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Abstract

In this paper, we suggest several improvements to the numerical implementation of the
quantization method in order to get accurate premium estimations. This technique is applied to
derivative pricing in energy markets. Several ways of modeling energy derivatives are described
and finally numerical examples are provided to test the procedure accuracy.
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1 Introduction

In the last decades, optimal quantization arised as an efficient method for pricing complex financial
contracts. It has successfully been applied to basket options of american type (see [BPP05]) and
energy contracts as swing options (see [BBP07a] and [BBP07b]). In financial institutions, quickness
of execution as well as high accuracy are important criteria in the choice of a pricing method. With
this observation in mind, we suggest some improvements to the original quantization method. The
quantization tree algorithm (or pricing procedure) is divided into three parts: the computation of
the quantization grids, the estimation of the transition probabilities and the premium evaluation.
As the two first tasks are time consuming, one usually proceeds off-line to these estimations. To
reduce drastically the computation time and proceed on-line to these estimations, we suggest the
application of a “fast parallel quantization method”, which allows for a parallel implementation
of our procedure on a grid. So, we increase enormously the number of processors available to do
the computations. We also advice to include a kd-tree structure in the fast parallel procedure to
diminish complexity. Finally, we appeal to a spatial Richardson-Romberg extrapolation method to
improve the convergence rate and the method accuracy.

This improved approach is then applied to swing options pricing. We introduce several models
for the underlying asset dynamics. As well as usual Gaussian processes, we consider dynamics
driven by Normal Inverse Gaussian (NIG) distribution. The Normal Inverse Gaussian distribution
has been introduced in finance by Barndorff-Nielsen in the 90s and has recently been applied to
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energy markets by several authors, e.g. Frestad, Benth and Koekebakker and Benth and Saltyte-
Benth (see [BFK07] and [BSB04]). They suggest that the NIG family fits empirical electricity return
distribution very well and represents an attractive alternative to the family of normal distribution.

In Section 2, the quantization method is introduced. In Section 3, we recall the quantization tree
algorithm associated to the swing option stochastic control problem (see [BBP07a] and [BBP07b]).
Some special cases of swing option as Call Strip and Bermuda option are developed. In Section
4, some suggestions are addressed to improve the execution time as well as the accuracy of the
algorithm. Section 5 is devoted to financial applications and numerical results.

2 Optimal quantization

Optimal quantization has been developed in the 50s in the field of Signal Processing. Its main
purpose consists in approximating a continuous signal by a discrete one on an optimal way. In
the 90s, its application has been extended to the field of Numerical Integration to compute some
integral estimations by using finite weighted sums. And in the early 2000s, this method has been
applied to the field of Numerical Probabilities and Financial Mathematics. This extension has been
motivated by the necessity of designing efficient methodologies for pricing and hedging more and
more sophisticated financial products. Indeed optimal quantization brought a natural answer to
the conditional expectation computations appearing in these financial models.

Let (Ω,A, P) be a given probability space and let X be a random vector defined on this prob-
ability space and taking valued in Rd. Let N be a positive integer, the main idea of quantization
consists to discretize X by a σ(X)-measurable random vector X̂ taking only finitely many val-
ues in a grid Γ = {x1, . . . , xN} of Rd. This grid or codebook is called a N -quantizer of X. Let
x = (x1, . . . , xN ) denotes the N -tuple induced by Γ. One can associate with X̂ a Borel function
qx : Rd → Rd called quantizer such that X̂ = qx(X).

Let p ∈ [1,∞[ and X ∈ Lp(Ω,A, P), optimal quantization consists to study the best Lp-
approximation of X. It aims at minimising in qx the Lp-mean quantization error, that is, it
consists in solving

inf{||X − qx(X)||p | qx : Rd → Rd Borel and |qx(X)| ≤ N}. (1)

The quantization X̂x relative to the quantizer function is given by the following definition.

Definition 1. Let x = (x1, . . . , xN ) ∈ (Rd)N . A partition (Ci(x))1≤i≤N of Rd is a Voronoi
tessellation of the N -quantizer x, if for every i ∈ {1, . . . , N}, Ci(x) is a Borel set satisfying

Ci(x) ⊂ {u ∈ Rd | |u − xi| = min
1≤j≤N

|u − xj |}, (2)

where | . | is the Euclidean norm on Rd. The nearest neighbor projection on x induced by the Voronoi
partition is defined for every u ∈ Rd by

u 7→
N
∑

i=1

xi1Ci(x)(u). (3)

The random vector

X̂x =

N
∑

i=1

xi1Ci(x)(X) (4)

is called a Voronoi quantization of X.
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The minimization problem in x is more subtle and depend on p and some properties of the
probabilities distribution. It has at least one solution x∗. And if supp PX = ∞ then x∗ has
pairwise distinct components and minx∈(Rd)N ||X − X̂x||p is decreasing to 0 as N goes to ∞.

The rate of convergence to zero is given by Zador’s Theorem (see [Z82], [GG92], [GL00]).

Theorem 1. (i) Let X ∈ Lp+η(Ω,A, P), p ≥ 1, η > 0, such that PX(du) = ϕ(u)λd(du) + ν(du),
where ν ⊥λd. Then

lim
N

N
1
d min

x∈(Rd)N
||X − X̂x||p = J̃p, d

(∫

Rd

ϕ
d

p+d (u)du

) 1
p
+ 1

d

.

(ii) Non asymptotic estimate: Let p ≥ 1, η > 0. There exists a real constant Cd,p,η > 0 and an
integer Nd,p,η ≥ 1 such that for any Rd-valued random vector X, for N ≥ Nd,p,η,

min
x∈(Rd)N

||X − X̂x||p ≤ Cd,p,η||X||p+ηN
− 1

d .

We refer to the following papers for a study of several algorithms designed to find optimal
quantizers: (see [K82, GG92, P97, D98]). The problem dimension and the properties of the law
of X might help to determine an efficient algorithm. Note that some optimised quantizers of the
normal distribution N (0, Id) have been computed and are available at the URL

www.quantize.math-fi.com

for dimensions up to 10 and for several grid sizes.
Since an optimal quantization X̂x provides the best finite approximation to the distribution of

X in the least square sense, it becomes natural to use Ef(X̂x) as an approximation for Ef(X),
where f : Rd → R is a Borel function.

Note further, that since X̂x takes only finitely many values, we compute Ef(X̂x) as the finite
sum

N
∑

i=1

P(X ∈ Ci(x))f(xi).

The weights pi := P(X ∈ Ci(x)) of this cubature formula are obtained as a by-product of opti-
mization procedures to generate optimal quantizers like the ones used in [PP03] or [P97].

Assume now that f exhibits some smoothness properties, i.e. f is differentiable with Lipschitz
continuous differential Df . If x is a stationary quantizer, i.e.

X̂x = E(X|X̂x),

which is fulfilled for every optimal L2-quantizer, we can conclude from a Taylor expansion of f ,
that the approximation error of Ef(X̂x) satisfies

|Ef(X) − Ef(X̂x)| ≤ [Df ]Lip‖X − X̂x‖2
2.

3 The quantization tree algorithm

3.1 Abstract problem formulation

We consider several financial products and we define an abstract model, which will be applied to
these derivative products.
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Let (tk)0≤k≤n−1 be a given, strictly increasing sequence of exercise dates, such that the first
exercise date is set at the origin of the derivative and the last one happens strictly before the option
maturity.

Let (Ω,A, P) be a complete probability space and let p ∈ [1,∞[. On this probability space,
one defines an option with maturity T by a sequence of random variables (Vk)0≤k≤n−1. For k ∈
{0, . . . , n−1}, Vk represents the option payoff obtained by the derivative holder at time tk. To model
all the available market information, one introduces a filtration F := (Fk)0≤k≤n−1 on (Ω,A, P),
such that, for k ∈ {0, . . . , n− 1}, the option payoff Vk is measurable with respect to the σ-field Fk.
One common feature characterizing most of the option is that the product is built on an underlying
asset. In our setting, the option owner has the possibility to choose, for each exercise date, the
underlying asset amount included in the contract. These decision variables are represented by a
sequence (qk)0≤k≤n−1 of F-adapted random variables and are subjected to constraints given by:

(i) a local constraint:
let qmin and qmax be two given positive constants. For k = 0, . . . , n − 1,

qmin ≤ qk ≤ qmax P-a.s.. (5)

(ii) A global constraint:
one defines a cumulative purchased process (q̄k)0≤k≤n by

q̄0 := 0 and q̄k :=

k−1
∑

l=0

ql, k = 1, . . . , n.

Then for any couple of F0-measurable, non-negative random variables Q := (Qmin, Qmax),
the total cumulative volume purchased should satisfy

Qmin ≤ q̄n ≤ Qmax P-a.s.. (6)

A control process (qk)0≤k≤n−1 which satisfies these local and global conditions is called (F , Q)-
admissible.

Now, one defines the residual global constraints Qk = (Qk
min, Q

k
max) at time tk by

Qk
min = Qmin − q̄k and Qk

max = Qmax − q̄k.

Then, the associated option value at time tk is given by

Pn
k ((Qk

min, Q
k
max)) := esssup

{

E

(

n−1
∑

l=k

qlVl|Fk

)

, ql : (Ω,Fl) → [qmin, qmax], k ≤ l ≤ n − 1, q̄n − q̄k ∈ [Qk
min, Q

k
max]

}

.

(7)
Now, to simplify the numerical computations, one appeals to a decomposition method intro-

duced by Bardou, Bouthemy and Pagès in ([BBP07a]) and ([BBP07b]). At a given time tk, the
option price is split between a swap contract with a closed form solution and a normalized swing
one, in which the control variables are [0, 1]-valued. One considers from now on a normalized
framework. In this setting, a couple of global constraints Qk at time tk is admissible if Qk is
Fk-measurable and if

0 ≤ Qk
min ≤ Qk

max ≤ n − k P-a.s.. (8)
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For every couple of admissible global constraints Qk, the derivative price at time tk satisfies

Pn
k ((Qk

min, Q
k
max)) := esssup

{

E

(

n−1
∑

l=k

qlVl|Fk

)

, ql : (Ω,Fl) → [0, 1], k ≤ l ≤ n − 1, q̄n − q̄k ∈ [Qk
min, Q

k
max]

}

.

(9)
To construct the quantization tree algorithm, we appeal to several results summarized below,

(a detailed version of these results is available in [BBP07b]):

(i) Bardou, Bouthemy and Pagès show that we loose little generality and gain much simplification
by assuming that at time tk, all couple of admissible global constraints Qk are deterministic.

(ii) The Backward Dynamic Programming Formula (BDP):
Let Pn

n ≡ 0. For every k ∈ {0, . . . , n − 1} and every couple of admissible global constraints
Qk = (Qk

min, Q
k
max) at time tk, we have

Pn
k (Qk) = sup

{

xVk + E(Pn
k+1(χ

n−k−1(Qk, x))|Fk), x ∈ In−k−1
Qk

}

with
χM (Qk, x) :=

(

(Qk
min − x)+, (Qk

max − x) ∧ M
)

and
IM
Qk := [(Qk

min − M)+ ∧ 1, Qk
max ∧ 1].

(iii) One defines the set of admissible deterministic global constraints at time 0 by

T+(n) = {Q0 ∈ R2 | 0 ≤ Q0
min ≤ Q0

max ≤ n}. (10)

Then, given any admissible integral global constraints at time 0 i.e. Q0 ∈ N2 ∩ T+(n), there
exists an optimal bang-bang control process q∗ = (q∗k)0≤k≤n−1 with q∗k ∈ {0, 1} P-a.s. for
every k = 0, . . . , n − 1.
The value function is concave, continuous and piecewise affine on the tiling of T+(n).

So in view of these results, it is sufficient to evaluate the option premium at integral values of T+(n).
Then, it is possible to use a linear interpolation to obtain the derivative price for all admissible
constraints, i.e. for all Q0 ∈ T+(n). Hence we may reformulate the BDP Formula for an initial
Q0 ∈ N2 ∩ T+(n) as

Pn
n ≡ 0

Pn
k (Qk) = max

{

xVk + E(Pn
k+1(χ

n−k−1(Qk, x))|Fk), x ∈ {0, 1} ∩ In−k−1
Qk

}

, k = 0, . . . , n − 1.

(11)

In order to simulate the derivative prices obtained in (11), one appeals to the quantization
method described in Section 2. At each exercise date tk, k = 0, . . . , n − 1, we perform a spatial
discretization of the d-dimensional underlying asset and include the resulting discretized process in
the BDP Formula. Finally, some convergence theorems are available to obtain some error bounds.
However, these theorems require the following assumption:

The underlying d-dimensional process, say (Xk)0≤k≤n−1 has a Markovian structure.
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Therefore, if one assumes that the payoffs Vk are function of Xk, that is

Vk = vk(Xk), k = 0, . . . , n − 1, (12)

one obtains

E(vk+1(Xk+1)|Fk) = E(vk+1(Xk+1)|Xk) = Θk(vk+1)(Xk), k = 0, . . . , n − 1, (13)

where (Θk)0≤k≤n−1 is a sequence of Borel transition probabilities on (Rd,B(Rd)). Therefore (11)
becomes

Pn
n ≡ 0

Pn
k (Qk) = max

{

xvk(Xk) + E(Pn
k+1(χ

n−k−1(Qk, x))|Xk), x ∈ {0, 1} ∩ In−k−1
Qk

}

, k = 0, . . . , n − 1.

(14)

Now, let X̂k be a quantized version of Xk of size say Nk. An approximation of the price process
is designed by plugging X̂k in (14) and by forcing the Markov property on X̂k.

P̂n
n ≡ 0

P̂n
k (Qk) = max

{

xvk(X̂k) + E(P̂n
k+1(χ

n−k−1(Qk, x))|X̂k), x ∈ {0, 1} ∩ In−k−1
Qk

}

, k = 0, . . . , n − 1.

(15)

The resulting algorithm named a quantization tree is then tractable by computer algorithm. Indeed,
it is possible to evaluate the above formula in a recursive way up to k = 0 where we arrive at a
σ(X0)-measurable solution. Note that for F0 = {∅, Ω}, the option premium is deterministic. From
now on, we assume that F0 is trivial.

The following results are concern with the error resulting from the discretization of the under-
lying price process (Xk)0≤k≤n−1.

Theorem 3.1. Assume that the Markov process (Xk)0≤k≤n−1 is Lipschitz Feller in the following
sense: for every bounded Lipschitz continuous function g : Rd → R and every k ∈ {0, . . . , n − 1},
Θk(g) is a Lipschitz continuous function satisfying [Θk(g)]Lip ≤ [Θk]Lip[g]Lip. Assume that every
function vk : Rd → R is Lipschitz continuous with Lipschitz coefficient [vk]Lip. Let p ∈ [1,∞) such
that max0≤k≤n−1 |Xk| ∈ Lp(P). Then, there exists a real constant Cp > 0 such that

‖ sup
Q∈T+(n)∩N2

|Pn
0 (Q) − P̂n

0 (Q)‖p ≤ Cp

n−1
∑

k=0

‖Xk − X̂k‖p.

In view of Zador Theorem (see Theorem 1) and the F0-measurability of Pn
0 and P̂n

0 , this also
reads

sup
Q∈T+(n)∩N2

|Pn
0 (Q) − P̂n

0 (Q)| ≤ C
n−1
∑

k=0

N
−1/d
k .

3.2 Complexity and implementationary Notes

For an analysis of the complexity of the quantization tree algorithm in its original form (15), we
count the number of multiplications, which occur during the evaluation of Pn

0 (Q0) for a given Q0.
We implement the quantization tree algorithm in a backward iterative manner, starting at layer k
with the computation of Pn

k (Qk) for every possible residual global constraint Qk ∈ Qn
k(Q0) with

Qn
k(Q0) =

{(

(Q0
min − l)+, (Q0

max − l)+ ∧ (n − k)
)

, l = 0, . . . , k
}
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for given initial global constraints Q = (Qmin, Qmax) ∈ T+(n) ∩ N2. This approach results in a
complexity proportional to

n−2
∑

k=0

#Qn
k(Q0)NkNk+1 + Nn−1

multiplications, which can be estimated from above by

n−2
∑

k=0

(k + 1)NkNk+1 + Nn−1.

If we employ a equal grid size N in each layer for the quantization of the conditional expectations,

we finally arrive at an upper bound proportional to (n2−n)
2 N2 + N multiplications.

3.3 Some special cases

We will study some special cases of swing options. These classes of swing are characterized by
particular values of global constraints.

3.3.1 The call strip: case Q = (0, n)

In this case the global constraint is always satisfied by the cumulative purchase process, i.e.
∑n−1

l=0 ql ∈ [Qmin, Qmax], as the control process (ql)0≤l≤n−1 is [0, 1]-valued. Hence the optimal
control problem is reduced to a maximization problem without constraints:

Pn
k (0, n) = esssup

{

E

(

n−1
∑

l=k

qlVl|Fk

)

, ql : (Ω,Fl) → [0, 1], k ≤ l ≤ n − 1

}

, k = 0, . . . , n − 1,

(16)
an optimal control for (??) is given by

q∗l :=

{

1, on {Vl ≥ 0},
0, elsewhere,

and the associated price process by

Pn
k (0, n) =

n−1
∑

l=k

E
(

Vl
+|Fk

)

.

Appealing to the proceeding of Section (3.1), one obtains the following quantized tree algorithm in
a Markovian structure

P̂n
k (0, n) =

n−1
∑

l=k

E
(

(vl(X̂l))
+|X̂k

)

.

Note that this case can be considered as a sum of European options. Since explicit formula
are available to evaluate European options, the call strip will be used as benchmark for numerical
implementations.
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3.3.2 The Bermuda option: case Q = (0, 1)

For the Bermuda option, one sets tn−1 = T . In view of result (iii) in Section (3.1), there exists
an admissible optimal control (q∗k)0≤k≤n−1, such that q∗k is {0, 1}-valued for all k ∈ {0, . . . , n − 1}.
Since (q∗k)0≤k≤n−1 is admissible, we have

0 ≤
n−1
∑

l=0

q∗l ≤ 1,

(see (6)). Therefore, there exists at most one l := l(ω) ∈ {0, . . . , n − 1} such that q∗l(ω)(ω) = 1.

So, for k ∈ {0, . . . , n − 1}

Pn
k ((0, 1)) = E





n−1
∑

j=k

q∗j Vj |Fk





= E (q∗l Vl|Fk)

= E
(

V +
l |Fk

)

.

Hence the optimisation problem can be rewritten in term of an optimal stopping problem

Pn
k ((0, 1)) = esssup

{

E
(

(Vτ )
+|Fk

)

, τ ∈ θk

}

,

where θk denotes the family of {tk, . . . , tn−1}-valued F-stopping times. For the Bermuda case, one
observes, for k = 0, . . . , n − 1, that

In−k−1
Qk =[(Qk

min − (n − k − 1))+ ∧ 1, Qk
max ∧ 1]

=[(Qmin −
k−1
∑

l=0

ql − (n − k − 1))+ ∧ 1, (Qmax −
k−1
∑

l=0

ql) ∧ 1]

=

{

[0, 1], if ql = 0, l = 0, . . . , k − 1,

{0}, if there exists l ∈ {0, . . . , k − 1} | ql = 1.

So, for k = 0, . . . , n − 2 and for x ∈ {0, 1},

χn−k−1(Qk, x) =
(

(Qk
min − x)+, (Qk

max − x) ∧ (n − k − 1)
)

=

(

(Qmin −
k−1
∑

l=0

ql − x)+, (Qmax −
k−1
∑

l=0

ql − x) ∧ (n − k − 1)

)

=(0, (1 −
k−1
∑

l=0

ql − x) ∧ (n − k − 1))

=

{

(0, 1), if x = 0 and if ql = 0, l = 0, . . . , k − 1,

(0, 0), if x = 1 or if there exists l ∈ {0, . . . , k − 1} | ql = 1.

So the BDP Formula (11) can be rewritten as

Pn
n ≡ 0

Pn
k ((0, 1)) = max

{

1Vk + E(Pn
k+1((0, 0))|Fk), 0Vk + E(Pn

k+1((0, 1))|Fk)
}

= max
{

(Vk)
+, E(Pn

k+1((0, 1))|Fk)
}

, k = 0, . . . , n − 1.
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Indeed, one observes that if there is at some exercise date tk, a consumption of quantity 1, then the
global constraints are saturated and no further consumption may occur, i.e. E(Pn

k+1((0, 0))|Fk) = 0.
Note also that the price process defined in a recursive way is a.s. always non-negative. Therefore,
one could restreint to positive parts for the option payoff in the (BDP) Formula.

The quantized version in a Markovian setting is then given by

P̂n
n ≡ 0

P̂n
k ((0, 1)) = max

{

(vk(X̂k))
+, E(P̂n

k+1((0, 1))|X̂k)
}

, k = 0, . . . , n − 1.

3.4 From Bermuda options to American options

Recall that a Bermuda product is in fact a time discretized version of an American option, so we
will use this product to approximate the pricing of American options by means of the quantization
tree algorithm. Therefore denote by PC

t the solution of the continuous optimal stopping problem

PC
t := esssup

{

E
(

(V C
τ )+|Ft

)

, τ is a [t,T]-valued stopping time
}

,

and suppose that (Vk)0≤k≤n−1is given by an equidistant time discretization of the continuous process
(V C

t )t∈[0,T ], i.e. Vk := V C
k∆t for ∆t = T/(n − 1) and k = 0, . . . , n − 1.

Hence, for semiconvex payoff, we have the following time discretization error bound. Let p ∈
[1,+∞),

‖PC
0 − Pn

0 ‖p ≤ Cp

n
,

(see [BPP05]). And we may conclude from theorem (3.1) that

‖PC
0 − P̂n

0 ‖p ≤
C1

p

n
+ C2

p,v

n−1
∑

k=0

‖Xk − X̂k‖p,

where Xk denotes the underlying Markov process.
Applying Zador’s Theorem for the quantization error ‖Xk − X̂k‖, this reads

‖PC
0 − P̂n

0 ‖p ≤
C1

p

n
+ C2

p,v

n−1
∑

k=0

N
−1/d
k ,

or in the case of a quantization grid with constant size N

‖PC
0 − P̂n

0 ‖p ≤
C1

p

n
+ C2

p,v

n

N1/d
.

4 Two main improvements of the quantized tree

4.1 Enhancements for the computations of the transition probabilities

To improve the derivative evaluations, one studies and compares several methods to compute the
conditional expectations found in (15). Noting that these expectations have the form of

E(f(X̂k+1)|X̂k)

for some Borel functions f : Rd → R and take values in finite grids xk = (xk
1, . . . , x

k
Nk

) of Rd, we
have

E(f(X̂k+1)|X̂k = xk
i ) =

Nk+1
∑

j=1

f(xk+1
j )πij

k

9



where
πij

k = P(X̂k+1 = xk+1
j |X̂k = xk

i ), k = 0, . . . , n − 2,

denote the transition probabilities of the quantized process. By definition of the Voronoi quantiza-
tion X̂ in (4), we arrive at

πij
k = P(Xk+1 ∈ Cj(x

k+1)|Xk ∈ Ci(x
k)) =

P(Xk+1 ∈ Cj(x
k+1), Xk ∈ Ci(x

k))

P(Xk ∈ Ci(xk))
. (17)

To estimate the transition probabilities, one generates e.g. a Monte Carlo sample of size M of
the random vector Xk, that we denote by (X̃m

k )1≤m≤M , in each layer k = 1, . . . , n − 1. So πij
k can

be estimated by

π̃ij
k :=

∑M
m=1 1Cj(xk+1)(X̃

m
k+1)1Ci(xk)(X̃

m
k )

∑M
m=1 1Ci(xk)(X̃

m
k )

, for k = 1, . . . , n − 2, (18)

i = 1, . . . , Nk and j = 1, . . . , Nk+1.

Given k, i and j, to determine the value of the indicator functions present in the estimations (18),
one checks, for each m = 1, . . . ,M , if the realizations X̃m

k (ω) and X̃m
k+1(ω) belong to the cells

Ci(x
k) or Cj(x

k+1) of the Voronoi tessellation.
This problem consists in finding the nearest neighbor for a query point q ∈ Rd in the N -tuple

x = (x1, . . . , xN ) with regard to the Euclidean distance. A commonly known algorithm to optimize
this nearest neighbor search, which can in high dimensions become a time consuming procedure, is
the kd-tree algorithm.

This procedure consists of two steps: The partitioning of the space, which has an average
complexity cost of O(n log n) operations. This has to be done only once and is therefore independent
of the size M of the Monte Carlo sample. The second part is the search procedure, which has an
average complexity cost of O(log n) distance computations.

The kd-tree data structure is based on a recursive subdivision of space Rd into disjoint hyper-
rectangular regions called boxes. Each node of the resulting tree is associated with such a region.
To ensure a well-defined splitting rule on each node, we equip the root node with a bounding box,
which is choosen to contain all data points.

As long as the number of data points within such box is greater than a given threshold, the
box is splitted-up into two boxes by an axis-orthogonal hyperplane that intersects the original box.
These two boxes are then associated to two children nodes. When the number of points in a box is
below the threshold, the associated node is declared a leaf node, and the points are stored within
this node.

To find the nearest neighbor for a query point q, we start at the root node and decide at each
node due to the cutting hyperplane, to which child node we descend.

When arriving at a leaf node, we compute the minimal distance from all data points of this node
to the query point q and ascend back on the trial to the root node as long as it may be possible
to find closer points than the previous found minimal distance. During this way back we obviously
descend to the so far not visited children and update the minimal distance found so far.

Now, we assume, that (Xk)0≤k≤n−1 can be written recursively, i.e.

Xk+1 = AkXk + TkZk, k = 0, . . . , n − 2, X0 = x0,

for some positive definite Matrices Ak and Tk, and a deterministic initial value x0. Furthermore
we suppose, that the distribution of Zk is either known as density or can be simulated and that it
is independent of the distribution of Xk.
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These assumptions hold for example for the BS model, where the driving process is a Brownian
motion, the Ornstein-Uhlenbeck process, which we will later on formulate as Gaussian first order
auto-regressive processes or for certain Lévy processes, e.g. the NIG process. This writing was first
initiated by Bardou, Bouthemy and Pagès for Gaussian processes (see [BBP07a]).

4.1.1 Diffusion method

The most straightforward approach consists in generating a Monte Carlo sample of size say M of
the random variate Zk in each layer k, i.e

(Z̃m
0 )1≤m≤M , . . . , (Z̃m

n−1)1≤m≤M ,

and then in defining the Monte Carlo sample for (Xk)0≤k≤n−1 by

X̃m
0 := x0,

X̃m
k+1 := AkX̃

m
k + TkZ̃

m
k , k = 0, . . . , n − 2

(19)

for m = 1, . . . ,M . So we get an estimate for πij
k , which writes

π̃ij
k :=

∑M
m=1 1Cj(xk+1)(X̃

m
k+1)1Ci(xk)(X̃

m
k )

∑M
m=1 1Ci(xk)(X̃

m
k )

.

Note that, in this method, we have to proceed to computations along the discrete trajectories of
X̃m, that is, step by step from time 0 to the exercise date tn−1, which forbids to do the computations
in parallel. But if we may assume, that the Xk’s can be simulated directly, we are able to overcome
this obstacle by the so-called fast parallel quantization method.

4.1.2 Fast Parallel Quantization method (FPQ)

For this method we generate in each layer k, independently, bivariate Monte Carlo samples by
simulating directly from the distributions of Xk and Zk, i.e.

(X̃m
0 , Z̃m

0 )1≤m≤M , . . . , (X̃m
n−2, Z̃

m
n−2)1≤m≤M .

The estimated transition probabilities are then given by

π̃ij
k :=

∑M
m=1 1Cj(xk+1)(ÃkX̃

m
k + TkZ̃

m
k )1Ci(xk)(X̃

m
k )

∑M
m=1 1Ci(xk)(X̃

m
k )

.

The structure of this method is ideally suited to a parallelized implementation and therefore
it’s possible to reduce efficiently the computation time of the transition probabilities procedure.

4.1.3 Completely deterministic method

For a one-dimensional process (Xk)0≤k≤n−1, i.e. Xk+1 = akXk + tkZk, for ak, tk ∈ R\{0}, it might
be even possible to compute the transition probabilities by deterministic integration methods. In

11



that case we write

πij
k =

P(Xk+1 ∈ Cj(x
k+1), Xk ∈ Ci(x

k))

P(Xk ∈ Ci(xk))
=

=
E
(

1Cj(xk+1)(akXk + tkZk)1Ci(xk)(Xk)
)

E(1Ci(xk)(Xk))
=

=
E
(

1(Cj(xk+1)−akXk)/tk
(Zk)1Ci(xk)(Xk)

)

E(1Ci(xk)(Xk))
=

=
1

∫

Ci(xk) dPXk

∫

Ci(xk)

∫

(Cj(xk+1)−akx)/tk

PZk
(dy) PXk

(dx),

where we are able, due to Fubini’s Theorem, to compute first the expectation with regard to Zk

and afterwards the expectation with regard to Xk.

4.1.4 “Methode des gerbes”

Another way to approximate the transition probabilities πij
k is to replace the random variable Xk

by its quantization X̂k in the identity Xk+1 = AkXk + TkZk as well as in the conditional part
Xk ∈ Ci(x

k) of (17).
Using the equivalence of X̂k ∈ Ci(x

k) and X̂k = xk
i , this leads to the following approximation

πij
k := P(AkX̂k + TkZk ∈ Cj(x

k+1)|X̂k ∈ Ci(x
k)) =

= P(Akx
k
i + TkZk ∈ Cj(x

k+1)) =

= P

(

Zk ∈ T−1
k (Cj(x

k+1) − Akx
k
i )
)

.

This quantity can in low dimensions and when the density of Zk is known be computed by deter-
ministic integration methods. Otherwise a Monte Carlo estimate would be given by

π̃ij
k :=

1

M

M
∑

m=1

1T−1
k (Cj(xk+1)−Akxk

i )(Z̃
m
k ),

where
(Z̃m

0 )1≤m≤M , . . . , (Z̃m
n−2)1≤m≤M

denote again the i.i.d. Monte Carlo samples of (Zk).

4.2 A faster convergence rate: an extrapolation approach for the quantization

tree algorithm

Consider for instance the classical numerical integration by means of optimal quantization, i.e.
Ef(X) is approximated by Ef(X̂N ) for sequence of stationary and rate optimal quantizers X̂N

(see Section 2).
Assume that f : Rd → R is a 3-times differentiable function with bounded derivatives.
If it holds true, that

E(D2f(X̂N )(X − X̂N )⊗2) ∼ cN−2/d as N → ∞

and
E|X − X̂N |3 = O(N−3/d).

12



Then we can conclude from a Taylor expansion

f(X) = f(X̂N )+Df(X̂N )(X−X̂N )+
1

2
D2f(X̂N )(X−X̂N )⊗2+

1

6
D3f(ξ)(X−X̂N )⊗3, ξ ∈ (X̂N , X),

so that
Ef(X) = Ef(X̂N ) + cN−2/d + o(N−3/d+ε) for every ε > 0.

Motivated by this identity and our numerical tests, we want to assume, that an analogous result
holds also (at least approximately) true for the quantization tree algorithm

Pn
0 = P̂n

0 + cN−2/d + o(N−3/d+ε) for every ε > 0.

Hence we perform a Romberg extrapolation on the quantized swing option prices by computing P̂n
0

for two different values N1, N2 (e.g. N1 ≈ 4N2) and denote them by P̂n
0 (N1) and P̂n

0 (N2). Thus
we arrive at

Pn
0 = P̂n

0 (N1) +
P̂n

0 (N1) − P̂n
0 (N2)

N
−2/d
2 − N

−2/d
1

N
−2/d
1 + o(N−3/d+ε),

where

Pn
0 (N1, N2) := P̂n

0 (N1) +
P̂n

0 (N1) − P̂n
0 (N2)

N
−2/d
2 − N

−2/d
1

N
−2/d
1

is the improved approximation for Pn
0 .

5 Applications

5.1 The American options

One is interested in American exchange option pricing. One considers a Black-Scholes model for
the underlying assets dynamics given by

dSl
t = (r − µl)S

l
tdt + σlS

l
tdW l

t , t ∈ [0, T ], l = 1, . . . , d.

To simplify the computations, w.l.o.g. we will set the interest rate to 0.
The exchange American payoff is defined by

v(y) := max(y1 · . . . · yp − yp+1 · . . . · y2p, 0), with d := 2p.

To reduce the price estimation variance, one introduces a sequence of control variate variables in the
quantized tree algorithm, (see [BPP05], Section 5). In the exchange case, the variable considered is
the European exchange option with similar maturity as the American one. The European premium
has a closed form solution given by

ExBS(Θ, y, y′, σ̃, µ) := erf(d1) exp(µΘ)y − erf(d1 − σ̃
√

Θ)y′,

d1(y, y′, σ̃, Θ, µ) :=
log(y/y′) + (σ̃2/2 + µ)Θ

σ̃
√

Θ

and erf(y) =

∫ y

−∞

e−u2/2du/
√

2π,

with

Θ := T − t, σ̃ :=

(

d
∑

l=1

σ2
l

)1/2

, µ :=

p
∑

l=1

µl −
d
∑

l=p+1

µl, y :=

p
∏

l=1

Sl
t, y′ :=

d
∏

l=p+1

Sl
t.
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Following the method described in Sections (3.3.2) and (3.4), one proceeds to a time and space
discretization of the underlying diffusion.

Note that in the case of American option, an optimization method is applied to choose the
quantizer size at each time step tk, (see [BPP05], Theorem 2.4). That is, at an exercise date tk, for
N =

∑n−1
k=0 Nk, we have

Nk :=









t
d

2(d+1)

k (N − 1)

t
d

2(d+1)

1 + . . . + t
d

2(d+1)

n−1









, (20)

where ⌈x⌉ := min{k ∈ N : k ≥ x}.
To compute an American exchange option premium, we consider the following steps: first,

we discretize the d-dimensional Brownian motion. Secondly, thanks to a Monte Carlo method,
we estimate the transition probabilities, defined for k ∈ {0, . . . , n − 2}, i ∈ {1, . . . , Nk} and j ∈
{1, . . . , Nk+1} by

πij
k =

P(Wk+1 ∈ Cj(x̄
k+1),Wk ∈ Ci(x̄

k))

P(Wk ∈ Ci(x̄k))
(21)

where x̄k is the Lp-optimal Nk-quantizer of the Brownian motion. Finally, we plug these results in
the quantization tree algorithm. These three steps could be compute together or separately. Since
the first and the last steps are almost instantaneous here to obtain, we concentrate on the second
step, which has a significant computation time. So, we test several ways to simulate the transition
probabilities and analyse the correlation between quantized premium accuracy and computation
time.

We consider two different ways of estimating the transition probabilities, which are both adapted
to multidimensional problem (see Section 4.1).

5.1.1 The Diffusion method

We simulate some standard Brownian motion trajectories from t0 = 0 to the maturity of the
exchange option tn−1 = T . This simulation is based on the independence and stationary properties
of the Brownian motion increments. Indeed, one will notice that the law of the family (Wtk+1 −
Wtk)0≤k≤n−2 , with tk = kT

n−1 , k = 0, . . . , n − 1, is similar to a family of i.i.d. random vector with

N (0, T
n−1Id) distribution. Therefore for k ∈ {1, . . . , n − 1}, Wtk is simulated by

√

T

n − 1

k−1
∑

i=0

ǫi+1 (22)

where ǫi, i ∈ {1, . . . , k} are i.i.d random variable, with normal distribution. The Monte Carlo
proxies of the theorical transitions (21) are then simulated for k ∈ {0, . . . , n − 2}, i ∈ {1, . . . , Nk}
and j ∈ {1, . . . , Nk+1} by

π̃ij
k =

1
M

∑M
m=1 1Cj(x̄k+1)(W̃

m
tk+1

)1Ci(x̄k)(W̃
m
tk

)

1
M

∑M
m=1 1Ci(x̄k)(W̃

m
tk

)
(23)

and by

π̃1j
0 =

1

M

M
∑

m=1

1Cj(x̄1)(W̃
m
t1 ), (24)

where for k ∈ {0, . . . , n − 1}, (W̃m
tk

)1≤m≤M are M copies of the random vector Wtk given by (22).
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Remark 1. Recalling Section 2, there exist several algorithms to compute the Lp-optimal Nk-
quantizer x̄k of the Brownian motion. However, one notices that it also could be obtained by a
dilatation of the Lp-optimal Nk-quantizer xk of the normal distribution. That is for k ∈ {0, . . . , n−
1}, x̄k =

√
tkx

k where xk is already known.

5.1.2 The Fast Parallel Quantization method (FPQ)

This method, introduced in the paper of Bardou, Bouthemy and Pagès, (see [BBP07a]) appeals
to centered Gaussian first order auto-regressive process. In order to apply this method to the
American exchange option, we consider the centered Gaussian first order auto-regressive Brownian

motion process in Rd given by Wtk+1
= Wtk +

√

T
n−1ǫk+1, for k ∈ {0, . . . , n− 2} where (ǫk)1≤k≤n−1

are i.i.d random vectors with N (0, Id) distribution.
Let W be the auto-regressive process described above and let (η1, η2) be a couple of inde-

pendent random vectors normally distributed. Then, the transition probabilities (21) satisfy for
k ∈ {0, . . . , n − 2}, i ∈ {1, . . . , Nk} and j ∈ {1, . . . , Nk+1}

πij
k =

P(αk+1η1 + βk+1η2 ∈ Cj(x
k+1), η1 ∈ Ci(x

k))

P(η1 ∈ Ci(xk))
(25)

and for j ∈ {1, . . . , N1} by

π1j
0 = P(η2 ∈ Cj(x

1)), (26)

where for k ∈ {0, . . . , n − 2},

αk+1 =

√

k

k + 1
,

βk+1 =
1√

k + 1
,

and xk is the Lp-optimal Nk-quantizer of the normal distribution.

Remark 2. See [BBP07a] for a proof of this result.

The main interest of this formulation is that the transition probabilities simulations from tk to
tk+1 no longer need to be computed recursively. Therefore, they can be computed simultaneously
by a parallelized procedure with the same M copies (ηm

1 , ηm
2 )1≤m≤M of the couple of independent

normally distributed random vectors (η1, η2).

5.1.3 Tests

In this subsection, we present numerical results for the two methods introduced above and observe
the consequences resulting on the option premium. We focus on American exchange options in
dimension 2 in and out of the money. The model parameters are the following:

- a maturity T of one year,

- a dividend rate µ of 5%

- a volatility σ of 20%
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The quantization was proceed with 25 time steps using the optimal dispatching rule (20),
with an average number of points per layer of 400. The reference prices were computed by a
two dimensional finite difference algorithm devised by Villeneuve et Zanette. The Monte Carlo
simulations were computed with 2 millions trials. Several tests are executed for different values of
the initial underlying asset S0 = (S1

0 , S2
0) and are collected in Table 1.

S0 Ref VZ Eur BS Diff D Error FPQ FPQ Error

(80,40) 40 36.1595 40 < 10−4% 40 < 10−4%
(60,40) 20 17.7432 20 < 10−4% 20 < 10−4%
(44,40) 5.9822 5.5883 5.9827 0,008358% 5.9813 0,01504 %
(40,36) 5.6468 5.2674 5.6468 < 10−4% 5.6455 0.02302%
(36,40) 1.9969 1.9058 1.9969 < 10−4% 1.9965 0,02003%
(40,44) 2.3364 2.2289 2.3375 0.04708% 2.3370 0.02568%
(40,60) 0.31339 0.30429 0.31276 0.2010% 0.31284 0.1755%
(40,80) 0.021208 0.020747 0.021064 0.6790% 0.021076 0.6224%

Table 1: American exchange options in dimension 2.

S0: initial value of the underlying asset, Ref VZ: Villeneuve and Zanette reference price, Eur BS:
European Black Scholes premium, Diff: quantized premium where the transition probabilities are
computed by the diffusion method, D Error: relative error for the diffusion method, FPQ: quantized
premium where the transition probabilities are computed by the fast parallel quantization method,
FPQ Error: relative error for the fast parallel quantization method.

One interesting criteria of the quantization method is that the same transition probabilities
are used for several premium computations. Indeed, in Table 1, all the data estimations of the
fourth column, (Diff) are computed with the same transitions given by (23) and (24). Whereas,
the premium obtained in column sixth, (FPQ), are computed with transitions given by (25) and
(26). We also note that the execution time of the diffusion procedure is more than twice quicker
than the execution time of FPQ procedure.

In view of this observation, we notice in the fourth column (Diff) of Table 1 that the couple
described by result accuracy and computation time is very efficient in the diffusion method. The
relative errors are between less than 10−4% and 0.68% and the execution time is twice faster than
in the FPQ method. However, the method FPQ has a significant advantage on the computation
time point of view. Indeed, the independence property of the transition probabilities given by
(25) and (26) allows for a parallel implementation. Each layer, or even, each transition can be
implement and estimate simultaneously, which extremely improve the execution time of the whole
procedure. Furthermore, the FPQ method yields also accurate results. The relative errors given
by the seventh column, (FPQ Error) of Table 1 show results between less than 10−4% and 0.62%.
So, in conclusion, we would suggest the FPQ method for American exchange options pricing for its
quickness.

Finally, we have considered the importance sampling method. This method was introduced
by Bardou, Bouthemy and Pagès, (see [BBP07a]), in the context of swing options. Following a
similar approach as in the FPQ method, they have to compute a 2-dimensional expectation for the
transition numerator. They appeal to Fubini Theorem and reduce the problem dimension to a one
dimensional expectation computation. Then, they use a Cameron Martin Formula to re-center the
simulation in order to improve the accuracy. This idea, very efficient in the swing option pricing,
doesn’t apply in the exchange option case. We price by quantization several exchange options with
this method and conclude that in our case, for a dimension above or equal to 2, this method doesn’t
work. One reason is that the Fubini change of integration order isn’t applicable for a dimension
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above 1. In dimension 1, this change of integration order seems to regularize the results obtained
for the swing options. Another reason is due to the re-center of the simulations at the origin,
indeed in this case, the narrow cells located near the origin are much less visited than the larger
one located further, (around 20 on 200 trials reach the cells on the heart of the quantized tree,
whereas around 170 on 200 trials reach the cells on the border of the quantized tree). Therefore,
the transitions located in the heart of the quantized tree have an inaccurate estimations, which
yield an important pricing error.

5.1.4 Spatial Richardson-Romberg extrapolation method.

In this paragraph, we present some premium estimations for American exchange options in several
dimensions, (d = 2 to 6). We apply the numerical scheme described in Section 5.1. And the
transition probabilities are computed by the diffusion method, see (23) and (24). (Indeed we don’t
focus on execution time on these tests).

The model parameters are similar as in the Section 5.1.3 for maturity, drift and volatility and
we consider S0 =(40,36). The average number of points per layer, N̄ , is fixed and the number
of layers, n, is variable (see Table 2). As in Table 1, the Villeneuve and Zanette reference price
amounts to 5.6468 and the control variate variable (European Black and Scholes premium) is equal
to 5.2674.

d =2 d =4 d =6

N̄1 100 750 1000
N̄2 400 1000 1500
n 5 to 65 4 to 32 4 to 16

Table 2: Quantization parameters.

The results obtained in Figures 1, 2 and 3 emphasize the existence of an optimal couple (N̄ , nopt).
I.e., for a fixed average number of points per layer, there exists an optimal number of layer at which
the estimation should be proceed.

 5.25

 5.3

 5.35

 5.4

 5.45

 5.5

 5.55

 5.6

 5.65

 5.7

 5.75

 10  20  30  40  50  60

Number of time steps

100-tuple average quantizer
400-tuple average quantizer

Reference price
European BS

Figure 1: Quantized premium for d =2.

In Figure 1, we observe that in dimension 2, an optimal couple is given by (N̄ , nopt) = (400, 25).
Indeed the resulting error associated to this couple is negligeable and the premium estimation very
accurate. For N̄ = 100 the optimal number of time steps is located around 16. However, for a
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given choice of constant c, if one defines an interval error by

I(d, N̄) := {n | |p(N̄ , n) − pV Z | ≤ c}, (27)

where (N̄ , n) 7→ p(N̄ , n) models the numerical premium and the constant pV Z the reference one,
then one notes that the length of I(2, 100) is shorter than the one of I(2, 400) for a given choice of
c reasonably small. So, we suggest a choice of N̄ above 300 in dimension 2 to minimize the pricing
error. Indeed, a choice of an optimal number of time steps is heuristic (see [BPP05], Section 5) and
therefore some possible errors in the choice of nopt could happen. So, a large interval of values of
n for which the premium estimation is very closed to the reference price is much preferable.

 5.25

 5.3

 5.35

 5.4

 5.45

 5.5

 5.55

 5.6

 5.65

 5.7

 5.75

 5.8

 5  10  15  20  25  30

Number of time steps

750-tuple average quantizer
1000-tuple average quantizer

Reference price
European BS

Figure 2: Quantized premium for d =4.
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Figure 3: Quantized premium for d =6.

In Figures 2 and 3, the optimal number of layers is around 11 in dimension 4 and around 8
in dimension 6. We notice also that an increase of N̄ in these figures isn’t enough to improve the
convergence rate of the trajectories n 7→ p(N̄ , n). Therefore, we suggest the application of a spatial
Richardson-Romberg extrapolation method.

First, recalling Section 3.4 and Section 4.2, we fix two average numbers of points per layers N̄1

and N̄2 with N̄1 < N̄2 and we fix a number of time steps n. We compute the quantized premiums
p(N̄1, n) and p(N̄2, n) and might expect error developments given by

|p(N̄1, n) − pV Z | ∼
c1

n
+ c2

n

N̄
2
d
1

, (28)

|p(N̄2, n) − pV Z | ∼
c1

n
+ c2

n

N̄
2
d
2

. (29)

Remark 3. The approximations above have only been proved for an inferior or equal bounds.
However several numerical tests tend to suggest that the equivalence holds. Also these tests shows
that the the convergence rate is closer to 2

d instead of 1
d given by Theorem 1.

To improve the convergence rate in dimensions 4 and 6, in view of (28) and (29), we suggest
an application of a Richardson-Romberg extrapolation method. Several computations show the
ascendancy of the spatial term, c2

n

N̄
2
d

over the temporal one, c1
n , in (28) and (29). Therefore we

apply a spatial extrapolation to delete the spatial term and obtain

pV Z ∼ N̄
2
d
2 p(N̄2, n) − N̄

2
d
1 p(N̄1, n)

N̄
2/d
2 − N̄

2/d
1

. (30)
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Figure 4: Richardson-Romberg for d =2.
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Figure 5: Richardson-Romberg for d =4.
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Figure 6: Richardson-Romberg for d =6.

Figures 4, 5 and 6 are obtained from Figures 1, 2 and 3 with application of (30). These graphs
show that a spatial Richardson-Romberg method stabilises the results. The price becomes less
sensitive to the time discretization step. And therefore the premium estimation is much more
accurate.

Remark 4. An additional attribute of Richardson-Romberg method is the following: we observe in
Figures 4, 5 and 6, for N̄1 and N̄2 fixed, a translation of nopt to the right. This feature is interesting
for high dimensions as a minimal number of time steps is necessary to approximate the diffusion.

So, we recommend a spatial Richardson-Romberg application for dimension above or equal to
4 in the pricing of American exchange option.

5.2 Swing options

We will consider in the section three different ways of modeling for the underlying dynamics, which
all fullfil the assumptions of the quantization tree algorithm. These are namely the 1- and 2-factor
Gaussian model and an exponential Lévy model.

From now on, we assume an equidistant time discretization 0 = t0 < t1 < . . . < tn = T , i.e.
tk = k∆t, k = 0, . . . , n with ∆t := T/n.
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5.2.1 Gaussian 1-Factor Model

In this case, we consider a dynamic of the underlying forward curve (Ft,T )t∈[0,T ] given by the SDE

dFt,T = σe−α(T−t)Ft,T dWt,

which yields

St = F0,t exp(σ

∫ t

0
e−α(t−s)dWs −

1

2
∆2

t )

for

∆2
t =

σ2

2α

(

1 − e−2αt
)

.

If we set Xk :=
∫ k∆t
0 e−α(k∆t−s)dWs, k = 0, . . . , n − 1, (Xk)0≤k≤n−1 is a discrete time Markov

process and we get (Sk∆t − K)+ = vk(Xk) with Lipschitz-continuous vk(x) = (F0,k∆t exp(σx −
1
2∆2

k∆t)−K). So the formal requirements for the application of the quantization tree algorithm are
fulfilled. For the quantization and the computation of the transition probabilities of Xk we need
the following results:

Proposition 5.1. The discrete time Ornstein-Uhlenbeck process Xk =
∫ k∆t
0 e−α(k∆t−s)dWs can be

written as first order auto-regressive process

Xk+1 = e−α∆tXk +

√

1 − e−2α∆t

2α
ǫk, k = 0, . . . , n − 2, X0 := 0,

for an i.i.d sequence (ǫk), ǫ1 ∼ N (0, 1).
Especially we have

Xk ∼ N
(

0,
1 − e−2αtk

2α

)

.

Since affine transformations of a one-dimensional random variate can be transformed one-to-
one on its optimal quantizers, the quantizers for Xk can be constructed as a dilatation of optimal

quantizers for N (0, 1) by the factor
√

1−e−2αtk

2α .
For the numerical results later on we have chosen the parameters

σ = 0.7, α = 4, F0,t = 20.

5.2.2 Gaussian 2-Factor Model

Furthermore we have also considered a Gaussian 2-factor model, where the dynamic of the forward
curve (Ft,T )t∈[0,T ] is given by the SDE

dFt,T = Ft,T

(

σ1e
−α1(T−t)dW 1

t + σ2e
−α2(T−t)dW 2

t

)

for two Brownian motions W 1 and W 2 with correlation coefficient ρ.
This yields

St = F0,t exp

(

σ1

∫ t

0
e−α1(t−s)dW 1

s + σ2

∫ t

0
e−α2(t−s)dW 2

s − 1

2
∆2

t

)

for

∆2
t =

σ2
1

2α1

(

1 − e−2α1t
)

+
σ2

2

2α2

(

1 − e−2α2t
)

+ 2ρ
σ1σ2

α1 + α2

(

1 − e−(α1+α2)t
)

.
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In this case we have to choose

Xk :=

(∫ k∆t

0
e−α1(k∆t−s)dW 1

s ,

∫ k∆t

0
e−α2(k∆t−s)dW 2

s

)

, k = 0, . . . , n − 1,

as underlying Markov structure process with

vk(x1, x2) = (F0,k∆t exp(σ1x1 + σ2x2 −
1

2
∆2

k∆t) − K).

Applying Proposition 5.1 on the two components of (Xk)0≤k≤n−1 allows us to write it as a first
order auto-regressive process

Xk+1 = AkXk + Tkǫk

with

A =

(

e−α1∆t 0
0 e−α2∆t

)

and

T =





√

1
2α1

(1 − e−2α1∆t) 0
√

1
2α2

(1 − e−2α2∆t)r
√

1
2α2

(1 − e−2α2∆t)
√

1 − r2





where

r = ρ
1

α1+α2

(

1 − e−(α1+α2)∆t
)

√

1
4α1α2

(1 − e−2α1∆t)(1 − e−2α2∆t)
.

For the numerical results we have chosen the parameters

σ1 = 0.36, α1 = 0.21, σ2 = 1.11, α2 = 5.4, ρ = −0.11, F0,t = 20.

5.2.3 NIG-Model

In this case we assume, that the dynamics of the underlying is driven by the exponential of a special
Lévy process, the so-called Normal Inverse Gaussian process (NIG). This means, that we assume,
that the dynamic of the underlying is given by

St = S0 exp(Lt)

for a NIG process (Lt)t∈[0,T ].This special model for financial data has been first proposed by
Barndorff-Nielsen in [BN98] and has been later also applied to financial contracts on energy markets
(see e.g. [BFK07] and [BSB04]), on which we also aim in this paper.

The NIG process has beneath its Lévy property, which makes it a Markov process, the convenient
property, that it is completely determined by its distribution at time t =1, the so-called NIG
distribution, NIG(α, β, δ, µ), with parameters α > 0, |β| < α, δ > 0 and µ ∈ R, i.e.

L1 ∼ NIG(α, β, δ, µ) and Lt ∼ NIG(α, β, tδ, tµ)

Thus, as soon as we have knowledge on some properties of the NIG distribution like the density or
the characteristic function, we know it already for (Lt)t∈[0,T ] at any timescale.

So, the density of (Lt)t∈[0,T ] is for example given by

f
NIG(α,β,δ,µ)
t (x) = αδtetδ

√
α2−β2+β(x−tµ) K1(α

√

t2δ2 + (x − tµ)2)

π
√

t2δ2 + (x − tµ)2
,
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where K1 denotes the Bessel function of third kind with index 1.
These facts will help to the computation of optimal quantizers for Lt at given time-points

{k∆t, k = 0, . . . , n − 1}.
Another useful property of the NIG process is the fact, that if we model our underlying as

St = S0 exp(Lt)

with respect to the real-world measure P, we can use the Esscher transform to construct an equiv-
alent martingal measure Q (see [GS94] and [GS95]), for a first occurrence of this method, which
preserve the NIG structure of the driving Lévy process.

Hence the change from P to Q can be completely performed by adjusting the parameters α, β, δ
and µ of the NIG process, so that from a numerical point of view it makes no difference, if we are
modeling under the real-world measure or the risk-neutral one.

5.2.4 Computation of optimal quantizers for the NIG distribution

Recall that we may rewrite the L2-quantization problem of the NIG distribution as

min
x∈RN

N
∑

i=1

∫

Ci(x)
(ξ − xi)

2fNIG(ξ)dξ (31)

where {Ci(x), i = 1, . . . , N} denotes a Voronoi partition induced by x = (x1, . . . , xN ).
The fact, that in the one-dimensional setting the Voronoi cells Ci(x) are just intervals in R and

the uniqueness of the optimal quantizer due to the unimodality of fNIG, makes the quantization
problem in this case very straightforward to solve.

Now assume x = (x1, . . . , xN ) ∈ RN to be ordered increasingly and denote by

x1/2 := −∞, xi±1/2 :=
xi + xi±1

2
for 2 ≤ i ≤ N − 1, xN+1/2 := +∞

the midpoints between the quantizer elements respectively ±∞. A Voronoi partition of Γ is there-
fore given by

C1(x) = (−∞, x1+1/2],

Ci(x) = (xi−1/2, xi+1/2], 2 ≤ i ≤ N − 1,

CN (x) = (xN−1/2,+∞).

so that (31) now reads

min
x∈RN

N
∑

i=1

∫ xi+1/2

xi−1/2

(ξ − xi)
2fNIG(ξ)dξ. (32)

This is a N -dimensional optimization problem, which can be easily solved by Newton’s method
as soon as we have access to the first and second order derivatives of DN .

In fact, we can calculate the first order derivative of DN (see e.g. [GL00], Lemma 4.10 or [P82],
Lemma C) as

∂DN

∂xi
(x) = 2

∫ xi+1/2

xi−1/2

(xi − ξ) fNIG(ξ)dξ, 1 ≤ i ≤ N. (33)
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Moreover the Hessian matrix turns out to be a symmetric tridiagonal matrix with diagonal
entries

∂2DN

∂x2
1

(x) = 2

∫ x1+1/2

x1/2

fNIG(ξ)dξ − x2 − x1

2
fNIG(x1+1/2)

∂2DN

∂x2
i

(x) = 2

∫ xi+1/2

xi−1/2

fNIG(ξ)dξ − xi − xi−1

2
fNIG(xi−1/2) −

xi+1 − xi

2
fNIG(xi+1/2), 2 ≤ i ≤ N

∂2DN

∂x2
N

(x) = 2

∫ xN+1/2

xN−1/2

fNIG(ξ)dξ − xN − xN−1

2
fNIG(xN−1/2)

(34)

and the super- respectively sub-diagonals

∂2DN

∂xi∂xi−1
(x) =

∂2DN

∂xi−1∂xi
(x) = −xi − xi−1

2
fNIG(xi−1/2), 2 ≤ i ≤ N.

As a consquence of (33), the remaining entries vanish

∂2DN

∂xi∂xj
(x) =

∂2DN

∂xj∂xi
(x) = 0, 1 ≤ i < j − 1 ≤ N − 1.

For the evaluation of the integrals occurring in the expressions (33) and (34) we employed
high-order numerical integration methods which gave satisfying results.

But some attention should be paid to the initialization of the Newton’s method, since it con-
verges only locally. We achieved a fast convergence using a equidistant placed N -tupel in the
interval [ELtk − 2 Var Ltk , ELtk + 2 VarLtk ] as starting vector, i.e.

[

tk

(

µ +
δβ

√

α2 − β2
− 2

δα2

(α2 − β2)3/2

)

, tk

(

µ +
δβ

√

α2 − β2
+ 2

δα2

(α2 − β2)3/2

)]

for the case of the NIG, so that we reached the stopping criterion of ‖∇DN (x∗)‖ ≤ 10−8 within
20 − 30 iterations.

5.2.5 Simulation of ∆Lt

For the simulation of a NIG(α, β, δ, µ) process it is useful to regard Lt as a subordinated Brownian
Motion, i.e.

Lt = βδ2It + δWIt + µt,

for an Inverse Gaussian process It, that is again a Lévy process with Inverse Gaussian distribution,
IG(a, b), and parameters a = t and b =

√

α2 − β2.
A way to simulate the IG(a, b) distribution was proposed in [CT03] page 182.
To arrive now at a simulation of a whole sample path of (Lt)t∈[0,T ] at given time-points {k∆t, k =

0, . . . , n − 1}, recall that by definition of a Lévy process we have

Lk∆t = L0 +

k
∑

j=1

Lk∆t − L(k−1)∆t

with
Lk∆t − L(k−1)∆t ∼ L∆t.

Hence by simulating independent increments L∆t we get a simulation of the whole sample path
(see [CT03] page 184).

Thus (Lk∆t)0≤k≤n gives a simulated trajectory of a NIG process with parameters α, β, δ, µ.
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5.2.6 Parameters

For the numerical results we have chosen the parameters

α = 50, β = −2.0, δ = 0.02, µ = 0.001, s0 = 20.

5.2.7 Numerical results

In the above explained models we performed some test on the pricing of Swing options with pa-
rameters

n = 30, Q = (100, 150) and n = 365, Q = (1300, 1900)

for local constraints
qmin = 0, qmax = 6

and strikes
K = 5, 10, 15, 20.

In the tables below, we present numerical data for Gaussian 1-factor and NIG Lévy models. For the
Gaussian 2-factors model, the experimental results are a bit less decisive. As benchmark, we used
the case without global constraints, i.e. Q=(0, n), since as shown in Section 3.3.1, a reference price
can be calculated as sum of plain call options. For the computation of the transition probabilities,
we implemented as far as possible all the methods proposed in Section 4.1.

Note especially that due to the high accuracy of the deterministic integration methods in di-
mension one for estimation of the transition probabilities by the completely Deterministic method
(cD), we may assume that the for the Gaussian 1-factor model, the error curve of this method rep-
resents solely the error of the quantization tree algorithm and we can therefore distinguish between
that error and the one, which is caused by the estimation of the transition probabilities by the
remaining methods proposed in Section 4.1 (see Figures 7 - 10).

Furthermore we observe, that the Diffusion method (dif) error curve is in all cases very close
to the completely deterministic one. So it offers in our results the smallest quantization error.

Unfortunately it does not allow a layer-wise parallelization of the transition probabilities com-
putations as the Fast Parallel Quantization method (fpQ). The price of this feature to pay is a
loss in the consistency of the Monte Carlo estimates, which results in a slightly larger quantization
error compared to the diffusion method.

Solely in the “in-the-money”-case (K = 20) of the NIG Lévy model (see Figure 10), we see a
substantial larger loss in accuracy.

The error behavior of the “Methode des Gerbes” (MG) reveals a different convergence speed,
which is induced by the systematic error replacing Xk by X̂k in (17).

Nevertheless, the error of the deterministic “Methode des Gerbes” (dMG) behaves much more
stable than the Monte Carlo based methods, which makes it more important for an extrapolation
attempt, (see Section 4.2).

The sample size for the Monte Carlo based estimates was choosen as M = 107.
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5.2.8 Numerical data

K = 5
N dMG cD fpQ dif

50 2338.14 2338.41 2338.28 2338.26
75 2338.19 2338.32 2338.18 2338.16

100 2338.22 2338.29 2338.16 2338.13
125 2338.23 2338.27 2338.13 2338.11
150 2338.23 2338.27 2338.13 2338.11
175 2338.24 2338.26 2338.12 2338.11
200 2338.24 2338.26 2338.12 2338.10
250 2338.24 2338.26 2338.12 2338.10
300 2338.25 2338.25 2338.12 2338.10

Table 3: Gaussian 1-Factor-model for n = 30 and Q = (100, 150)

K = 5
N dMG rel. Err. cD rel. Err. fpQ rel. Err. dif rel. Err.

50 2699.67 0.0121% 2699.90 0.0039% 2699.72 0.0103% 2699.73 0.0100%
75 2699.85 0.0057% 2699.95 0.0017% 2699.77 0.0085% 2699.79 0.0079%

100 2699.91 0.0033% 2699.97 0.0010% 2699.81 0.0072% 2699.81 0.0071%
125 2699.95 0.0019% 2699.99 0.0005% 2699.81 0.0071% 2699.82 0.0066%
150 2699.96 0.0015% 2699.99 0.0004% 2699.81 0.0072% 2699.82 0.0065%
175 2699.97 0.0011% 2699.99 0.0003% 2699.81 0.0072% 2699.83 0.0064%
200 2699.98 0.0009% 2699.99 0.0002% 2699.82 0.0068% 2699.83 0.0063%
250 2699.98 0.0006% 2700.00 0.0002% 2699.82 0.0066% 2699.83 0.0062%
300 2699.99 0.0004% 2700.00 0.0001% 2699.82 0.0067% 2699.83 0.0062%

Table 4: Gaussian 1-Factor-model for n = 30 and Q = (0, 180)

K = 5
N dMG cD fpQ dif

50 29357.00 29389.62 29386.93 29388.69
75 29355.40 29372.52 29369.92 29371.59

100 29355.75 29366.25 29364.07 29365.31
125 29356.34 29362.52 29360.49 29361.58
150 29356.53 29361.64 29359.28 29360.71
175 29356.79 29360.65 29358.34 29359.71
200 29356.99 29360.00 29357.66 29359.06
250 29357.25 29359.24 29356.82 29358.30
300 29357.41 29358.82 29356.59 29357.88

Table 5: Gaussian 1-Factor-model for n = 365 and Q = (1300, 1900)
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K = 5
N dMG rel. Err. cD rel. Err. fpQ rel. Err. dif rel. Err.

50 32827.47 0.0686% 32848.71 0.0039% 32845.65 0.0132% 32847.59 0.0073%
75 32836.90 0.0399% 32849.42 0.0018% 32846.51 0.0106% 32848.30 0.0052%

100 32841.59 0.0256% 32849.67 0.0010% 32847.23 0.0084% 32848.55 0.0044%
125 32844.88 0.0156% 32849.82 0.0006% 32847.52 0.0075% 32848.70 0.0040%
150 32845.72 0.0130% 32849.85 0.0004% 32847.17 0.0086% 32848.73 0.0039%
175 32846.73 0.0099% 32849.89 0.0003% 32847.28 0.0083% 32848.77 0.0037%
200 32847.42 0.0078% 32849.92 0.0003% 32847.24 0.0084% 32848.80 0.0037%
250 32848.28 0.0052% 32849.95 0.0002% 32847.22 0.0085% 32848.83 0.0036%
300 32848.77 0.0037% 32849.96 0.0001% 32847.45 0.0078% 32848.85 0.0035%

Table 6: Gaussian 1-Factor-model for n = 365 and Q = (0, 2190)

K = 5
N dMG fpQ dif

50 2720.46 2721.75 2720.91
75 2720.80 2721.90 2720.92

100 2720.88 2721.27 2720.92
125 2720.92 2721.90 2720.92
150 2720.93 2722.01 2720.92
175 2720.93 2721.37 2720.92
200 2720.94 2721.14 2720.92
250 2720.94 2721.66 2720.93
300 2720.94 2721.06 2720.93

Table 7: exponential Lévy-NIG model for n = 30 and Q = (100, 150)

K = 5
N dMG rel. Err. fpQ rel. Err. dif rel. Err.

50 2720.46 0.0179% 2721.75 0.0295% 2720.91 0.0012%
75 2720.80 0.0053% 2721.90 0.0349% 2720.92 0.0010%

100 2720.88 0.0023% 2721.27 0.0118% 2720.92 0.0009%
125 2720.92 0.0010% 2721.90 0.0352% 2720.92 0.0008%
150 2720.93 0.0008% 2722.01 0.0391% 2720.92 0.0008%
175 2720.93 0.0005% 2721.37 0.0155% 2720.92 0.0008%
200 2720.94 0.0004% 2721.14 0.0069% 2720.92 0.0008%
250 2720.94 0.0002% 2721.66 0.0263% 2720.93 0.0008%
300 2720.94 0.0001% 2721.06 0.0043% 2720.93 0.0008%

Table 8: exponential Lévy-NIG model for n = 30 and Q = (0, 180)
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K = 5
N dMG fpQ dif

50 1.59348E23 37923.88 36184.02
75 3.04967E15 37037.65 36185.10

100 3060198091 36665.25 36185.50
125 61922.96 36513.57 36185.73
150 40574.91 36381.55 36185.80
175 39492.80 36301.25 36185.86
200 39298.66 36263.60 36185.89
250 39022.80 36315.16 36185.94
300 38814.24 36251.46 .

Table 9: exponential Lévy-NIG model for n = 365 and Q = (1300, 1900)

K = 5
N dMG rel. Err. fpQ rel. Err. dif rel. Err.

50 1.59348E23 4.40228E20% 37923.88 4.7716% 36184.02 0.0351%
75 3.073E15 8.48971E12% 37037.77 2.3235% 36185.10 0.0321%

100 3159246147 8727886.57% 36665.94 1.2963% 36185.51 0.0310%
125 62940.69 73.8850% 36514.43 0.8777% 36185.74 0.0304%
150 40615.87 12.2087% 36382.38 0.5129% 36185.80 0.0302%
175 39493.80 9.1087% 36302.01 0.2908% 36185.86 0.0300%
200 39298.87 8.5702% 36264.23 0.1865% 36185.90 0.0299%
250 39023.04 7.8082% 36315.63 0.3285% 36185.95 0.0298%
300 38814.60 7.2323% 36251.81 0.1521% . . %

Table 10: exponential Lévy-NIG model for n = 365 and Q = (0, 2190)
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Figure 7: Gaussian 1-Factor-model for n = 365,
Q = (1300, 1900) and K = 5
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Figure 8: Gaussian 1-Factor-model for n = 365,
Q = (1300, 1900) and K = 20
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Figure 9: Gaussian 1-Factor-model for n = 365,
Q = (0, 2190) and K = 20
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Figure 10: exponential Lévy NIG model for n =
30, Q = (0, 180) and K = 20

5.2.9 Numerical data

K = 5 K = 10
N dMG cD fpQ dif dMG cD fpQ dif

50 - 100 2338.24 2338.25 2338.12 2338.09 1588.54 1588.55 1588.42 1588.40
100 - 200 2338.25 2338.25 2338.11 2338.09 1588.55 1588.55 1588.41 1588.39

K = 15 K = 20
N dMG cD fpQ dif dMG cD fpQ dif

50 - 100 862.19 862.21 862.09 862.07 224.96 224.97 224.87 224.87
100 - 200 862.19 862.19 862.07 862.06 224.96 224.96 224.86 224.86

Table 11: Gaussian 1-Factor-model for n = 30 and Q = (100, 150)

K = 5
N dMG rel. Err. cD rel. Err. fpQ rel. Err. dif rel. Err.

50 - 100 2699.99 0.0004% 2700.00 0.0000% 2699.83 0.0062% 2699.84 0.0061%
100 - 200 2700.00 0.0001% 2700.00 0.0000% 2699.82 0.0067% 2699.84 0.0061%

K = 10
N dMG rel. Err. cD rel. Err. fpQ rel. Err. dif rel. Err.

50 - 100 1800.32 0.0006% 1800.33 0.0000% 1800.16 0.0093% 1800.16 0.0091%
100 - 200 1800.32 0.0001% 1800.33 0.0000% 1800.14 0.0101% 1800.16 0.0091%

K = 15
N dMG rel. Err. cD rel. Err. fpQ rel. Err. dif rel. Err.

50 - 100 937.34 0.0011% 937.35 0.0026% 937.21 0.0124% 937.23 0.0109%
100 - 200 937.32 0.0007% 937.33 0.0004% 937.17 0.0166% 937.20 0.0140%

K = 20
N dMG rel. Err. cD rel. Err. fpQ rel. Err. dif rel. Err.

50 - 100 320.28 0.0093% 320.30 0.0140% 320.26 0.0030% 320.26 0.0030%
100 - 200 320.24 0.0024% 320.25 0.0017% 320.20 0.0143% 320.21 0.0130%

Table 12: Gaussian 1-Factor-model for n = 30 and Q = (0, 180)
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K = 5 K = 10
N dMG cD fpQ dif dMG cD fpQ dif

50 - 100 29355.33 29358.46 29356.46 29357.51 19878.93 19882.36 19880.35 19881.41
100 - 200 29357.40 29357.92 29355.52 29356.98 19881.21 19881.81 19879.41 19880.86

K = 15 K = 20
N dMG cD fpQ dif dMG cD fpQ dif

50 - 100 10709.54 10713.79 10711.88 10712.97 2688.20 2692.42 2690.72 2691.78
100 - 200 10712.12 10712.77 10710.51 10711.96 2690.69 2691.35 2689.27 2690.71

Table 13: Gaussian 1-Factor-model for n = 365 and Q = (1300, 1900)

K = 5
N dMG rel. Err. cD rel. Err. fpQ rel. Err. dif rel. Err.

50 - 100 32846.29 0.0113% 32849.99 0.0000% 32847.76 0.0068% 32848.88 0.0034%
100 - 200 32849.37 0.0019% 32850.00 0.0000% 32847.25 0.0084% 32848.88 0.0034%

K = 10
N dMG rel. Err. cD rel. Err. fpQ rel. Err. dif rel. Err.

50 - 100 21900.05 0.0183% 21904.06 0.0000% 21901.82 0.0102% 21902.94 0.0051%
100 - 200 21903.36 0.0032% 21904.06 0.0000% 21901.31 0.0125% 21902.94 0.0051%

K = 15
N dMG rel. Err. cD rel. Err. fpQ rel. Err. dif rel. Err.

50 - 100 11407.65 0.0453% 11413.12 0.0026% 11411.04 0.0156% 11412.24 0.0051%
100 - 200 11411.88 0.0083% 11412.77 0.0005% 11410.25 0.0225% 11411.88 0.0082%

K = 20
N dMG rel. Err. cD rel. Err. fpQ rel. Err. dif rel. Err.

50 - 100 3971.88 0.1371% 3977.90 0.0142% 3976.76 0.0144% 3977.76 0.0108%
100 - 200 3976.31 0.0257% 3977.26 0.0018% 3975.78 0.0389% 3977.13 0.0052%

Table 14: Gaussian 1-Factor-model for n = 365 and Q = (0, 2190)

K = 5 K = 10
N dMG fpQ dif dMG fpQ dif

50 - 100 2721.02 2721.11 2720.93 1821.00 1821.11 1820.93
100 - 200 2720.95 2721.09 2720.93 1820.95 1821.09 1820.93

K = 5 K = 10
N dMG fpQ dif dMG fpQ dif

50 - 100 920.97 921.11 920.93 20.94 21.11 20.93
100 - 200 920.95 921.09 920.93 20.95 21.09 20.93

Table 15: exponential Lévy-NIG model for n = 30 and Q = (100, 150)
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K = 5
N dMG rel. Err. fpQ rel. Err. dif rel. Err.

50 - 100 2721.02 0.0029% 2721.11 0.0059% 2720.93 0.0007%
100 - 200 2720.95 0.0003% 2721.09 0.0053% 2720.93 0.0008%

K = 10
N dMG rel. Err. fpQ rel. Err. dif rel. Err.

50 - 100 1821.00 0.0028% 1821.11 0.0088% 1820.93 0.0011%
100 - 200 1820.95 0.0003% 1821.09 0.0079% 1820.93 0.0011%

K = 15
N dMG rel. Err. fpQ rel. Err. dif rel. Err.

50 - 100 921.04 0.0024% 921.18 0.0172% 921.00 0.0022%
100 - 200 921.02 0.0002% 921.16 0.0146% 921.00 0.0022%

K = 20
N dMG rel. Err. fpQ rel. Err. dif rel. Err.

50 - 100 112.32 0.0024% 112.89 0.5106% 112.31 0.0100%
100 - 200 112.32 0.0003% 112.79 0.4202% 112.30 0.0155%

Table 16: exponential Lévy-NIG model for n = 30 and Q = (0, 180)

K = 5 K = 10
N fpQ dif fpQ dif

50 - 100 36245.70 36185.99 25295.70 25235.99
100 - 200 36129.71 36186.02 25179.71 25236.02

K = 15 K = 20
N fpQ dif fpQ dif

50 - 100 14345.70 14285.99 3395.70 3335.99
100 - 200 14229.71 14286.02 3279.71 3336.02

Table 17: exponential Lévy-NIG model for n = 365 and Q = (1300, 1900)
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K = 5
N fpQ rel. Err. dif rel. Err.

50 - 100 36246.63 0.1378% 36186.00 0.0297%
100 - 200 36130.33 0.1834% 36186.03 0.0296%

K = 10
N fpQ rel. Err. dif rel. Err.

50 - 100 25315.39 0.2097% 25251.64 0.0426%
100 - 200 25195.48 0.2649% 25251.66 0.0425%

K = 15
N fpQ rel. Err. dif rel. Err.

50 - 100 14795.79 0.3341% 14736.50 0.0679%
100 - 200 14674.84 0.4860% 14736.50 0.0679%

K = 20
N fpQ rel. Err. dif rel. Err.

50 - 100 6563.16 0.9242% 6495.77 0.1121%
100 - 200 6454.92 0.7402% 6495.83 0.1112%

Table 18: exponential Lévy-NIG model for n = 365 and Q = (0, 2190)
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