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Abstract

In this paper, we suggest several improvements to the numerical implementation of the
quantization method for stochastic control problems in order to get fast and accurate premium
estimations. This technique is applied to derivative pricing in energy markets. Several ways
of modeling energy derivatives are described and finally numerical examples including parallel
execution on multi-processor devices are presented to illustrate the accuracy of these methods
and their execution times.
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1 Introduction

In the last decades, optimal quantization arose as an efficient method for pricing complex financial
contracts. Based on these quantizations, it is possible to construct a tree method, the quantiza-
tion tree algorithm, which has successfully been applied to the pricing of derivatives like American
multi-asset options (see [1]) or energy contracts like swing options (see [3] and [2]). In financial
institutions, quickness of execution as well as high accuracy are important criteria in the choice of
a pricing method. With this observation in mind, we suggest some improvements to the original
quantization tree method. We mainly focus on the fast computations of the transition probabilities
for the quantization method. In higher dimension, all procedures devoted to the computation of
transition probabilities are based on Monte Carlo simulations. They all share the same core, namely
repeated nearest neighbor searches. So we implemented a classical fast nearest neighbor procedure:
the kd-tree algorithm. However, the first aim of this paper is to present and test several alternative
approaches to transition probability estimation by simulation that can be massively parallelized.
By “massively” we mean that the procedures can be parallelized beyond the “standard” paralleliza-
tion of the plain-vanilla Monte Carlo method (consisting in generating scenarii of the underlying
structure process “through” the quantization tree). These new approaches allow a bigger number
of threads to run completely independent, which helps to avoid time consuming tasks like thread
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synchronization and communication. Some extensive numerical experiments have been carried out
to compare the performances of these different approaches in term of accuracy and execution time
(on both CPU and GPU).

As concerns the numerical aspects, we focused on swing options pricing, which are commonly
dealt on energy markets. The underlying assets for this family of derivative products usually are
forward contracts on index on gas, oil or electricity. We considered several more or less classical
dynamics for the underlying asset: First some Gaussian 1-factor model, where the trinomial tree
method from [14] served as reference procedure, and later on a Gaussian 2-factor model with up to
365 exercise dates. But we also considered time discretized jump dynamics, which are often used
to model the spot electricity price, namely the exponential of a Normal Inverse Gaussian (NIG)
Lévy process.

The NIG distribution has been introduced in finance by Barndorff-Nielsen in the 90s and has
recently been applied to energy markets by several authors, e.g. Benth, Frestad and Koekebakker
and Benth and Saltyte-Benth (see [5] and [6]). They suggest that the NIG family fits empirical
electricity return distribution very well and represents an attractive alternative to the family of
normal distributions. It is the first time to our knowledge that such a jump model is implemented
in a quantization framework. Doing so, we wish to strongly emphasize the fact, that quantization
tree methods are efficient to produce spatial discretization of any (simulatable) Feller Markov chain.
Indeed, any (usual) time discretization scheme of a diffusion driven by a Lévy process (or any Lévy
process observed at some discrete times) is a Feller Markov chain.

The third contribution of this paper is to introduce a Richardson-Romberg extrapolation based
on two quantization trees of different sizes. This principle has already been successfully tested for
“linear” European option pricing (see [17] or [18]), but it is the first time it is introduced in a
“non linear” setting as swing option pricing and stochastic control. This idea, which is based on
several heuristic considerations, seems quite promising from a numerical point of view (see section
6) and therefore strongly suggests that the theoretical expansion of the error as a function of the
quantization tree size holds true.

The paper is organized as follows. In Section 2, some short background on optimal quantization
is provided. In Section 3, we recall the quantization tree algorithm associated to the swing option
stochastic control problem (see [3] and [2]). Moreover, a special case of swing option, the Call Strip,
is developed. In Section 4, some suggestions are addressed to improve the execution time as well as
the accuracy of the algorithm. Section 5 is devoted to the description of the treated dynamics and
in Section 6 we finally present numerical results on both a single core and multi-core CPU resp.
GPU setting.

2 Optimal quantization

Optimal quantization has been developed in the 1950s in the field of Signal Processing. Its main
purpose consists in approximating a continuous signal by a discrete one in an optimal way. In the
1990s, its application has been used in the field of Numerical Integration to derive some cubature
formulae (see [16]). Later in the early 2000s, this method has been extended to the computa-
tion of conditional expectations and applied to the field of Numerical Probability and Financial
Mathematics. This extension has been motivated by the necessity of designing efficient methodolo-
gies for pricing and hedging more and more sophisticated financial products, especially multi-asset
American options (see [1]).

Let (Ω,A,P) be a given probability space and let X be a random vector defined on this prob-
ability space and taking valued in Rd. Let N be a positive integer, the first step of quantization
consists in discretizing X by a σ(X)-measurable random vector X̂ taking at most N values in a grid
Γ = {x1, . . . , xN} ⊂ Rd. This grid or codebook is called an N -quantizer of X. Let x = (x1, . . . , xN )

2



denotes the N -tuple induced by Γ. One can associate with X̂ a Borel function qx : Rd → Γ called
quantizer such that X̂ = qx(X).

Let p ∈ [1,∞[ and let X ∈ Lp(Ω,A,P). Optimal quantization consists in studying the best Lp-
approximation of X by qx(X) when x runs over (Rd)N : it amounts to minimize in q the Lp-mean
quantization error, i.e. solving the minimization problem

inf{||X − q(X)||p | q : Rd → Rd Borel and |q(X(Ω))| ≤ N}. (1)

Noting that
|X − qx(X)| ≥ dist(X,Γ) = min

1≤i≤N
|X − xi|,

one may restrict to a Voronoi quantization as defined below.

Definition 1. Let x = (x1, . . . , xN ) ∈ (Rd)N . A partition (Ci(x))1≤i≤N of Rd is a Voronoi
tessellation of the N -quantizer x, if for every i ∈ {1, . . . , N}, Ci(x) is a Borel set satisfying

Ci(x) ⊂ {u ∈ Rd | |u− xi| = min
1≤j≤N

|u− xj |}, (2)

where | . | is the Euclidean norm on Rd. The nearest neighbor projection πx on x induced by a
Voronoi partition (Ci(x))1≤i≤N is defined for every u ∈ Rd by

πx(u) :=
N∑
i=1

xi1Ci(x)(u). (3)

It maps the random vector X into

X̂x =
N∑
i=1

xi1Ci(x)(X) = πx(X), (4)

which is called a Voronoi quantization of X.

Now, the minimization problem (1) turns into an optimization problem on x ∈ (Rd)N . This
second step depends on p and the probability distribution PX of X. It always has at least one
solution x∗ (see e.g. [12] or [16]). If moreover card(supp PX) = ∞, then x∗ has pairwise distinct
components and minx∈(Rd)N ||X − X̂x||p is decreasing to 0 as N goes to ∞.

To be more precise, the Zador Theorem (see [12]) provides a rate for the optimal Lp-mean
quantization error, namely, if X ∈ Lp′ for some p′ > p,

min
x∈(Rd)N

||X − X̂x||p = O(N−1/d) as N →∞. (5)

We refer to the following papers for a study of several algorithms designed to find optimal
quantizers: (see [15, 11, 16, 17]). The problem dimension and the properties of the law of X
might help to determine an efficient algorithm. Note that some optimized quantizers of the normal
distribution N (0, Id) have been computed and are available at the URL

www.quantize.math-fi.com

for dimensions up to 10 and sizes up to several thousands.
Since an optimal quantization X̂x provides the best finite approximation to the distribution of

X in the least square sense, it becomes natural to use Ef(X̂x) as an approximation for Ef(X),
where f : Rd → R is a Borel function.
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Note further, that since X̂x takes only finitely many values, we compute Ef(X̂x) as the finite
sum

N∑
i=1

P(X ∈ Ci(x))f(xi).

The weights pi := P(X ∈ Ci(x)) of this cubature formula are obtained as a by-product of opti-
mization procedures to generate optimal quantizers like the ones used in [17] or [16].

Assume now that f exhibits some smoothness properties, i.e. f is differentiable with Lipschitz
continuous differential Df . If x is a stationary quantizer, i.e.

X̂x = E(X|X̂x),

(so is the case for every optimal L2-quantizer), we can conclude from a second order Taylor expan-
sion of f , that the approximation error of Ef(X̂x) satisfies

|Ef(X)− Ef(X̂x)| ≤ [Df ]Lip‖X − X̂x‖22.

Similarly, we can derive (see e.g. [18]) some error bounds for the approximation of E(f(X)|Y )
by its optimal quantized counterpart E(f(X̂x)|Ŷ y).

3 The quantization tree algorithm

3.1 Abstract problem formulation

We briefly recall the general stochastic control framework developed in [2] to model “abstract”
swing options and the quantization tree algorithm devised to solve it.

Let (tk)0≤k≤n−1 be a given, strictly increasing sequence of exercise dates, such that the first
exercise date is set at the origin of the derivative and the last one happens strictly before the option
maturity.

Let (Ω,A,P) be a complete probability space and let p ∈ [1,∞[. On this probability space,
one defines an option with maturity T by a sequence of random variables (Vk)0≤k≤n−1. For k ∈
{0, . . . , n−1}, Vk represents the option payoff obtained by the derivative holder at time tk. To model
all the available market information, one introduces a filtration F := (Fk)0≤k≤n−1 on (Ω,A,P),
such that, for k ∈ {0, . . . , n− 1}, the option payoff Vk is measurable with respect to the σ-field Fk.
One common feature characterizing most of the options is that the product is built on an underlying
asset. In our setting, the option owner has the possibility to choose, for each exercise date, the
underlying asset amount included in the contract. These decision variables are represented by a
sequence (qk)0≤k≤n−1 of F-adapted random variables and are subjected to constraints given by:

(i) a local constraint:
let qmin and qmax be two given positive constants. For k = 0, . . . , n− 1,

qmin ≤ qk ≤ qmax P-a.s.. (6)

(ii) A global constraint:
one defines a cumulative purchased process (q̄k)0≤k≤n by

q̄0 := 0 and q̄k :=
k−1∑
l=0

ql, k = 1, . . . , n.
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Then for any couple of F0-measurable, non-negative random variables Q := (Qmin, Qmax),
the total cumulative volume purchased should satisfy

Qmin ≤ q̄n ≤ Qmax P-a.s.. (7)

A control process (qk)0≤k≤n−1 which satisfies these local and global conditions is called (F , Q)-
admissible.

Now, one defines the residual global constraints Qk = (Qkmin, Q
k
max) at time tk by

Qkmin = Qmin − q̄k and Qkmax = Qmax − q̄k.

Then, the associated option value at time tk is given by

Pnk ((Qkmin, Q
k
max)) := esssup

{
E
(
n−1∑
l=k

qlVl|Fk

)
, ql : (Ω,Fl)→ [qmin, qmax], k ≤ l ≤ n− 1, q̄n − q̄k ∈ [Qkmin, Q

k
max]

}
.

(8)
Now, to simplify notations, we perform a decomposition of the problem into a simple “swap”

part and a “normalized” one, where the control variables are [0, 1] valued, i.e. q = qmin + (qmax −
qmin)q′ for a [0, 1] valued r.v. q′, which leads to

Pnk ((Qkmin, Q
k
max)) = qmin

n−1∑
l=k

E (Vl|Fk) + (qmax − qmin)P [0,1],n
k ((Q̃kmin, Q̃

k
max)) (9)

with

Q̃kmin =
Qkmin − (n− k)qmin

qmax − qmin
and Q̃kmax =

Qkmax − (n− k)qmin

qmax − qmin
.

One considers from now on a normalized framework, i.e. qmin = 0 and qmax = 1. In this setting, a
couple of global constraints Qk at time tk is admissible if Qk is Fk-measurable and if

0 ≤ Qkmin ≤ Qkmax ≤ n− k P-a.s.. (10)

For every couple of admissible global constraints Qk, the derivative price at time tk satisfies

Pnk ((Qkmin, Q
k
max)) := esssup

{
E
(
n−1∑
l=k

qlVl|Fk

)
, ql : (Ω,Fl)→ [0, 1], k ≤ l ≤ n− 1, q̄n − q̄k ∈ [Qkmin, Q

k
max]

}
.

(11)
To design the quantization tree algorithm, we appeal to several results summarized below (see

[2] for further details):

(i) Without loss of generality, one may assume that at time tk the couple of admissible global
constraints Qk is deterministic.

(ii) The Backward Dynamic Programming Formula (BDP):

Set Pnn ≡ 0.

For every k ∈ {0, . . . , n−1} and every couple of admissible global constraintsQk = (Qkmin, Q
k
max)

at time tk, we have

Pnk (Qk) = sup
{
xVk + E(Pnk+1(χn−k−1(Qk, x))|Fk), x ∈ In−k−1

Qk

}
with

χM (Qk, x) :=
(

(Qkmin − x)+, (Qkmax − x) ∧M
)

and
IMQk := [(Qkmin −M)+ ∧ 1, Qkmax ∧ 1].
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(iii) Bang-bang control: One defines the set of admissible deterministic global constraints at time
0 by

T+(n) = {Q0 ∈ R2 | 0 ≤ Q0
min ≤ Q0

max ≤ n}. (12)

Then, given any admissible integral global constraints at time 0 i.e. Q0 ∈ N2 ∩ T+(n), there
exists an optimal bang-bang control process q∗ = (q∗k)0≤k≤n−1 with q∗k ∈ {0, 1} P-a.s. for every
k = 0, . . . , n− 1.

(iv) The value function Q0 7→ Pn0 (Q0) is concave, continuous and piecewise affine on the tiling of
T+(n).

So in view of these results, it is sufficient to evaluate the option premium at integral values of
T+(n). Then, it is possible to use a linear interpolation inside every tile to obtain the derivative
price for all admissible constraints, i.e. for all Q0 ∈ T+(n). Hence we may reformulate the BDP
Formula for an initial Q0 ∈ N2 ∩ T+(n) as

Pnn ≡ 0

Pnk (Qk) = max
{
xVk + E(Pnk+1(χn−k−1(Qk, x))|Fk), x ∈ {0, 1} ∩ In−k−1

Qk

}
, k = 0, . . . , n− 1.

(13)

In order to simulate the derivative prices obtained in (13), one appeals to the quantization
method described in Section 2. At each exercise date tk, k = 0, . . . , n − 1, we perform a spatial
discretization of the d-dimensional underlying asset and include the resulting discretized process in
the BDP Formula. Finally, some convergence theorems are available to obtain some error bounds.

However, these theorems require the following assumption:
Assume that there exists a d-dimensional Markov structure process, say (Xk)0≤k≤n−1, such that
the payoffs Vk are function of Xk, i.e.

Vk = vk(Xk), k = 0, . . . , n− 1. (14)

One obtains

E(vk+1(Xk+1)|Fk) = E(vk+1(Xk+1)|Xk) = Θk(vk+1)(Xk), k = 0, . . . , n− 1, (15)

where (Θk)0≤k≤n−1 is a sequence of Borel transition probabilities on (Rd,B(Rd)). Therefore (13)
becomes

Pnn ≡ 0

Pnk (Qk) = max
{
xvk(Xk) + E(Pnk+1(χn−k−1(Qk, x))|Xk), x ∈ {0, 1} ∩ In−k−1

Qk

}
, k = 0, . . . , n− 1.

(16)

Now, let X̂k be a quantized version of Xk of size say Nk. An approximation of the price process
is designed by plugging X̂k in (16) and by forcing the Markov property on X̂k.

P̂nn ≡ 0

P̂nk (Qk) = max
{
xvk(X̂k) + E(P̂nk+1(χn−k−1(Qk, x))|X̂k), x ∈ {0, 1} ∩ In−k−1

Qk

}
, k = 0, . . . , n− 1.

(17)
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The resulting algorithm, called quantization tree, is then tractable on a computer. Indeed, it is
possible to evaluate the above formula in a recursive backward way down to k = 0 where we arrive
at a σ(X0)-measurable solution. Note that if F0 = {∅,Ω}, the option premium is deterministic.
From now on, we assume that F0 is trivial.

The following results are concerned with the error resulting from the discretization of the
underlying price process (Xk)0≤k≤n−1 (see [2]).

Theorem 3.1. Assume that the Markov process (Xk)0≤k≤n−1 is Lipschitz Feller in the following
sense: for every bounded Lipschitz continuous function g : Rd → R and every k ∈ {0, . . . , n − 1},
Θk(g) is a Lipschitz continuous function satisfying [Θk(g)]Lip ≤ [Θk]Lip[g]Lip. Assume that every
function vk : Rd → R is Lipschitz continuous with Lipschitz coefficient [vk]Lip. Let p ∈ [1,∞[ such
that max0≤k≤n−1 |Xk| ∈ Lp(P). Then, there exists a real constant Cp > 0 such that

‖ sup
Q∈T+(n)∩N2

|Pn0 (Q)− P̂n0 (Q)|‖p ≤ Cp
n−1∑
k=0

‖Xk − X̂k‖p.

In view of Zador’s Theorem (5) and the F0-measurability of Pn0 and P̂n0 , this also reads

sup
Q∈T+(n)∩N2

|Pn0 (Q)− P̂n0 (Q)| ≤ C
n−1∑
k=0

N
−1/d
k .

3.2 Complexity and implementationary notes

For an analysis of the complexity of the quantization tree algorithm in its original form (17), we
count the number of multiplications, which occur during the evaluation of Pn0 (Q0) for a given Q0.
We implement the quantization tree algorithm in a backward iterative manner, starting at layer k
with the computation of Pnk (Qk) for every possible residual global constraint Qk ∈ Qnk(Q0) with

Qnk(Q0) =
{(

(Q0
min − l)+, (Q0

max − l)+ ∧ (n− k)
)
, l = 0, . . . , k

}
for given initial global constraints Q = (Qmin, Qmax) ∈ T+(n) ∩ N2. This approach yields a
complexity proportional to

n−2∑
k=0

#Qnk(Q0)NkNk+1 +Nn−1

multiplications, which can be estimated from above by

n−2∑
k=0

(k + 1)NkNk+1 +Nn−1.

If we employ an equal grid size N in each layer for the quantization of the conditional expecta-
tions, we finally arrive at an upper bound proportional to n2N2

2 multiplications.

3.3 The call strip: case Q = (0, n)

We will study a special case of swing options. This class is characterized by particular values of
global constraints.

In this case the global constraint is always satisfied by the cumulative purchase process, i.e.∑n−1
l=0 ql ∈ [Qmin, Qmax], as the control process (ql)0≤l≤n−1 is [0, 1]-valued. Hence, the optimal
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control problem is reduced to a maximization problem without constraints:

Pnk (0, n) = esssup

{
E
(
n−1∑
l=k

qlVl|Fk

)
, ql : (Ω,Fl)→ [0, 1], k ≤ l ≤ n− 1

}
, k = 0, . . . , n− 1.

(18)
An optimal control for (18) is clearly given by

q∗l :=

{
1 on {Vl ≥ 0},
0 elsewhere,

and the associated price process by

Pnk (0, n) =
n−1∑
l=k

E
(
Vl

+|Fk
)
.

Calling upon the results of Section (3.1), one obtains the following quantized tree algorithm in a
Markovian structure

P̂nk (0, n) =
n−1∑
l=k

E
(

(vl(X̂l))+|X̂k

)
.

Note that this quantity appears as a sum of European options. Since closed forms are available to
evaluate European options, the call strip will be used as benchmark for numerical implementations.

Remark 1. The case Q = (0, 1) leads in the same way to the payoff of a Bermudan option.

4 Two main improvements for the quantization tree algorithm

4.1 Computations of the transition probabilities: fast nearest neighbor search

Solving the quantized BDP principle (17) amounts from a numerical point of view to compute for
some Borel function f : Rd → R all the conditional expectations

E(f(X̂k+1)|X̂k),

which take values in the finite grid xk = (xk1, . . . , x
k
Nk

) of Rd. Moreover, we derive that

E(f(X̂k+1)|X̂k = xki ) =
Nk+1∑
j=1

f(xk+1
j )πijk

where
πijk = P(X̂k+1 = xk+1

j |X̂k = xki ), k = 0, . . . , n− 2,

denote the transition probabilities of the quantized process. By definition of the Voronoi quantiza-
tion X̂ in (4), we arrive at

πijk = P(Xk+1 ∈ Cj(xk+1)|Xk ∈ Ci(xk)) =
P(Xk+1 ∈ Cj(xk+1), Xk ∈ Ci(xk))

P(Xk ∈ Ci(xk))
. (19)

To estimate the transition probabilities by means of a naive Monte Carlo simulation, one gener-
ates samples of the Markov chain (Xk)0≤k≤n−1 with size sayM , which we denote by (X̃m

k )1≤m≤M , k =
0, . . . , n− 1. So πijk can be estimated by

π̃ijk :=

∑M
m=1 1Cj(xk+1)(X̃m

k+1)1Ci(xk)(X̃m
k )∑M

m=1 1Ci(xk)(X̃m
k )

, for k = 0, . . . , n− 2, (20)

i = 1, . . . , Nk and j = 1, . . . , Nk+1.
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Given k, i and j, one has to check for each m = 1, . . . ,M if the realizations X̃m
k (ω) and X̃m

k+1(ω)
belong to the cells Ci(xk) or Cj(xk+1) of the Voronoi tessellation to determine the value of the
indicator functions present in the estimations (20).

Nearest neighbor search: This problem consists in finding the nearest neighbor for a query point
q ∈ Rd in the N -tuple x = (x1, . . . , xN ) with regard to the Euclidean distance. A commonly known
algorithm to optimize this nearest neighbor search, which in high dimensions can become a time
consuming procedure, is the kd-tree algorithm (see e.g. [8]).

This procedure consists of two steps: The partitioning of the space, which has an average
complexity cost ofO(n log n) operations. This has to be done only once and is therefore independent
of the size M of the Monte Carlo sample. The second part is the search procedure, which has an
average complexity cost of O(log n) distance computations.

The kd-tree data structure is based on a recursive subdivision of space Rd into disjoint hyper-
rectangular regions called boxes. Each node of the resulting tree is associated with such a region.
To ensure a well-defined splitting rule on each node, we equip the root node with a bounding box,
which is chosen to contain all data points.

As long as the number of data points within such box is greater than a given threshold, the
box is split-up into two boxes by an axis-orthogonal hyperplane that intersects the original box.
These two boxes are then associated to two children nodes. When the number of points in a box is
below the threshold, the associated node is declared a leaf node, and the points are stored within
this node.

To find the nearest neighbor for a query point q, we start at the root node and decide at each
node due to the cutting hyperplane, to which child node we descend.

When arriving at a leaf node, we compute the minimal distance from all data points of this node
to the query point q and ascend back on the trial to the root node as long as it may be possible
to find closer points than the previous found minimal distance. During this way back we obviously
descend to the so far not visited children and update the minimal distance found so far.

From now on, we assume for convenience that (Xk)0≤k≤n−1 can be written recursively, i.e.

Xk+1 = AkXk + TkZk, k = 0, . . . , n− 2, X0 = x0, (21)

for some positive definite Matrices Ak and Tk, and a deterministic initial value x0. Furthermore
we suppose, that the distribution of Zk is either known through its density or can be simulated at
some reasonable costs and that Zk is independent of the distribution of Xl, l = 0, . . . , k.

These assumptions hold for example for the Black-Scholes model (where the driving process is a
Brownian motion), the Ornstein-Uhlenbeck process, which we will later on represent as a Gaussian
first order auto-regressive process or for certain Lévy processes, e.g. the NIG process.

4.2 Parallelization of the transition probability estimation

4.2.1 Diffusion method

Using the representation (21) of X as an auto-regressive process, the naive Monte Carlo approach
from (20) now reads as follows. Generate a Monte Carlo sample of size M of the random variate
Zk in each layer k, i.e

(Z̃m0 )1≤m≤M , . . . , (Z̃mn−2)1≤m≤M ,

and define the Monte Carlo sample for (Xk)0≤k≤n−1 by

X̃m
0 := x0,

X̃m
k+1 := AkX̃

m
k + TkZ̃

m
k , k = 0, . . . , n− 2

(22)
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for m = 1, . . . ,M . Then we get an estimate for πijk , which writes

π̃ijk :=

∑M
m=1 1Cj(xk+1)(X̃m

k+1)1Ci(xk)(X̃m
k )∑M

m=1 1Ci(xk)(X̃m
k )

.

It is possible to implement a parallel procedure of the diffusion method like for any “linear”
Monte Carlo simulation. However the computational structure of the transition probabilities is
not well adapted to this parallel implementation. Indeed, in this method, we have to proceed the
computations along the discrete trajectories of X̃m, that is, step by step from time 0 up to the
exercise date tn−1. Therefore, the natural way to partition the tasks would be to divide the number
of Monte Carlo simulations into several processes. Once the computations executed simultaneously
by each process are completed and sent back to the main process, this process still would have
to add up the partial sums for each transition in each layer k, which leads to some additional
and significant work. So, a more advantageous approach from the parallelization viewpoint will be
described in the section below.

4.2.2 Parallel Quantization Weight Estimation

This method was introduced in [3] and heavily relies on the assumptions on X satisfying the
auto-regressive structure (21). We generate in each layer k, independently, bivariate Monte Carlo
samples by simulating directly from the distributions of Xk and Zk, i.e.

(X̃m
0 , Z̃

m
0 )1≤m≤M , . . . , (X̃m

n−2, Z̃
m
n−2)1≤m≤M .

The estimated transition probabilities are then given by

π̃ijk :=

∑M
m=1 1Cj(xk+1)(ÃkX̃m

k + TkZ̃
m
k )1Ci(xk)(X̃m

k )∑M
m=1 1Ci(xk)(X̃m

k )
.

In this approach, the computations of the transitions for a layer k are completely independent
from all the preceding and succeeding layers. So a parallel implementation with respect to the time
layers tk becomes very straightforward. Additionally, all the ideas for a further parallel split-up
with regard to the number of Monte Carlo simulations, as for the Diffusion method, remain valid.

4.2.3 Spray method

The spray method is not an exact approach, since it aims at estimating only an approximation of
πijk . This means that we not only replace the random variable Xk by its quantization X̂k in the
identity Xk+1 = AkXk + TkZk, but also in the conditional part Xk ∈ Ci(xk) of (19).

Using the equivalence of X̂k ∈ Ci(xk) and X̂k = xki , this leads to the following approximation

π̃ijk := P(AkX̂k + TkZk ∈ Cj(xk+1)|X̂k ∈ Ci(xk))
= P(Akxki + TkZk ∈ Cj(xk+1))

= P
(
Zk ∈ T−1

k (Cj(xk+1)−Akxki )
)
.

In low dimensions and when the density of Zk is known, this quantity can be computed by deter-
ministic integration methods. Otherwise a Monte Carlo estimate would be given by

π̃ijk :=
1
M

M∑
m=1

1T−1
k (Cj(xk+1)−Akxki )(Z̃

m
k ),
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where
(Z̃m0 )1≤m≤M , . . . , (Z̃mn−2)1≤m≤M

denote again the i.i.d. Monte Carlo samples of (Zk).
Note that such an approach can be extended to a non linear dynamic Xk+1 = F (Xk, Zk), Zk

i.i.d..

4.3 Improving the convergence rate: a Romberg extrapolation approach

Consider for instance the classical numerical integration by means of optimal quantization, i.e.
Ef(X) is approximated by Ef(X̂N ) for sequence of stationary and rate optimal quantizers X̂N

(see Section 2).
Assume that f : Rd → R is a 3-times differentiable function with bounded derivatives.
We also assume (which is still a conjecture) that

E(D2f(X̂N )(X − X̂N )⊗2) ∼ cN−2/d as N →∞

and that
E|X − X̂N |3 = O(N−3/d).

Then we can conclude from a Taylor expansion

f(X) = f(X̂N )+Df(X̂N )(X−X̂N )+
1
2
D2f(X̂N )(X−X̂N )⊗2+

1
6
D3f(ξ)(X−X̂N )⊗3, ξ ∈ (X̂N , X),

so that
Ef(X) = Ef(X̂N ) + cN−2/d + o(N−3/d+ε) for every ε > 0.

Motivated by this identity and our numerical tests, we make the conjecture, that an analogous
result holds also (at least approximately) true for the quantization tree algorithm

Pn0 = P̂n0 + cN−2/d + o(N−3/d+ε) for every ε > 0.

Hence we perform a Romberg extrapolation on the quantized swing option prices by computing P̂n0
for two different values N1, N2 (e.g. N1 ≈ 4N2) and denote them by P̂n0 (N1) and P̂n0 (N2). Thus
we arrive at

Pn0 = P̂n0 (N1) +
P̂n0 (N1)− P̂n0 (N2)

N
−2/d
2 −N−2/d

1

N
−2/d
1 + o(N−3/d+ε).

This suggests to consider as improved approximation for Pn0 the quantity

Pn0 (N1, N2) := P̂n0 (N1) +
P̂n0 (N1)− P̂n0 (N2)

N
−2/d
2 −N−2/d

1

N
−2/d
1 .

5 Application: swing options

We will consider in the section three different ways of modeling for the underlying dynamics, which
all fulfill the assumptions of the quantization tree algorithm. These are namely the 1- and 2-factor
Gaussian model and an exponential Lévy model.

From now on, we assume an equidistant time discretization 0 = t0 < t1 < . . . < tn = T , i.e.
tk = k∆t, k = 0, . . . , n with ∆t := T/n.
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5.1 Gaussian 1-factor model

In this case, we consider a dynamic of the underlying forward curve (Ft,T )t∈[0,T ] given by the SDE

dFt,T = σe−α(T−t)Ft,TdWt,

which yields

St = F0,t exp(σ
∫ t

0
e−α(t−s)dWs −

1
2

∆2
t )

for

∆2
t =

σ2

2α
(
1− e−2αt

)
.

If we set Xk :=
∫ k∆t

0 e−α(k∆t−s)dWs, k = 0, . . . , n − 1, (Xk)0≤k≤n−1 is a discrete time Markov
process and we get Sk∆t−K = vk(Xk) with Lipschitz-continuous vk(x) = (F0,k∆t exp(σx− 1

2∆2
k∆t)−

K). So the formal requirements for the application of the quantization tree algorithm are fulfilled.
For the quantization and the computation of the transition probabilities of Xk we need the following
results:

Proposition 5.1. The discrete time Ornstein-Uhlenbeck process Xk =
∫ k∆t

0 e−α(k∆t−s)dWs can be
written as first order auto-regressive process

Xk+1 = e−α∆tXk +

√
1− e−2α∆t

2α
εk, k = 0, . . . , n− 2, X0 := 0,

for an i.i.d sequence (εk), ε1 ∼ N (0, 1).
Especially we have

Xk ∼ N
(

0,
1− e−2αtk

2α

)
.

Since affine transformations of a one-dimensional random variate can be transformed one-to-
one on its optimal quantizers, the quantizers for Xk can be constructed as a dilatation of optimal

quantizers for N (0, 1) by the factor
√

1−e−2αtk

2α .

5.2 Gaussian 2-factor model

Furthermore we have also considered a Gaussian 2-factor model, where the dynamic of the forward
curve (Ft,T )t∈[0,T ] is given by the SDE

dFt,T = Ft,T

(
σ1e
−α1(T−t)dW 1

t + σ2e
−α2(T−t)dW 2

t

)
for two Brownian motions W 1 and W 2 with correlation coefficient ρ.

This yields

St = F0,t exp
(
σ1

∫ t

0
e−α1(t−s)dW 1

s + σ2

∫ t

0
e−α2(t−s)dW 2

s −
1
2

∆2
t

)
for

∆2
t =

σ2
1

2α1

(
1− e−2α1t

)
+

σ2
2

2α2

(
1− e−2α2t

)
+ 2ρ

σ1σ2

α1 + α2

(
1− e−(α1+α2)t

)
.

In this case we have to choose

Xk :=
(∫ k∆t

0
e−α1(k∆t−s)dW 1

s ,

∫ k∆t

0
e−α2(k∆t−s)dW 2

s

)
, k = 0, . . . , n− 1,
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as underlying Markov structure process with

vk(x1, x2) = (F0,k∆t exp(σ1x1 + σ2x2 −
1
2

∆2
k∆t)−K).

Applying Proposition 5.1 on the two components of (Xk)0≤k≤n−1 allows us to write it as a first
order auto-regressive process

Xk+1 = AkXk + Tkεk

with

A =
(
e−α1∆t 0

0 e−α2∆t

)
and

T =

 √
1

2α1
(1− e−2α1∆t) 0√

1
2α2

(1− e−2α2∆t)r
√

1
2α2

(1− e−2α2∆t)
√

1− r2


where

r = ρ
1

α1+α2

(
1− e−(α1+α2)∆t

)√
1

4α1α2
(1− e−2α1∆t)(1− e−2α2∆t)

.

5.3 Normal Inverse Gaussian spot return

In this case we assume, that the dynamics of the underlying is driven by the exponential of a special
Lévy process, the so-called Normal Inverse Gaussian process (NIG). This means, that we assume,
that the dynamic of the underlying is given by

St = S0 exp(Lt)

for a NIG process (Lt)t∈[0,T ]. This special model for financial data has been first proposed by
Barndorff-Nielsen in [4] and has been later applied to financial contracts on energy markets (see
e.g. [5] and [6]) as well.

The NIG process has beneath its Lévy property, which makes it a Markov process, the convenient
property, that it is completely determined by its distribution at time t =1, the so-called NIG
distribution, NIG(α, β, δ, µ), with parameters α > 0, |β| < α, δ > 0 and µ ∈ R, i.e.

L1 ∼ NIG(α, β, δ, µ) and Lt ∼ NIG(α, β, tδ, tµ)

Thus, as soon as we have knowledge on some properties of the NIG distribution like the density or
the characteristic function, we know it already for (Lt)t∈[0,T ] at any timescale.

So, the density of (Lt)t∈[0,T ] is for example given by

f
NIG(α,β,δ,µ)
t (x) = αδtetδ

√
α2−β2+β(x−tµ)K1(α

√
t2δ2 + (x− tµ)2)

π
√
t2δ2 + (x− tµ)2

,

where K1 denotes the Bessel function of third kind with index 1.
These facts will help to the computation of optimal quantizers for Lt at given time-points

{k∆t, k = 0, . . . , n− 1}.
Another useful property of the NIG process is the fact that if we model our underlying as

St = S0 exp(Lt)

13



with respect to the real-world measure P, we can use the Esscher transform to construct an equiva-
lent martingale measure Q (see [9] and [10]), for a first occurrence of this method, which preserves
the NIG structure of the driving Lévy process.

Hence the probability change from P to Q can be completely performed by adjusting the pa-
rameters α, β, δ and µ of the NIG process, so that from a numerical point of view it makes no
difference, if we are modeling under the real-world measure or the risk-neutral one.

5.3.1 Computation of optimal quantizers for the NIG distribution

Recall that we may rewrite the L2-quantization problem of the NIG distribution as

DN := min
x∈RN

N∑
i=1

∫
Ci(x)

(ξ − xi)2fNIG(ξ)dξ (23)

where {Ci(x), i = 1, . . . , N} denotes a Voronoi partition induced by x = (x1, . . . , xN ).
The fact, that in the one-dimensional setting the Voronoi cells Ci(x) are just intervals in R and

the uniqueness of the optimal quantizer due to the unimodality of fNIG, makes the quantization
problem in this case very straightforward to solve.

Now assume x = (x1, . . . , xN ) ∈ RN to be ordered increasingly and denote by

x1/2 := −∞, xi±1/2 :=
xi + xi±1

2
for 2 ≤ i ≤ N − 1, xN+1/2 := +∞

the midpoints between the quantizer elements respectively ±∞. A Voronoi partition of Γ is there-
fore given by

C1(x) = (−∞, x1+1/2],

Ci(x) = (xi−1/2, xi+1/2], 2 ≤ i ≤ N − 1,

CN (x) = (xN−1/2,+∞).

so that (23) now reads

min
x∈RN

N∑
i=1

∫ xi+1/2

xi−1/2

(ξ − xi)2fNIG(ξ)dξ. (24)

This is an N -dimensional optimization problem, which can be easily solved by Newton’s method
as soon as we have access to the first and second order derivatives of DN .

In fact, we can calculate the first order derivative of DN (see e.g. [12], Lemma 4.10 or [19],
Lemma C) as

∂DN

∂xi
(x) = 2

∫ xi+1/2

xi−1/2

(xi − ξ) fNIG(ξ)dξ, 1 ≤ i ≤ N. (25)

Moreover the Hessian matrix turns out to be a symmetric tridiagonal matrix with diagonal
entries

∂2DN

∂x2
1

(x) = 2
∫ x1+1/2

x1/2

fNIG(ξ)dξ − x2 − x1

2
fNIG(x1+1/2)

∂2DN

∂x2
i

(x) = 2
∫ xi+1/2

xi−1/2

fNIG(ξ)dξ − xi − xi−1

2
fNIG(xi−1/2)− xi+1 − xi

2
fNIG(xi+1/2), 2 ≤ i ≤ N

∂2DN

∂x2
N

(x) = 2
∫ xN+1/2

xN−1/2

fNIG(ξ)dξ − xN − xN−1

2
fNIG(xN−1/2)

(26)
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and the super- respectively sub-diagonals

∂2DN

∂xi∂xi−1
(x) =

∂2DN

∂xi−1∂xi
(x) = −xi − xi−1

2
fNIG(xi−1/2), 2 ≤ i ≤ N.

As a consequence of (25), the remaining entries vanish

∂2DN

∂xi∂xj
(x) =

∂2DN

∂xj∂xi
(x) = 0, 1 ≤ i < j − 1 ≤ N − 1.

For the evaluation of the integrals occurring in the expressions (25) and (26) we employed
high-order numerical integration methods which gave satisfying results.

But some attention should be paid to the initialization of the Newton’s method, since it con-
verges only locally. We achieved a fast convergence using an equidistant placed N -tuple in the
interval [ELtk − 2 VarLtk ,ELtk + 2 VarLtk ] as starting vector, i.e.[

tk

(
µ+

δβ√
α2 − β2

− 2
δα2

(α2 − β2)3/2

)
, tk

(
µ+

δβ√
α2 − β2

+ 2
δα2

(α2 − β2)3/2

)]

for the case of the NIG, so that we reached the stopping criterion of ‖∇DN (x∗)‖ ≤ 10−8 within
20− 30 iterations.

5.3.2 Simulation of ∆Lt

For the simulation of a NIG(α, β, δ, µ) process it is useful to regard Lt as subordinated to a Brownian
motion, i.e.

Lt = βδ2It + δWIt + µt,

for an Inverse Gaussian process It, that is again a Lévy process with Inverse Gaussian distribution,
IG(a, b), and parameters a = t and b =

√
α2 − β2.

A way to simulate the IG(a, b) distribution was proposed in [7], p.182.

6 Numerical results

In the above explained models we performed some tests on the pricing of swing options.

6.1 The pricing procedure

Given any initial global constraints Q ∈ N2∩T+(n), the quantized tree algorithm aims at backward
solving the following program

P̂nn ≡ 0

P̂nk (Qk) = max
{
xvk(X̂k) + E(P̂nk+1(χn−k−1(Qk, x))|X̂k), x ∈ {0, 1} ∩ In−k−1

Qk

}
, k = 0, . . . , n− 1,

(27)

for all admissible Qk from section 3.1. Here, vk is a local payoff with strike K, which is defined by

vk(x) = (F0,k∆t exp(σx− 1
2

∆2
k∆t)−K),

for the Gaussian 1-factor model,

vk(x1, x2) = (F0,k∆t exp(σ1x
1 + σ2x

2 − 1
2

∆2
k∆t)−K),
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for the Gaussian 2-factor model and

vk(x) = S0 exp(x)−K

for the NIG-model.
Note that the only admissible Q0 is Q, and therefore Pn0 (Q) := Pn0 (Q0) gives then the premium

of a swing option.
In all test cases, we set the local constraints to

qmin = 0 and qmax = 6

and give results for a number of exercise dates n = 30 resp. n = 365 and strikes

K = 5, 10, 15, 20.

As a benchmark served the call strip case

Q = (0, qmax · n),

which reduces in view of (9) to the normalized case Q̃ = (0, n) and therefore has a reference price
given by a sum of plain vanilla calls (see section 3.3).

The tests were carried out in JAVA on a dual Intel Xeon QuadCore CPU@3GHz and the CUDA-
results on a NVIDIA GTX 280 GPU.

Moreover, the Monte-Carlo sample size were in all cases chosen as M = 105 per time layer tk.

6.2 1-factor model

For the Gaussian 1-factor model we have chosen the parameters

σ = 0.7, α = 4, F0,t = 20

with respect to a 30-day period for the underlying dynamic. We give results for the diffusion
method (diff), as representative for the MC-based approaches, and the deterministic spray method
(dSpray), which uses a 63-point Gauss quadrature for the numerical integration.

In addition, we implemented the trinomial tree method from [14], which is based on a tree
dynamics for a mean reverting process from [13]. In fact, this approach fits exactly into our pricing
framework, where only the grid points and the 3-way transitions have to be chosen accordingly to
[14], section 4.1.

Unfortunately, this design is only defined for a special number of grid points, which is 15 in our
parameter setting. Hence, we could carry out comparisons to the trinomial tree method only for
the case N = 15.

Concerning the accuracy of these methods, we start with the call strip-case in Table 1.
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K = 10
N diff rel. Err. sec. dSpray rel. Err. sec. trinom rel. Err. sec.
15 1799.02 0.073% 1.52 1797.54 0.155% 0.08 1808.06 0.430% 0.001
50 1800.37 0.003% 1.65 1799.97 0.020% 0.45

100 1800.49 0.009% 1.74 1800.23 0.005% 1.65
200 1800.51 0.010% 1.86 1800.30 0.001% 6.48

K = 20
N diff rel. Err. sec. dSpray rel. Err. sec. trinom rel. Err. sec.
15 319.58 0.210% 1.52 316.61 1.137% 0.08 327.36 2.218% 0.001
50 320.13 0.037% 1.65 319.57 0.211% 0.45

100 320.38 0.041% 1.74 320.10 0.046% 1.65
200 320.40 0.048% 1.86 320.21 0.013% 6.48

Table 1: Gaussian 1-factor model for n = 30 and Q = (0, 180) with computational times for the
transition probabilities on a single CPU.

For both strikes K = 10, 20 the quantization methods induce already for N = 15 a much smaller
approximation error than the trinomial tree method, since they are based on a discretization which
is fitted in an optimal way to the underlying distribution, in contrast to the trinomial tree method
which is based on an equidistant discretization.

Moreover, with a grid size of N = 50, both quantization methods provide relative errors in the
region of a few ‰ or less, which is nearly the exact result.

Since the diffusion approach contains, compared to the spray method, one approximation less,
it outperforms the deterministic spray method for smaller N as shown in the table.

In view of the computational time for the estimation of the transition probabilities, the trinomial
tree approach, where each node can only take 3 different states, performs very fast.

Nevertheless, the deterministic spray method executes for N = 15 in less than 1/10 second and
for N = 50 in less than 1/2 second, which is still instantaneous and provides moreover a much
higher accuracy than the trinomial tree method.

Concerning MC-simulation based approaches, we here only give computation times for the dif-
fusion approach, which is about 11

2 second and therefore cannot compete with the other approaches
for small and moderate N .

Once the computation of the transition probabilities is done, the pricing method has to iter-
atively traverse the quantization tree for the solution of the stochastic control problem in (27),
whose execution time are given in Table 2.

N 15 50 100 200
sec. 0.02 0.10 0.17 0.29

Table 2: Computational times on a single CPU for the traversal of the quantization tree in the
1-factor model.

These times, which are independent of the transition approach and which can be considered as
the minor compute intensive problem, have to be added to those of Table 1 to arrive at the total
time for the pricing of one contract.

To illustrate the performance of these methods in case of a non-trivial control problem, we chose
global constraints

Q = (100, 150)

in Table 3.
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K = 10
N diff dSpray trinom
15 1589.97 1587.66 1602.48
50 1588.95 1588.41

100 1588.89 1588.51
200 1588.86 1588.54

K = 20
N diff dSpray trinom
15 226.83 223.76 241.29
50 225.28 224.75

100 225.19 224.90
200 225.15 224.94

Table 3: Gaussian 1-factor model for n = 30 and Q = (100, 150).

Here again, the quantization methods are very close to each other and suggest that the true
price for K = 20 is around 225, which means that these methods again outperform the trinomial
tree method by several orders of magnitude.

Moreover, the consistency with Table 1 justifies the use of the call strip case as a general
benchmark for the performance.

In all these examples the dSpray-method with N = 50 performs the pricing of a 30-day contract
in about 1/2 second and with an error of only a few ‰, which seems to be a good compromise
between speed and accuracy.

6.3 2-factor model

For the numerical analysis in the Gaussian 2-factor model, we set parameters

σ1 = 0.36, α1 = 0.21, σ2 = 1.11, α2 = 5.4, ρ = −0.11, F0,t = 20

with respect to a one year period.
Since the 2-factor model is based on bivariate normal distribution in each time layer, deter-

ministic approaches are not competitive anymore, and we therefore focus only on the MC-based
methods, i.e. the diffusion method (diff), the parallel Quantization Weight Estimation-method
(pQWE) and the spray method for MC-simulation (MCSpray).

Starting with a 30-day contract in Table 4,

K = 10
N diff rel. Err. sec. pQWE rel. Err. sec. MCSpray rel. Err. sec.

100 1796.57 0.202% 3.84 1798.26 0.108% 4.78 1793.11 0.394% 2.56
250 1797.58 0.146% 4.64 1799.91 0.016% 5.21 1794.72 0.305% 2.67
500 1797.94 0.126% 5.26 1800.94 0.041% 5.57 1795.98 0.235% 2.92

K = 20
N diff rel. Err. sec. pQWE rel. Err. sec. MCSpray rel. Err. sec.

100 263.72 1.816% 3.84 264.38 1.568% 4.78 254.55 5.229% 2.56
250 265.50 1.153% 4.64 266.64 0.728% 5.21 259.64 3.334% 2.67
500 266.16 0.906% 5.26 267.70 0.334% 5.57 262.99 2.086% 2.92

Table 4: Gaussian 2-factor model for n = 30 and Q = (0, 180) with computational times for the
transition probabilities on a single CPU.
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the diffusion and the pQWE-method perform similarly with respect to execution time and
accuracy, whereas the spray method induces about double the error for half the execution time.

In this 2-factor setting we also present results for a 365-day contract in table 5.

K = 10
N diff rel. Err. sec. pQWE rel. Err. sec. MCSpray rel. Err. sec.

100 21943.77 0.662% 88 21960.16 0.588% 58 21758.67 1.500% 22
250 22006.16 0.379% 118 22001.90 0.399% 62 21580.61 2.306% 24
500 22042.31 0.216% 145 22052.94 0.168% 67 21756.86 1.508% 27

K = 20
N diff rel. Err. sec. pQWE rel. Err. sec. MCSpray rel. Err. sec.

100 6398.35 2.084% 88 6380.18 2.363% 58 6090.92 6.789% 22
250 6470.05 0.987% 118 6437.34 1.488% 62 5926.04 9.312% 24
500 6508.88 0.393% 145 6483.65 0.779% 67 6100.28 6.646% 27

Table 5: Gaussian 2-factor model for n = 365 and Q = (0, 2190) with computational times for the
transition probabilities on a single CPU.

Here we observe execution time in the range of about 1/2 minute up to 2 minutes for the single
core implementation, which becomes quite critical for time sensitive applications.

6.3.1 Parallel implementation

To demonstrate the parallel performance of the transition estimation methods, we first implemented
the pQWE-methods using 365 threads (for each time layer one) on 8 Xeon cores. This approach
reduces the execution to about 7 seconds (cf. Table 6), which means that it scales linearly with
respect to number of available processors (and even a bit better, since these 365 threads exploit
the computing power of a single core more efficiently than a single thread).

Moreover, we developed a CUDA-implementation of the pQWE-method, which contains beneath
the layer-wise parallelization also a MC-wise one, i.e. 365 blocks with each containing 256 threads
for the MC-simulation per layer.

This finally enabled us to price the 365-day contract at N = 100 in less than 1 second with
about 2% accuracy using the 240 ScalarProcessors of an NVIDIA GTX 280 GPU.

N 100 250 500
8× Xeon 7.12 7.33 7.79
GTX 280 0.75 1.26 2.11

Table 6: Computational time in seconds for pQWE-method on the 2-factor model with n = 365.

Note, that the dual Xeon has an overall computation power of about 192 GFLOPS, whereas
the GTX 280 can perform up to 933 GFLOPS.

6.3.2 Romberg extrapolation

A further way to improve the accuracy of the quantization method is the extrapolation method
from section 4.3 here applied to the 30-day contract from Table 4.
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K = 5
N diff rel. Err. pQWE rel. Err. MCSpray rel. Err.

100− 250 2698.04 0.073% 2700.79 0.029% 2695.64 0.162%
250− 500 2698.09 0.071% 2701.77 0.065% 2697.09 0.108%

K = 10
N diff rel. Err. pQWE rel. Err. MCSpray rel. Err.

100− 250 1798.25 0.109% 1801.01 0.045% 1795.79 0.246%
250− 500 1798.30 0.106% 1801.97 0.098% 1797.24 0.165%

K = 15
N diff rel. Err. pQWE rel. Err. MCSpray rel. Err.

100− 250 922.31 0.234% 924.79 0.035% 918.73 0.624%
250− 500 922.43 0.220% 925.92 0.157% 921.23 0.351%

K = 20
N diff rel. Err. pQWE rel. Err. MCSpray rel. Err.

100− 250 266.68 0.716% 268.14 0.168% 263.03 2.114%
250− 500 266.82 0.663% 268.75 0.060% 266.34 0.844%

Table 7: Extrapolation for Gaussian 2-factor model with n = 30 and Q = (0, 180)

Here, we observe for all the methods a boost up of the accuracy, which in particular holds for
the pQWE-approach.

6.4 NIG-model

To finally apply the method in a non-Gaussian setting, we tested the exponential Lévy-model from
section 5.3 for daily parameters

α = 50, β = −2.0, δ = 0.02, µ = 0.001, s0 = 20

and a 30 days contract.
Here again as in the 1-factor model (cf. Table 1), the dSpray-method performs very well and

even outperforms in this case the diffusion method. Moreover it reveals a very stable extrapolation
behavior, which can be seen in table 9.

Since the computational times agreed with those from the 1-factor setting, we did not reproduce
them again.

K = 10
N diff rel. Err. dSpray rel. Err.
50 1820.22 0.040% 1820.59 0.020%

100 1820.23 0.039% 1820.90 0.003%
200 1820.24 0.039% 1820.94 < 0.001%

K = 20
N diff rel. Err. dSpray rel. Err.
50 111.92 0.356% 111.93 0.347%

100 111.96 0.321% 112.22 0.088%
200 111.97 0.313% 112.30 0.022%

Table 8: NIG-model with n = 30 and Q = (0, 180)
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K = 10
N diff rel. Err. dSpray rel. Err.

50− 100 1820.23 0.039% 1821.00 0.003%
100− 200 1820.24 0.039% 1820.95 < 0.001%

K = 20
N diff rel. Err. dSpray rel. Err.

50− 100 111.97 0.311% 112.32 0.002%
100− 200 111.97 0.312% 112.32 < 0.001%

Table 9: Extrapolation for NIG-model with n = 30 and Q = (0, 180)

7 Conclusions

We have systematically carried out numerical tests on the pricing of swing options in the quanti-
zation tree framework using different methods for the transition probability estimation.

The results are very promising, since we could show that

• already in the 1-factor model the quantization approach outperforms the trinomial tree meth-
ods due to its better fit to the underlying distribution,

• the computational time for the transition probability estimation in the 2-factor model with
365 exercise dates can be reduced to less than 1 second using our parallel approaches on a
nowadays GPU device,

• the quantization framework also works very well for non-Gaussian, in our case a NIG Lévy
process, Markov Feller underlyings.

Moreover, we could speed up the convergence of all these approaches by means of a Romberg
extrapolation.
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