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A Maxwell’s demon in the generation of an intense and slow guided beam
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We analyze quantitatively the generation of a continuous beam of atoms by the periodic injection
of individual packets in a guide, followed by their overlapping. We show that slowing the packets
using a moving mirror before their overlapping enables an optimal gain on the phase space density of
the generated beam. This is interpreted as a Maxwell’s demon type strategy as the experimentalist
exploits the information on the position and velocity of the center of mass of each packet.
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Over the last thirty years, there has been very signifi-
cant and impressive progress in the experimental ability
to increase the phase space density of atomic clouds, en-
abling the quantum degenerate regime to be reached [1].

All these advances can be revisited in terms of infor-
mation entropy [2]. The powerful laser cooling technique
[3] decreases dramatically the temperature and the en-
tropy of an atomic cloud, at the expense of an increased
disorder for the photons leaving the laser mode through
spontaneous emission to populate other modes. The en-
tropy of the global system made of {atoms+photons}
increases as expected from the second law of thermo-
dynamics [4]. In the evaporative cooling technique [5],
the disorder of the system made of all particles involved
from the beginning of the evaporation ramp increases
each time a particle is evaporated, since this atom is no
more localized in the trapping region. Accordingly, this
technique yields a decrease of entropy for the subsystem
made of the remaining trapped particles. Some of those
techniques have also been implemented on atomic beams
[6].

An optimized scheme for the implementation of infor-
mational cooling has been recently proposed in Ref. [7]
and experimentally demonstrated in Ref. [8]: in this
scheme, the increase of entropy of the radiation field in
the scattering of a photon is exactly compensated by the
reduction of entropy for the trapped atoms. Another
strategy to increase the phase space density consists in
changing adiabatically, and therefore isentropically, the
density of states experienced by the atoms as demon-
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FIG. 1: (Color online) Schematic representation of the gener-
ation of a continuous beam by injecting packets into a guide
(a), and by slowing them with a moving mirror (velocity V )
before their injection (b).

strated in [10]. The gain in information results from the
transfer of population in the new set of low energy lev-
els. The entropy S is simply related to the phase space
density ρ by S = −NkB log ρ + S0. If the shape of the
confining potential is modified adiabatically, S remains
constant but S0 changes which modifies in turn the phase
space density ρ [9, 10].

Conversely, information can be used directly to in-
crease the phase space density. This is realized in the
stochastic cooling technique applied on a beam of charged
particles in a storage ring [11]. Taking advantage of the
particle’s charge, information is extracted in one place
and an adapted feedback action in another place is ex-
erted later on. This technique seems at first sight to
violate the Liouville theorem which states the incom-
pressibility of phase volume when only conservative forces
are involved. However particles being point like, there
is a lot of empty space between them. Each particle
can in principle be manipulated individually to increase
the phase space density. This requires all information
about position and velocity of the particles. Such a pro-
cedure resembles Maxwell’s demon thought experiment
[12]. There is no violation of the second law of thermody-
namics since the measurement performed by the demon
implies an entropy increase [13].

It is definitely more difficult to extract information on
a beam made of neutral particles. We show in this ar-
ticle that a recently published optimization [14] of the
technique presented in Ref. [16] to generate a continuous
beam by periodically injecting packets of atoms in a guide
is reminiscent of Maxwell’s demon strategy. The gener-
ation of an intense and slow guided beam involves two
conflicting requirements: the high flux implies coupling
packets at a high repetition rate, and the low velocity
requirement limits this rate. An upward potential hill
can be used to slow down the beam [6]. However, a bet-
ter strategy from the point of view of the phase space
density of the generated beam consists in slowing down
the packets by letting them undergo an elastic collision
with a moving potential barrier before their overlapping
[14, 15] (see Fig. 1). The reason why this latter scheme
can be better than the former one in terms of entropy is
that it corresponds to the realization of a true Maxwell’s
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demon with the use of information on the center of mass
of the packet before the overlapping.

For the sake of simplicity and without loss of general-
ity, the argument is presented quantitatively for a one-
dimensional system. However, all results derived in this
paper are valid when one takes into account explicitly
the transverse degrees of freedom, as long as the trans-
verse confinement is not modified or only modified adi-
abatically by the presence of the mirror, and the initial
velocity dispersion is the same on all degrees of freedom.

We assume the successive packets to be identical and
uniformly distributed over a rectangular surface in the
one-dimensional phase-space. The packets are then char-
acterized by four parameters: the number of atoms N ,
the initial size ∆x, the velocity dispersion ∆v and the
center of mass velocity vi. The phase space density of a
given packet reads:

ρp =
N~

m∆x∆v
, (1)

where m denotes the mass of the atoms. Figure 2(a)
represents a plot of ρp in the one-particle phase space
at different times. As expected from the Liouville the-
orem, the surface occupied by the packet remains con-
stant. However its size in position space increases with
time as a result of the velocity dispersion, or in other
terms, velocity-position correlations are produced in the
course of the time evolution of the packets. We con-
sider such packets launched periodically with a constant
time separation τ . After a sufficient duration, they over-
lap, thermalize and form a continuous beam [16]. This
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FIG. 2: (Color online).Representation in the single-particle
phase space of one-dimensional atomic packets periodically
injected in a guide. a) in the absence of slowing b) in the
presence of slowing with the mirror moving at a velocity V
(dashed line). For a sufficiently long propagation distance,
packets have merged and the thermal equilibrium for the cor-
responding beam is reached.

beam in thermodynamic equilibrium is characterized by
an atomic density N/(viτ) and the same velocity disper-
sion ∆v as the one of the packets [17]. The phase space
density of the thermalized beam is given by:

ρ =
N~

mviτ∆v
. (2)

The factor term N/viτ corresponds to the mean atomic
density of the beam. From Fig. 2(a), we immediately
conclude that ρ < ρp. This inequality reflects the Liou-
ville theorem. It can be interpreted physically using the
concept of information entropy [2]. Before overlapping,
the packets are distinguishable (viτ > ∆x), therefore the
center of mass of each packet is well-defined. The overlap-
ping accompanied by elastic collisions between successive
packets corresponds to a loss of information on the cen-
ter of mass of the packets. This merging process yields
an increase of entropy or equivalently a decrease of the
mean phase space density of the beam generated from
the packets compared to the one of each packet.

An important feature of Eq. (2) is that the mean ve-
locity of the packet enters explicitly the expression of the
phase space density of the beam. In Ref. [14], this veloc-
ity dependence was exploited to realize a slow and intense
guided atomic beam. Each atomic packet was slowed
down by means of a moving mirror well-synchronized
with the motion of the atomic packet. The overlapping
occurred after this manipulation of each packet. This ex-
perimental trick permits one to ensure a high flux while
having, in the end, a very low mean velocity for the beam
generated from the slowed packets.

Such a specific action on each packet is reminiscent of
the Maxwell’s demon thought experiment. In Maxwell’s
scheme, the apparent violation of the second law of ther-
modynamics is made by exploiting information about
particle’s velocity. Using a moving mirror, the experi-
mentalist acts as a Maxwell’s demon on the effective gas
made of the center of mass of the packets by using all the
information on the center of mass (position and velocity)
to synchronize the motion of a moving mirror with which
the packet will undergo an elastic collision. The macro-
scopic mirror absorbs the microscopic momentum kick
due to the reflection of the packet in the mirror’s frame.

The reflection of a succession of slowed packets is rep-
resented on Fig. 2(b). In the single-particle phase space,
it corresponds essentially to a translation while keeping
its volume constant. The phase space density of the beam
generated from those slowed packets is given by

ρ′ =
N~

m(2V − vi)τ∆v
= ρ

vi

(2V − vi)
> ρ, (3)

where (2V − vi) represents the velocity of the center of
mass after its interaction with the moving mirror. For
the same repeating rate τ−1, a significant gain on the
phase space density of the generated beam is therefore
achievable.

The upper bound on phase space density of the beam
generated from packets is given by the phase space den-
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sity of each packet: ρ′ < ρp. This holds even if one
uses time dependent potentials to manipulate them be-
fore their overlapping. In this context, there is no pos-
sible strategy to overcome this limit [2], since we do not
use for each packet information at a microscopic scale i. e.
on atoms individually.

For a given set of packet parameters (N, vi, ∆v, ∆x),
one may wonder what is the optimum choice of mirror
velocity V to maximize the phase space density ρ′ of the
beam generated from the slowed packets, and what is
the expression for this optimum depending on the exper-
imental parameters.

To answer those questions, we will consider a specific
example which contains all the relevant physical ingredi-
ents. As mentioned above, we model the initial packet
by a uniform phase space density with an initial rect-
angular shape. The coordinates of the four vertices are
(∆x/2, vi+∆v/2), (−∆x/2, vi+∆v/2), (∆x/2, vi−∆v/2)
and (−∆x/2, vi −∆v/2). The mirror velocity V has two
constraints: the lowest velocity of the initial packet needs
to be larger than the mirror velocity vi −∆v/2 > V , and
the lowest final velocity after interaction with the mirror
should be positive to ensure the propagation of the beam
in a well-defined direction 2V − vi − ∆v/2 > 0. Let us
introduce the dimensionless parameters y = ∆v/vi and
z = V/vi that are related respectively to the packet and
the mirror. The two previous conditions on the mirror
velocity are recast in the form:

1

2
+

y

4
≤ z ≤ 1 − y

2
. (4)

The flux of the continuous beam resulting from the
overlapping of the periodically injected atomic packets is
all the more important that the time period τ between
two successive packets is small [14]. However, τ can-
not be chosen arbitrary small since the mirror is moving
faster than the slowed packets and should not push and
thus accelerate some of them while interacting with the
next packet. In the following, we denote τmin the mini-
mum repeating time that enables the mirror to slow down
a given packet while not affecting the preceding slowed
packet. This quantity depends on (∆x/vi), y and z. To
work out its explicit expression, we model the mirror by
an infinitely high and thin potential barrier. The mir-
ror is periodically moving at a velocity V over a distance
allowing the slowing of all atoms of each packet and we
assume that it acts on a given packet as soon as it is
released (see Fig. 2b). We find:

τmin(y, z) =
∆x

vi

(z − 1 − y/2)

(2 z − 1 − y/2) (z − 1 + y/2)
(5)

Using this result with Eqs. (1) and (3), we infer the
maximum increase in phase space density:

Rmax(y, z) =
ρ′max

ρp

=
∆x

(2V − vi)τmin(y, z)
. (6)

For given experiment, the dimensionless parameter y
is fixed. The optimum value of the mirror velocity V ∗

is obtained by maximizing Rmax(y, z) as a function of
z. Taking into account the constraints (4), the equation
∂Rmax(y, z)/∂z = 0 gives a unique solution z∗(y):

V ∗ = viz
∗(y) =

vi

6

(

2 + y +
√

2
√

2 − y − y2

)

, (7)

and the domain in y for which a solution exists is: y <
2/3. This condition simply means that the initial mean
velocity has to be large enough compared to the velocity
dispersion, as intuitively expected.

As illustrated on Fig. 3(a) by plotting z∗(y) from
Eq. (7), a remarkable feature of the optimal velocity for
the mirror is that it is nearly constant over its validity
domain and approximately equal to 2vi/3. We conclude
that an optimal use of the mirror technique permits to
gain a factor on the order of three on the phase space
density generated from the packets compared to the value
obtained in the same conditions but in the absence of the
mirror.

Figure 3(b) shows that when ∆v/vi tends to zero, the
phase space density of the continuous flow tends to its
upper bound, i.e. the phase space density of the individ-
ual packets. This corresponds to a situation where the
slowed packets cover the single atom phase space in a
quasi compact manner.

y0.1 0.2 0.3 0.4 0.5 0.6

z
∗

0

0.2

0.4

0.6

0.8

1

(a)

y0.1 0.2 0.3 0.4 0.5 0.6

R∗

max

0

0.2

0.4

0.6

0.8

1

(b)

FIG. 3: (a) The optimal mirror velocity z∗(y) = V ∗/vi nor-
malized to vi is plotted as a function of the dimensionless
parameter y = ∆v/vi and (b) the corresponding maximum
phase space density R∗

max
= Rmax(y, z∗(y)) = ρ′/ρp of a beam

generated from the packet after their optimal slowing down
and normalized to the packet initial phase space density, is
plotted as a function of y.
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In practice, two effects tends to reduce the gain on
the phase space density of a beam generated from slowed
packet compared to the one without slowing [14]: (i) the
finite thickness of the mirror, and (ii) a free propagation
of the packets before their interaction with the mirror.
We evaluate separately their effect in the following.

We denote ∆m the thickness of the mirror. For ex-
ample, ∆m ∼ 10 cm in the experiment described in
Ref. [14]. The calculations performed previously can be
readily adapted to take into account the size of the mir-
ror. In the limit y → 0, the maximum gain on phase
space density R′

max(y, z∗(y)) saturates to 1/(1+∆m/∆x).
Indeed, the incompressible distance ∆m dictates an upper
limit on the achievable atomic density. In addition, the
optimal mirror velocity V ∗ tends to vi as ∆m increases,
which reflects the reduction of the gain on phase space
density resulting from the limit on the atomic density.

Another experimental parameter to be considered lies
in the fact that the atomic cloud cannot usually be slowed
down just after its injection, but has to propagates freely
over a distance D before interacting with the mirror [18].
For example, one has D ∼ 25 cm in Ref. [14]. In this
instance and assuming that ∆m = 0 for sake of simplicity,
the general expression for the maximum of the ratio ρ′/ρp

takes the form:

R′

max(y, z, D) =
Rmax(y, z)

1 + y
D

∆x

. (8)

This result just reflects the fact that the packets have
spread during their free propagation before interacting
with the mirror, which reduces as expected the gain com-
pared to the one without free flight. From Eq. (8), we
conclude that the optimal velocity V ∗ is the same as the
one calculated Eq. (7).

In conclusion, we have investigated quantitatively an
optimal strategy to produce a continuous beam with in-
dividual packets, in order to maximize the phase space
density of the beam. The use of a mirror to slow down
the packets before their overlapping can be interpreted
as a Maxwell’s demon type strategy, where the mirror
acts as an active valve that modifies the properties of the
packet by reducing its mean velocity. This study exem-
plifies, in the context of an atomic beam made of neutral
atoms, the usefulness of the link between information,
entropy and phase-space densities for designing optimal
strategies.
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and D. Guéry-Odelin, Phys. Rev. A. 72, 033411 (2005).

[7] A. Ruschhaupt, J. C. Muga and M. G. Raizen, J. Phys.
B: At. Mol. Opt. Phys. 39, 3833 (2006).

[8] G. N. Price, S. T. Bannerman, K. Viering, E. Narevicius,
and M. G. Raizen, Phys. Rev. Lett. 100, 093004 (2008).

[9] P. W. Pinkse, A. Mosk, M. Weidemüller, M. W.
Reynolds, T. W. Hijmans, and J. T. Walraven, Phys.
Rev. Lett. 78, 990 (1997).

[10] D. M. Stamper-Kurn, H.-J. Miesner, A. P. Chikkatur, S.
Inouye, J. Stenger, and W. Ketterle, Phys. Rev. Lett. 81,

2194 (1998).
[11] S. van der Meer, Rev. Mod. Phys. 57, 689 (1985).
[12] J. C. Maxwell, Theory of Heat (Longmans, London,

1871), 4th edn, pp. 328-329.
[13] L. Szilard, Z. Phys. 53, 840 (1929).
[14] G. Reinaudi, Z. Wang, A. Couvert, T. Lahaye and D.
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