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Abstract. There are several systems consisting in an object that moves on the plane
by following a given rule. It is frequently observed that these systems eventually fall
into an unexplained repetitive movement. The general framework of k-dimensional Turing
machines with only one head is adopted. A subshift is associated to each Turing machine,
and its properties are studied. The subshift consists in the set of sequences of symbols that
the machine reads together with the states that it has through each evolution. The focus
is placed on the machines whose associated subshift is sofic. These machines cannot make
long tours, i.e., the time between two consecutive visits to a given cell is bounded, and this
property characterises them. It is proved that all of these machines eventually fall into
a repetitive movement when starting over an initially periodic coloration. Nevertheless,
it seems that the machines with a sofic subshift are too simple. Many known machines
remain out of scope. As an example, the 0,1 and 2 pebble automata with 1 symbol are
studied.

Introduction

We call “One Head Machine” an automaton that lives in a discrete space. It can walk,
read and write symbols, and its behaviour is governed, at discrete time, by a deterministic
and finitely described rule. Examples of this kind of dynamical systems are the Langton’s
Ant [9, 8, 6], the Pebble Automata [2], the one head Turing Machines [3, 7] and the Lorentz
Lattice Gas [1, 10]. Such an object can represent a particle that collides with obstacles; a
living being that interacts with its environment; an automaton that performs a task, etc.

All of these systems are more or less comprised by the following definition.

Definition 0.1. A One Head Machine over Z
k is a 4-tuple (S,Q, k, δ) where:

• S is a finite set, representing the state of the environment at each lattice point, and
called symbol set,

• Q is a finite set, representing the internal state of the machine, called state set,
• k ∈ N represents the dimension of the lattice,

Key words and phrases: Multidimensional Turing Machine, Formal Language, Symbolic System.
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• δ = (δS , δQ, δD) is the transition function, where δi : S × Q → i, for each i = S,

Q or D, and D = {±ej}
k
j=1 are the k canonical vectors in Z

k together with their
opposites.

The elements of Z
k are called cells. A configuration of the system is given by an

assignment of symbols to each cell, c : Z
k → S, called coloration; a position g ∈ Z

k; and a

state q ∈ Q, i.e., the phase space is X = SZ
k

× Z
k ×Q.

The global transition function T : X → X is defined by T ((c, g, q)) = (c′, g′, q′), where

• q′ = δQ(c(g), q),
• g′ = g + δD(c(g), q),
• c′(g) = δS(c(g), q) and c′(u) = c(u) for all u 6= g.

This system can be fruitfully studied by projecting it into a symbolic system [4, 5, 7],
as we precise in the next definition. This method works well due to a relevant feature of
this system: all the changes happen only on the machine position, the rest of the coloration
remaining static. Thus, if we register the sequence of symbols that the machine reads
together with its state, we describe the entire evolution of the system without ambiguity.

Definition 0.2. Given a one head machine M = (S,Q, k, δ) and its associated dynamical
system (X,T ), let π : X → S×Q be defined by π(c, g, q) = (c(g), q) and let ψ : X → (S×Q)N

be defined by ψ(x) = (π(Tn(x)))n∈N. The t-shift of (X,T ) is ST = ψ(X).

The set ψ(X) represents all the possible sequences of pairs (symbol, state) that the
machine can produce when considering all the possible initial configurations. Given an
infinite sequence y =

(

α1α2···
q1q2···

)

∈ ST , we can deduce the machine itinerary. In fact, if we

suppose that the initial position is 0, its position at iteration j must be:

I(y)j =

j−1
∑

i=1

δD(αi, qi) (∀2 ≤ j) , I(y)1 = 0

and the set of visited cells is given by

V (y) = {I(y)j |1 ≤ j}

The initial symbol of the visited cells can be deduced from y and it is given by the
following formula

cy(g) = αi where i = min{j|I(y)j = g} (∀g ∈ V (y))

The partial function cy is a kind of pre-image of y by ψ in the following sense: if c is

an extension of cy to Z
k then ψ(c, 0, q1) = y. This means that the sequence ψ(x) contains

information about the visited cells and discards the symbols of the other cells. Moreover,
it is invariant under translations.

Remark 0.3. I(y), V (y) and cy can be defined also if y is a finite word. In this context
the following properties hold for every u, v ∈ (S ×Q)∗:

(1) I(uv)j = I(u)j , if j ≤ |u| + 1.
(2) I(uv)j = I(u)|u|+1 + I(v)j−|u|, if j ≥ |u| + 1.

The set ST is sensitive to many of the machine properties. For example, if ψ(x) is
periodic we can deduce that the sequence of movements of the machine is periodic, i.e.,
that the machine is making a regular movement (which can be propagative or cyclic).
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Next section recall some concepts from symbolic dynamics and presents basic properties
of ST . In Section 2, we characterise the machines having a sofic t-shift and we prove an
important feature of these systems: starting over a periodic coloration with a finite number
of perturbations the machine always finishes by falling in a periodic movement. The last
section shows how to adapt the this theory to a particular type of pebble automaton, we
obtain two results already proved by Delorme and Mazoyer [2].

1. Basic notions and previous results

Given a finite set Σ, the set ΣN denotes the set of infinite sequences of elements of Σ.
A function σ is defined on ΣN by: σ(y1y2y3...) = y2y3y4..., it is called the shift function.
A metric can be defined on ΣN by: d(y, z) = 2−n, where n is the smallest index such that
yn 6= zn. This metric makes ΣN compact and σ continuous. Closed and σ invariant sets are
called subshifts.

The finite sequences of elements of Σ are called words. The set of words is denoted by
Σ∗. If a word v ∈ Σ∗ appears as a subsequence of an infinite sequence y ∈ ΣN, it is called a
factor of y, and this is denoted by v ⊑ y. A language is any subset of Σ∗.

Any subshift Y ⊂ ΣN has an associated language L(Y ) ⊂ Σ∗, defined by:

L(Y ) = {w ∈ Σ∗ : (∃y ∈ Y ) w ⊑ y}.

This is the factors language of Y . The factors language characterises Y because
Y = {y ∈ AN : (∀u ⊑ y) u ∈ L(Y )}.

Another way to characterise a subshift is through a set of forbidden words. A language
P is a set of forbidden words for Y if

Y = {y ∈ AN : (∀u ⊑ y) u 6∈ P}.

If Y has a finite set of forbidden words, Y is said to be a shift of finite type (SFT).
The complexity of Y is defined with reference to the complexity of its language L(Y ).

For instance, Y is said to be sofic if L(Y ) is regular. It is easy to see that if Y is a SFT, Y
is also sofic.

Let us come back to the shift associated to a one head machine: ST . It is a subshift.
Moreover, functions T , σ and ψ satisfy ψ ◦ T = σ ◦ ψ. The following result characterises
the words in L(ST ). This property can be easily proved by induction.

Lemma 1.1. [7] If w =
(

α1..αn

q1..qn

)

∈ L(ST ), then for all i ∈ {1, .., n}:

qi+1 = δQ(αi, qi) (state coherence) (1.1)

and for any pair 1 ≤ i < j ≤ n, such that I(w)i = I(w)j (say = g) and for every k
between i and j, I(w)k 6= g, one has that

αj = δS(αi, qi). (writing coherence) (1.2)

Moreover, these are sufficient conditions for w to belong to L(ST ).

Equation (1.1) expresses that the sequence of states must be coherent with the transition
rule of the machine. Equation (1.2) expresses that when the machine visits a cell a second
time, it must find the symbol that it wrote there when it visited it the first time. A set of
forbidden words for ST can be obtained from these two equations. From Equation (1.1) we
obtain the following set:
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P1 =

{(

αβ

qp

)

: p 6= δQ(α, q)

}

Equation (1.2) refers to trajectories that visit two times the same cell.

Definition 1.2. A word w ∈ L(ST ) whose itinerary starts and finishes in the same cell
and does not visit that cell in between, is called a cycle, i.e., w is a cycle if it satisfies:
I(w)1 = I(w)|w|+1 = 0 and I(w)j 6= 0, for all j ∈ {2, .., |w|}. When saying “the cycle w” we
will being making reference to either the word w, the itinerary I(w) or the set V (w); the
interpretation will be clear from the context.

There is a set of forbidden words for each cycle w =
(

α1..αn

q1..qn

)

: the word
(

α1..αnβ
q1..qnq

)

is

forbidden for every β 6= δS(α1, q1). Thus, we obtain the following set of forbidden words:

P2 =

{(

α1..αnβ

q1..qnq

)

:

(

α1..αn

q1..qn

)

is a cycle and β 6= δS(α1, q1)

}

.

ST is defined by the set of forbidden words P = P1 ∪ P2. P1 is finite but P2 may be
infinite, depending on the behaviour of the machine. For example, if the machine never
visits a cell more than once, P2 is empty. If the number of cycles is finite, P2 is finite. In
both cases, the set of forbidden words of ST is finite and therefore ST is a SFT. With some
work it is possible to prove the converse [7], i.e., if ST is a SFT, then the number of cycles
is finite. If ST is a SFT, the machine has significant movement restrictions that prevent
it from making long cycles. What happens when ST is sofic? In [7] the one dimensional
case was studied and it was established that if ST is sofic, then it is of finite type too. Is
this also true in Zk? What is the relation between the complexity of ST and the machine
behaviour? In order to answer these questions we need more information about the relation
between ST , T and the automaton that recognises ST . Let us recall some definitions.

Definition 1.3. A Deterministic Finite Automaton (DFA) is a 5-tuple M = (A,Ω, λ, o0, F )
where A is the input alphabet, Ω is the states set, λ : A×Ω → Ω is a partial function called
transition function, o0 ∈ Ω is the initial state and F is the set of final states.

A labelled graph, GM , is associated to M . Its set of vertices is Ω, and the label of an
edge (e, f) is ‘a’ if and only if f = λ(a, e).

The language recognised by M consists of all words w in A∗ such that there exists a
path in GM with label w, starting on vertex o0 and finishing on a vertex f ∈ F .

If a language L is the factors language of some subshift, then it is closed for the factor
relation, i.e., if w ∈ L and u is a subword of w, then u ∈ L. Consequently, the automaton
M = (S×Q,Ω, λ, o0, F ) that recognises it can be chosen such that F = Ω. In the following
we will omit the set F from the automata definition.

Definition 1.4. A language is said to be regular if it is recognised by some DFA.

Remark 1.5. Given a vertex ν ∈ Ω, it holds that:

(1) If ν has an input edge labelled by (α, q), then all the exiting edges of ν have a
label of the form (β, δQ(α, q)), with β ∈ S, because the next state of the machine is
uniquely determined by α and q and it is δQ(α, q).

(2) Since every word in L(ST ) defines a unique path in GM , Equation (1.2) implies that
ν has only one exiting edge if and only if every path from o0 to ν corresponds to an
itinerary that has already visited its last cell. Otherwise, ν has exactly |S| exiting
edges.
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(3) The last assertion is not valid when |S| = 1. But, in this case, ST is of finite type,
more precisely, it is a finite set composed by eventually periodic sequences. The
cycles exist in a finite quantity. The vertices of the automaton that recognises it
have degree 1 (except for o0)

This remark allows us to characterise the one head machines whose t-shift is sofic.

2. When ST is sofic

Let us consider a metric in Z
k as follows. Given two points: p = (p1, p2, .., pk) and

g = (g1, g2, .., gk), the distance between p and g is

d(p, g) =

k
∑

i=1

|pi − gi|.

Thus the set B(p, n) = {g ∈ Z
k : d(p, g) ≤ n} represents the ball of radius n and

centre p.

Lemma 2.1. The number of cycles of L(ST ) is finite if and only if the distance that a cycle
can attain form the origin is bounded.

Proof. Let us suppose that every cycle is contained in a ball of radius n. The number of

configurations defined in this ball is |S|2nk

× 2nk × |Q|. Each configuration corresponds to
at most one cycle, hence there is a finite number of cycles.

The following theorem has already been proved for k = 1 in [7].

Theorem 2.2. ST is sofic if and only if the number of cycles of L(ST ) is finite.

Proof. In one direction, the result is trivial since every SFT is sofic.
Let us suppose that ST is sofic. Therefore, there exists a DFA M = (S × Q,Ω, λ, o0)

that recognises it and satisfies the conditions given in Remark 1.5. Let us suppose that the
length of the cycles is arbitrary large. Lemma 2.1 implies that for every natural n there
is a cycle that attains a distance bigger than n from its initial cell: 0. Let us consider the
set of cycles that makes this for n = |Ω|. Let us choose from this set the shortest cycle
w = w1..wm =

(

α1..αm

q1..qm

)

.

Given r < m, we can use Remark 0.3, with u = w1..wr−1 and v = wr..wm and the fact
that I(w)|w|+1 = 0 to obtain that:

I(w)r = −I(wr..wm)m−r+1 6= 0. (2.1)

The cycle w corresponds to a unique path in the graph GM : o0o1, .., om. From Re-
mark 1.5, the vertex om has an exit degree equal to 1, because the last cell of w (cell 0) has
already been visited.

Let l ≤ m be such that d(I(w)l, 0) > n. Since for every j, d(I(w)j , 0) ≤ j − 1, we can
assert that l−1 > n. In consequence, there must exist two repeated vertices between o1 and
ol−1: oi = oj . Thus o0o1..oioj+1..om is also a path in GM , its label is u = w1w2..wiwj+1..wm,
its length is t = m − j + i, and I(u)t+1 has already been visited. This implies that there
exists r such that I(u)r = I(u)t+1. By using Remark 0.3 over u decomposed by u1..rr−1

and ur..ut, we obtain that I(ur..ut)t−r+2 = 0, i.e., ur..ut is a cycle of length t− r + 1.
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If r > i, ur..ut = wr+j−i..wm which, from Equation (2.1), is not a cycle, therefore r ≤ i.
In summary, 1 ≤ r ≤ i < j < l < m. Now, we use Remark 0.3 again over ur..uk−1 and
uk..ut, with k = l − j + i, and we obtain

I(ur..uk−1)k−r+1 = −I(uk..ut)t−k+1

= −I(wl..wm)m−l+1, since k > i,

= I(w)l, due to Equation (2.1).

Hence d(I(ur..ut)k−r+1, 0) = d(I(w)l, 0) > n. We conclude that ur..ut is a cycle that
attains a distance bigger than n and is shorter than w, which is a contradiction.

This implies that the machines whose t-shift is sofic are very simple: they cannot revisit
far cells; the diversity of cycles they can do is finite; its t-shift is also a SFT; and all the
closed itineraries can be putted inside a finite ball. Since the state of the visited cells can be
interpreted as the external “remembers” of the machine, this ball represents its attainable
memory. Sofic machines have in fact a finite memory.

Corollary 2.3. If ST is sofic and V (ψ(c, g, q)) is infinite, then the number of times that the
machine visits each cell is bounded by a finite constant which only depends on the machine.

Proof. Let r be the radius of a ball containing all the closed trajectories. The number of
configurations defined on this ball is finite, say N . Let x = (c, g, q) be an initial configura-
tion. If some cell p is visited more than N times during the evolution of T on x, we can
assert that the machine remained inside the ball of radius r and centre p from the first to
the last time that it visited p. Within this time, some configuration of the ball has appeared
two or more times. Which means that the system has fallen in a periodic point and that
its complete itinerary is contained in a finite set.

When a sofic machine starts over a periodic coloration, its behaviour is particularly
simple, as the following theorem establishes. This theorem is proved in [7] for k = 1.

Theorem 2.4. If ST is sofic and c is periodic except for a finite number of cells, then
ψ(c, g, q) is eventually periodic for every g ∈ Z

k and q ∈ Q.

Proof. We can suppose, without loss of generality, that the initial position of the machine
is 0. Let q0 be its initial internal state, and c : Z

k → S a periodic coloration except for a
finite number of cells. This means that c is equal to some periodic coloration d except for
a finite set of cells E.

Now, let us study y =
(

αi

qi

)

i∈N
= ψ(c, 0, q0). Two possibilities appear: V (y) can be finite

or not. If it is finite, (T i(c, 0, q0))i∈N is eventually periodic, and so is y.
Let us analyse the case when V (y) is infinite. Let n be the last iteration in which a

cell of E is visited. This means that after iteration n every cell g either has been already
visited or its state is given by d(g).

Coloration d consists in the repetition of a pattern defined on a rectangle R. Let us
assume that R = {0, .., r1} × {0, .., r2} × · · · × {0, .., rk}, where ri ∈ N for all i. This means
that the value of d at cell g = (g1, g2, .., gk) is equal to d(g1mod r1, g2mod r2, .., gkmod rk).

Now let M = (S×Q,Ω, λ : (S×Q)×Ω → Ω, o0) be the automaton that recognises ST .
We define M = (S ×Q,Ω×R, λ, (o0, 0)) where λ : (S ×Q)× (Ω×R) → (Ω×R) is defined
by:

λ(
(

α
q

)

,
(

µ
f

)

) =
(

ν
g

)

⇔ λ(
(

α
q

)

, µ) = ν and (∀i) fi = (gi + δD(α, q)i) mod ri.
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M recognises the same language than M . Moreover, it registers the position of the
machine modulo R, i.e., if ((oi, g

i))i∈N is the sequence of vertices in GM whose label is y,

then, for every j ∈ N, I(y)j+1 = gj modulo R.
From Remark 1.5, we distinguish two kinds of vertices in GM : either deg((oi, g

i)) = 1

or deg((oi, g
i)) = |S|. If deg((oi, g

i)) = |S|, we know that I(y)i+1 is being visited by
the first time at iteration i + 1. If in addition i > n, we can assert that c(I(y)i+1) =
d(I(y)i+1) = d(gi). Consequently, the label of the arc ((oi, g

i), (oi+1, g
i+1)) is d(gi), this

means that (oi+1, g
i+1) is uniquely determined by (oi, g

i). Thus starting from (on, g
n) only

one sequence of vertices of GM can be taken, hence ((oi, g
i))i∈N is ultimately periodic and

so is y.

These two theorems can be easily proved for other regular grids than Z
k, for example,

Cayley graphs of groups.

3. Pebble automata with one symbol

Pebble automata are two dimensional one head machines that cannot write but are
provided with a set of “pebbles” that they can drop and recover in order to mark their way.
They could be seen as a particular kind of one head machine by assimilating the pebbles as
part of the internal state and space symbols. The following definition is adapted from [2]
for the particular case where the space has only one symbol.

Definition 3.1. A Pebble Automata is a 3-tuple (Q, δ, l) where:

• Q is a finite set, representing the internal state of the machine,
• l represents the number of pebbles, and
• δ = (δP , δQ, δD) is the transition function, where

– δP : Q×{0, 1}l ×{0, 1}l → {0, 1}l determines the pebbles that will be taken or
dropped,

– δQ : Q× {0, 1}l × {0, 1}l → Q determines the new machine state, and

– δD : Q×{0, 1}l ×{0, 1}l → D determines the moving direction of the machine.

Moreover, δP satisfies that for every q ∈ Q and p, r ∈ {0, 1}l, δP (q, p, r) ≤ p + r; this
assures that the machine can only act over pebbles that the machine is carrying or that are
on the current machine position.

The configuration of the system is given by an assignment of pebbles to each cell
c : Z

2 → {0, 1}l, a position g ∈ Z
2, a state q ∈ Q, and the pebbles reserve of the machine

p ∈ {0, 1}l. Thus, the phase space is X = ({0, 1}l)Z
2

× Z
2 ×Q× {0, 1}l.

The global transition function A : X → X is defined by A((c, g, q, p)) = (c′, g′, q′, p′),
where

• q′ = δQ(q, c(g), p),
• p′ = (p+ δP (q, c(g), p)) mod 2,
• g′ = g + δD(q, c(g), p),
• c′(g) = (c(g) + δP (q, c(g), p)) mod 2 and for all u 6= g, c′(u) = c(u).1

The system starts with the empty configuration c(u) = (0, 0, .., 0) and all the pebbles
on the machine: p = (1, 1, .., 1).

1let us remark that c(g) + p = c′(g) + p′.
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In [2], the behaviour of these automata is studied for the case in which the number
of symbols is 1. The object of doing this is to analyse the ability of the automaton to
explore the plane without external help. They prove that this task is impossible when the
automaton has less than 3 pebbles. Delorme and Mazoyer prove this by showing that the
d-pebble automata have serious restrictions on their movements when d ≤ 2. This can be
illustrated within the present theory too. 0-pebble automata are a trivial case. Since they
have no pebble, they are actually one head machines where |S| = 1, and k = 2. Thus the
number of cycles is bounded and, independently from the initial state q0 ∈ Q, the machine
will always finish by making repetitive movements.

3.1. 1-pebble automata

As we said before, pebble automata can be seen as a particular case of one head machine
by assimilating the pebbles as part of the internal state of the machine and symbols of the
space. This means to define a one head machine M = (S,Q, 2, δ) where Q = Q × {0, 1},
S = {0, 1} and δ is defined appropriately. The second component of the state represents
the pebble reserve of the machine. The symbol represents the pebble content of the cells.

The difference between pebble automata and one head machines is that in the pebble
automata the total number of pebbles in the system is fixed and constant. A 1-pebble
automaton is a one head machine that works over a particular set of configurations: those
with exactly one pebble in the whole space.

Thus the shift of a pebble automata is smaller than the shift of its corresponding one-
head machine. In the pebble automata, not only cycles define forbidden words. If the
pebble automata put the pebble somewhere, it cannot find it elsewhere. This fact induces
additional forbidden words. First, P0 forbids to find the pebble in the plane when the
pebble is on the machine.

P0 =

{(

α

q

)

: q = (q, 1) ∧ α = 1

}

.

Second, let w =
(

α1..αn

q1..qn

)

∈ ({0, 1} × Q)∗ be such that I(w)i 6= 0 for every i ≥ 2. In

this case, we know that if at the beginning of w the initial cell contains the pebble, i.e.,
α1 = 1, and the machine does not take it (δP (α1, q1) = 0), then αi = 0 for all i ≥ 2.
The same happens if the machine has the pebble and drops it at the beginning, i.e., if
α1 = 0 ∧ δP (α1, q1) = 1. In these cases, we can add the forbidden word

(

α1..αn1

q1..qnqn+1

)

. This

defines the following set of forbidden words:

P ′
3 =

{

w =

(

α1..αn1

q1..qnqn+1

)

: α1 + δP (α1, q1) = 1 ∧ (∀i ≥ 2) I(w)i 6= 0

}

.

We only need to consider a finite part of P ′
3, because if the machine has no pebble, it

behaves like a 0-pebble automaton where the length of cycles is bounded, say by M , and
therefore longer trajectories do not visit 0. Thus forbidden words longer than M can be
replaced by the word

(

00..01
q1..qM

)

. We obtain a new set of forbidden words:
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P3 =

{

w =

(

α1..αn1

q1..qnqn+1

)

: α1 + δP (α1, q1) = 1 ∧ (∀i ≥ 2) I(w)i 6= 0 ∧ n ≤M

}

⋃

{(

00..01

q1..qM

)

: q1 = (q1, 0)

}

.

Finally, each time we have a word w =
(

0..01
q1..qn

)

where q1 = (q1, 0), we know that this

pebble must have been dropped by the automaton at some past iteration, then w is a suffix
of a cycle that begins by leaving the pebble on the plane. We thus obtain the forbidden set
P ′

4.

P ′
4 =

{(

0..01

q1..qn

)

: q1 = (q1, 0) ∧ (∀v ∈ C0)

(

0..0

q1..qn−1

)
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}

.

Where C0 denotes the set of cycles that begins by leaving the pebble and 4 is the suffix
relation. Again, only a finite part of P ′

4 is enough, because we know that every word longer
than M is not suffix of some cycle. Hence, we consider the set P4:

P4 =

{(

0..01

q1..qn

)

: q1 = (q1, 0) ∧ (∀v ∈ C0)

(

0..0

q1..qn−1

)

64 v ∧ n ≤M

}

By avoiding these words, we assure that the pebble is always found exactly where it
was dropped.

Let us recall now the definition of the set P2:

P2 =

{(

α1..αnβ

q1..qnq

)

:

(

α1..αn

q1..qn

)

is a cycle and β 6= α1 + δP (α1, q1)mod 2

}

We distinguish three types of cycles, depending on the position of the pebble at the
beginning of the itinerary: a) the pebble is left at 0 (α1 + δP (α1, q1) = 1), b) the pebble is
not at 0 nor on the machine (α1 = 0 and q1 = (q, 0), q ∈ Q), c) the pebble is carried by the
machine ((α1 + δP (α1, q1) = 0 ∧ q1 = (q, 1)) ∨ α1 + δP (α1, q1) = 2).

There is only a finite number of cycles of type a). If the cycle is of type b), there are two
cases. First, the pebble does not appear in the cycle, it behaves like a 0-pebble automaton,
therefore there is only a finite quantity of these cycles. Second, the pebble is found during
the cycle. In this case, by avoiding the forbidden words of P3 and P0 we prevent from
finding the pebble at position 0. Finally, if the cycle is of type c), two cases appear again.
First, the pebble is over the machine during the whole cycle; in this case, the set P0 assures
that the pebble will not be found at the initial cell. Second, the machine drops the pebble
somewhere; in this case, by avoiding the words of P3 we preclude the possibility of finding
the pebble at 0. It follows that, only a finite number of words of P2 are necessary. The
union of P0, P1, P3, P4 and a finite part of P2 is a forbidden set for SA. We conclude that
SA is of finite type.

Remark 1.5 is not valid in this case because we are using information that is not available
for general one head machines. But Remark 1.5 is used in Theorem 2.4 to have vertices
with exit degree equal to one. In L(SA) only short words that do not contain the pebble
can be enlarged in two different ways, because words longer than M that has no the pebble
will never have it; and if a word contain the pebble, its future is uniquely determined. This
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means that after iteration M , all the attainable vertices has degree 1. Thus the proof of
Theorem 2.4 applies to the present case and we can conclude that the automaton will always
finish by making a repetitive movement.

3.2. 2-pebble automata

In these automata, trajectories as those of Figure 1 can occur, as it is shown in [2].
Theorem 2.2 can be used to assert that, in this case, SA is not sofic. We can wonder about
the complexity of SA. Delorme-Mazoyer proved that these automata cannot explore the
plane, this suggest that its complexity cannot be very high.

Figure 1: A trajectory that may contain cycles of arbitrary length. The automaton comes
from below, it finds the pebble on top and comes back.

4. Discussion

The results of this paper apply to very simple machines. Sometimes, proving the
hypothesis of our theorems is not easy. Nevertheless, we think that the present paper is
a first step in the construction of effective tools to understand the dynamics of one head
machines.

The study of pebble automaton was not easy, the principal reason is that pebble au-
tomaton do not feet with the definition of one head machine. Delorme and Mazoyer obtained
the same results through an analysis of similar complexity

The next step may be to study machines with a context free language. In such a
machine, the cycles may be very long, but they probably have a simple structure. Maybe
the 2-pebble automata with one symbol is in this class. It would be important to study the
dynamical properties of these machines.

Langton’s Ant is a one head machine that, apparently, always falls in a periodic move-
ment when it starts with a coloration with a finite number of black cells. Unhappily the
cycles that Langton’s Ant can do can be very complicated and arbitrarily long, hence our
results do not apply. But maybe the ideas presented in the proofs may help to understand
Langton’s Ant behaviour.
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