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is still determined by this semimeasure, but it is not clear how to prove this and whether it
is possible.
The second tool connects coupling with algorithmic randomness.

Theorem 5.2. Let P and Q be two computable distributions such that P < Q) and, more-
over, there exists a computable distribution on €2 x Q that has projections P and Q and
a; < B; has probability one according to this distribution for every i.

Then every P-random sequence can be transformed into a Q-random sequence by re-
placing some zeros by ones. Similarly, every Q-random sequence can be transformed into a
P-random one be replacing some ones by zeros.

Proof. It would be nice to get rid of the additional condition: the computability of the
distribution on pairs. But with this condition (that is easy to check in all applications below)
the statement of the theorem is a direct consequence of Theorem 5.1. Using projection as
M, we see that every P-random sequence is a first term of a random pair, and the second
term of this pair is a @Q-random sequence we looked for. (The same argument can be used
for choosing a P-random sequence for a given @-random one.) [

Note that in this way we get one more proof of Theorem 2.1. More interesting applica-
tions will be given in the next section.

6. Operations that preserve sparseness

In this section we want to prove that some transformations preserve sparseness (though
may change the value of parameter p). Let us start with a simple example.

Theorem 6.1. Let ag,ay,as,... be a p-sparse sequence. Then the sequence
ap, ap, a1, a1, az,az, . ..
(each bit is doubled) is \/p-sparse.

Proof. Since bit doubling is a monotone transformation, we may assume that ag,aq,... is
a random sequence with respect to the Bernoulli distribution B,. Theorem 5.1 says that
the sequence ay, ag, a1, a1, a9, as, ... is then random with respect to the image distribution
D(B,) where D doubles each bit.

Theorem 5.2 shows that it remains to prove that D(By) < B, . Since both distributions
are products of (independent) distributions on bit pairs, it is enough to consider these
distributions on pairs. They have the same probability of 11 combination (p in both cases)
while 01 and 10 have zero probability in D(B,) and positive probability ,/p(1 — /p) for
B /. So we can start with B, 5 distribution and then replace 1 by 0 if the other bit is 0. m

More complicated tools are needed in the other example.
Theorem 6.2. Let ag,ay,as,... be a p-sparse sequence. Then the sequence
agVai,ar Vag,azVas,...
is 2./p-sparse.

Note that this sequence is an upper bound for aq,a1,as,as,as,as, ..., so this result
implies that the latter sequence is also sparse (though for a larger value of p compared with
Theorem 6.1).
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Proof. The sequence in question can be represented as bitwise OR of two sequences:
agn ag as a4 a4 Qg ag as
ajl aq as as as as ay a7
agVai ai1Vaz asVasz azVays agVas asVag agVary arVasg

If ag, a1, a9, ...is a random sequence with Bernoulli distribution, then the first two sequences
are independent and their distributions (as we have seen above) are <-below B, ;. It follows
easily that the disjuction of these two sequences is <-below the disjuction of two Bernoulli
distributions B and therefore is below By s-distribution. It remains to apply Theorem 5.2
(the computability condition is easy to check). m

Similar argument can be applied to the sequence
aVairV...Vag_1,a1NVazsV...Vag,...

for any k and shows that it is k {/p-sparse if the initial sequence is p-sparse. In terms of
sets we get the following result (note that d-neighborhood of a point in N or Z consists of
2d + 1 points):

Theorem 6.3. For every positive integer d > 0 and every p-sparse set A the d-neighborhood
of A is g-sparse for q = (2d + 1) 24+Y/p.

For simplicity we may ignore the exact value of the probability and say something like
“the neighborhood of a sparse set is sparse”. The exact meaning of this claim is that for
every q > 0 there exists p > 0 such that the neighborhood of every p-sparse set is g-sparse.
This is true for subsets of Z2 or Z* (the proof works for Ls,-neighborhoods as before; then
the statement can be extended to any type of neighborhood).

One would like to strengthen this theorem and prove that the union of two p-sparse
sets is g-sparse if p is much less than ¢. Unfortunately, this cannot be done:

Theorem 6.4. For every p,q € (0,1) there exist two p-sparse sets whose union is not
q-sparse.

Proof. (Discovered independently by Denis Hirschfeldt.) Note that for every ¢ € (0,1) (even
very close to 1) and every N (even very large) every g-sparse sequence « splitted into N-bit
blocks must contain a block of N zeros.

On the other hand, for every p for large enough N there are two p-sparse sequences «
and 3 whose union « V 3 does not have this property. If p = 1/2, it is trivial: take N =1
and two complementary 1/2-random sequences.

In the general case, take N large enough so that (1—p)" < 1/2. Then two events (for a
fixed N-bit block) “all N a-bits are zeros” and “all N (-bits are zeros” can be made disjoint
keeping the p-Bernoulli distributions for a and 3 in the block unchanged. Making all blocks
independent, we get a computable distribution on pair of sequences that has p-Bernoulli
projections (marginal distributions) and is concentrated on pairs of sequences that have the
required property. u

Another source of sparse sequences is provided by the following theorem:

Theorem 6.5. Let P be a computable distribution on €} and let o = agaqas ... be a random
sequence with respect to this distribution. If all the conditional probabilites of ones along
this path (i.e., Prlz; = 1l|lxg...xi—1 = ag...a;—1]) do not exceed some rational p, then o is
p-sparse.
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Proof. Consider the following randomized machine. It uses uniform Bernoulli distribution to
generate a sequence of independent random variables &g, &1, &, . . . distributed uniformly in
[0, 1] (by splitting random bits into countably many groups). Then these random variables
are used to produce bits that have distribution P: we compare & with the probability of 1
at the first place to get ag, then we compare &; with the (conditional) probability of 1 after
ap to get aq, etc.

Theorem 5.1 guarantees that in this way we can obtain exactly P-random sequences.
Replacing all thresholds by p, we in parallel get p-Bernoulli random sequence that guarantees
that the sequence aga; ... is p-sparse.

Note a subtle point in this argument: we do not claim that the P < B, since the

inequality for conditional probabilities is guaranteed only along the path agaias . . .; however,
the sequence generated in parallel with agajas... is p-random since the image of every
random sequence £y ... is p-random. [

7. Using sparse sets in error analysis

Now several results about robustness may be reformulated in terms of sparse sets. Let
us give an example from percolation theory.

Consider a grid of vertical and horizontal lines (as in the cell paper) that splits the
plane into unit squares. Each node (line crossing) is a contact, and each edge (of a unit
square) is a conductor.

Percolation theory says that if each conductor is independently cut with sufficiently
small probability, the network remains essentially connected (has an infinite connected
component) with probability 1. Now this can be reformulated in terms of sparse sets:

Theorem 7.1. If the set of deleted edges is p-sparse for small enough p, the remaining
network has an infinite connected component.

Proof. Tt is enough to show this for the case of p-random network failures (since the property
of having an infinite connected component is monotone).

Therefore, we need to show that the set of measure zero (of all networks that have no
infinite connected components or have more than one connected component) is in fact an
effectively null set. This can be done by analyzing one of the classical proofs of this result
(we omit the details since this is another story). (]

Now we can apply our results about sparse sets to derive the similar result for node
failures (instead of edge failures): failure of a node is equivalent to cutting all four edges
that are adjacent to this node.

Theorem 7.2. If the set of deleted nodes is p-sparse for small enough p, the remaining
network has an infinite connected component.

Proof. 1t is easy to see that the set of edges adjacent to deleted nodes can be covered
by a neighborhood of fixed size of the set of deleted nodes and therefore is also sparse.
(Technically, we have twice more edges than nodes, so some technical changes are needed.)

u
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The notion of sparse set can be used in the analysis of tilings that are robust to errors:
the results of [1] can be expressed in terms of sparse error sets.

8. Questions

There are some open (as far as we know) questions related to the topic of this paper.

1. Is it possible to replace in the criterion of sparseness the measure of the union of the
monotone cylinders by the sum of their measures?

2. One would expect there exists some criterion of p-sparseness in terms of complexity
or randomness deficiency. How to define “sparseness deficiency”? One possibility is to take
minimum of randomness deficiency (with respect to p-Bernoulli distribution) over all strings
obtained from a given one by 0 — 1 replacement. Another natural option is to consider
lower semicomputable deficiency functions d,(x) defined on n-bit strings (uniformly in n)
that are monotone (i.e., replacement 0 — 1 may only increase the deficiency) such that
2 (%) has average at most 1 (over all n-bit strings).

Are these two definitions connected? close to each other? Can any of them be used to
characterize p-sparse sets?

3. Can one get rid of the computability condition in the statement of Theorem 5.27

4. What can be said about two computable measures P and @ if every P-random
sequence can be made @-random by replacing some zeros with ones? We cannot expect
P < @ since this may be not the case even for equivalent measures P and @ (that have the
same set of random sequences), but can we claim something weaker in this direction (e.g.,
P is equivalent to P’ < @ or something like this)?

5. What can be said about sets that are p-sparse for every p > 07 Can we eliminate
the universal quantifier (“for every p”) in the definition?
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