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We calculate exactly the first cumulants of the integrateccecu and of the activity (which is the total number
of changes of configurations) of the symmetric simple exatugrocess (SSEP) on a ring with periodic bound-
ary conditions. Our results indicate that for large syst@massthe large deviation functions of the current and
of the activity take a universal scaling form, with the samalisg function for both quantities. This scaling
function can be understood either by an analysis of Bethatarsjuations or in terms of a theory based on
fluctuating hydrodynamics or on the macroscopic fluctuati@ory of Bertini, De Sole, Gabrielli, Jona-Lasinio
and Landim.

PACS numbers: 82.70.Dd,64.70.Dv

I. INTRODUCTION t for the SSEP consisting df particles on a ring of. sites.
For large system sizes, these cumulants and the associated

The symmetric simple exclusion process (SSEF[fl, B, 3, 4harge deviation funct_ions take universal scaling forms. We
is one of the simplest lattice gas models studied in the theorShOW how these scaling forms can be calculated for the SSEP
of non-equilibrium systems. It consists of hard-core piet by .the Bethe ansatz or for more geqeral diffusive systems on
hopping with equal rates to either of their nearest neighbof ""nd by & theory based on fluctuating hydrodynamics or on
sites, on a regular lattice. At equilibrium, when isolattftg the macroscopic fluctuatl_on theory de\{eloped by Bertini, De
system reaches in the long time limit an equilibrium whete al S0!€, Gabrielli, Jona-Lasinio and La”d'ﬁ_@ 10] 4, 7. 18]
accessible configurations are equally likely. Also, whenieq !N the Bethe ansatz approach these scaling forms can be ex-
librium is achieved by contact with one or several resesvoir racted from a detailed analysis of finite size effects sint
at a single density, all sites are occupied with this densjty What was developed recently for quantum spin chains in the
and the occupation numbers of different sites are uncaeala CONtext of string theory [3d.30]. In the fluctuating hydredy

As soon as the system is maintained out of equilibrium, b))wamlcs approach, it rgsults from the dlsgreteness of the wav
contact with reservoirs at unequal densities, there is @entr vectors of the fluctuating modes on the ring.
of particles and one observes long range correlations in the
steady state[[S]. In this out of equilibrium case several ap- Universal distributions of the current characteristic loé t
proaches have been developed to calculate steady state praiversality class of the KPZ (Kardar-Parisi-Zhan%e' t
erties, such as the fluctuations or the large deviationsef thg, B2,[3B[34], have been calculated in the phdt 5%;2, 37,
density or of the currenf]¢] 7] 8, B,]10] i3, [14,[15, 168] for the asymmetric exclusion process (ASEP). The distri
E,]_ butions obtained in the present paper are different anchielo

A lot of progress has been made over the last decades dA the Edwards-Wilkinson universality clags][39].
the study of the fluctuations and the large deviation func-
tions of the current in equilibrium or non equilibrium sys-  We begin by presenting in S¢}.Il exact expressions of the
tems. The large deviation function of the current can befirst cumulants of the current and of the activity for the SSEP
viewed as the dynamical analog of a free energy, as disen a ring . This is where we see that the cumulants of the
cussed by Ruelle in the early seventipq [19]. The idea bacitegrated current and of the activity take scaling formewh
then was to build up a thermodynamic formalism based upotthe size of the ring becomes large and where emerges the idea
probabilities over time realizations rather than overdanga-  that the large deviation function of the current and of the ac
neous configurations. Generic properties of these large deivity obey the same universal scaling function. This is-con
viation functions were later discovered such as the fluctuafirmed in Sec}]l by Bethe ansatz calculations. By resortong
tion theorem which determines how the large deviation funcfluctuating hydrodynamicsin S¢c}IV we are able to formulate
tion of the current is changed under time reversal symmetryhe particular case of the SSEP within a more general frame-
[29.[21.[2R[ 23] 24, 24. 26, PF.]28]. work using the Bertini, De Sole, Gabrielli, Jona-Lasini@an

In the present work, we obtain exact expressions for the firstandim approach and to show that the same universal distri-
cumulants of the integrated current and of the activity @lhi  bution of the current fluctuations of the current are pregent
is the number of changes of configurations) during a long timea larger family of diffusive systems.



[l. EXACT EXPRESSIONS OF THE FIRST CUMULANTS can be calculated as this largest eigenvalu&@f. Fors = 0,
Wgk reduces to the evolution operator of the Master equa-

We consider a system o¥ particles on a one-dimensional tion W for the symmetric simple exclusion process, and this
lattice of L sites with periodic boundary conditions. Each site largest eigenvalue (whichiis 0) as well as the related eigenv
is either empty or occupied by a single particle. A microscop for are known. We now present a way of Obtalmnilthe large
configuratiorC = {n;}; ... ; can be specified by occupa- Qewatlon functiony, by a perturbative expansioh 4[] 42]
tion numbers:; (wheren; = 1 if site 7 is occupied ang; = 0 in powers ofs.
if site i is empty). In the simple symmetric exclusion process, Theideais to start from the eigenvalue equation/fgrand
SSEP, each particle hops to its right neighbor at tabe to  its eigenvectol,
its left neighbor at rate 1, provided the target site is empty
In the present paper we try to determine the distribution of wK(s)ﬁ(Qs) = ZWK(C,C')IS(C’, s) (5)
the total integrated curren}(¢) and of the total numbek (¢) cr
of changes of configuration (that we will call the activitygJ#
during a time interval0, t). To do so we define the generating normalized such thay", ﬁ(a s) = 1. One can then define

functions of the cumulants ¢f and K" as the averagéA(C)), of an observablgl(C) in the correspond-
- In(e—sK ing eigenstate, (i.e.(A(C))s = > - A(C)P(C,s) and this
Yo(s) = lim %) Yk (s) = lim %7 (1) is the same as averaging, in the limit of a long time interval
t—o0 00

(0,t), over all trajectories weighted by a coefficient& (*)).
where the brackets denote an average over the time evatutiohlote that, though the value @ (¢) is defined on trajectories
during the time interval0,t). As the evolution is an irre- unning fromo to ¢, the observabled(C) is evaluated at the
ducible Markov process with a finite number of states, thdinal imet. From the eigenvalue equation, one gets
long time limits in (1) do not depend on the initial configu-
ration and the generating functions defined|in (1) can be cal- A(C)). — e W(C — A AC)(C
culated as the largest eigenvalue of a mafrik [2p[ 3, 41]. K (s)(A(C))s =€ Z (€= C)AL) ) —{ALC)r(C))s
Because the calculations are very similar for both observ- ¢ s (6)
ables K and @@, we shall first focus on the activit)’ and
explain how to calculate the cumulant generating functio
Yk (s) as a perturbation series in powerssofWe will then
present only the results farg (s).

where the escape rat€C) is twice the number of clusters of
"djacent particles in the system

L
r(C) =Y W(EC—C)=2Y ni(l-njn). (7
. c’ j=1

A. The cumulants of the activity K (¢)

ChoosingA(C) = 1in (B) leads to
In order to determing k., as in [3p], one can write a Mas-
ter equation for the probability’(C, K, t) to find the system ¢k (s) = (€7° = 1)(r(C))s = 2L(e7° —1)(p — Cs(1)) (8)
in configurationg at time¢, given that the activity at time
tis K (i.e. given that the system has chang€diimes of  whereC,(r) = (n;n;1,)s is the correlation function (which
configurations during the time intervgl, t)). by translational invariance does not dependipoomputed
within the eigenstaté®(C, s), andp = N/L is the average
0:P(C, K, t)=—7(C)P(C, K,t}y W (C' - C)P(C', K~1,t) density.
c’ For the leading contribution as— 0, we can use the fact
" . ] (_2) that ats = 0 the eigenvector is known (this is the equilibrium
Whe/reW(C — (') is the transmor/] rate from configuratiéh  gjstribution, for which all allowed microscopic configuicais
to C’, andr(C) = > ., W(C — (') is the escape rate from are equally likely), so that (s) = —2N( B %) .t

configuratiorC. R o
If one introduces the generating functidi(C,s,t) =  O(s®). In order to compute thé)(s>) contribution from (B),
S e K P(C, K, 1), its evolution satisfies we need to evaluat€(1) at orders, which can be done by
choosingA(C) = n;n; in (). This requires the knowledge
P(C,s.8) =S Wk (C,CYP(C, st 3 of the correlation functiols (r) = (n;n;1,)s at orderO(s).
WP(C, 1) ; x(C,CIP(C s, 1) ®) For A(C) = nyn; in (B) one gets
where Cs(1) — C4(2) = sAn.L + O(s%)
; N(N-1)(L-N)(L—-N-1
WK(C,CI) = _‘SW(CI —C)— ’I“(C)éc,c/ . 4) where Ay = ( )( )( )

L(L—1)2(L—2)

In the long time Iimit,IS(C,s,t) grows (or decays) expo- C Dt C(r — 1) =20 (1) = 2AN,L O(s2) (9
nentially with time, with a rate given by the eigenvalue with s(r+)+C(r—1) s(r)=s I3 () O
largest real parm6] of the modified matf . Thusyk (s) for 2<r<L-2,



which have the following solution found that the first cumulants oK, lim; . (K™)./t =
_1\n d"Yx i i
. N(N-1) | 6r(L —r) — L(L + 1)+(9( : (=)™ =& L:O, when expressed in terms of the system size
(10)
We can therefore extraetx up to O(s?) and (K?)./t fol- ON(L — N)
lows. a(p) =2p(l—p) = — 7z (11)
To obtain higher cumulants, we have repeated the same pro-
cedure, with the observable$(C) = n;n;n; and A(C) =
ninjnin. The calculations are longer but very similar. We are given by (in the — oo limit)
|
@ _2 (K?), _ L?0(L?%0 + 4L — 4)
t T L-1 t 6(L — 1)2
(K%). LP0[—L°0°+ L'0(2+30) —2L% +48(L —1)?]
t 60(L —1)3
<K4>C 2 376 3 2 274 3 2
=1 a(a L(10L% — 7T0L2 + 175L — 153) — 402 L4(L — 1)(11L3 — 69L? + 154L — 126)
—1
+160L%(L — 1)*(3L3 — 17L2 + 46 L — 63) + 2112(L — 1)*(L — 3)) (2520(L 1)L - 3)) . (12)

When L becomes large, while = N/L is kept fixed, the or equivalently (see appendix A) as
asymptotic behavior of the above cumulants reads

2 2 By 2
B s op, B0 L7 g2 (13) Ficl) =2 g 2" an
t t4 64 et VE!
(K% oy (KYe of g
~oZph e 2
t 60 t 252 where the Bernoulli numbes,, are known to be simply the

One might have expected the derivatives at 0 of the eigen-  coefficients of the expansiane” — 1)~! = 3" B,z"/nl.
valuey i to become extensive for a large system diZafter ~ As a consequence, the generalizatior] df (13) will be:for 2
all, as we shall see it in sectilll, it is always possible to
view ¢k as the ground state energy of a short range Hamil-
tonian). Yet this is not the case since the second and higher (K™), . Bon—
cumulants grow faster than linearly with at fixed density t  (n—1)!
p. This suggests that, in the lardelimit, ¢, /L becomes a
singular function ofs ats = 0.

Also one can guess frorﬂlS) that fior> 2

oL (18)

(K™)¢ G 2n2 B. The cumulants of the current

t

and that forL — oo ands — 0, the eigenvalue takes a The same procedure can be followed for the total integrated
scaling form current@ (which can be defined b = "%, z;(t) where
) ) (K) o, z;(t) is the total displacement of thgh particle during the
LliH;OL VK (s) + S| T Fr (EL S) time interval(0, t)). Its cumulant generating functiaf, de-
fined in ﬂ) is the eigenvalue (with largest real part) of the
(14) matrix

where the scaling functiofx is given by

Lo, 1 s, 1 4 5
== — — . 15
Fr(u) U +45u +378u +O0w’) (15)

We shall see in sectiofs]lll ad]IV that this scaling functionwhere;j(C’,C) is +1 or —1 depending on whether a particle
can be fully determined and written as has moved to the right or to the left when the system jumps
from configuratiorC’ to configuratiorC. Using an expansion
Fre(u) = -4 [nm/nw " ou—n2r? + u} (16)  in powers ofs as in[lTA we have obtained (in the limit— o)

n>1

Wo(C,C') = W(C — C)e €0 _r(C)éccr  (19)
Q ;



Qz L%c Q4 . 1 LA52
<t>:L71’ <t> T 2(L-1)2 (20)
(Q%). L%¢% ((L?* = L +2)o — 2(L — 1))
t 4(L—1)3(L—2)
Q%) _ L¥%¢? ((10L* — 2L +27L% — 15L + 18)0® — 4(L — 1)(11L? — L 4 12)0 4 48(L — 1)?) 1)

t 24(L — 1)3(L — 2)(L — 3)

with the corresponding large behaviors (fop = N/ L fixed)

<Q§>c ~ ol <Qt4>c - cf;ﬁ
<Q6>c ~ U_3L4 <Q8>c ~ 5;‘4[/6 (22)
t 477t T 12 '

As for K, these results indicate that far> 2

<Q2tn>c ~ O,nL2n72

and thaty takes a scaling form, in the limf — oo and
5s—0

2 2
Jim L2 4o (s) — %@] = Fo (-51%%)  (29)

where, according td (22), the expansion/e$(u) in powers
of u coincides with the expansiof {15) % (u), at least up
to the4th order inu.

down otherwise. In this basis one finds that

A=t

[eis(afagc-kl + U?UEIJrl)
1

2o |

L

DN | =

2

+0’faf+1} =-Wgk

Ag=L-

[coshs (o70f +0lo?, )+ 0707 1(25)

Nlie

L

N =

i=1

—isinhs (ofof,, —ojof,;)] = -Wq

where we have resorted to the Pauli matriegs"*. In this
language, the quantitiesx andg are the ground state en-
ergies of these operators. It also suggests that the metiiods
one-dimensional exactly solvable models apply in our case,
such as the Bethe ansatz, as was exploited for similar sgstem
in the past[[36[ 94, 53].

As the number of particles on the ring is fixed, we
need to find the ground state with a fixed particle density
p, that is, at fixed transverse magnetizatidn, o7. The
guantum operators appearing (25) have of course been

We will see, in sectiofi I/, that these two scaling functionsextensively studied[[$4], including within the framework

(which appear in[(34) and i (23)) are in fact the same. There2f Stochastic dynamics [pS].

fore the formula which generalizels [22) will be for> 2

<Q2n>0 (271)' BQ’”—Q ny2n—2
t 2 (nfl)!n!a L ' (24)
Ill. BETHE ANSATZ

For instance, following the
notations of Baxter [[34] the operatof By is the ferro-
magneticX X Z chain with anisotropy parameteéx = e°.
Similarly, ﬁQ corresponds to aiX X 7 chain with additional
Dzyaloshinskii-Moriya interactions. A study of an operato

closely related td?Q was carried out by Kim|E2] in 1995.
His results will be recalled at the end of the present section

The Bethe ansatz consists in looking for the ground state
of Hg or in the form of a linear combination aV-particle

Itis well known that the Bethe ansatz allows one to cal-pjane waves (sed [1§,]52]). We denotefoy};—;._ v the

culate the eigenvalues of matrices suchVdg (C,C’) and

positions of theN particles and we postulate that the right

We(C,C') defined in [#,19) for exclusion process [E, 36,eigenvector oW can be cast in the form
B7.[38,[4B[ 44 44, 46, 1}, }4B.]49] 50]. In this section we show g K

how to obtain the scaling formp ([14}23) from the Bethe ansatz N

equations.

A. Relation to spin chains

It is possible to write the matrice$¥V(C,C’) and

P({z;},5) = >_ AP [ &)™ (26)
77

i=j

whereP = (p(1),--- ,p(IN)) is a permutation over the first
N integers, and the;’s are a priori complex numbers. This
is an exact eigenstate provided these parameters satisfy th
so-called Bethe equations. These take different formdsfor

Wq(C,C’) as quantum spin-chain Hamiltonia[51]. We useand@. We now discuss how to implement the Bethe ansatz to
the correspondence in which thecomponent of a two state calculateyk (s) andyg(s) defined in Kll). Technical details
spin operator is up when a particle is present atisitnd is  have been gathered in the appendices.



B. Bethe ansatz fork and
For the expressioffi (26) to be an eigenvectaHaf or W ¢ = ekid (30)
the (;’s have to satisfy a number of constrai [56], the so-
called Bethe (see for examp|§[49]) equations @) becomes
N .
1 —2€°Gi + GG N
(= [— ; (27) 1
jl;[l 1 —2e°¢ + GG ki =7 Z U(ki, k;) (31)
J#i j=1
J#
The expression af k (s) is given by
where
a 1
a DT T 2eki0 cos 6 + @iki RS

Our goal is to obtain[(14) fron] (7) anfi {28) in the double
limit s — 0 andL — oo keepingsL? andN/L = p fixed.
Because of the particle-hole symmetry the discussion below
is limited to the case < 3.

In the largeL limit, the (;’s accumulate on a curve which 1 kel
depends o and ass — 0~ becomes a finite arc of the unit Uk, kj) =2 L
circle (see@@B] and references therein). Note howdadr t ki — k;
thes > 0 case can be approached by similar methods.

If one writes In the largeL limit, however, the distance between consecu-

tive k; becomes of order/L ~ ¢ and fori — j of order1 one
e’ = cosd (29)  should use instead

In the limito — 0, one can check thatwhén—k; = O(1)

+0O(82) . (33)

1 |:k1—kij+’L(S(1—kf)—l—lékz(/{?l—kj)—(Sle(l—k/’?):| (34)

k)= — ]
Utk ka) = S50 | =5 k) — ok (b — By ) + 0%kl — 2

Therefore one can rewritg (31) as

U ki =k +08(1 — k2) + i6ks(ki — k) — 62ks(1 — &2) |- kik,

Lk; ~ —In | ~— L A - : 22— 35
DI n{kikj2'5(1kf)iéki(kikj)nté%i(lkf) D [y (35)
l—n0$i$1+"0 Jjéli—no,i+no]

Ve

wheren, is a fixed large number < ng < L, so that one g(k) should satisfy

can use expressiof {33) fgr—i| > no and [3}) forjj —i| <

no. As shown in appendix B, the two su 00) (35) O =K1 (g (k)1 —k?)
depend on the cut-off, but this dependence disappears when k=2P / ) dk’g (k) EL_k L ( g(k) - Qk’)
the two terms in the right hand side E[SS) are added. B

In the largeL limit, the k; become dense on an interval xm(1 — k?)g(k) L6 coth[r(1 — k*)g(k)Ld]
(-0, 0) of the real axis, with some densityk). In what fol-
lows we will assume that thie are regularly spaced according (37)
to this density, meaning that

If we make the change of variablé = 6y, k = 6x, and
kj 0 — k%) =
L/ g(k)dk=j—i and L/ g(k)dk = N . (36) g(k)(1 — k%) = ¢(x) (38)
i -0 equation [(37) becomes

Replacing the two sums ifi (35) by their expressi¢n${(89,100) P ! w2 _ f@) (39)
obtained in Appendix B, one gets that for= k; the density 4 yy —z



Or  w(1—0%2%)¢ (v)
2T 20

0 coth [Léme(x)] + ...
(40)

As explained in [(141,102) of Appendix C one can invert

[B9) and express(z) in terms of f ()

¢ T,
9(z) = \/17x2_7r2\/17x27)/ (4)

where the constard is so far an arbitrary constant.
For small, one can write[(28), using ({0]88]41), as

252

N
[/ Y /1 2 fy)ay
which gives using@S)
Y (s) ~ L&*0CT (42)

Also, as [3p)
0
/ g(k)dk = p

—0

one has[(3$,41)

! C
=40 d
g [1 ! [(1—921:2)\/1—1:2

1 \/1 -
w2 (1 = 0222)V1 —

which can be simplified usin20)

/f yV dy. (43)

COn
e m

C. Theleading order in the large L limit

For largeL (at fixed L), (49) reduces tqf (z) = —6z/2,
so that [[4}1) becomes to leading order us[ng](110)

4nC -0 0 1
LS e LN - 44
iy e R +O<L> “
whereas[(43) becomes usirg (120)
COn 1 0% -2
- b 45
P eE 2 A 45)

Therefore for a fixed density of particles, the constaidt

in E@) and the eigenvalule [42) are given, to leadingrorde

2
c%Kp%) e 49] (46)

~ L&* /6 g(k)(1 — k*)dk
-0

and
2

VY (s) = L6* {<p%> \/1—92+2 49 47)
So far, the constand remains undetermined.

The leading order corresponds to using expresgidn (33) in
@) even wheri andj differ by a few units. For the contin-
uum description to be valid, we are now going to argue that
¢(z) should remain finite a8 — =+1, or, in terms of the orig-
inal densityg, thatg(k) remains finite a& — +6. This will
impose (se€] (44)) that

0

Cdr
Indeed if we order théV solutionsk; and focus on the ones
closesttdd, ... < ky_1 < kny < 6, then we may estimate
using (3p) the dn‘ference betweér andd, or betweerk 1
andky. If C # L, theng(k) ~ (0 — k)~'/? ask — 6
implies thatk:N — kn_1 ~ L™2 . This is not compatible with
kv > 425 (which follows from (3][3B)), where the
right hand S|de of this inequality would [§&(L) in contradic-
tion with the fact thak y < 6. Hence we must haverC = 6,
in which caséiy — ky_1 ~ L~2/3 and there is no contradic-
tion.

It then follows that

0 =2 (1 ) 48)
and thereforey (s) = Lé%p(1 — p) and [4h)
¢(x) = 97”12;“"2 +0 (%) (49)

D. The next order

Once¢ is known to leading ordemﬁlg), one can update the
expression[(40)

bz (1—-0%*)x
fla)=—- Vi
and one gets fron] (#3)

_ Con 1 P2
PmVT 2 i e
3 ! L660/1 — y?
_L y? coth M d
4mv/1 - 02 )4 2
Then using the fact that (sge(80) in appendix A)

2
5eotn | LOOVL—a? v21=f

(50)
(51)

2

1
/ y? coth(ur/1 — y2)dy = L4 %f (_u_) (52)
-1 u u

2 2
we get
CoOr 1 0% —2 02
PR T iR iie

(53)

S B < L25292>
L3310 g



and this gives[(42)
2
Vi (s) = L6*Cr = Lo? [(p - %) V1—-02+ 2 49
62 1 L%5%9
it et < 8 >]

(54)

The leading order (the first two terms ¢f|54)) has a mini-

mum for @ given by (48). Therefore to obtain (s) at first

order in% one can simply replacg by (@) in (54) and one

gets

202
Y (s) = L649 (1 + %) + %}" (

which is equivalent (se¢ ({9]48)) tb [14).

L25292
) e

It is shown in ) of appendix A that for large negative

U
27/2
F ~ —
k(1) 37

This implies that@4) becomes for small negatiygut large
negativel?s)

3/2 (56)

(—u)?*, u— —o0

27/2 3/2
Yr(s)~L —25p(1—p)+3—7r(—sp(1—p)) + ..

(57)
So fors small, butZ?s large, the extensivity of x (s) is re-
covered and@?) gives the beginning of the sma&kpansion
in the largeL limit.

replaced by
N e -2+ e
L=T]|-—== = 59
‘ ]_1_[1[ eS—QCjJre_SCiCj] 59)
J#i

Given the solutiong; to (59), the expression af,, reads

Yo(s) = 72N+675[C1+...+§N] + e® [iJrJri]
G CN
(60)

By a method following closely the steps of the Bethe ansatz
for K, the basic ingredients of which are provided in appendix
E, we arrive at the following result fagg,

bols) = %J(p)s2(L + 1)+ L72F <LSTJ(F'>) (61)

which leads to the asymptotic behaviorias— oo,

Yo(s) 1
T~ 50(p)st +

1/2
2/ 03/2|S|3

3 (62)

The Bethe equationﬂSg) are very close to that considered
by Kim [E3] who worked out the asymmetric exclusion pro-
cess case. As outlined in appendix E, it seems that Kim’s
results cannot be extended to the SSEP. We think that this is
at the origin of the discrepancy between our expresgidn (62)
and what was found earlier (expression (A.12)[of [20]) fa th
same quantityyg(s).

Before concluding this section devoted to the Bethe ansatz,
let us mention that, both for the current or the activity, oan

One can also notice that the functigf(u) (L) becomes obtainy(s) or ¢k (s) in thes — oo limit by directly solving

n 2 . B .
singular as: — Z-. This indicates the occurrence of a phase

2
transition discussed at the end of secfioh IV: for ”72 the

optimal profile to reduce is no longer flat and the system

adopts a deformed profile as 16] . In fact in the limit>

+o00 the configurations which dominate are those formed of a

single cluster of particles and the activity is limited te tlwvo
boundaries of this cluster.

The result[(55) or equivalently (14) with given by (1§)

Fr (u) =—4 Z [nﬁm —n?r? + U} (58)

n>1

gives the leading finite-size correctiondg (s). These finite

corrections have been calculated recently, starting frioen t

@) or (2T). We do not give these expressions here because
they are out of the universal regime.

IV. FLUCTUATING HYDRODYNAMICS AND THE
MACROSCOPIC FLUCTUATION THEORY

In this section we are going to show that the expressions
@) can be recovered by a macroscopic theory based on
hydrodynamical large deviatiorE [ﬂ@ 4].

A. Calculation of ¢ for a general diffusive system and
derivation of @ )

Bethe ansatz equations, for several spin chains in the xtonte

of string theory and expressions very similar to duthave

The macroscopic fluctuation theory developed by Bertini,

been obtained [29]. Note also that a more systematic approa®e Sole, Gabrielli, Jona-Lasinio and Landifh[[p[]7}]d, 9, 0] i
has been developed to calculate the next finite size cavrecti based on the fact that, for a large system of gizehe density

[Bd1.

E. Bethe ansatz forQ

The eigenvector corresponding to the largest eigenvalue of
W, can be written as in[ (26), with the Bethe equatidn$ (27)

and the current of a diffusive system take scaling formsné o
defines; (t), the density averaged in the neighborhood of site
i at timet, andQ;(t), the total flux between siteandi + 1
during timet, these quantities take scaling forrhg [[L7, 18]

) =0 (4.5 (63)
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where the functiond, o, o, ¢” are evaluated at the density

Po-
Qi(t) = LQ (L Ltz) (64) If one considers a fluctuation of the form
_ 1wt +ikx * —iwt—ikx
This allows one to define a rescaled currgt, 7) as Op = klak.we + e ) (70)
one has
_ 0Q(x, 1) d ~ 9
Ja,7) = —————==L—Qr. (L°7) . . _
( ) o7 dt L ( ) 5p/ _ ikQ[ak,wele-’_lkI . azywe—zwt—zkz]
The average microscopic current between sig@di + 1 is and due to[(@6)

related to the rescaled currenlby

iwT+ikx + a*

—itwt—ikx
k,we ] .

dQi(t) _ 1 (z t ) 6j = —wlanwe
Dz The ring geometry# = z+1) imposes that the wave numbers

dt L
From the macroscopic fluctuation theof} [b,[[8 LT, 1g),are discrete

the p_robabil_ity of observing a rescaled (_:urrgé("lt,f) and a k=2 with n>1
density profilep(z, 7) over a timet = T'L? is given by
Also because one considers a finite time intefiathe fre-
Pro({p(z,7) quenciesv are also discrete and

/dT/ $T+2§(((( 1 wz%Tm with m € Z

(65 Integrating over the time intervél < = < 7' and over
where the currenf(z, 7) and the density profile(z, 7) sat-  space, one gets one has
isfy the conservation law ) 9 )
(00%) = 2k ag o *T

dp dj
dr ~ dx

and the diffusive system under study is characterized by the
two functionsD(p) ando(p). For the SSEP, these functions
are known:D(p) = 1 ando(p) = 2p(1 — p) (see [R]). (05%) = 2w|an,o|*T
Note that [[65) can be seen as the fact that the macroscopic
densityp(z, ) and the macroscopic curref(tz, 7) satisfy in

exp

(66)
(50%) = 2| ag o’

: _ 2
addition to the conservation laJ (66) a Langevin equation of (0j0p) = —2kwlaro|"T
the form 3].
; dpdp’)y = (85p") =
J(7) = ~duplat) + (. 7) (67) (0pbe'} = (0500
wheret (x, 7) is a Gaussian white noise ;I;)herefore the superposition of all the quctuanE (70ptea
(€@, m)E(a’, 7)) = L o(p(, 7))6(x—a")d(r—7") . (68) 2t
I . . Pro(jo, {ak,w}) ~ exp [—0—
The contribution of a small time dependent perturbation to 20 L
a constant profile, and a constant rescaled currggt
p @0 %‘l Z | |2 O'(.U +]OO— k) N D2l€4 ng//kQ
2 ko _
p(a,7) = po + dp(x,T) " o 202
g2, 7) = jo + 8j(x,7) where some terms independengghave been forgotten (they
_ _ _ will be fixed later by normalization). After integrating ave
to the quadratic form in[(§5) is the Gaussian fluctuations and if one replaces the sumwver
) . . by an integral one gets
1)+ Dlplar, ), _ 38 dog. ey T
20(p(z,t)) 200 o 2 2 jot
; 2 ; 25 /2 Pro(jo) ~ exp | —2~—
+30_D6p,+ 552 +2D6jdp" + D?5p"* + 2joD'Spdp’ 20 L
g 20 wmdx C 2 214 ;2 12
joo' (656p + DSpép') o [ 07 o' ) (wo + joo'k) +D k _Joo k
— + 75 — op L2 —w o3 o 202
o2 203 402 1<k<km ax max

(69) (71)



where we have introduced cut-offs,,x andw,,.x. The rea- Then one has

son for these cut-offs is that the macroscopic fluctuatiea th - L

ory (63) is valid only on hydrodynamic space and time scales.  j- _ (K) ~ 2L3/ dr/ dz[(5p%) — dp(w, 7)?]
Forxz = O(L™') or 7 = O(L72) it has no validity at 0 0 ’

all, meaning that the cut-offs should satisfy,., < L and
o o 2 J Then one can proceed as abovg [69-74) and get, up to terms
max .

For largeL, i.e. for largekx andwa., ONe can see by constant or proportional tg, in the exponential

integrating overw that only the constant term and the term j2t
proportional toj? depend on the cut-offs so that (ems(E=(KD)y /djo/dak,w exp {——0—

. . . t (ow + joo'k)?  D?*k*  j2o"k?
o e e 2
s w,k

—w o3 o 202
1<k<kmax M2
~ A(kmax; Wmax) + B(Kkmax; Wmax)jo The rest of the calculation is the same[a$ [72-74), with a max-
) > 9 imum overj, achieved aj, = 0, and one finally gets
g g
+ Z {\/D2(2ﬂ'n)4 — 302 (2mn)2 — 47*n*D + ZLOD } ()
g g g
o bicls) = =5 + L2 Fk (§L25) (76)
-2 I
_ 9 Joo
= Al max) + Blmas wma)fo ~ DF (16D20) which is exactIY).
(72)
where we have used the definiti(16)7€).f C. Calculation of ¢ in the case of a weak asymmetry

If the averaged rescaled currentjis over a macroscopic
time 7', the sum of the microscopic flux over all the bondsis One can also repeat the above calculation in the case of
Q = TL2jy = tjo. Thus adim;_, Q%) _ LL_QIJ (see(2L)) weakly driven systems, i.e. for systems where there is an ad-

one can determine the cut-off dependent constants and get ditional driving force of strengthi/L. This would in partic-

ular be the case for the weakly asymmetric exclusion process

, 2L —1)t t j2a” (WASEP) [1] for which the hopping rates to the right and to
Pro(jo) ~ exp [_Wf + 13 <16D20>} the left are respectivelyxp £ andexp(—%).
(73) For such systems] (65) becomes
where F is defined in [(16). This becomes, at ordefL?, _
using the fact that/g (s) = max;,[—j0s + t~ ! In Pro(jo)] Pro({p(x,7),j(z,7)}) ~
T 1 . D / _ 2
con L exp l_L / dT/dm iGa.)+Dlote (>>€ <x,);> vo(p(, 7)]
— = — - o Jo o\, T
Yo s) o LQD]: (16D2L s > . (74)

(77)

This formula is in principle valid for arbitrary diffusiveys-
tems, i.e. for arbitrary functions(p) and D(p). Aso =
2p(1 —p), D =1, ¢” = —4 for the SSEP this leads to the
announced resulf (43]16).

Following exactly the same steps as before, one gets an ad-
ditional term%ép2 in (@) ev_erything else remaining the
same. Ther{(3) becomes in this case:

For a general diffusive system the expressions of the cumu- ) (jo—vo)2(L—1) t
lants (2k) would therefore become Pro(jo) ~ exp | — 5 -
20L L (78)
. {Q*™), (2n)! —oo"\" 5. 5 JriD]_— <(J§ - VQUQ)U”>}
tlinolo t Ban—2 n! (n — 1)!D < 8D? > L L? 16D%0
(75)

where we have adjusted as iE|(73) the terms linear and

whereo(p) and D(p) are the two functions which appear in quadratic inj, which are cut-off dependent.

(63) and theB,,’s are the Bernoulli numbers.

D. Phase transitions
B. Calculation of ¢ for the SSEP and derivation of {1}#)

The functionF (u) becomes singular as— ”—; (see [Ip)).
To obtain {1}), one can first write the activity as For systems for whicly” < 0, this implies the occurrence
of a phase transition in the expressipr| (76)/@f(s) in or in
K= or3 /‘T dr /‘1 dap(z, 7)1 — p(z, 7)) the large deviation functiorE(|78) of the currentin the calsa o
- 0 0 PR PET)) weak asymmetry. These phase transitions are exactly the sam
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as the one discussed iff [9] 10] 16, 17]: beyond the transitioand by integrating ovey, one gets
the system does not fluctuate anymore about a flat density pro- -
file, but the profile becomes deformed on a macroscopic scale. ZQL / y2dy coth(u T — 2 %)

For systems such as the Kipnis Marchioro Presutti model T )4
[@,] which haver” > 0, a similar phase transition occurs o 9 9 9 5 5 5
in 1o even in absence of a weak asymmetry. =ut Z [2“ +4n'r” — dnry/nint +u } (80)
n>1
2
a2 _u
V. CONCLUSION =ut+ “T( 5 )

In the present paper we have obtained exact expressior-1rshIS establlsheﬂISZ). Now as

(12[21) of the first cumulants of the activify and of the in- " B, e 22 gt
tegrated curreng) for the SSEP. In the largé limit, these e 1 Z T =leot gt +... (81)
. e 1 n! 2 12 720 30240
cumulants take scaling forms | ,22). n20
We have show_n in sectign|lll that these scaling erms can bg nich is simply the definition of the Bernoulli numbek,
understood starting from the Bethe ansatz equauErlQP,?,SQ(so thatB, = 1, B, — — 2 Bs — L .., one can show that

by calculating the leading finite size corrections. Thesiésfin
size corrections are similar to the ones calculated regéotl
spin chains in the context of quantum stringd [29, 30]. cotha — + " Z o2k-2, 2k-3_D2k—2 (82)

We have also shown in secti IV that they can also be = (2k — 2)!
understood starting from the macroscopic fluctuation theor B
(63) of Bertini, De Sole, Gabrielli, Jona-Lasinio and Landi  Therefore
This enabled us to extenfl [{4[73,75) our results for the SSEP 9y3 [l
to arbitrary diﬁg§ive systems and_ to see that the occugenc I="— y*dy coth(u/1 — y2)
of phase transitions can be predicted from the scaling form T J-1
of the cumulants of the current. In order to better undedstan 2u? (1 g2
these phase transitions it might be interesting to chariaete . [1 7\/@6@
the eigenstate of the dependent evolution operator kg, _— L
determining correlation functions in those states. 2 Bok—a o 2(1 _ 2\ 22y

+k YA 1y( y) Y
>2 -

We have discussed here systems governed by diffusive dy- -
namics with a single conserved field. How the universal scalt.e.
ing forms would be modified for systems with several con- ) Bop_s o

[ i i i ion. 1= — 83

served fields is an interesting open question u” + 1;2 TR (h + 1)u (83)

We thank N. Gromov, H.J. Hilhorst, V. Kazakov, K. . .
Mallick, S. Prohlac, H. Spohn, P. Vieira, R.K.P. Zia, for Comparing @p) ant@?»),one gets
several useful discussions. This work was supported b)}( - Z Bop_s (Cou)t — “2+“3+ ut . ub .
the French Ministry of Education through an ANR-05-JCJC-/ (©) = ROINCE) U=t ety T o T

44482 grant and LHMSHE. k>2 )
APPENDIX A: SEVERAL REPRESENTATIONS OF THE  so that [17) and (}5) are consistent with| (16).
FUNCTIONF For large negative, one gets, by replacing iﬂ?g) the sum
overn by an integral,
In this appendix we show the equivalence between several rep

resentationd (1, [Il7 J52) of the functighdefined in [1) F(u) ~ 272 (—u)®/? (85)
n M
. 2 2
Fu)=—4Y [nm/n2e® —2u—n’x* +u] (19 AppENDIX B: CALCULATION OF THE TWO SUMS
n21 APPEARING IN (35)

To do so consider the integral

3 1
I= 2 y2dy coth(uy/1 — y2)
T J The first sum in (B3):
If the k; are distributed according to a densijjyk) on the
real axis one can write that

1 o 2z Fitn
cothz = 2 + T; 22 +n2r2 L/]C g(k"dk' =n (86)

i

[@3) whens — 0 andL — oo keepingL4 fixed.

Then by using the fact that

In this appendix we calculate the two sums which appear in
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Therefore fom fixed and largd., one has One can decompose the integfas

! k)
Lkin — ki) g(k; Lkin—kiQQ(z = e o
(kit )g9(ki) + Lkt )2+ n IP/U kzq
ki—ng —4q
so that o1
1—no kjy1 Ci+1 iq
Kiin — ki = — ng (ki) (87) "2 /k o) » Z / —q
AR g(k)L  2g(k;)3L2 7 g=1 =" . 1] :no ) o
! — kigq — kiq
Replacingk; by expression@?) into the first sum 35) one + /_,,g(Q)dq ki—q + /kNg(q)dq ki—q
gets (93)
i+ng
Z Z (ki k) Askj, —kj is small and of ordet /L and because of (41]92)
Jj=t—ng j=1+1
Z Ly — g (ki)(1 = k2) n? /’“ng(q)d 1—kig _ 11—kik;
oo g(k:) n? 4 (1 — k7)2g(k:)2L252 k; ki—q L ki —k;
. 9(k;) (kj41 — k;)? 1 — kyk;
Using the fact that fony > 1 (andb < O(1)) += J; J P kj
J
o ) 11— kik; 1 < kik;
DT T Ty 35 oth b (88) T Lki—k  2L%(k;) dk; \ ki~ k;
-1 11— kikj 1 d — kikj
=7 T 972 (94)
ki — ki1 2L2g(kjta) dkjea kz' — kit

the first sum in@S) can be replaced by
i—1 +n
0 (4]{_ - M) o Therefore using[($4) in the suin< j < i — ng — 1 and
(©4) in the sum + ny < j < N — 1, one can rewrite[(93) as

Z + Z Ulhi, ky) = g(ki)

1— 2
(o0, - L0N DY [,
g(k:) ) 1
Cidm . 1—ng— _ . .
(1 — k2)g(ki) L6 cothfm(1 — kf)g(ki)Lé]] I~ 7)/ Fro k— kig 1 1k kzlfg
(89) kizng —e L= kiky
1 N I—kk; 1T 1 d (11— kik
= iivy o @ g
+L j—'+z+1 kz — kj + 2L2 le g(k]) dk] ( kz — kj )
—itno -
The second sum in[(35) N
Let us consider the following integral. R Z 1 d (1—kik;
202 . g(k;) dk; \ ki —k;
6 k K j=i+no+1
1= 77/ g(k )dk’ (90) ka1 1 —kig 0 1— ks
: ki — k' / d i / d iq
0 + g9\q)4q + g9{q)4q
—0 (@) ki —q kn @) ki —q
We are now going to compare this integral with the sum
. Z |~ kiky This becomes
 liming o —kig 178N~ ks
o [
We assume|(§6) that the are given by ki—ng —q L = ki-k
N
, 1 1—k;k; 1 |1 —kiki—p,—
kj ilvj ihNi—no—1
Ny LS kb b
L/_G 9(q)dg =j — « (91) Lo ki—ki 2L [ ki—kiny—
1= kikisngrr 1 —kiky 1 kiky
ki — k1 ki — kN

and for the moment is arbitrary. Therefore .
kz kz-l—no-i—l
k 0
1 1 1—kiq 1—kiq
92 +/ g(q)dg +/ g(q)dg
(92) (g —, + | al@ds—

kiy1 —kj ~
T (k)L -9




which can be rewritten as

Kitng )
I~ 77/ 9(q )dq ki
k

i—ng q

1 —no
1L R
N

1 1—k;k;
I X ’

j=imor1 T K

1 —kiki—ng—1
k; —

ki —k;
+

11— kikitne+1
2L | ki — kigno+1

_ I k1
=/ <q>dq] (95)

-
1 0
57+ /kN 9(q)dq

kino(1 — k7)g' (ki)
Lg(k:)
(96)

g' (ki) (%)

g(ki)
(97)

Lastly because one expects the symmejry- —ky1—; and

becausd. [* , 9(q)dg = N, one gets that = 1/2in (93) and
therefore the last two terms df (95) vanish.

Then using[(94,97) intd (b5), one gets that

_l’_
ki*ﬂo —1

1—kikn
Ly

From (8F) one can show that

kiug 1~ kg
P/ g(q)dg LN
: (9) -

i—ng

Qkino
L

and that

1—Fkiking—1
~ Qki— 1
ki — ki—ng—1 (

1 —Fkikitn,

—k2
— )

ki+n0

1S kb 1 XN: 1 — kk;
L 4 ki—k; L . ki — k;
j=1 j=i+no+1 (98)
1 g (k) 1
~ T — — 2k — (1 — K =

where the integral is defined in @O). Lastly using the fact

thatg(k) = g(—k), one can rewrite the integralin (Bg) as
1k
I= P/ dk:’ 4 (99)
so that [9B8) becomes
i—ng—1 N
L . ki — k/’j L L i — kj
J=1 j=t+no+1
S S N N (10)0))
~P ﬂg(k )dk —"
1

Note that [9]1) is not accurate forclose tol or N, i.e. near
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APPENDIX C: SOLUTION OF THE AIRFOIL EQUATION

(EE)]
In this appendix we show, in the spirit @59], that the smnt
() of
1
= 73/ dy o) (101)
1 y—x
is
__C Loty [1-92 fly)
¢(z) = Vi—a2 FP/,ldy l—a22y—x (102)

This solution is used to obtaifi (41) as the solution[of (39).
Let us choose

Vv1— 22

r—«

Then forz ¢ [—1,1] anda ¢ [—1,1] one can see usinf (111)

P(x) (103)

/1dyM:wVO‘2_l—W2_l_1] (104)
-1 y—x a—x o—x
and therefore

ot ey a? -1

Now the following integral of this funcuonj( ) can be com-
puted (usmg. 1) for for ¢ [—1,1]

\/1*— m(@

71'2 1 a—z
(106)
2 _
Y 11>+ 1—a
o —X
so that
1 boo/1—2 21
——27’/ dy YL f(y) == -Va2-1l-u
us _1 y—x a—x
)
0 Jar 1 -z
o —x
(107)
Comparing with 3) we see that
P/ 2 fly) a—\/a271+\/1—:r2
17x2 N ) T —
a—+va2—1
=S )
N
(108)

the singularities ofy(k). A more detailed analysis of these Therefore [102) is the solution of (J01) with a constaht
two neighborhoods would only contribute to higher orders inwhich depends througt on ¢(x) when one choosem%)

the1/L expansion[[30].

for ¢(x).



As the inversion formula[(102) is valid for arbitrary it
would also be valid wherf(z) is any polynomial inz, and
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and fory ¢ [—1,1]

as the polynomials are dense in the set of continuous func- / 1 dy T
(

tions on(—1, 1), one can consider thdt (101,102) are valid for

"arbitrary funct|0ns” f(x).

APPENDIX D: USEFUL INTEGRALS

In this appendix we list a few integrals which are used in var-

ious places of the paper.
First forz ¢ [—1,1] one has

/1 —
/ =vaz2-1-z (209)
so that
1 —
—73/ A dy =- (110)
As a consequence omn) one has fort [—1,1] and
a¢[-1,1]
1 ) 2 _ 2 _
1 V1—9y? dy :\/a 17\/1' 171(111)
)1 y—r y—« a—x a—x
and thus forr € [—1,1] anda ¢ [—1,1]
2 7
_’p/V L
- Y-« a—x
One can also show that
1
dz
= 113
/_1 V1— 22 (113)
and that fory ¢ [—1, 1]
1 us
= 114
1Vli—z2y—z L Jy2-1 (114)
As a consequence df (112,114), one has
dy
P F 0 115
/ \/1 - $2 /1 y— )= (119)

for an arbitrary functior¥'(y) as it is valid for any polynomial

Foré < 1 one can show using (1}14) that

1
dx T
= 116
/_1 (1—0222)y/1—22 1-— 62 (116)
one can also show
Vovl—a? 1—v1-62
l/ e A0

and that

1= VT—aZ y =z (1-0%2)\/y? — 1
7 w02y
(1— 0221 2
(119)
and therefore for any functiof(y)
! dx Y
/ P Yoy -
—_ H2,2 _ 2 —
1 (1=0222)y/1—x 1Y (120)

~d

\/1492/ 1492 v
APPENDIX E: BETHE ANSATZ CALCULATION FOR

THE CURRENT LARGE DEVIATION FUNCTION( (s)

This appendix describes how a Bethe ansatz calculation of
1o (s) similar to the one conducted fapx can be imple-
mented. The operatd® whose largest eigenvalue i
reads, in the spin language already usecﬁh (25),

L
oo 1 X _ .
Wo(s) = Z [% +e %00, +€0; ‘7111}

(121)
The Bethe ansatz equation analogou (27) take the form

€9

1—2e7°¢ + e_2SCiCj :| (122)

_1 — 2975Cj + e*QSQCj
In terms of the(;’s, we have that

’l/)Q(S):72N+675[C1+...+§N]+€S [iJrJri]

G CN
(123)
Kim [62] has studied the spectrumsf = — W/ (cosh 5/2)

by means of a Bethe ansatz calculation: in the notationssof hi
equation (1), the parametefsand.S are given by

- 1
A= , S =tanhs
cosh s

(124)

but unfortunately his results do not apply to our particu-
lar case, which turns out to correspond to a critical point
of the related six-vertex model. The defining parameters of
the latter, denoted byA, H andv, are related to Kim’s by
A = A/cosh(2H), S = tanh(2H), A = coshv. Thus, in
terms of our original parameters, we get that

A=1, 2H=s, v=0 (125)
a limiting case explicitly excluded by Kim which lies at the
critical point of the six-vertex model.
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We choose to write thaf; = e **i+2r). The two  whereh = i(a+1)/2+ [dyeo(y)(y+ia/0)~! is a density-
main differences with the calculation @fx is that the(;’'s  dependent constant to be determined. The general solution o
dependence inis different. We have also shifted them®y>  ([L30) can be written (se¢ (101,102)) as
for convenience. Just as was the case previously; tBevill

be densely distributed on a connected cuhw# the complex do(x) = — c -~ 0(r +1)°
plane that is invariant upon complex conjugation. Given 0 1—z)(r+z) 167/(1—2z)(r+ )
that the equations for the;’s are invariant under complex 022 2(r — 1+ )
conjugation, we expect the contodrto be symmetric with + +
respect to the vertical axis in the complexylane. We shall 2my/(L—z)(r+2)  2m/(1 —z)(r+2)
denote the end points 6fby —6* andé. Ox(r—1)
A/ (1 —x)(r +x
Given that [122) becomes (1=a)r +2) (131)
N
N o The four unknowng’, 6,  andh are determined by requiring
—ilki +12p) = L _72_ _U(k“ k), where that¢, remains finite ag — 1 and ast — —r, and by noting
1 ]_1,#11 - - (126)  that by definition
— 2e % i+ef S e
U(ki kj) = —In [— — — +1
- (z+if)

for |i — j| > 1 we expect that
. . . hile ¢, must verify the self-consistency equation
i (k; kj w 0
i +k:m)(kj i m), a=2p—1 (127) h=i(la+1)/2+ [dydo(y)(y +ia/0)~ . After explicitly
i evaluating the latter mtegral and that appearde(l&B@)
while fori — j of order 1,5 will be over orderl /L andk; —k; ~ &mveatr =1,h =0 and247rC = 0 = 2+/p(1 - p), which
as well. We defing (k) as the root density along conto@y  leads togy(z) = —0¥5=%=. Up to a sign, this is exactly the

Uk, k;) =

so that same function as that found in the studyfof and this is the
K, same,er_]d poiné = 2./p(1 — p) for the contour on which
L/ g(k)dk =j —i thek;’s lie.
ki

We may now simplify (129) into
(note thatg(k) is in general complex but along the contour Y P y- )

g(k)dk is real). Ifk; andk; aren roots apart, we have that p ( Lt 1) op ¢,( ) — (y — z)(y + i /0) L p(y)
1 =

n n k; . .
ki —k; = T 29(9 §s£2 + .... Expanding/ at fixed y—x
Li fL~" leads t 1 0)
SN powers o leads o +9Lx($1+_7m/(9\/1fz2 sL)/2] coth[9+/1 — 22(sL) /2)
1 —1g(k;)(k; L
U(ki k) = —ln ig (ki) (ki +i0)*s (133)

s n—+igk;)(k; +ia)?sL

' (ki) (ki + i) n2 whose solution reads(x) = ¢o(x) + d¢(z),
z‘(ki+ia)<2+ — > 5 ———
g(ki) n? + [g(ki) (ki + ic)?(sL)] 5C 26h
(128) 0p(z) = — +
V1— 22 1 — J;2 (134)
Equations[(137) and (1p8) play a role analogoug tp (33) and gy V1=V
@) in the study of<'. After using the methods of appendices Wz N x273 0F(y)
B and C we arrive at the following equation fgrwhich we
express in terms af(z) = (0x + ia)?g(6z) andr = 6% /0: We have denoted byF'(z) the function
a+1\ Looly) - (y—a)y+ig) oly) 0 x(z +ia/f)?
H(x—i—z 2 )—Q’P_(jy — dF(x) = — YA
2 4 _ 2 —_ p2
9 (z . ﬂ) @) @) (L) coth (@) (sL)] x ([9\/1 22(sL)/2] coth[0v/1 — z (SL)/z])
L 0/ o(x)
(129) 0 z(z+ic/0)?
AT Z o 05 (L= 41
Let us denot@y (x) the solution of the above equation, in the
L — oo limit (135)
1 .
_ do(y) The new constantsoC and 6k are determined by
0x/2+ h =P B dy—y . (130) [ % = 0anddh = | %. After performing



explicit integrations along the lines of appendix D, we @bta
the final result through the following equality

2

Yo(s)/L = fszﬁ/dzqﬁ(z) = %52 + s2000n
2 i/ b / vi-y?

+s 97r2 dmm’P dy — 0F (y)

where

(136)
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After noting that, as before, we have

1 [ 1 V1—y? B

it only remains to substitute the value &f into (13§). This
allows us to conclude that

2

%52(1; +1)+ L72F(—-L*s%0%/8)  (139)

92 1 B b
0COm = Il / ) dz z* Z p—f(@sL)p(l — mQ)Tl Yo(s) =
B p>2 ©
1 L
+\/ﬁ which is the announced result ¢f}61).
— X
— 1 JT/—LQaQOQ /8\+ ﬁ
3527 T
(137)
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