
HAL Id: hal-00273988
https://hal.science/hal-00273988

Submitted on 16 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The spatial structure of odometers in certain cellular
automata

Marcus Pivato, Reem Yassawi

To cite this version:
Marcus Pivato, Reem Yassawi. The spatial structure of odometers in certain cellular automata. JAC
2008, Apr 2008, Uzès, France. pp.119-129. �hal-00273988�

https://hal.science/hal-00273988
https://hal.archives-ouvertes.fr


Journées Automates Cellulaires 2008 (Uzès), pp. 119-129
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Abstract. Recent work has shown that many cellular automata (CA) have configura-
tions whose orbit closures are isomorphic to odometers. We investigate the geometry of
the spacetime diagrams of these ‘odometer configurations’. For boolean linear CA, we
exactly determine the positions of the consecutive ‘gears’ of the odometer mechanism in
the configuration. Then we characterize and explain the self-similar structure visible in
the spacetime diagrams of odometer configurations for two classes of nonlinear CA: ratchet
CA and Coven CA.

1. Introduction

Let A be a finite alphabet. If Φ : AZ → AZ is a cellular automaton (CA), with left
radius 0, then Φ can also be treated as a one-sided CA ΦN : AN−→AN. In [CPY07], the
authors showed:

Theorem 1.1. Let Φ : AZ−→AZ be a left permutative CA with left radius 0. If z ∈ AN is
ΦN-periodic, x = y.z ∈ AZ and the Φ-orbit OΦ(x) := {Φt(x)}∞t=0 is infinite, then the orbit
closure (OΦ(x),Φ) is topologically conjugate to an odometer.

(See §2 for definitions and notation). In this article, we discuss which odometers can
be embedded in certain linear cellular automata, and the physical bounds on how these
odometers are embedded. We also investigate the self similarity of the spacetime diagrams
which display these odometers, in some linear and also non linear cellular automata. We
start by generalising a result in [CY07] concerning which odometers can be embedded in
the Ledrappier CA:

Proposition 1.2. Suppose that the set of infinite multiplicity prime divisors of the quotient
set Q are {q1, q2, . . . qn}, and let τ : Z(Q) → Z(Q) be an odometer. Let N = Πn

j=1qj and let

A = Z/N . Then τ embeds in any linear CA Φ : AZ−→AZ with Φ(x) = x +
∑r

i=1 aiσ
i(x),

where for each j ∈ {1, . . . , n}, at least one of the ai’s does not divide qj. Furthermore no
other odometer can be embedded in Φ.

2000 ACM Subject Classification: F.1.1.
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With the conditions on x in Theorem 1.1, left permutativity of Φ implied that the
columns of the Φ-spacetime diagram of x, STΦ(x), were all periodic, and the fact that x
had an infinite Φ-orbit meant that there was a sequence of columns Ckn in STΦ(x) whose
periodicities {pn} increased to infinity. A conjugacy was then constructed between OΦ(x)
and the odometer with quotient set Q := {. . . , p3

p2
, p2

p1
, p1

p , p}. For many Φ, and many initial

points x, STΦ(x) had a clear self-similar structure, reminiscent of the Sierpinski gasket -
this is of course known if Φ is linear, but it also turned out to be the case for many nonlinear
CA, such as some Coven CA. This fact led to interest in analysing these spacetime diagrams,
and the rigidity imposed on them by the odometers that (OΦ(x),Φ) are. One result in this
direction is

Theorem 1.3. Let Φ(x) = x+
∑L

p=1 σ
ap(x) be defined on Z/2

Z, with 0 < a1 < a2 < . . . aL.

Suppose that x[0...∞) is ΦN-fixed, but x[−1...∞) is not ΦN-fixed. Then, letting STΦ(x) ∈ AZ×N

be the Φ-spacetime diagram of x, the sequence {Ckn}n≥1 of columns, where the periodicity
first jumps to 2n, are those where {kn} = {2na1 − a1 + 1}n≥1.

Theorem 1.3 implies that OΦ(x) is infinite; then Theorem 1.1 says that (OΦ(x),Φ) is
conjugate to any odometer that Theorem 1.2 allows. The columns {Ckn}n≥1 can be thought
of as the ‘gears’ of this odometer mechanism, and Theorem 1.3 says that the location of
these gears is determined entirely by Φ, and is independent of x. The odometer structures
of linear CA often exhibit self-similar spacetime diagrams (see §3); Theorem 1.3 forces the
‘scaling factor’ of this self-similarity to be independent of the initial point generating the
self similar diagram. Some version of this theorem may well be true for some linear Φ
defined on larger alphabets. However the condition that Φ(x) = x+ [something] cannot
be relaxed. For example, if Φ(x) = 2x + σx on (Z/3)

Z, and if x[−1...∞) = [1, 0, 0, 0, . . .],
then Φ(x[0...∞)) = x[0...∞), the column C−1 in STΦ(x) has period 2, and C−2 has period 6,
irrespective of the choice of x−2. However, the choice of x−2 affects the periodicity of C−3:
if x−2 = 2, then C−3 has period 6; otherwise it has period 18.

In §3, self-similarity of STΦ(x) is defined in terms of two-dimensional substitution sys-
tems. We consider two classes of CA: the Z/n-ratchet CA, and the range-R Coven CA (both
nonlinear generalisations of the Ledrappier CA). We prove that for these CA, there exist
points x such that STΦ(x) is self-similar (Propositions 3.7 and 3.9). In addition to being in-
trinsically interesting, the self-similarity allows us to easily characterize the spatiotemporal
structure of these odometers. Finally, an Appendix contains most of the proofs.

2. Preliminaries

Cellular automata. Let A be a finite alphabet, and let AZ be the space of all doubly infinite
sequences with entries from A. Elements x ∈ AZ will sometimes be written as x = y.z,

where y, z ∈ AN
+

, AN respectively. A cellular automaton (CA) is a continuous, shift-
commuting self-map Φ : AZ−→AZ. It is known that every CA Φ is given by a local rule
φ : A[−l...r]−→A, for some l, r ≥ 0 (the left and right radii of Φ), such that for all x ∈ AZ,
and all i ∈ Z,

[Φ(x)]i = φ(xi−l, xi−l+1, . . . , xi+r) .

If l or r are 0, then Φ can also act on sequences from AN. Φ is left permutative if for
every x1, . . . xr ∈ A, the map φ(•, x1, . . . , xr) is a permutation of A, similarly for right
permutative. Let Z/p be the cyclic group of p elements. The CA Φ is linear if Φ is a group
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endomorphism of (Z/p)
Z, where the group operation is componentwise addition. Φ can then

be written as Φ(x) =
∑r

i=0 aiσ
i(x) where σ is the left shift map on (Z/p)

Z. If x ∈ AZ, the

Φ-spacetime diagram of x, STΦ(x), is the element in AN×Z whose kth row is Φk(x). For
any integer n, we let Cn := {(Φk(x))n}k≥0.

Odometers. Let Q := (q1, q2, . . . qn) be an ordered set (or sequence, if n = ∞) of integers ≥ 2
(the quotient set). Let Z(Q) :=

∏n
l=1 Zql

be the Cartesian product set. (Z(Q),⊕) is a (com-
pact, abelian) group where “⊕” is defined as addition “with carry”: if x = (x1, x2, . . . , xn)
and y = (y1, y2, . . . yn), then x ⊕ y := (r1, r2, . . . rn) where x1 + y1 = k1q1 + r1, and induc-

tively,
∑n−1

l=1 kl + xn + yn = knqn + rn, kl + xn + yn = knqn + rn, for n > 1, with kn ≥ 0 and
0 ≤ rn < qn for each n.

g ∈ Z(Q) is a topological generator for Z(Q) if {ng}n∈N is dense in Z(Q). For such
g we define the g-odometer τg : Z(Q) → Z(Q) as τg(z) = z ⊕ g, ∀ z ∈ Z(Q). If
g = (g1, g2, . . .) ∈ Z(Q) then {ng}n∈N is dense in Z(Q) if and only if for each n, the
n-tuple (g1, g2, . . . , gn) is a generator for the finite cyclic group (Z({q1, q2, . . . , qn}),⊕). If g
and g∗ are both topological generators for Z(Q), then (Z(Q), τg) is topologically conjugate
to (Z(Q), τg∗). Thus we will assume that the generator is 1 = (1, 0, 0, . . .) and write the
odometer τg as τ .

If p is prime, then the multiplicity of p in Q is the sum number of times (possibly
infinite) that p occurs in the prime decomposition of the elements of sequence Q.

Theorem 2.1. [BS95] (Z(Q), τ) and (Z(Q∗), τ) are topologically conjugate if and only if
for every prime p, the multiplicity of p in Q and Q∗ is equal.

Theorem 2.1 also tells us that we can assume that all elements in Q are prime. When
convenient we will assume this. If Q = (p, p, . . .), then let Z(p) := Z(Q) (this is the group
of p-adic integers). We consider quotient sets Q for whom only finitely many primes have
positive multiplicity.

3. Self-similar structures in spacetime diagrams

Spacetime diagrams of linear CA often exhibit self-similar structures, as in Figure 1.
This self-similarity reflects the self-similarity of Pascal’s Triangle in Z/p, as described by Lu-

cas’ theorem [Luc78], and has been intensively studied [Wil87, Tak93, vHPS01, AvHP+97,
BvHPS03]. Self-similar structures also arise in nonlinear CA [e.g. see Figures 2 and 3
below], but these cannot be explained using Lucas’ theorem. In this section we will develop
an analytic framework to understand this self-similarity as ‘compatibility’ of the CA with
a suitable substitution mappings on AZ×N.

Let Φ : AZ−→AZ be a CA, with φ : A{0,1} → A, and let a ∈ AZ. The spacetime subshift
of Φ is the set ST (Φ) ⊆ AZ×N of all spacetime diagrams of Φ. In other words, ST (Φ) is
the two-dimensional subshift of finite type in AZ×N, generated by the set of admissible
triominos {[

a b

c

]

; a, b ∈ A; c = φ(a, b)

}

. (3.1)

For example, Figures 1, 2 and 3 show spacetime diagrams, all exhibiting self-similarity. We
will now explain this using the theory of substitution systems.
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Figure 1: A self-similar spacetime diagram for the ‘Ledrappier’ CA on A = Z/2 with local rule φ(x0, x1) =

x0 + x1. The five images show the same spacetime diagram on larger and larger scales. Each

diagram can be obtained from the previous one by applying the substitution rule described in

Examples 3.1. See also Examples 3.3 and 3.4.

Substitution configurations. Let W,H ∈ N and let A be a finite alphabet. A W × H
substitution rule is a function ς : A−→AW×H . This defines a function ς : AZ×N−→AZ×N

where

ς








· · · b0−1 b00 b01 · · ·
· · · b1−1 b10 b11 · · ·
· · · b2−1 b20 b21 · · ·

··
·

...
...

...
. . .








:=

· · · ς(b0−1) ς(b00) ς(b01) · · ·
· · · ς(b1−1) ς(b10) ς(b11) · · ·
· · · ς(b2−1) ς(b20) ς(b21) · · ·

··
·

...
...

...
. . .

(3.2)

(the lines indicate the positions of the axes). If a ∈ A and n ∈ N, then we likewise define
ς

n(a) ∈ AW n×Hn
in the obvious way. The language of ς is the set L(ς) of all n×m blocks

(for any n,m ∈ N) which occur in ς
k(a) for some a ∈ A and k ∈ N. The ς-substitution shift

Sub (ς) is the subshift of AZ×N defined by L(ς) [Que87, Fog02]. If Φ is a CA, we say that ς
is compatible with Φ if Sub (ς) ⊆ ST (Φ).

Example 3.1: Let A = Z/2, and define ς : A−→A2×2 by ς(0) =
[

0 0
0 0

]
; and ς(1) =

[
0 1
1 1

]
.

Then Figure 1 shows an element of Sub (ς). This is also the spacetime diagram generated by
the ‘Ledrappier’ CA with local rule φ(x0, x1) = x0 + x1. This suggests that ς is compatible
with Φ. ♦

A ς-seed is a pair [a, b] ∈ A2 such that:

(i): [a, b] ∈ L(ς); (ii): For all c ∈ A, ∃ n ∈ N such that c occurs in ς
n[a, b].

(iii): ς(a) =





∗
∗

...

...
∗
∗

a
∗

...
∗

···

...

...
∗

...
∗



; (iv): ς(b) =





b
∗

∗
∗

...

...
∗
∗

...
∗

...
∗

. . .
...

...
∗



;

Note that, since L(ς) = L(ςn) for any natural n, then it is always possible to find a pair [a, b]

satisfying (i), (iii) and (iv), by the pigeonhole principle. Define A ∈ A(−∞...0]×N by the
property that A(−W n...0]×[0...Hn) = ς

n(a) for all n ∈ N (this definition is consistent because

ς(a)00 = a). Likewise, define B ∈ A[1..∞)×N by the property that B(0...W n]×[0...Hn) = ς
n(b)

for all n ∈ N (this definition is consistent because ς(b)01 = b). We write “A := ς
∞(a)” and

“B := ς
∞(b)”. Let ς

∞[a, b] := A B be the obvious element of AZ×N.

If A ∈ AZ×N and n ∈ N, then the nth row of A is the biinfinite sequence [. . . an
−1, a

n
0 , a

n
1 , . . .].

If r = [r1, r2] ∈ A2, we say that r occurs in A if there is some z ∈ Z and n ∈ N such that
an

z = r1 and an
z+1 = r2. Let L2(ς) :=

{
r ∈ A2 ; r occurs in some A ∈ Sub (ς)

}
. A configu-

ration S ∈ AZ×N is ς-fixed if ς(S) = S.

Lemma 3.2. Let ς be a substitution and let s ∈ A2 be a ς-seed. Then

(a) S := ς
∞(s) is a ς-fixed configuration, and Sub (ς) is the σ-orbit closure of S.
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Figure 2: Self-similarity in the Z/4-ratchet CA. The left four images are the same spacetime diagram,

shown on larger and larger scales. The numerical labels show how each spacetime diagram can

be obtained from the previous one by applying the substitution mapping illustrated on the far

right.

(b) There exists n ∈ N so that L2(ς) is the set of all 2-words which occur in ς
n(s).

Proof. See Appendix. ✷

Example 3.3: Let A = Z/2, and define ς : A−→A2×2 as in Example 3.1 Then [1, 0] is a
ς-seed. ♦

We say that φ commutes with ς if, for every [a, b] ∈ L2(ς) with c = φ(a, b),

ς

[
a b

c

]

:=

[
ς(a) ς(b)

ς(c)

]

is a fragment of a spacetime diagram of Φ.

Example 3.4: Let ς : A−→A2×2 be as in Examples 3.1 and 3.3. The Ledrappier CA (with
local rule φ(x0, x1) = x0 + x1) commutes with ς, as shown by the following computations

ς

»

0 0

0

–

=

0 0 0 0
0 0 0 0

0 0 (0)
0 0

ς

»

0 1

1

–

=

0 0 0 1
0 0 1 1

0 1 (0)
1 1

ς

»

1 0

1

–

=

0 1 0 0
1 1 0 0

0 1 (0)
1 1

ς

»

1 1

0

–

=

0 1 0 1
1 1 1 1

0 0 (0)
0 0

.

Observe that the image of each Φ-admissible triomino is a fragment of a Φ-spacetime
diagram (to illustrate this, we have completed these diagram by adding one entry in the
bottom right box, in parentheses). ♦

Proposition 3.5. Let ς be a substitution with seeds. Let Φ be a CA. The following are
equivalent:

(a) ς is compatible with Φ.

(b) There is some ς-seed s ∈ A2 such that ς
∞(s) ∈ ST (Φ).

(c) For every ς-seed s ∈ A2, we have ς
∞(s) ∈ ST (Φ).

(d) ς commutes with Φ.

Proof. See Appendix. ✷

A substitution ς is aperiodic if there is no z ∈ Z × N such that Sub (ς) ⊆ Fix [σz].
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Corollary 3.6. Let ς : A−→AW×H be an aperiodic substitution compatible with Φ. Let
A ∈ ST (Φ) be a ς-fixed configuration [which exists by Prop.3.5(b)], whose first row is

x = ab, where a ∈ A(−∞...0] and where b ∈ A[1..∞) is Φ-periodic [as in Thm.1.1]. Then
OΦ(x) has a p-adic odometer as a factor, for at least one prime factor p of H.

Proof. See Appendix. ✷

Let n ∈ N, and let A := Z/n. The Z/n-ratchet CA is the left-permutative CA Ψ :

AZ−→AZ with right-sided local rule ψ : A{0,1}−→A defined

ψ(a, b) :=

{
a if b 6= n′;

a+ 1 if b = n′;
where n′ := n− 1.

For example, the Z/2-ratchet CA is just the Ledrappier CA shown in Figure 1. Figure 2
shows a spacetime diagram of Z/4-ratchet CA. This diagram is visibly self-similar, and some
of the columns are strongly reminiscent of the 4-adic odometer, as explained by the next
result.

Proposition 3.7. Let n ∈ N, let A := Z/n, and let n′ := n − 1. Let Ψ : AZ−→AZ be the
Z/n-ratchet CA. Then

(a) Ψ is compatible with the substitution ς : A−→A2×n defined by

ς(0) =

2

6

6

6

4

0 0
0 0
.

.

.

.

.

.

0 0

3

7

7

7

5

; ς(1) =

2

6

6

6

4

0 1
0 1
.

.

.

.

.

.

0 1

3

7

7

7

5

; ς(2) =

2

6

6

6

4

0 2
0 2
.

.

.

.

.

.

0 2

3

7

7

7

5

; . . . ς(n − 2) =

2

6

6

6

4

0 n − 2
0 n − 2
.

.

.

.

.

.

0 n − 2

3

7

7

7

5

; ς(n′) =

2

6

6

6

4

0 n′

1 n′

.

.

.

.

.

.

n′ n′

3

7

7

7

5

;

(b) Let a = [. . . 0, 0, 0, 0, n′.0, 0, 0, 0 . . .]. Then STΨ(a) is a ς-fixed point.

(c) (OΨ(a),Ψ) is conjugate to a Z(n)-odometer (where Z(n) is the n-adic integers).

Proof. (a,b) Note that L2(ς) = A2, and that ψ commutes with ς (this can be checked by
direct computation, similar to Example 3.4). Also, [n′, 0] is a seed for ς, so Proposition
3.5(c) says that the ς-fixed array S := ς∞([1, 0]) is in ST (Ψ). But the zeroth row of S is
a; hence S = A.

(c) Suppose A = [At
s]s∈Z,t∈N. For all k ∈ N, let Ck := [At

−2k ]t∈N ∈ AN be the −2kth
column of A. Then Ck is the sequence of the kth digit in the standard ‘n-ary number’
representation of the n-ary odometer. That is,

Ck = [0, . . . , 0
︸ ︷︷ ︸

nk

, 1, . . . , 1
︸ ︷︷ ︸

nk

, 2, . . . , 2
︸ ︷︷ ︸

nk

, . . . . . . n′, . . . , n′
︸ ︷︷ ︸

nk

, 0, . . . , 0
︸ ︷︷ ︸

nk

, 1, . . . , 1
︸ ︷︷ ︸

nk

, . . . . . .]

This yields an obvious surjection Γ : OΨ(a)−→Z(n). Also, Γ is injective, because the
information in the columns {Ck}

∞
k=0 is sufficient to reconstruct all the other columns in

the Ψ-spacetime diagram A. ✷

If A := Z/2 and R ∈ N, then the range R Coven CA is the CA Φ : AZ−→AZ with local
rule φ(x0, x1, . . . , xR) = x0+x1x2 · · ·xR; these were introduced in [CH79]. For example, the
range 1 Coven CA is just the Ledrappier CA with local rule φ(x0, x1) = x0 + x1 [Figure 1],
while the range 2 Coven CA has local rule φ(x0, x1, x2) = x0 + x1x2 [Figure 3]. Nonlinear
(i.e. R ≥ 2) Coven CA exhibit self-similar spacetime diagrams which cannot be explained
simply by compatibility with a substitution map. Also, we remark that the configuration
in Figure 3 is not automatic (see [vH03] for an introduction to automatic configurations).
Instead, these diagrams are self-similar because they can be ‘recoded’ as the diagrams of
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Figure 3: Self-similarity in the Coven CA with local rule φ(x0, x1, x2) = x0 + x1x2. The left three images

are the same spacetime diagram, shown on larger and larger scales. The alphabetic labels show

how this spacetime diagram can be obtained from Figure 2 via the function Ξ described in

Example 3.8.

ratchet CA, which are self-similar by Proposition 3.7. We will explain this in Proposition
3.9, but first we illustrate with an example.

Example 3.8: Let A := Z/2 and let Φ : AZ−→AZ be the range 2 Coven CA with local rule
φ(x0, x1, x2) = x0 + x1x2. Let a := [0, 0, 0], b := [0, 0, 1], c := [0, 1, 0] and d := [0, 1, 1]. Let
B := {a,b, c,d} ⊂ A3, and let B ⊂ AZ be the set of all sequences obtained by concatenating
words from B, such that a word boundary lies at zero. Clearly, B is σ3-invariant, and it can
be checked by direct computation that Φ2(B) ⊆ B. Let Ξ : (Z/4)

Z−→B be the bijection
with local rule given by ξ(0) := a, ξ(1) := b, ξ(2) := c, and ξ(3) := d.

Let Ψ : (Z/4)
Z−→(Z/4)

Z be the Z/4-ratchet CA. Direct computation shows that Ξ ◦ σ =

σ3 ◦Ξ and Ξ◦Φ2 = Ψ◦Ξ. In other words, Ξ is a dynamical isomorphism from ((Z/4)
Z,Ψ, σ)

to (B,Φ2, σ3).
The first row of Figure 3 is [. . . 0, 0, 0, 0, 1, 1 . 0, 0, 0 . . .], which equals [. . .a,a,d .a,a, . . .]

(an element of B), which is the Ξ-image of [. . . 0, 0, 3 . 0, 0, . . .], which is the first row of Figure
2. Thus, Ξ maps the spacetime diagram of Figure 2 into that of Figure 3. Proposition 3.7(d)
implies that Figure 3 is conjugate to a dyadic odometer. ♦

Example 3.8 generalizes as follows.

Proposition 3.9. Let A := Z/2 and let Φ : AZ−→AZ be the range R Coven CA. Let

C := Z/2R and let Ψ : CZ−→CZ be the C-ratchet CA.

(a) There is a (Φ2, σR)-invariant subset B ⊂ AZ such that (B,Φ2) is isomorphic to (C,Ψ).

(b) The point x := [. . . 0, 0, 0, 0,

R
︷ ︸︸ ︷

1, . . . , 1 . 0, 0, 0, . . .] is in B, and (OΦ(x),Φ2) is conjugate
to (OΦ(a),Ψ), where a ∈ CZ is as in Proposition 3.7(b,c). Hence (OΦ(x),Φ) is isomorphic
to a dyadic odometer.

Proof. (a) Let B := {b0,b1, . . . ,b2R−1} ⊂ AR+1, where b0 := [0, . . . , 0, 0], b1 :=

[0, . . . , 0, 1], b2 := [0, . . . , 1, 0], . . . , b2R−1 := [0, 1, . . . , 1, 1]. Let B := BZ, as a subset

of AZ. Clearly B is σR-invariant. The function ξ : C ∋ n 7→ bn ∈ B yields a bijection



126 M. PIVATO AND R. YASSAWI

Ξ : CZ−→B, and direct computation shows that Ξ ◦ σ = σR+1 ◦ Ξ and Ξ ◦Φ2 = Ψ ◦ Ξ, so
Ξ is a dynamical isomorphism from (CZ,Ψ, σ) to (B,Φ2, σR+1). It follows that B is also
Φ2-invariant.

(b) x = Ξ(a) where a is as in Proposition 3.7(b); thus Proposition 3.7(c) states that
(OΨ(a),Ψ) is conjugate to the 2R+1-adic (hence dyadic) odometer. Thus, part (a) im-
plies that (OΦ2(x),Φ2) is also isomorphic to a dyadic odometer. Thus (OΦ(x),Φ) is also
isomorphic to a dyadic odometer. ✷
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Appendix: Proofs

Proof of Theorem 1.2 : The Chinese Remainder Theorem implies that any non-trivial CA
Φ with rule Φ(x) = x +

∑r
i=1 aiσ

i(x) on (Z/N )Z is topologically conjugate to Πn
j=1Φqj ,

where Φqj acts on (Z/qj
)Z by Φqj (x) := x +

∑r
i=1 aiσ

i(x). The conditions on the ai’s

guarantee that each Φqj is non-trivial. Note that Πn
j=1 (Z(qj), τ) is topologically conjugate

to (Z(Q), τ). We will show that Πn
j=1 (Z(qj), τ) can be embedded in Πn

j=1Φqj .

Case 1. Suppose first that the multiplicity of q in Q is infinite for each p in {q1, q2, . . . qn}.
Find x ∈ AZ such that x[0...∞) is Φ-fixed and such that OΦ(x) :=

{
Φt(x) ; t ∈ N

}
is in-

finite. This can be done, since Φqj is conjugate to a full one sided shift, which has fixed
points — thus one can find some Φqj -fixed x[0...∞); further if x−1 is chosen so that x[−1...∞)

is not fixed, then the proof of Theorem 1.3 shows that x has an infinite Φqj orbit. Using
Theorem 4 in [CPY07], Φqj embeds (Z(qj), τ).

Case 2. Suppose that P = Pf ∪ Pi where p in Pf have finite multiplicity in Q and p
in Pi have infinite multiplicity in Q. Let P := Πp∈Pf

p. As in the Corollary to Theorem 1

in [CPY07], find x ∈ AZ such that x[0...∞) is Φq1
-periodic with least period P , and such

that OΦ(x) is infinite. Then Φq1
embeds (Z(P, q1, q1, . . .), τ), and, by Case 1, Φqj embeds

(Z(qj), τ) for 1 < j ≤ n. The embedding result follows. That no other odometer can
be embedded in these linear CA is proved similarly to the result for Φ(x) = x + σ(x) in
[CY07]. ✷

Lemma 3.10. Let A := Z/2, and suppose that Φ : AZ−→AZ and x = (xi)
∞
i=−∞ ∈ AZ

satisfy the conditions of Theorem 1.3. Then for each j ≥ 1 and each k ≥ 0, we have

L∑

p=1

x2k(ap−a1)+a1−1+j = 0 .

Thus Φ2k
(x)|−(2ka1−a1+1)+j = x−(2ka1−a1+1)+j for each k ≥ 0 and j ≥ 1.

Proof. We prove this by induction on k. Since x[0...∞) is fixed by Φ, we have xk+

L∑

p=1

xk+ap =

xk, for each k ≥ 0, so that
∑L

p=1 xap−1+j = 0 is true for each j ≥ 1. Let ∆i := ai+1 − ai,
for 1 ≤ i ≤ L− 1, and assume that for each j ≥ 1,

L∑

p=1

x2k(ap−a1)+a1−1+j =
L∑

p=1

x
a1−1+j+2k(

Pp−1

i=1
∆i)

= 0. (3.3)

Given a positive j, let ⋆p := 2k+1(ap − a1) + a1 − 1 + j for 1 ≤ p ≤ L, and define ∗11 :=

⋆1 and ∗1p := ⋆1 + 2k
(
∑p−1

i=1 ∆i

)

for p = 2, . . . L . By Equation 3.3,
∑L

p=1 x∗1p = 0 .

For 2 ≤, q ≤ L, define ∗q1 := ∗1q , and ∗qp := ∗q1 + 2k
(
∑p−1

i=1 ∆i

)

. Using Equation 3.3

and jq := j + 2k

(
q−1
∑

i=1

∆i

)

, we have

L∑

p=1

x∗qp = 0.

Consider the matrix {x∗pq}
L
p,q=1. We have the following two claims:

Claim 1: ∗pq = ∗qp for 1 ≤ p, q ≤ L.
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Proof. If q = 1 or p = 1 this is true by definition. If 2 ≤ p, q ≤ L, ∗pq = ∗1p+2k
∑q−1

i=1 ∆i =

⋆1 + 2k
∑p−1

i=1 ∆i + 2k
∑q−1

i=1 ∆i = ∗1q + 2k
∑p−1

i=1 ∆i = ∗qp. ✸ Claim 1

Claim 2: ∗pp = ⋆p.

Proof. ∗pp = ∗1p +2k
(
∑p−1

i=1 ∆i

)

= ⋆1 +2k+1
(
∑p−1

i=1 ∆i

)

= a1−1+ j+2k+1(ap−a1) =
⋆p . ✸ Claim 2

These last two claims tell us that the matrix {x∗pq}
L
p,q=1 is a symmetric 0, 1-matrix each

of whose rows sum to zero. Thus 0 =
∑L

p=1

∑L
q=1 x∗pq =

∑L
p=1 x∗pp =

∑L
p=1 x⋆p , which

shows that
∑L

p=1 x2k+1(ap−a1)+a1−1+j = 0.
✷

Lemma 3.11. Let A := Z/2, and suppose that Φ : AZ−→AZ and x = (xi)
∞
i=−∞ ∈ AZ satisfy

the conditions of Theorem 1.3. Then for each k ≥ 0, Φ2k
(x)|−(2ka1−a1+1) 6= x−(2ka1−a1+1).

Proof. We prove this by induction on k. If x satisfies the conditions of Theorem 1.3, then

Φ(x)|−1 6= x−1. Next, assume that Φ2k
(x)|−(2ka1−a1+1) 6= x−(2ka1−a1+1). Thus

x−(2ka1−a1+1) + xa1−1 +
L∑

p=2

xa1−1+2k(ap−a1) 6= x−(2ka1−a1+1), (3.4)

What follows is essentially the same as that of the previous lemma, except that this time
we have a symmetric, 0-1 matrix all of whose rows sum to 0, except the first, which sums
to one. We claim that

xa1−1 +

L∑

p=2

xa1−1+2k+1(ap−a1) = 1 . (3.5)

Let ∗1p := a1 − 1 + 2k(ap − a1), for 1 ≤ p ≤ L. For 2 ≤ p ≤ L, let ∗p1 := ∗1p =

a1 − 1 + 2k(ap − a1), and ∗pq := a1 − 1 + 2k(ap − a1) + 2k(aq − a1). Let jp := 2k(ap − a1).

Lemma 3.10 tells us that xa1−1+j +
∑L

p=2 x2k(ap−a1)+a1−1+j = 0 , so
L∑

q=1

x∗pq = 0; Equation

3.4 implies that
L∑

q=1

x∗1q = 1.

As in Lemma 3.10,we have a symmetric 0-1 matrix [x∗pq ]
L
p,q=1 whose diagonal terms are

the summands in Equation 3.5, and all of whose rows sum to zero, save the first row. The
result follows. ✷

Proof of Theorem 1.3. Lemma 3.11 tells us that kn ≥ 2na1 − a1 + 1, and Lemma 3.10 tells
us that kn = 2na1 − a1 + 1. ✷

Proof of Lemma 3.2. (a) is a standard argument [Fog02, §1.2.6]. For (b) note that
s ∈ L2(ς). For any n ∈ N, let Rn :=

{
r ∈ A2 ; r occurs in ς

n(s)
}
. Then R1 ⊆ R2 ⊆

R3 ⊆ · · · ⊆ L2(ς). Let R∞ =
⋃∞

n=1 Rn. Then R∞ = L2(ς), because s is a ς-seed. But
R1 ⊆ R2 ⊆ · · · ⊆ R∞ are finite sets, so there exists n ∈ N such that R∞ = Rn. ✷
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Proof of Proposition 3.5. “(a) ⇒ (c)” If s is a ς-seed, then ς
∞(s) ∈ Sub (ς) . If Sub (ς) ⊆

ST (Φ), then ς
∞(s) ∈ ST (Φ).

“(c) ⇒ (b)” is immediate. For “(b) ⇒ (a)”, let S = ς
∞(s), and suppose S ∈ ST (Φ).

Then the σ-orbit closure of S is contained in ST (Φ), because ST (Φ) is closed and σ-
invariant. Thus, Lemma 3.2(a) says Sub (ς) ⊆ ST (Φ); ie. ς is compatible with φ.

“(d) ⇒ (c)” Let s = [a, b] be a ς-seed and let S := ς
∞(s) = A B , where A = ς

∞(a)
and B := ς

∞(b).
Claim 1: For all n ∈ N, let An := ς

n(a) and Bn := ς
n(b). Then An Bn is ST (Φ)-

admissible.

Proof. Case (n=1): By definition, [a, b] ∈ L2(ς), and by hypothesis, φ commutes with ς,
so A1 B1 = ς[a, b] is ST (Φ)-admissible.

Induction: Suppose An Bn is ST (Φ)-admissible. Let
[

x y
z

]
be a triomino appearing

somewhere in An+1 Bn+1 ; we must show that
[

x y
z

]
is ST (Φ)-admissible [ie. that

z = φ(x, y)]. Now, An+1 Bn+1 = ς(An Bn ), so there is some triomino
[

u v
w

]
in An Bn

such that
[

x y
z

]
appears inside ς

[
u v
w

]
. By definition, [u, v] ∈ L2(ς), and by hypothesis,

φ commutes with ς. Hence ς

[
u v
w

]
is a ST (Φ)-admissible fragment, which in particular

means that
[

x y
z

]
is ST (Φ)-admissible.

This works for any
[

x y
z

]
in An+1 Bn+1 . Thus, An+1 Bn+1 is ST (Φ)-admissible,

because ST (Φ) is the SFT generated by the set of triominos in eqn.(3.1). ✸ Claim 1

It follows that S = A B is ST (Φ)-admissible.

“(b) ⇒ (d)” Suppose S = ς
∞(s) for some ς-seed s ∈ A2. If S ∈ ST (Φ), then ς

commutes with Φ on all [u, v] which occur in S. But Lemma 3.2(b) says this is all of
L2(ς). ✷

Proof of Corollary 3.6. x has infinite Φ-orbit because otherwise, A would be fixed
under some vertical shift, contradicting the aperiodicity of ς. Thus, Theorem 1.1 says
O := (OΦ(x),Φ) is isomorphic to some odometer. We must show that O has a p-adic
odometer as a factor, for some prime p dividing H.

For all k ∈ N, let Ak := A(−W k...0]×N
= [Φt(x)(−W k...0]]

∞
t=0 (i.e. the first W k ‘columns’

in the spacetime diagram of x). Each Ak is vertically periodic (because O is an odometer);
let Tk be its minimal period. Thus, T0 ≤ T1 ≤ T2 ≤ · · · .
Claim 2: (a) Tk divides HkT0. (b) lim

k→∞
Tk = ∞.

Proof. (a) ς(A) = A, so ς(Ak−1) = Ak, so Ak is vertically (HTk−1)-periodic, so its least
period Tk must divide HTk−1. By induction, this means Tk divides HkT0.

(b) By contradiction, suppose the sequence {Tk}
∞
k=1 was bounded. Then there would

be some k such that Tk = Tk+1 = Tk+2 = · · · , and then x would be ΦTk -periodic,
contradicting the fact that x has infinite Φ-orbit. ✸ Claim 2

For any N , Claim 1(b) yields some k ≥ N such that Tk ≥ HNT0. Let d := gcd(Tk, T0),
and let T ′

k = Tk/d and T ′
0 := T0/d; then T ′

k ≥ HNT ′
0 ≥ HN . But Claim 1(a) says that

Tk divides HkT0, which means T ′
k divides HkT ′

0, which means T ′
k divides Hk (because T ′

k

is coprime to T ′
0). Thus, all prime factors of Tk are prime factors of H. But T ′

k ≥ HN ,

so Tk must be divisible by pN for at least one prime factor p of H. It follows that pN

divides Tk, which means that O contains a factor of minimal period pN . But N can be
made arbitrarily large, so O must have a p-adic odometer as a factor. ✷
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