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Introduction

Fuzzy measures are a generalization of probability measures for which additivity is removed and monotonicity is imposed instead. These measures have become a powerful tool in Decision Theory (see e.g. [START_REF] Grabisch | Application of the Choquet integral in Multicriteria Decision Making[END_REF] , the work of Schmeidler 21 and 3 ); moreover, the Choquet Expected Utility model generalizes the Expected Utility one, and this model offers a simple theoretical foundation for explaining phenomena that cannot be accounted for in the framework of Expected Utility Theory, as the well known Ellsberg's and Allais' paradoxes (see [START_REF] Chateauneuf | Choquet Expected Utility Model: A new approach to individual behaviour under uncertainty and to Social Welfare[END_REF] for a survey about this topic).

However, the richness of fuzzy measures has its counterpart in the complexity. If we deal with a space of n elements, a probability measure only needs n -1 coefficients, while a fuzzy measure needs 2 n -2. In an attempt to decrease the exponential complexity of fuzzy measures in practical applications, Grabisch has introduced in [START_REF] Grabisch | k-order additive discrete fuzzy measures and their representation[END_REF] the concept of k-order additive measures or k-additive measures for short; k-additive measures are defined from the Möbius transform, and they can be represented by a limited set of coefficients, at most k i=1 n i . A characterization of k-additive measures based in Choquet Expected Utility Model can be found in [START_REF] Miranda | Characterizing k-additive fuzzy measures[END_REF] .

On the other hand, it is a well known fact that an OWA operator [START_REF] Yager | On ordered weighted averaging aggregation operators in multicriteria decision making[END_REF] is a discrete Choquet integral with respect to a symmetric fuzzy measure. Hence, Choquet integral generalizes OWA operators and, as before, the richness of Choquet integral is paid by the complexity. Our goal is to introduce a concept, similar to k-additive measures, bridging the gap between symmetric fuzzy measures and general fuzzy measures. We propose a definition of p-symmetry based in what we will call subsets of indifference, and we study some of their properties.

Of course, Choquet integral with respect to a p-symmetric fuzzy measure generalizes the concept of OWA. Another generalization of OWA operators can be found in [START_REF] Calvo | Some characterizations based on double aggregation operators[END_REF] , in which it is defined the so-called double aggregation operators as an aggregation of two other aggregation operators.

The paper is organized as follows: In Section 2, we recall some basic concepts. Next, in Section 3, we give the definition of p-symmetric measures and study some of their properties. In Section 4, we study the expressions of p-symmetric measures for other representations of fuzzy measures. In Section 5 we deal with the Choquet integral of p-symmetric measures; in this section we also define a degree of interaction and study its relationship with the decomposition of Choquet integral. We finish with the conclusions and open problems.

Notations and basic concepts

In the sequel, we will consider a finite universal set of n elements, denoted X = {x 1 , ..., x n }. Subsets of X are denoted with capital letters A, B, and so on, and also by A 1 , ..., A p . The set of all subsets of X is denoted P(X). Finally, (resp. ) denotes the min (resp. max) operation.

In order to be self-contained, let us now give some definitions:

Definition 1 24 A (discrete) fuzzy measure on X is a set function µ : P(X) → [0, 1] satisfying (i) µ(∅) = 0, µ(X) = 1 (boundary conditions). (ii) A ⊂ B implies µ(A) ≤ µ(B) (monotonicity).
To any fuzzy measure, we can assign another one, called dual measure whose definition is the following: Definition 2 Consider (X, X ) a measurable space and let µ be a fuzzy measure over X; we define the dual or conjugate measure of µ as the fuzzy measure μ given by μ(A) = 1µ(A c ), where A c = X\A.

Other alternative representations of fuzzy measures are given by the Möbius transform and the Shapley interaction. Definition 3 [START_REF] Rota | On the foundations of combinatorial theory I. Theory of Möbius functions[END_REF] Let µ be a fuzzy measure on X. The Möbius transform of µ is defined by

m(A) := B⊂A (-1) |A\B| µ(B), ∀A ⊂ X. (1) 
In the Theory of Cooperative Games, the Möbius transform is interpreted as the importance of each subset by itself, without considering its parts. In this sense, this transformation is called dividend [START_REF] Derks | The selectope for cooperative games[END_REF] .

When m is given, it is possible to recover the original µ by the so-called Zeta transform (see [START_REF] Chateauneuf | Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion[END_REF] ):

µ(A) = B⊂A m(B). (2) 
We can define m for any set function, not limited to fuzzy measures. In order to m being the Möbius transform of a fuzzy measure we need to impose some monotonicity constraints. These constraints are given in the following proposition: Proposition 1 [START_REF] Chateauneuf | Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion[END_REF] A set of 2 n coefficients m(A), A ⊂ X corresponds to the Möbius representation of a fuzzy measure if and only if

(i) m(∅) = 0, A⊂X m(A) = 1, (ii) xi∈B⊂A m(B) ≥ 0, ∀A ⊂ X, ∀x i ∈ A.
¿From Möbius transform, we can derive the definition of belief function, given by Dempster 6 and Shafer [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF] :

Definition 4 A fuzzy measure µ is a belief function if m(A) ≥ 0, ∀A ⊂ X.
Shapley interaction is another equivalent representation of fuzzy measures. Definition 5 [START_REF] Grabisch | k-order additive discrete fuzzy measures[END_REF] Let µ be a fuzzy measure on X. The Shapley interaction index of A ⊂ X, is defined by:

I µ (A) = B⊂X\A (n -b -a)!b! (n -a + 1)! C⊂A (-1) a-c µ(B ∪ C), with a = |A|, b = |B|, c = |C|.
Shapley interaction for singletons is just the Shapley value of a game [START_REF] Shapley | A value for n-person games[END_REF] , and it recovers the interaction index of Murofushi and Soneda [START_REF] Murofushi | Techniques for reading fuzzy measures (iii): Interaction index[END_REF] for pairs. I and m are related through the following formulas:

I(A) = B⊂X\A 1 |B| + 1 m(A ∪ B), ∀A ⊂ X. (3) 
m(A) = B⊂X\A B |B| I(B ∪ A), ∀A ⊂ X, (4) 
where B k denotes the Bernoulli numbers defined by recurrence through B 0 = 1 and

B k = - k-1 l=0 B l k-l+1 k l .
Definition 6 [START_REF] Choquet | Theory of capacities[END_REF] The Choquet integral * of a measurable function f : X → R + is defined by

C µ (f ) := ∞ 0 µ({x|f (x) ≥ α})dα.
For simple functions the expression reduces to:

C µ (f ) := n i=1 (f (x (i) ) -f (x (i-1) ))µ(B i ),
where parenthesis mean a permutation such that 0

= f (x (0) ) ≤ f (x (1) ) ≤ ... ≤ f (x (n) ) and B i = {x (i) , ..., x (n) }. Another equivalent expression for simple functions is C µ (f ) := n i=1 f (x (i) )(µ(B i ) -µ(B i+1 )) with B n+1 = ∅.
Choquet integral in terms of m is given by: Theorem 1 [START_REF] Chateauneuf | Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion[END_REF] The Choquet integral C µ : [0, 1] n → R + can be written as

C µ (f ) = T ⊂X m(T ) xi∈T f (x i ) , f ∈ [0, 1] n . (5) 
Definition 7 [START_REF] Yager | On ordered weighted averaging aggregation operators in multicriteria decision making[END_REF] An ordered weighted averaging operator (OWA) is an operator defined by

OWA w (f ) = n i=1 w i f (x (i) ),
where w is the weight vector, w = (w 1 , ..., w n ) ∈ [0, 1] n and such that n i=1 w i = 1. Definition 8 A fuzzy measure is said to be symmetric if it satisfies

|A| = |B| ⇒ µ(A) = µ(B), ∀A, B ⊂ X.
It can be proved (see [START_REF] Grabisch | Fuzzy measures and integrals: A survey of applications and recent issues[END_REF] and 18 ) that: Proposition 2 Let µ be a fuzzy measure on X. Then, the following statements are equivalent:

1. There exists w ∈ [0, 1] n , n i=1 w i = 1, such that C µ = OWA w .
2. µ is a symmetric fuzzy measure.

Choquet integral model can be regarded as the generalization of a linear model in the sense that (C) f dµ + (C) g dµ = (C) (f + g) dµ for a pair of comonotone functions [START_REF] Hardy | Inequalities[END_REF] . The expressive power of Choquet integral is much higher than that of a linear model. However, as it can be seen from Definition 6, Choquet integral model is difficult to handle. These are the reasons for which it has been proposed a hierarchical Choquet integral model, that allows to compute Choquet integral from combinations of other Choquet integrals. The underlying idea here is to be able to decompose the integral into a sum of other integrals over smaller referential sets. Definition 9 [START_REF] Murofushi | Separated hierarchical decomposition of Choquet integral[END_REF] Let (X, X ) be a measurable space. An interadditive partition of X is a finite measurable partition Q of X such that for every A ∈ X

µ(A) = P ∈Q µ(P ∩ A).
Then, the following holds. Proposition 3 [START_REF] Murofushi | Separated hierarchical decomposition of Choquet integral[END_REF] Let (X, X ) be a measurable space and Q be a finite measurable partition of X. Then, Q is an interadditive partition if and only if for every measurable function f

(C) X f dµ = P ∈Q (C) P f dµ. (6) 
A more general hierachical Choquet integral model based in what is called inclusion-exclusion coverings appears in [START_REF] Sugeno | A hierarchical decomposition of Choquet integral model[END_REF] .

p-symmetric measures

Let us consider an OWA operator. If we look at the definition, we can see that only the order in the scores is important, i.e. we are interested in the scores, but we do not care about which criterium each score has been obtained. Mathematically, this means that the fuzzy measure defining the OWA operator only depends on the cardinality of the subsets, and not in the elements of the subset themselves.

Thus, all criteria have the same importance or, in other words, we have a "subset of indifference" (X itself). Then, it makes sense to define 2-symmetric measures as those measures for which we have two subsets of indifference, 3-symmetric measures as those with three subsets of indifference, and so on. Let us now translate this idea.

Definition 10 Given two elements x i , x j of the universal set X, we say that x i and x j are indifferent elements if and only if

∀A ⊂ X\{x i , x j }, µ(A ∪ x i ) = µ(A ∪ x j ).
This definition translates the idea that we do not care about which element, x i or x j , is in the coalition; that is, we are indifferent between x i and x j . This concept can be generalized for subsets of more than two elements, as shown in the following definition:

Definition 11 Given a subset A of X, we say that A is a set of indifference if and only if ∀B 1 , B 2 ⊂ A, |B 1 | = |B 2 |, ∀C ⊂ X\A, µ(B 1 ∪ C) = µ(B 2 ∪ C).
It is easy to see the following:

Lemma 1 Given A ⊂ X, A is a set of indifference if and only if ∀B 1 , B 2 ⊂ A, |B 1 | = |B 2 |, ∀C ⊂ X\{B 1 ∪ B 2 }, µ(B 1 ∪ C) = µ(B 2 ∪ C). Proof: For C ⊂ X\A, we have, applying Definition 11, µ(C ∪ B 1 ) = µ(C ∪ B 2 ). Let us consider C ⊂ X\(B 1 ∪ B 2 ) but C ⊂ X\A. Then, ∃D ⊂ A\(B 1 ∪ B 2 ) such that C = D ∪ C ′ , with C ′ ⊂ X\A. Thus, by Definition 11, µ(C ∪ B 1 ) = µ(C ′ ∪ D ∪ B 1 ) = µ(C ′ ∪ D ∪ B 2 ) = µ(C ∪ B 2 ),
and therefore the result holds.

Another property of sets of indifference is:

Lemma 2 If A is a set of indifference and A ′ ⊂ A, then A ′ is itself a set of indifference. Example 1 Consider A, a set of indifference. Then, taking C = ∅, we obtain µ(x i ) = µ(x j ), ∀x i , x j ∈ A. µ(x i , x j ) = µ(x k , x l ), ∀x i , x j , x k , x l ∈ A,
and so on.

An example of sets of indifference are null sets, defined in 1 and 17 :

Definition 12 A subset A ⊂ X is called a null set with respect to µ if µ(A ∪ B) = µ(B), ∀B ⊂ X\A.
A consequence of Definition 11 is:

Lemma 3 A null set is a set of indifference. Proof: Let A be a null set. Then, µ(A ∪ B) = µ(B), ∀B ⊂ X. Let us consider now A 1 , A 2 ⊂ A, |A 1 | = |A 2 |. For B ⊂ X\A µ(B) ≤ µ(A 1 ∪ B) ≤ µ(A ∪ B) = µ(B). µ(B) ≤ µ(A 2 ∪ B) ≤ µ(A ∪ B) = µ(B). Then, µ(A 1 ∪ B) = µ(B) = µ(A 2 ∪ B) and hence, A is a set of indifference.
We are now able to define p-symmetric fuzzy measures (p-symmetric measures for short). We start with 2-symmetric measures.

Definition 13 Given a fuzzy measure µ, we say that µ is a 2-symmetric measure if and only if there exists a partition of the universal set {A, A c }, A, A c = ∅ such that both A and A c are sets of indifference and X is not a set of indifference.

For the general case we have: p-symmetric fuzzy measures 7 Definition 14 Given two partitions {A 1 , ..., A p }, {B 1 , ..., B r } of a referential X, we say {A 1 , ..., A p } is coarser than {B 1 , ..., B r } if the following holds:

∀A i , ∃B j such that B j ⊂ A i .
Definition 15 Given a fuzzy measure µ, we say that µ is a p-symmetric measure if and only if the coarsest partition of the universal set in sets of indifference is {A 1 , ..., A p }, A i = ∅, ∀i ∈ {1, ..., p}.

Note that by Lemma 2 we need to work with the coarsest partition. Otherwise, a p-symmetric measure would be also a p ′ -symmetric measure for any p ′ > p.

For the 2-symmetric case, we will use both {A 1 , A 2 } and {A, A c } for denoting the partition of X in sets of indifference.

With these definitions, a symmetric measure is just a 1-symmetric measure.

Example 2 Consider the 2-symmetric case. Consider the partition given by A = {x 1 , ..., x k }, A c = {x k+1 , ..., x n }, with A, A c two sets of indifference. Then, in order to define the fuzzy measure we just need to know µ(x 1 ), µ(x k+1 ), for singletons.

µ(x 1 , x 2 ), µ(x k+1 , x k+2 ), µ(x 1 , x k+1
), for sets of two elements, and so on.

Then, it suffices to know the cardinality and the number of elements of A in the subset.

Remark 1 It is important to note that, in order to define a p-symmetric measure, we need to know which are the sets of indifference partitioning the universal set. For symmetric measures, we have only one set of indifference (X) and thus we omit it, but a symmetric measure is a very particular measure and this does not hold for the general p-symmetric case.

Let us now propose a situation in which p-symmetric measures may appear:

Example 3 Suppose that a jury of four members is evaluating some students. Moreover, suppose that two members of the jury are mathematicians M 1 , M 2 and the other two are physicists P 1 , P 2 . Suppose also that we do not have information about which one of the two mathematicians is the best, nor for the physicists. However, let us suppose that, for us, the marks in Mathematics are more important than those in Physics. The fuzzy measure could be defined as follows: µ(M i ) = 0.3, µ(P i ) = 0.2, i = 1, 2 as the marks in Mathematics are more important than the marks in Physics. Now, for pairs, we can define µ(M 1 , M 2 ) = 0.5, µ(P 1 , P 2 ) = 0.3, µ(M i , P j ) = 0.8. This is due to the fact that a student should be considered better (in the sense of more complete) if he obtains a good evaluation for both subjects than in the case in which he is very good in just one of them. Finally, we can define µ(M 1 , M 2 , P i ) = 0.9, µ(P 1 , P 2 , M i ) = 0.85, µ(X) = 1.

In this example, we have two sets of indifference, one for the mathematicians and another one for the physicists, and µ is a 2-symmetric measure. These subsets model the fact that we are not able to distinguish between the mathematicians nor between the physicists. Then, for example, the coalition between a physicist and a mathematician has always the same importance for us, regardless which is the mathematician and the physicist in it.

Example 4 Consider a finite referential set X on which a probability measure has been defined. However, suppose that we only know the probability values on some subsets of X, namely B 1 , ..., B p . Then, we have a set of coherent probabilities with this information. The lower bound of this set is given by

µ(A) = Bi⊂A P (B i ),
and similarly, the upper bound is the corresponding dual measure. This concepts has been introduced by De Finetti in [START_REF] Finetti | Theory of Probability[END_REF] .

Let us suppose now that sets B 1 , ..., B p determines a partition on X. Then, it is easy to see that the corresponding measure µ is at most a p-symmetric measure, where sets of indifference are B 1 , ..., B p . Indeed, the p-symmetric measure is given by

µ(i 1 , ..., i p ) =    0 if i k < |B k |, ∀k P (B ir ) if i r = |B r |, i k < |B k |, ∀k = r ... ...
Example 5 Consider the 2-step Choquet integral defined in [START_REF] Mesiar | Two-step integral with respect to fuzzy measures[END_REF] . Proposition 2 speaks about 2-step Choquet integral with second step based on additive measures which can be represented as a single Choquet integral with respect to a fuzzy measure; now, if the first steps are OWA operators, i.e. Choquet integral with respect to 1-symmetric fuzzy measures µ 1 , .., µ p with disjoint supports, we have that the corresponding µ in Choguet integral representation is a p-symmetric measure.

In the following, as we only need to know the number of elements of each set of indifference that belong to a given subset C of the universal set X, when dealing with a p-symmetric measure defined by the partition {A 1 , ..., A p }, we use the notation C ≡ (c 1 , ..., c p ), where c i is the number of elements of A i in C. Then, we can identify the different subsets with p-dimensional vectors whose i-th coordinate is an integer number from 0 to |A i |. Hence, the number of different subsets C is (|A 1 | + 1) × ... × (|A p | + 1), and this is the number of necessary values that we need to know to completely determine the p-symmetric fuzzy measure. Moreover, as µ(0, ..., 0) = 0, µ(|A 1 |, ...., |A p |) = 1, it follows that we only need to determine

(|A 1 | + 1) × ... × (|A p | + 1) -2

values. This is written in next proposition:

Proposition 4 Let µ be a p-symmetric measure with respect to the partition {A 1 , ..., A p }. Then, the number of values that are needed in order to determine µ is

(|A 1 | + 1) × • • • × (|A p | + 1) -2.
Example 6 Consider the special 2-symmetric case in which A = {x 1 }. Then, in order to define the fuzzy measure, we just need to know µ(x 1 ), µ(x 2 ), µ(x 1 , x 2 ), µ(x 2 , x 3 ), ..., µ(x 1 , ..., x n-1 ), µ(x 2 , ..., x n ), p-symmetric fuzzy measures 9 or, in the notation proposed before µ(1, 0), µ(0, 1), ..., µ(1, n -2), µ(0, n -1), i.e. 2n -2 values.

Remark 2 Note that the number of different subsets depends not only on the degree of symmetry, but also on the sets of indifference that determine the partition of X. In Example 6, we only needed 2n -2 coefficients. However, if we take n = 6, |A Let us see some special cases as examples:

• If we have a 1-symmetric measure, we just need to know a (n + 1)-dimensional vector v such that v(i) = µ(i), where µ(0) = 0 and µ(n) = 1.

• If we have a 2-symmetric measure, we obtain a (|A| + 1)

× (|A c | + 1) matrix.        µ(0, 0) µ(0, 1) . . . µ(0, |A2| -1) µ(0, |A2|) µ(1, 0) µ(1, 1) . . . µ(1, |A2| -1) µ(1, |A2|) . . . . . . . . . . . . . . . µ(|A1| -1, 0) µ(|A1| -1, 1) . . . µ(|A1| -1, |A2| -1) µ(|A1| -1, |A2|) µ(|A1|, 0) µ(|A1|, 1) . . . µ(|A1| -1, |A2| -1) µ(|A1|, |A2|)       
• In the extreme case of a n-symmetric measure, we obtain a 2 × ... × 2 matrix, i.e. we need 2 n coefficients (two of them are µ(∅) and µ(X)).

We finish this section with the following result related to dual measures. Lemma 4 Let µ be a p-symmetric measure with respect to a partition {A 1 , ..., A p }. Then, μ is also a p-symmetric measure with respect to the same partition.

Proof: Let us consider a p-symmetric measure µ with respect to the partition {A 1 , ..., A p }. To show that μ is another p-symmetric measure, it suffices to note that

μ(i 1 , ..., i p ) = 1 -µ(|A 1 | -i 1 , ..., |A p | -i p ),
whence the result holds.

Other representations of a p-symmetric measure

In this section, we deal with the problem of obtaining the different representations of a fuzzy measure in the special case of p-symmetric measures. More concretely, we obtain the Möbius transform and the Shapley interaction.

Let us start with the Möbius transform. 

(-1) b1+...+bp-i1-...-ip b 1 i 1 ... b p i p µ(i 1 , ..., i p ),
whence the result.

Let us now find the expression of the measure in terms of the Möbius transformation.

Proposition 6 Let µ be a p-symmetric measure associated to the partition {A 1 , ..., A p }. Now, suppose m denotes its Möbius transform. Then, for B ≡

(b 1 , ..., b p ) ⊂ X, it is µ(b 1 , ..., b p ) = c1≤b1,...,cp≤bp b 1 c 1 • • • b p c p m(c 1 , ..., c p ).
Proof:

Consider C ≡ (c 1 , ..., c p ) ⊂ B. Then, the number of possibilities for such a C is b 1 c 1 • • • b p c p ,
and thus the expression holds applying (2).

Let us now turn to the Shapley interaction:

Proposition 7 Let µ be a p-symmetric measure associated to the partition {A 1 , ..., A p }. Then, for B ≡ (b 1 , ..., b p ) ⊂ X, we have

I(b 1 , ..., b p ) = c1≥b1,...,cp≥bp 1 c -b + 1 a 1 -b 1 c 1 -b 1 • • • a p -b p c p -b p m(c 1 , ..., c p ), with c = p i=1 c i , b = p i=1 b i . Proof: We know from (3) that for B ⊂ X I(B) = C|B⊂C 1 |C| -|B| + 1 m(C). Let us consider C ≡ (c 1 , ..., c p )| B ≡ (b 1 , ..., b p ) ⊂ C. Then, the number of possible C's is a 1 -b 1 c 1 -b 1 • • • a p -b p c p -b p .
Thus, we obtain

I(b 1 , ..., b p ) = c1≥b1,...,cp≥bp 1 c -b + 1 a 1 -b 1 c 1 -b 1 • • • a p -b p c p -b p m(c 1 , ..., c p ),
whence the result.

The reciprocal result is given by Proposition 8 Let µ be a p-symmetric measure associated to the partition {A 1 , ..., A p }. Then, for B ≡ (b 1 , ..., b p ) ⊂ X, we have

m(b 1 , ..., b p ) = ci≤ai-bi,i=1,...,p a 1 -b 1 c 1 • • • a p -b p c p B c1+...+cp I(c 1 +b 1 , ..., c p +b p ). Proof: We know from (4) that for B ⊂ X m(B) = C⊂X\B B |C| I(C ∪ B). Let us consider C ≡ (c 1 , ..., c p ) ⊂ X\B ≡ (a 1 -b 1 , ..., a p -b p ). Then, the number of possible C's is a 1 -b 1 c 1 • • • a p -b p c p .
Thus, we obtain

m(B) = c1≤a1-b1,...,cp≤ap-bp B c1+...+cp a 1 -b 1 c 1 • • • a p -b p c p I(c 1 + b 1 , ..., c p + b p ),
whence the result.

The expression of Shapley interaction in terms of µ is given in next proposition.

Proposition 9 Let µ be a p-symmetric measure associated to the partition {A 1 , ..., A p }. Then, for B ≡ (b 1 , ..., b p ) ⊂ X, we have

I(B) = d i ≤a i ,∀i c i ≥{b i ,d i },∀i 1 c -b + 1 (-1) c-d c1 d1 • • • cp dp a1 -b1 c1 -b1 • • • ap -bp cp -bp µ(D), with d = p i=1 d i , c = p i=1 c i , b = p i=1 b i .
Proof: We will use the expressions in Proposition 5 and Proposition 7. From Proposition 7, we know that

I(b 1 , ..., b p ) = c1≥b1,...,cp≥bp 1 c -b + 1 a 1 -b 1 c 1 -b 1 • • • a p -b p c p -b p m(c 1 , ..., c p ).
But now, from Proposition 5,

m(c 1 , ..., c p ) = d1≤c1,...,dp≤cp (-1) c1+...+cp-d1-...-dp c 1 d 1 ... c p d p µ(d 1 , ..., d p ).
Joining both results, the proposition is proved.

And the reciprocal result is: Proposition 10 Let µ be a p-symmetric measure associated to the partition {A 1 , ..., A p }. Then, for B ≡ (b 1 , ..., b p ) ⊂ X we have

µ(B) = c i ≤b i ,∀i b1 c1 . . . bp cp d i ≤a i -c i ,∀i a1 -c1 d1 • • • ap -cp dp B d I(c1 +d1, ..., cp +dp), with d = p i=1 d i . Proof: We know that µ(b 1 , ..., b p ) = c1≤b1,...,cp≤bp b 1 c 1 • • • b p c p m(c 1 , ..., c p ),
by Proposition 6, and

m(C) = di≤ai-ci,i=1,...,p a 1 -c 1 d 1 • • • a p -c p d p B d1+...+dp I(c 1 + d 1 , ..., c p + d p ),
by Proposition 8. Joining both results, the proposition is proved.

Of course, when considering the representation of a p-symmetric measure in terms of the Möbius transform or the Shapley interaction, we can represent it in a p-dimensional matrix, as we have done in the previous section.

Choquet integral with respect to a p-symmetric measure

In this section we study the expression of Choquet integral with respect to a p-symmetric measure, as well as some properties of this integral.

Proposition 11 Let µ be a p-symmetric measure. Given a function f , the Choquet integral is given by Proof: We know from Definition 6

n i=1 f (x (i) ) c k ≤b i-1 k ,∀k
(C) f dµ = n i=1 f (x (i) )(µ(B (i) ) -µ(B (i+1) )),
where

B (i) = B (i+1) ∪ {x (i) }.
Suppose that B (i+1) ≡ (b i-1 1 , ..., b i-1 p ). Then, by Proposition 6

µ(B (i+1) ) = c k ≤b i-1 k ,∀k m(c 1 , ..., c p ) p k=1 b i-1 k c k . Now, if x (i) ∈ A j , µ(B (i) ) -µ(B (i+1) ) = C⊂B (i+1) m(x (i) ∪ C) = c k ≤b i-1 k ,∀k
m(c1, ..., cj + 1, ..., cp)

p k=1 b i-1 k c k ,
whence the result.

As a subset C ⊂ X is determined by the number of elements in A i , ∀i, we can find all possible Choquet integrals finding all possible paths from (0, ..., 0) to (|A 1 |, ..., |A p |) (see Figure 1 for an example with a 2-symmetric measure). The number of such paths is given in next lemma:

(0,0) (0,1) (0,2) (1,2) (2,2) (2,3) (3,3) 
Lemma 5 Let µ be a p-symmetric measure with respect to the partition {A 1 , ..., A p }.

Then, the number of paths from (0, ..., 0) to

(|A 1 |, ..., |A p |) is n |A 1 |, ..., |A p | .
Example 7 If we are in the 2-symmetric case and |A| = 1, then we have just n + 1 different paths from (0, ..., 0) to (|A 1 |, ..., |A p |) (see Figure 2).

Let us now see some properties for Choquet integral of a p-symmetric measure. Proposition 12 Let µ be a p-symmetric measure with respect to the partition {A 1 , ..., A p }, and suppose µ(A i ) > 0, ∀i. Then, the Choquet integral is given by

p i=1 µ(A i )(C) f dµ Ai + B ⊂Aj ,∀j m(B) xi∈B f (x i ),
where µ Ai is defined by its Möbius transform

m Ai (C) = m(C) µ(Ai) ifC ⊂ A i 0 otherwise
Proof: Suppose that µ is a p-symmetric measure with respect to the partition {A 1 , ..., A p }. Then, the Choquet integral can be written as

p j=1 B⊂Aj m(B) xi∈B f (x i ) + B ⊂Aj ,∀j m(B) xi∈B f (x i ),
by (5). Now, let us define for A ⊂ X, µ(A) > 0

m A (C) = m(C) µ(A) ifC ⊂ A 0 otherwise
Let us see that m A is the Möbius transform of a fuzzy measure. To see this, let us show that the conditions of Proposition 1 hold: First, note that m A (∅) = 0. Now, for i ∈ X, C ⊂ X, we have

• If x i / ∈ A, then xi∈B⊂C m A (B) = 0. • If x i ∈ A, then xi∈B⊂C m A (B) = xi∈B⊂C∩A m(B) µ(A) ≥ 0,
as µ is a fuzzy measure.

• B⊂X m A (B) = µ(A) µ(A) = 1.
Let us denote by µ A the fuzzy measure associated to m A . Then, it is trivial to see that

B⊂Aj m(B) xi∈B f (x i ) = µ(A j ) (C) f dµ Aj , ∀j,
by (5). This completes the proof.

The last summand in Proposition 12 represents the part of the Choquet integral that cannot be assigned to any subset in the partition. When µ is a belief function, the following can be proved: Proposition 13 Let µ be a p-symmetric measure with respect to the partition {A 1 , ..., A p }. Suppose also that µ is a belief function. Then, the Choquet integral can be written as

n i=1 µ(A i )(C) f dµ Ai + (C) f dµ * ,
where µ Ai and µ * are defined by

m Ai (C) = m(C) µ(Ai) ifC ⊂ A i 0 otherwise µ * (C) = µ(C) -µ(C ∩ A 1 ) -... -µ(C ∩ A p ).
Proof: We know from Proposition 12 that the Choquet integral for a p-symmetric fuzzy measure can be written as

i µ(A i )(C) f dµ Ai + B ⊂Aj ,∀j m(B) xi∈B f (x i ). Now, define µ * (C) = µ(C) -µ(C ∩ A 1 ) -... -µ(C ∩ A p ).
µ * is a non-normalized fuzzy measure:

xi∈B⊂C m * (B) = xi∈B⊂C, B ⊂Aj,∀j m(B) ≥ 0, as µ is a belief function. Remark that m * (B) = m(B) ifB ⊂ A j ∀j 0 otherwise
Then, it is easy to see that

B ⊂Aj ,∀j m(B) xi∈B f (x i ) = (C) f dµ * ,
and thus, the proposition holds.

Note that for belief functions, µ * (X) = µ(X)µ(A 1 ) -...µ(A p ). Then, this value can be seen as a degree of the interaction among the elements of the partition: If µ * (X) = 0, then necessary m(B) = 0 if B ⊂ A 1 , ..., B ⊂ A p . We write it in the following definition. Definition 16 Consider µ a p-symmetric measure associated to the partition given by {A 1 , ..., A p }. Suppose also that µ is a belief function. We define the degree of interaction among the elements of the partition by µ(X)µ(A 1 ) -...µ(A p ). Now, we can state the following corollary: Corollary 1 Let µ be a p-symmetric measure with respect to the partition given by {A 1 , ..., A p } such that µ(A i ) > 0. Suppose also that µ is a belief function. When the interaction degree vanishes, the Choquet integral can be written as In this sense, when µ is a belief function and the degree of interaction vanishes, the partition {A 1 , ..., A p } in sets of indifference is also an interadditive partition (Equation 6). Moreover, each integral is indeed an OWA operator over a smaller referential set.

Remark 3 Note that we need µ being a belief function in order to ensure a positive value for the degree of interaction among the elements of the partition. Moreover, if µ is not a belief function, we can find µ(X)µ(A 1 ) -...µ(A p ) = 0 and, on the other hand, there exist interactions among the elements of the partition.

For Corollary 1, it must be remarked that µ must be a belief function. Otherwise, the result does not necessary hold as next example shows:

Example 8 Consider X = {x 1 , x 2 , x 3 } and let us define the fuzzy measure µ given by the following Möbius transform:

x 1 x 2 x 3 x 1 , x 2 x 1 , x 3 x 2 , x 3 x 1 , x 2 , x 3 0.4 0.3 0.3 0.1 0.1 0 -0.2 µ is a 2-symmetric measure, with sets of indifference A 1 = {x 1 }, A 2 = {x 2 , x 3 }. On the other hand µ(A 1 ) + µ(A 2 ) = 1, and thus, µ(X)µ(A 1 )µ(A 2 ) = 0. However, we can not ensure

(C) f dµ = µ(A 1 ) (C) f dµ A1 + µ(A 2 ) (C) f dµ A2 , ∀f.
To see this, just consider f defined by f (x 1 ) = 1, f (x 2 ) = 0.5, f (x 3 ) = 0. Then, it is straightforward to see (C) f dµ = 0.6, µ(A 1 ) (C) f dµ A1 = 0.4, µ(A 2 ) (C) f dµ A2 = 0.15.

Conclusions

In this paper, we have proposed a generalization of the concept of symmetry for fuzzy measures. This new concept is based in sets of indifference; these subsets model the fact that some elements are indistinguishable. We have defined p-symmetric fuzzy measures and we have studied some of their properties, as well as other representations. The main property of p-symmetric measures is that they can be represented in a p-dimensional matrix. Once the definition of p-symmetry given, we have obtained an expression for Choquet integral; we have shown that this integral can be easily computed from the matrix representation. Finally, we have derived a value for the interaction among sets of indifference.

We think that p-symmetric measures provide an interesting tool in the field of fuzzy measures, and a graduation between symmetric measures and fuzzy measures.
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 13 |A 2 | = 3, by Proposition 4, we need 4*4-2=14 coefficients. As a consequence of Proposition 4, a p-symmetric fuzzy measure can be represented in a (|A 1 |+1)×...×(|A p |+1) matrix M such that M[c 1 , ..., c p ] = µ(c 1 , ..., c p ).

Proposition 5

 5 Let µ be a p-symmetric measure associated to the partition{A 1 , ..., A p }. Then, for B ≡ (b 1 , ..., b p ) ⊂ X, we have m(b 1 , ..., b p ) = i1≤b1,...,ip≤bp (-1) b1+...+bp-i1-...-ip b 1 i 1 ... b p i p µ(i 1 , ..., i p ).Proof: Consider B ≡ (b 1 , ..., b p ). Then, the number of subsets of B with i 1 elements of A 1 , i 2 elements of A 2 ..., i p elements of A p is that they have all the same measure. Now, as m(B) = C⊂B (-1) |B|-|C| µ(C), by (1), we obtain m(b 1 , ..., b p ) = i1≤b1,...,ip≤bp

m(c 1

 1 , ..., c j + 1, ..., c p ) x (i) ∈ A j , and where (b i-1 1 , ..., b i-1 p ) ≡ B (i-1) = {x (1) , ..., x (i-1) }.

Figure 1 :

 1 Figure 1: Possible path from (0,0) to (3,3) when |A 1 | = 3 and |A 2 | = 3.

Figure 2 :

 2 Figure 2: Possible paths when |A 1 | = 1 and |A 2 | = 4.

µ(A 1 )

 1 (C) f dµ A1 + ... + µ(A p )(C) f dµ Ap ,where µ Ai is defined bym Ai (C) = m(C) µ(Ai) ifC ⊂ A i 0 otherwise