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Abstract This paper deals with the vibration of granular materials due

to cyclic external excitation. It highlights the effect of the acceleration on

the settlement speed and proves the existence of a relationship between set-

tlement and loss of contacts in partially confined granular materials under
vibration. The numerical simulations are carried out using the Molecular Dy-

namics method, where the discrete elements consist of polygonal grains. The

data analyses are conducted based on multivariate autoregressive models to

describe the settlement and permanent contacts number with respect to the

number of loading cycles.

Keywords Granular Materials · Vibration · Contacts · Settlement

1 Introduction

Ballast materials of railway platforms exhibit complex behavior under re-

peated loading. With the increase of vehicle speeds as well as comfort and

safety requirements, understanding the dynamics of these materials is be-

coming a crucial issue. Unlike highly agitated granular materials which can
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be described with the kinetic theory, ballasted layers are generally subjected

to dense flow where the trajectories of grains are correlated and the collisions

cannot be considered as randomly distributed in terms of positions and veloc-

ities. Therefore, such a statistical approach may be inappropriate to predict

the response of railway platforms.

In this research work, the Molecular Dynamics method is used to sim-

ulate granular samples made of polygonal grains under vibration. Since its

introduction by Cundall and Strack [9], this discrete elements method has

proved its viability in describing several mechanisms such as granular mate-

rials transport [20], mixing [7], segregation [6], compaction [23] etc. Coupled

with the experimental approaches, the MD is now recognized as a fundamen-

tal tool to investigate the behavior of dense granular materials. Recently, Lu
and McDowell [19] developed an approach based on the MD to investigate the

permanent displacements in granular beds, made of irregular shaped grains,

under a single loading cycle. The complex geometry was produced using

spherical grains assemblies. Although efficient in terms of grain shapes, this

technique neglects the inertial effects of the overlapping regions. The discrete

element method was also adopted by Lobo-Guerrero and Vallejo [18] on rail-

way platforms to investigate the effect of grain degradation on granular bed

response under cyclic loading. The model took into account the rupture of

grains using a criterion based on the loading modes and force intensities. Sim-

ilar approaches such as the molecular dynamics method was used to simulate

the vibration of confined granular material made of polygonal components

[2; 25]. In this paper, the target is to relate the permanent settlement in

partially confined samples to the loss of contacts using statistical analysis. In

the second section, a brief description of the simulation method is suggested.

The settlement mechanism which represents the residual displacement un-

der sleeper is described through field cases simulation. In the third section,
a causality analysis based on multivariate autoregressive models describing

the settlement and contact loss is conducted.

2 Simulation method

The sample is composed of polygonal grains which are described with a set of

ordered vertices (sα,i)i∈[|1,6|]. The positions of the vertices can be evaluated

using the distances r1 and r2 as well as the orientation θ, which are shown

in figure 1-(a). These parameters follow uniform bounded distributions: r1 ∼

U[rmin,rmax], r2 ∼ U[0.25r1,0.75r1], and θ ∼ U[0;2π].

The interaction between grains takes place when an overlap is detected

(Figure 1-b). The dichotomy method is used to calculate the shortest dis-

tance between the vertices. This leads to the edges which are candidates for

interaction. Among this list of edges, the contact segment which relates the

couple of intersection points is obtained. It defines the tangential component,
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t, of the contact frame and its perpendicular represents the normal compo-

nent, n. The reference point of the frame, o, is defined by the middle of the

above mentioned intersection points. Once the contact frame, the overlap,

and the velocities are known, the contact forces acting on a grain α can be

written as follows:

Fn = F e
n − γnvn

Ft =

{

F e
t − γtvt if ‖Ft‖ ≤ µFn

sign(F e
t )µFn − γtvt if ‖Ft‖ > µFn

(1)

The interaction forces acting on the particles contain elastic terms; by as-

suming uniform pressure and shear stresses along the contact surface, it can

be shown that these elastic forces are linear: F e
n = knux and F e

t = ktuy,

where kn = E
cn(1−ν2) and kt = E

ct(1−ν2) . E and ν are the materials properties

(Young modulus and Poisson’s ratio) whereas the constants cn and ct can

be obtained experimentally using a compression test. The interactions also

enclose viscous terms denoted by the phenomenological constants γn,t which
can be rewritten as dissipation fraction with respect to the critical damping:

γn,t = αn,t

√

mkn,t. Finally, the Coulomb friction is included through the

threshold Ft ≤ µFn, where µ is the friction coefficient. At the same time

the moments are calculated using the contact frame and the contact forces.

The discrete element simulations are carried out with the following param-

eters: density of grains, ρp = 2710kg/m3, Young modulus, E = 46.9GPa,

Poisson’s ratio, ν = 0.25, friction coefficient, µ = 0.8, viscous coefficients,

αn = 0.8 and αt = 0.1, and grain dimensions rmin = rmax = 5 mm (unless

differently specified). It is worthwhile noticing that the interaction with the

wall is described the same way as the interactions between grains.

Using the contact forces between two grains α and β at the reference

point o, it is possible to calculate the moments around the centroid cα using

the identity Mcα
= Mo +Fc×ocα, where Fc is the contact force applied on

the grain α as expressed beforehand in equation (1). The procedure is used

for each component of the sample. Once the moments and interactions are

known, the equations of motion can be integrated with respect to time using

a finite difference scheme [9; 15; 16], according to the Molecular Dynamics

method.

2.1 Sample preparation, loading, and boundary conditions

At the beginning of the process, the grains are subjected to the gravity

field until reaching the full equilibrium. The displacements and rotations

are calculated using the predictor-corrector algorithm [1], where the contact

forces, the moments and the body forces are taken into consideration. Once

the equilibrium is reached, the sample - of width R = 75 mm, height H = 150

mm and number of grains 175 - is subjected to a sinusodal load of the form
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F = F0 + ∆F sin ωt, where ω is the circular frequency, F0 is the initial force

which is taken equal to 0.5kN , and ∆F is the force amplitude. The frequency

and force amplitude vary in such a way that the sleeper covers a wide range

of accelerations around g (gravity). The excitation is applied on the inner

half (0 ≤ r ≤ 0.5R) and upper end (yt=0 = H) of the sample through a rigid

sleeper, unless differently specified. The sides r = R and y = 0 represent the
wall (container), they react to the grains actions as described beforehand.

However, at r = 0, a symmetry condition is simulated by omitting the friction

effect (Figure 2-(a)). Henceforth, this loading case will be termed as partially

confined configuration. The fully confined configuration corresponds to the

case where the excitation is applied on the whole upper end of the sample.

Under repeated loading granular materials undergo large displacements

towards free regions. It is interesting to notice that observations of displace-

ment fields and strains showed that granular materials deform because of

rearrangements of the packing, rather than contact elasticity [24; 8]. Unlike

fully confined samples, where the settlement is mainly due to grain rear-

rangement and overwork, the mobility of grains in partially confined granular

materials is predominant. An experimental work performed by the authors

[13; 14] on irregular ballasted samples showed that the acceleration of the

sleeper plays a key role on the mobility of grains. In both confinement cases,

it has been shown that the settlement increases with the acceleration. In

addition, in case of partially confined samples, a sharp increase in terms of
settlement speed has been noticed when the acceleration exceeds the gravity.

At high level of agitation, the loss of contacts is frequent especially at the

critical plane relating the edge of the sleeper to the wall as can be seen in

figure (2-b).

2.2 Settlement in terms of acceleration and loss of contacts

The simulations conducted herein are performed using polygonal grains in

order to produce a shape which is similar to the micro-ballast used in the

above mentioned study [13; 14]. The obtained numerical results consist of

axial displacement of the sleeper with respect to time. The applied forces

are varied from 0.5 to 3 kN and the frequency is varied from 20 to 40 Hz,

in such a way that the sleeper covers a wide range of accelerations around
the gravity. The grains radii are distributed uniformly from rmin = 5 mm to

rmax = 10 mm. In accordance with the experimental procedure, the settle-

ment under sleeper, hmax is described with a logarithmic law of the form:

hmax(N) = A + B ln(N), with respect to the number of cycles N . This log-

arithmic law seems to be valid for different granular materials under cyclic

loading [3; 21; 22; 26] The parameters A and B depend on different phys-

ical factors such as the degree of confinement, the applied force, and the

frequency. These factors are independent and they can affect individually

the settlement speed. The experimental result revealed that the acceleration
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which depends simultaneously on the applied force and frequency is the best

explicative quantity in terms of correlation. Moreover, it has been shown that

the degree of confinement results in different behaviors in terms of settlement

versus acceleration. The simulations conducted herein produce most of the

experimental features. It can be seen that the partially confined configura-

tions exhibit a critical transition in terms of settlement speed at around 1.4g,
as can be seen in figure (3). This transition has been observed experimen-

tally [13], it is probably due to the loss of contacts which can not be detected

easily with the considered experimental setup. Numerical simulation can pro-

vide some more information regarding the history of the granular material

texture.

Figure (4) shows the variation of the sleeper displacement as well as the

number of contacts with respect to the number of loading cycles, at differ-

ent frequencies. In these particular cases, the number of cycles is limited to

around 25, for clarity, and the applied force amplitude is equivalent to 1.5 kN.

It can be noticed that the settlement is much higher when the acceleration is

beyond the gravity level (f = 40 Hz). On the other hand, it can be seen that

the number of contacts follows the exciting force, in terms of oscillations.

This means that while cyclically loaded, the granular material exhibits local

alternating opening and closure of contacts independently of the acceleration

level. However, it can be seen that there is a difference of about 20% in terms
of permanent loss of contacts when the sleeper undergoes high acceleration.

Under cyclic loading of partially confined sample, the grains flow towards

less loaded regions as can be seen in figure (2-b). More interestingly, it can be

seen in figure (5-a) that during the settlement process, contact openings occur

at a specific region between the front of the sleeper and the wall frontier. In

the same region there is a loss of density as can be seen in figure (5-b).

This critical and localized behavior can be observed during the settlement

process independently of the number of cycles. In the following section, it will

be shown that there is a causality relationship between the loss of contacts

and the settlement speed.

3 Causality relationship between contacts loss and settlement

speed

In order to find out a logical relationship between the responses of gran-

ular materials under vibration, statistical analysis are necessary since the

solution is not analytically determinist. In this section, the objective is to

investigate the causality between the settlement velocity and the loss of con-

tacts. Therefore, we adopt Granger’s approach [12] which was introduced in

econometric in order to forecast possible relationship between discrete time

series. However, this approach can be applied for physical systems providing

accessible responses with respect to time [5]. The model questions whether
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the prediction of a given variable is improved by taking into account its own

history and the history of another variable. The original model concerns only

stationary time signals (time series where the first and second moments are

independent of time) or linear (time series with a stationary rate of change).

More recently, it has been shown [10] that it is possible to conduct causal-

ity testing on non stationary time series if (i) they can be approximated by
tendency functions and (ii) the estimation errors are stationary.

3.1 Causality measurement

The physical quantities of interest are the settlement under sleeper, h(t), and

the number of permanent contacts, z(t). In order to illustrate the causality

analysis, a granular sample consisting of polygonal grains of diorite with an

average size of 5 mm is considered. The applied force in this particular case

is of frequency 60 Hz and amplitude 1kN . The time series are extracted

from the numerical results by averaging over the loading cycles as follows:

z(n) =< z(t) >= 1
T

nT
∫

(n−1)T

z(t)dt and h(n) =< h(t) >, where T is the loading

period (Figure 6). The dynamic relationship between the above mentioned

variables are then described with a multivariate autoregressive model of the

order l as follows:

h(i) = hr(i) +

l
∑

k=1

akh(i − k) +

l
∑

k=1

bkz(i − k) + ǫh(i)

z(i) = zr(i) +

l
∑

k=1

ckh(i − k) +

l
∑

k=1

dkz(i − k) + ǫz(i)

(2)

where hr(i) = α + βLn(i) and zr(i) = χ + γi are the tendency functions

with respect to the number of cycles, and ǫ are the error terms, which are

assumed to be independent.

In accordance with the Granger’s method, a comparaison in terms of

accuracy is conducted between the above description (2) and the following

model:

h(i) = ĥr(i) +

l
∑

k=1

âkh(i − k) + eh(i)

z(i) = ẑr(i) +
l

∑

k=1

d̂kz(i − k) + ez(i)

(3)

where ĥr(i) = α̂ + β̂Ln(i) and ẑr(i) = χ̂ + γ̂i are tendency functions with

respect to the number of cycles, and e are the error terms which are assumed

to be independent. The main idea is to compare the accuracies of the two
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models. If the description (2) improves the estimation of the physical quantity

h as compared to the description (3), that means that z causes h, since z

is an explicative variable of h. The non causality hypothesis is expressed by

H0 : b1 = b2 = ... = bl = 0. Henceforth, the term “H0” will be used to refer

to the above mentioned hypothesis. When this hypothesis is valid, the first

term of the system (2) is reduced to the first term of (3). Therefore, it is
possible to calculate the causality measure of z and h based on the above

mentioned autoregressive models as follows:

F = (N − 2l − 2)Ln
(

Σes

Σǫs

)

(4)

where N denotes the length of the times series, Σes
and Σǫs

represent the

auto-variances of es and ǫs where s = h, z. Under the nullity hypothesis H0,

the measure Fz→h has an asymptotic χ2(2l) distribution [11]. In order to

reject the hypothesis H0 with a preselected risk level α, the calculated χ2

should be higher than the value of the standard distribution of parameters

α and l).

3.2 Estimation coefficients

The causality measure between the considered signals can be calculated using

the error terms ǫs and es, where s = h, z. Therefore, it is necessary to estimate

first of all the coefficients of the suggested models and deduce the error terms.

This task can be accomplished using the recursive least square method [4].

In this section, we adapt our description to the algorithm by expressing the
signals under consideration as follows:

d(i) = Atx(i) + u(i) (5)

where d(i) is an output corresponding to h, z or both of them as will be seen

later on, A is a vector which encloses the unknown estimation parameters
and u(i) represents the estimation error at the step i. In the case of model

(2), these vectors can be written as an input x(i) = [1, Ln(i), h(i−1), .., h(i−

l), 1, i, z(i− 1), .., z(i− l)] , an unknown A = [α, β, a1, .., al, χ, γ, b1, .., bl] and

error terms u(i) = ǫh(i). Similarly, in the case of model (3), these vectors can

be written as x(i) = [1, Ln(i), h(i − 1), .., h(i − l)], A = [α, β, a1, .., al] and

u(i) = eh(i). In order to estimate the unknown parameters of the model (5),

the least squares criterion is used:

R =

n
∑

i=0

λn−i (u(i))
2

(6)

Solving the problem consists in minimizing the quantity R with respect to

the unknown vector A. This leads to a recursive algorithm (appendix), which

consists in starting from an initial set of parameters A = 0, an initial matrix
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Q = I of size l × l and a real constant 0 << λ < 1. At each iteration n, the

calculation steps read:

k = λ−1Qx
1+λ−1xQxt

u(n) = d(n) − xtA

A = A + ku(n)

Q = λ−1 (Q − kxtQ)

(7)

where the vector k is termed as the Kalman gain. Knowing the parameters

of the models (2) and (3), it is possible to plot out the estimations of the

settlement and permanent contacts number as shown in figure (7).

Once the error terms are obtained, the causality measure can be calcu-

lated using equation (4). In the particular case considered in this study, the

discrete time signals h and z are of length N = 1000 cycles and the order of

autoregression is of l = N/100. The risk level of rejecting the hypothesis H0

is α = 1%. At this risk level, and for a number of parameters l, the calculated

theoretical value of χ2(2l) is 37.52, however, the measure of causality equals

590.85. Therefore, it can be concluded that the number of permanent con-

tacts loss is a significant explication variable of the settlement under sleeper.

This approach can be applied for different loading cases. Table (1) shows that

the causality direction remains valid for different frequencies and amplitudes

of loading.

4 Conclusion

In this study, numerical simulations of a partially confined granular material

under vibration are presented. It has been shown that the settlement process

is characterized by a flow of materials towards less loaded regions. It has also

been noticed that there is privileged regions of contacts loss. Furthermore, it

has been proved that the loss of contacts causes the settlement, for different

loading cases. The residual displacements which take place under dynamic

loading at different frequencies and amplitudes depend on several factors

such as material properties, grain shape, degree of confinement etc. In this

study, we selected the diorite and the polygonal shape because this type of

material is widely used in railway platforms. Moreover, we concentrated on
the loss of contacts as an explicative variable of settlement. As a perspective

of the suggested analysis, it would be interesting to investigate all the physical

factors which may influence the settlement speed, such as the acceleration

and elastic deflection. It is also possible to extend the suggested procedure for

more complex grain shapes. For instance, as long as the settlement depends

on the mobility of the material, non convex grains may have an important

effect on the settlement. Actually, unlike convex grains (circular, polygonal,

elliptic etc.) where the contact are binary, non convex grains can be connected

with more than a single contact. Assuming equivalent sizes of contact areas,
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the dissipation should be higher in case of non convex grain. In addition, the

contact openings are more difficult to take place, therefore the settlement

should be different. This particular point will be the subject of a future

contribution by the authors.

A Recursive Least Squares

Minimizing the least square criterion (6) leads to the following equation:

n
∑

i=0

λ
n−i

x(i)x(i) =
n

∑

i=0

λ
n−i

[

x
(i)

x
(i)t

]

A
(n)

(8)

Let p(n) =
∑

n

i=0 λn−ix(i)x(i), R(n) =
∑

n

i=0 λn−i
[

x(i)x(i)t]

. Using the Woodbury
identity of matrices (Kima et Bennighof [17]) one can obtain the following relation-
ship:

Q
(n) = λ

−1
Q

(n−1)
− λ

−1
k

(n)
x

(n)t

Q
(n−1) (9)

where Q(n) = R−1(n) and k(n) = λ
−1Q(n−1)x(n)

1+λ−1x(n)t Q(n−1)x(n)
. Introducing this expression

in the equation A(n) = Q(n)p(n), leads to a solution of the problem in a recurrent
formula:

h
(n) = h

(n−1) + k
(n)

u(n) (10)
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Frequency, f (Hz) Applied Force, ∆F (kN) χ2

0.5 621.57
20 1 227.61

1.5 457.06
0.5 634.34

30 1 750.91
1.5 640.1
0.5 703.2

40 1 430.9
1.5 685.42

Table 1 Causality measure for different excitations
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Fig. 1 (a) Typical grain characterized by r1, r2, and θ, (b) Contact detecting
using the dichotomy method.
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direction in cm).
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Fig. 4 Response of the sample in terms of settlement (hmax) and number of
contacts (Zτ>∆t) with respect to the number of cycles at different frequencies.
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Fig. 6 Variation of the settlement and of the number of permanent contacts with
respect to the number of cycles.
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Fig. 7 Application of the models (2) and (3) on the signals of settlement and
permanent contacts. The subscripts “in”, “1”, and “2” denote the MD method
calculations, the estimation using the first model and the estimation using the
second model, respectively.


