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Abstract. In this paper we emphasize the links between model theory and tilings. More
precisely, after giving the definitions of what tilings are, we give a natural way to have
an interpretation of the tiling rules in first order logics. This opens the way to map some
model theoretical properties onto some properties of sets of tilings, or tilings themselves.

1. Introduction

Tilings are a basic and intuitive way to express geometrical constraints; they happened
to be of broad interest in computer science since Berger proved the undecidability of the
domino problem [2] by showing that they can embed, despite being static objects, some kind
of computation. This also was the first step in the links between logics and tilings as they
helped to prove the undecidability of some classes for formulae [5, 14, 12, 13]. Some more
links have then been discovered by Makowsky that used previous constructions of aperiodic
tilesets to show the existence of a complete, finetely axiomatizable and superstable theory
[9]. Some recent results by Oger generalize this approach to more abstract definitions
of tilings and proves some nice equivalences between model theory and this generalized
definition [10].

In this paper we will give details of constructions used to translate tilings and tileset
properties into model theoretic ones. Section 2 will be devoted to the proper definitions
of tilings and tilesets; We will then translate these definitions into first order formulae in
Section 3. Finally in Section 4 we shall present the equivalence results that can be obtained
by this translation.

Most of these results are already present in [9, 11]. However we hope that this paper
will offer a new look at these results.

The major part of this paper is devoted to tilings of the plane Z
2. However, we may

define similar theories for tilings of other spaces such as Z
3 or any Cayley graph. The article

[10] in particular deals with tilings of R
n by polytopes.

c
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2. Tilings

Several definitions of discrete tilings can be found in the litterature, but are equivalent
for many purposes [3]. We will focus here on the definition by forbidden patterns.

First we have to define the space we are going to tile: we want to assign a state taken
in a finite set Q to each cell of the discrete plane Z

2. Q may be seen as a set of colors, or a
set of states. Therefore, we define the set of configurations as the functions from Z

2 to Q:

Definition 2.1. The set of configurations is QZ
2

.

The patterns are nothing but a configuration restricted to a finite domain; that is,
considering a finite subset D of Z

2, a pattern is a function from D to Q.

Definition 2.2. A pattern defined on a finite subset D of Z
2 is an element of QD.

Informally a tileset represents geometric constraints imposed to the configurations, that
is how the states in the cells of the plane are constrained by their neighborhood and how
they constrain it. Formally we will define a valid tiling as a configuration that contain no
forbidden pattern:

Definition 2.3. A tileset is defined by a finite set of forbidden patterns Fτ .
A configuration c contains a pattern P defined on D (or equivalently P appears in c)

if there exists x ∈ Z
2 such that:

∀y ∈ D, c(x + y) = P (y)

A configuration is said to be a valid tiling by τ if it contains no pattern in Fτ .

The so-called domino problem [2] is to know given a tileset whether it generates a valid
tiling. The problem has been proven undecidable by Berger in [2].

We will now define a preorder � on configurations that focuses on patterns contained
in them. This preorder has been defined in [4, 1], however references to the concept can be
found as early as [11]:

Definition 2.4 (The pre-order �). Let x, y be two configurations, we say that x � y if any
pattern that appears in x also appears in y.

This induces the notion of local isomorphism between two configurations:

Definition 2.5 (Local isomorphism). Two configurations x and y are said to be locally
isomorphic if x � y and y � x. That is x and y contain the same patterns. We denote it
by x ≈ y.

Two configurations that are equal up to shift are locally isomorphic but the converse
is not always true: there exists configurations that are locally isomorphic but one is not a
shifted form of the other.
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Figure 1: The model we would like to obtain

3. From tilesets to model theory

In this section we translate the definitions given in Section 2 into first order formulae
on some given language. This translation maps some properties of tilings onto some other
properties of first order logics.

Such a correspondence between tilesets and first order logic has already been defined
[11, 9] to show an example of finitely axiomatizable and superstable theory. A similar
approach (see 3.4) has been used to prove the undecidability of certain classes of formulae
[13, 14, 12, 5].

3.1. Axiomatizing the plane

The ideal model we would like to obtain is the plane Z
2 like depicted in Figure 1. The

natural way to define cells on the plane Z
2 is to consider them as variables and the adjacency

relations between them as functions that allow us to move north, south, east or west from
a given cell:

Definition 3.1. We consider the language with the unary functions for movements on the
plane: L0 is a set of unary functions : L0 = {N, S, E, W}.

And the corresponding axioms of the plane Z
2:

• ∀x, N(S(x)) = S(N(x)) = E(W (x)) = W (E(x)) = x
• ∀x, N(E(x)) = E(N(x))

These formulae tends to axiomatize Z
2 as a Cayley graph with two generators, the first

formula axiomatizing the invertibility of the movements and the second the commutativity.
However, these axioms are not sufficient, as we will see in the following sections.



32 A. BALLIER AND E. JEANDEL

x

E(x)

N(x)

Figure 2: A cylindric model

3.1.1. Non standard models. With the axioms of the plane from the previous sections it is
still possible to obtain some weird models. First, they also axiomatize some finite models
like Z/nZ × Z/mZ, or some cylindric models like Z/nZ × Z (like e.g., in Figure 2).

This problem can be dealt with by adding more axioms : For any i and j we may
add the axiom ∀x, EiN j(x) 6= x. The main problem is then that the number of axioms is
not finite, so that (we can prove that) the theory we obtain is not finitely axiomatisable
anymore. However in most cases, the presence of these models is not a problem as we can
“unfold” them into a plane (see e.g proof of lemma 4.2).

3.1.2. Connectedness. The main problem however, which cannot be avoided, is that there
is no way to ensure that all models of our theory are connected : A model is said to be
connected if any two points can be connected using the N, S, E, W functions. An example
of a disconnected model of our theory is depicted on Figure 3. These disconnected models
cannot be avoided. This is e.g., a consequence of the Löwenheim-Skolem theorem (There
exist models of our theory of arbitrary infinite cardinals, these models cannot be connected
if they are not countable) or more simply can be proven by a simple compactness argument:
Consider a theory T that axiomatises the plane Z

2. Add two constants c, d and the formulae
φn that express that the points c and d are at distance at least n. Consider the theory
T ′ = T ∪ {φn | n ∈ N}. Any arbitary finite part of T ′ admits Z

2 as a model (choose two
points c and d arbitrary far) so that T ′ itself has a model by compactness. Such a model
cannot be connected.

This proof also hints to a way to partially solve the problem. Consider formulae φn(x, y)
that express that the points x and y are at distance at most n. Now consider the collection
p(x, y) = {φn(x, y), n ∈ N}. p(x, y) is a type, that is we can find for every finite part q(x, y)
of p(x, y) some points c and d in any model so that q(c, d) is true. Now we are interested
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x

Figure 3: An example of disconnected model

in those models where p is not satisfied, that is in models where there do not exists c and
d such that p(c, d) is true. We say that such a model omits p

A part of model theory is devoted to the study of models omitting types. As an example,
the omitting type theorem states that given a theory T any reasonable type can be omitted.
However, most of the classical results in model theory will not work in this context, as e.g.
the compactness theorem.

3.2. Encoding configurations

Now that we have some kind of axioms for the plane Z
2, we may define what a con-

figuration is. We defined a configuration as an application from Z
2 to a finite set of states

Q. We can code the states of the cells in our theory by unary predicates : we take one
predicate Qi for each state. The only thing we need to ensure is that each cell has exactly
one state:

Definition 3.2. New language:

LQ = L0 ∪ {Q1, . . . , Qn}

New axioms:
A : ∀x,

∨

i

Qi(x)

B : ∀x,
∧

j 6=i

(Qi(x) ⇒ ¬Qj(x))

We can also reduce the number of predicates by coding the states in binary form: for
example, with 4 predicates, we can code up to 16 states.

3.3. The theory of a tileset

Following our definitions of tilesets in Section 2, all what we need to do in order to
encode them in first order logic is to write formulae that express ”some specific pattern
never appears”. It can be done in the following way : Given a pattern P of domain D,
any point p in D can be represented by a function that is a composition of the functions
N, S, E, W . We can then write formulae that express that P appears at a point x:

Definition 3.3. A formula to express that a pattern P defined on D appears at point x
ϕP (x) :=

∧
(i,j)∈D P (i, j)(Ei(N j(x)))
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As an example, the formula ϕ = Q1(E(x)) ∧ Q2(x) expresses that x is of color 2 and
its east neighbour is of color 1.

Then the formula ∀x,¬ϕP (x) axiomatizes that P never appears.

Definition 3.4. The theory Tτ of a tileset τ is the theory over the langage LQ that contains
all previous formulae and the formula ∀x,¬ϕP (x) for each forbidden pattern P . If the set
of forbidden pattern Fτ is finite, this theory is finitely axiomatisable.

3.4. Other languages

Before proceeding to the results, we give in this section various other languages in which
to express tilings.

Another way to represent tilings is with a single unary function s (that intuitively
denotes the successor of an integer) and with binary predicates Pi. Pi(x, y) means that the
state in the cell (x, y) is i. A structure is then over Z rather than Z

2.
It is easy to represent forbidden patterns in this language. As an example, the formula

φ = ∀x, y,¬ (P1(x, y) ∧ P2(s(x), y)) means that there cannot be a cell in state 1 at the left
of a cell in state 2.

Now suppose that the set of forbidden patterns has some particular form, that is
constraints only concern adjacent cells. We now have a set of horizontal constraints H
((i, j) ∈ H if a cell in state i cannot be at the left of a cell in state j) and vertical con-
straints V .

Now, the constraints can be written in the following way:

φ = ∀x∀y
∧

(i,j)∈H

(Pi(x, y) ⇒ ¬Pj(s(x), y)) ∧
∧

(i,j)∈V

(Pi(x, y) ⇒ ¬Pj(x, s(y))

This can be rewritten (by a slight change of variables in the second part of the formula):

∀x∀y
∧

(i,j)∈H

(Pi(x, y) ⇒ ¬Pj(s(x), y)) ∧
∧

(i,j)∈V

(Pi(y, x) ⇒ ¬Pj(y, s(x))

Now by a straightforward application of the skolemization process, we can replace the
function s by a quantifier :

∀x∃x′∀y
∧

(i,j)∈H

(Pi(x, y) ⇒ ¬Pj(x
′, y)) ∧

∧

(i,j)∈V

(Pi(y, x) ⇒ ¬Pj(y, x′)

We then obtain a new formula φ such that φ has a model if and only if there exists a
tiling of the plane by the tileset. The proof proceeds as in lemma 4.2 below. Note that the
unfolding gives us only a tiling of a quarter of the plane. But it is known that a tileset can
tile the entire plane if and only if it can tile a quarter of the plane.

The new formula φ is a formula with only three quantifiers ∀∃∀ and which contains only
binary predicates. Thus we actually have proven that the class of formulae [∀∃∀, (0, ω)] is
undecidable. This is the core of the works by Wang, Kahr, Büchi about decidability of
class of formulae. We then can deduce by an intricate transformation that the Kahr class
[∀∃∀, (ω, 1)] (one binary predicate, a finite number of unary predicates) is also undecidable.

See [14, 12, 13] for more details. The encoding also has another property : The formula
φ has a finite model if and only if there exists a periodic tiling of the plane by the tileset.
This actually proves that the class [∀∃∀, (0, ω)] is a conservative reduction class. See [5] for
more details.
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4. Translating tilesets and tilings properties in model theoretical ones

We now show the links between those two different approaches.

Lemma 4.1. A configuration can be seen as a structure over LQ. A tiling by τ can be seen

as a model of Tτ .

This lemma is a consequence of the definitions we have taken, any configuration is a
structure over LQ and the construction of Tτ was done in order to forbid patterns that are
forbidden by τ , thus a tiling by τ is a model of Tτ .

Lemma 4.2. Tτ is consistent if and only if τ can tile the plane.

Proof. It is obvious (by lemma 4.1) that if τ can tile the plane, then Tτ is consistent: A tiling
provides a model of Tτ .

Now suppose that Tτ has a model M . We will “unfold” M starting from a point
x in it by applying the functions N, S, E, W that will give us any point in Z

2. We can
define a configuration c, such that c(0, 0) has the “state” of x, and c(i, j) has the “state” of
Ei(N j((x))). This configuration is a tiling : As M is a model of Tτ , no forbidden pattern
can appear. Therefore, from any model of Tτ , we can obtain a tiling of the plane by τ ,
which finishes the proof.

Remark 4.3. Tτ has a model if and only if Tτ has an infinite model.

We can force all models to be infinite by adding (infinitely many) axioms that will
ensure this property. The theory may however not be finitely axiomatisable anymore.

Note however that if a tileset does not admit any periodic tiling, no finite models can
appear. Moreover, if a tileset does not admit any tiling with at least one direction of
periodicity, then all models are only union of copies of Z

2. That is, no degenerate torus or
cylinder may appear.

Lemma 4.4. Tτ has a finite model if and only if τ can tile periodically the plane.

Proof. Consider a periodic tiling of period p, we “fold” it into Z/pZ × Z/pZ and obtain a
model of Tτ since the cell at position (x + p, y) will have the same state as the one at (x, y)
or (x, y + p).

If we have a finite model, we unfold it the same way as in Lemma 4.2. It is easy to see
that we obtain this way a periodic tiling.

Most of these results can be generalized to tilings of R
2 using “patches” as tiles and we

still get the same translation from tileset and tilings into model theory [10].

4.1. Isomorphism

One of the first properties of models of a given theory one has to study is the iso-
morphism of models. The translation of this property as properties of tilings is quite
straightforward:

Lemma 4.5. Two configurations are equal up to shift if and only if they are isomorphic as

structures on the language LQ.
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Proof. ⇒ : Let x, y be two configurations equal up to shift and σ be a shift of vector (i, j)
such that x = σ(y). Then σ is an isomorphism from x to y.

⇐ : Let Θ be the isomorphism and a and b two points of x and y such that Θ(a) = b.
Then EiN j(a) has the same state as EiN j(b), as the predicate Pq(E

iN j(x)) has the same
value in a and b since Θ is an isomorphism.

4.2. Elementary equivalence

Another model theoretic property that translates to tilings is the elementary equiva-
lence. We recall that two structures are elementary equivalent if and only if they satisfy
the same formulae (that is have the same theory)

Lemma 4.6 ([11, 10]). Two configurations x and y are locally isomorphic if and only if

they are elementary equivalent as structures over LQ.

Proof. We will consider for the proof x and y as structures over the language without func-
tions, i.e., we replace in LQ the functions N, S, E, W by functional predicates N ′, S′, E′, W ′,
that is N ′(x, y) ⇔ N(x) = y.

⇐ : One can express the apparition of the pattern M by a first order formula like in
Definition 3.3: ∃x, ϕM (x). Therefore, as any formula valid in one structure is valid in the
other one, any pattern that appears in one tiling appears in the other one. This proves that
if the structures are elementary equivalent then the tilings are locally isomorphic.

⇒ : This proof is rather technical and is given in [10] using Hanf locality lemma
[6](lemma 2.3). Hanf locality lemma states that for two structures, if the spheres (using
the relational distance) all contain finitely many points (what is always true in our case),
and if both stuctures have either the same finite number of different spheres or both have
an infinite number, then the two structures are elementary equivalent. Hanf locality lemma
can be proved using a back and forth method, or an Ehrenfeucht-Fräıssé game.

In our case, the spheres represent the patterns: Consider a point x and all the points
at relational distance at most n, since our language contains only binary predicates and
that they represent the functions N, S, E, W , the relational distance is nothing but the L1

distance (or Manhattan distance or also Taxicab Metric) on Z
2. Therefore the sphere at

point x of radius n is the pattern defined on B1(x, n).
Both configurations x and y have the same patterns thus if a pattern appears only a

finite number of times in x, it appears the same number of times in both configurations.
As a consequence, Hanf lemma applies: x and y, having the same patterns, have the same
theory.

This theorem allows us to get an equivalence between the completeness of Tτ and a
property of the tileset τ :

Theorem 4.7. A tileset τ can produce only one tiling up to local isomorphism if and only

if T∞
τ = Tτ ∪ {∀x, En(Nm(x)) 6= x|m, n ∈ Z} is complete.

Note that the additional axioms ensure that no model of Tτ is skewed, that is all models
of Tτ are based on Z

2 or disconnected copies of Z
2.

There is no need indeed for these additional axioms if we can ensure that the only
(up to local isomorphism) tiling by τ is actually strictly aperiodic (that is has no vector of
periodicity)
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Proof. Before going on the proof of Theorem 4.7, we first need an extra lemma on tilings:

Lemma 4.8. If all the tilings produced by a tileset τ are locally isomorphic then every

pattern that appears in a tiling appears infinitely many times in it.

Proof. Consider a tiling x and suppose that there exists a pattern that appears only finitely
many times. By compactness, we can extract a tiling that does not contain this pattern
since we can have arbitrary large patterns that do not overlap with it. The extracted tiling
that does not contain this pattern will thus not have the same patterns as x.

⇒: We prove that any two models of T∞
τ are elementary equivalent. This is already

true for models that are tilings (Lemma 4.6) but we still have to prove it for arbitrary
models. Consider two models M and M ′ of T∞

τ , they are made of disconnected copies of
tilings; all patterns that appear in a tiling appear infinitely many times therefore all the
spheres that appear in M or M ′ appear infinitely many times. Thus the hypothesis of Hanf
locality lemma hold, so M ≡ M ′. Therefore T∞

τ is complete.
⇐: If T∞

τ is complete, for any pattern M , the formula ∃x, ϕM (x) is either valid in any
model or false in any model, therefore any two tilings contain exactly the same patterns,
thus τ can produce only one tiling up to local isomorphism.

Corollary 4.9. If a tileset τ can produce only one tiling up to local isomorphism then the

appeareance of any pattern is a decidable problem.

This is a corollary of Theorem 4.7 that we express here without any model theoretic
language: τ can produce only one tiling up to local isomorphism thus T∞

τ is complete.
Given a pattern M , one can enumerate the valid proofs in T∞

τ and stop when either a
proof of ∃x, ϕM (x) or of ¬∃x, ϕM (x) is found; and such a proof will be found since T∞

τ is
complete.

4.2.1. On compactness. With all those results one could try to prove some results about
tilings in an elegant and short way using model theoretic arguments. Take for example the
fact that any tileset that produces only periodic tilings can produce only finitely many of
them [1]. This can be reformulated as ”if a tileset can produce tilings with arbitrarily large
periods then it can produce one that is not periodic”. It is easy to write a formula φn that
expresses that there is a tiling with no period lower than n. If a tileset can produce tilings
with arbitrarily large periods then it has a model verifying any finite set of such formulae,
thus by compactness it has a model that verifies all these formulae, e.g., it has a model that
has no period. However, we can not conclude that the tileset can produce a tiling with no
period. Indeed this model we obtain by compactness will certainly consist of a copy of each
periodic tiling : As we have tilings of arbitrary large period, there is no common period for
all these tilings, so that our model indeed does not have a period.

We would like to be able to use the compactness theorem of the first order logic but
within the domain of connected models. However as said earlier, many classical theorems
of first order logic will not hold. See [7] for some possible solutions.

4.3. Applying the results to model theory

A finitely axiomatizable, complete and superstable theory has been exhibited with these
methods of translating tilesets into first order theories. This has historically been done by
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Makowsky [9] to prove that these three properties of theories are not incompatible and then
explained in a more detailed way by Poizat [11].

The idea is quite simple: take τ an aperiodic tileset that produces only one tiling up to
local isomorphism; for example the one used by Berger to prove the undecidability of the
domino problem [2]. Transform it in a first order theory as explained in Section 3 to obtain
a finitely axiomatized theory Tτ . Since Berger proved that his tileset can not produce any
tiling with a vector of periodicity, Theorem 4.7 holds without any need to add more axioms
to ensure that the models are infinite by Lemma 4.4; therefore Tτ is complete and finitely
axiomatizable.

We can then prove that the theory is superstable. This definition has to do with how
many types there are in the theory, or more simply, with how many tilings we can produce.

It has been proven that this tileset can produce 2ℵ0 different tilings [4, 1], therefore
2ℵ0 countable models; Those models are not isomorphic because there is only a countable
number of shifts. Furthermore, there is no skewed models, so that all models of this theory
are then easy to give : they consists of some copies of these 2ℵ0 different tilings, that is we
have to say for each tiling how many times it appears. This shows that the theory is not
ω-stable, but superstable.

5. Conclusion

We have seen along this paper the tight links between tilings and logic, especially
between tilings properties and model theoretical properties of their interpretation. Tilings
have then provided interesting examples of theories [11] as well as a good framework in
which to study properties of classes of formulaes[5]

Some links still remain unexplored and might lead to interesting results. As an exemple,
the Cantor-Bendixson rank [8] introduced in [1] has been motivated by the study of a notion
of rank for finitely generated structures of universal theories in [7].
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