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In the framework of noisy quantum homodyne tomography with efficiency parameter 0 < η ≤ 1, we propose two estimators of a quantum state whose density matrix elements ρ m,n decrease like e -B(m+n) r/2 , for fixed known B > 0 and 0 < r ≤ 2. The first procedure estimates the matrix coefficients by a projection method on the pattern functions (that we introduce here for 0 < η ≤ 1/2), the second procedure is a kernel estimator of the associated Wigner function. We compute the convergence rates of these estimators, in L 2 risk.

Introduction

Experiments in quantum optics consist in creating, manipulating and measuring quantum states of light. The technique called quantum homodyne tomography allows to retrieve partial, noisy information from which the state is to be recovered : this is the subject of the present chapter.

Quantum states

Mathematically, the main concepts of quantum mechanics are formulated in the language of selfadjoint operators acting on Hilbert spaces. To every quantum system one can associate a complex Hilbert space H whose vectors represent the wave functions of the system. These vectors are identified to projection operators, or pure states. In general, a state is a mixture of pure states described by a compact operator ρ on H having the following properties :

1. Selfadjoint : ρ = ρ * , where ρ * is the adjoint of ρ.

2. Positive : ρ ≥ 0, or equivalently ψ, ρψ ≥ 0 for all ψ ∈ H.

Trace one : tr

(ρ) = 1.
When H is separable, endowed with a countable orthonormal basis, the operator ρ is identified to a density matrix [ρ m,n ] m,n∈N .

The positivity property implies that all the eigenvalues of ρ are nonegative and by the trace property, they sum up to one. In the case of the finite dimensional Hilbert space C d , the density matrix is simply a positive semi-definite d × d matrix of trace one. Our setup from now on will be H = L 2 (R), in which case we employ the orthonormal Fock basis made of the Hermite functions

h m (x) := (2 m m! √ π) -1 2 H m (x)e -x 2 2 (1) 
where H m (x) := (-1) m e x 2 d m dx m e -x 2 is the m-th Hermite polynomial. Generalizations to higher dimensions are straightforward.

To each state ρ corresponds a Wigner distribution W ρ , which is defined via its Fourier transform in the way indicated by equation (2) : W ρ (u, v) := e -i(uq+vp) W ρ (q, p)dqdp := Tr ρ exp(-iuQ -ivP)

where Q and P are canonically conjugate observables (e.g. electric and magnetic fields) satisfying the commutation relation [Q, P] = i (we assume a choice of units such that = 1). It is easily checked that W ρ is real-valued, has integral R 2 W ρ (q, p)dqdp = 1 and uniform bound |W ρ (q, p)| ≤ 1 π . For any φ ∈ R, the Wigner distribution allows one to easily recover the probability density x → p ρ (x, φ) of Q cos φ + P sin φ by

p ρ (x, φ) = R[W ρ ](x, φ), ( 3 
)
where R is the Radon transform defined in equation ( 4)

R[W ρ ](x, φ) = ∞ -∞
W ρ (x cos φ -t sin φ, x sin φ + t cos φ)dt.

Moreover, the correspondence between ρ and W ρ is one to one and isometric with respect to the L 2 norms as in equation ( 5) :

W ρ 2 2 := |W ρ (q, p)| 2 dqdp = 1 2π ρ 2 2 := 1 2π ∞ j,k=0 |ρ jk | 2 . (5) 
From now on we denote by •, • and • the usual Euclidian scalar product and norm, while C(•) will denote positive constants depending on parameters given in the parentheses.

We suppose that the unknown state belongs to the class R(B, r) for B > 0 and 0 < r ≤ 2 defined by R(B, r) := {ρ quantum state : |ρ m,n | ≤ exp(-B(m + n) r/2 )}. [START_REF] Cavalier | Efficient estimation of a density in a problem of tomography[END_REF] For simplicity, we have chosen to express the results relative to a class which is the intersection of the (positive) ball of radius 1 in some Banach space with the hyperplane tr(ρ) = 1.

Another radius for the class would only change the constant C in front of the asymptotic rates of convergence that we will find.

As it will be made precise in Propositions 1 and 2, quantum states in the class given in [START_REF] Cavalier | Efficient estimation of a density in a problem of tomography[END_REF] have fast decreasing and very smooth Wigner functions. From the physical point of view, the choice of such a class of Wigner functions seems to be quite reasonable considering that typical states ρ prepared in the laboratory do satisfy this type of condition.

Statistical model

Let us describe the statistical model. Consider (X 1 , Φ 1 ), . . . , (X n , Φ n ) independent identically distributed random variables with values in R × [0, π] and distribution P ρ having density p ρ (x, φ) (given by (3) with respect to 1 π λ, λ being the Lebesgue measure on R×[0, π]. The aim is to recover the density matrix ρ and the Wigner function W ρ from the observations.

However, there is a slight complication. What we observe are not the variables (X ℓ , Φ ℓ ) but the noisy ones (Y ℓ , Φ ℓ ), where

Y ℓ := √ ηX ℓ + (1 -η)/2 ξ ℓ , (7) 
with ξ ℓ a sequence of independent identically distributed standard Gaussians which are independent of all (X j , Φ j ). The detection efficiency parameter 0 < η ≤ 1 is known from the calibration of the apparatus and we denote by N η the centered Gaussian density of variance (1 -η)/2, and N η its Fourier transform. Then the density p η ρ of (Y ℓ , Φ ℓ ) is given by the convolution of the density

p ρ (•/ √ η, φ)/ √ η with N η p η ρ (y, φ) = ∞ -∞ 1 √ η p ρ y -x √ η , φ N η (x)dx =: 1 √ η p ρ • √ η , φ * N η (y).
In the Fourier domain this relation becomes

F 1 [p η ρ (•, φ)](t) = F 1 [p ρ (•, φ)](t √ η) N η (t), (8) 
where F 1 denotes the Fourier transform with respect to the first variable.

The theoretical foundation of quantum homodyne tomography was outlined in [START_REF] Vogel | Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase[END_REF] and has inspired the first experiments determining the quantum state of a light field, initially with optical pulses in [START_REF] Smithey | Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomogra-26 phy : Application to squeezed states and the vacuum[END_REF][START_REF] Smithey | Experimental determination of number-phase uncertainty relations[END_REF][START_REF] Leonhardt | Measuring the Quantum State of Light[END_REF]. The reconstruction of the density from averages of data has been discussed or studied in [START_REF] D'ariano | Detection of the density matrix through optical homodyne tomography without filtered back projection[END_REF][START_REF] D'ariano | Homodyne detection of the density matrix of the radiation field[END_REF][START_REF] Leonhardt | Tomographic reconstruction of the density matrix via pattern functions[END_REF][START_REF] Artiles | An invitation to quantum tomography[END_REF] for η = 1 (no photon loss). Max-likelihood methods have been studied in [START_REF] Banaszek | Maximum-likelihood estimation of the density matrix[END_REF][START_REF] Artiles | An invitation to quantum tomography[END_REF][START_REF] D'ariano | Homodyne tomography and the reconstruction of quantum states of light[END_REF][START_REF] Gut ¸ȃ | Maximum likelihood estimation of the density matrix through quantum tomography[END_REF] and procedure using adaptive tomographic kernels to minimize the variance has been proposed in [START_REF] Paris | Adaptive quantum tomography[END_REF]. The estimation of the density matrix of a quantum state of light in case of efficiency parameter 1 2 < η ≤ 1 has been discussed in [START_REF] D'ariano | Tomographic measurement of the density matrix of the radiation field[END_REF][START_REF] D'ariano | Homodyne tomography and the reconstruction of quantum states of light[END_REF][START_REF] D'ariano | Tomographic methods for universal estimation in quantum optics[END_REF] and considered in [START_REF] Richter | Pattern functions used in tomographic reconstruction of photon statistics revisited[END_REF] via the pattern functions for the diagonal elements.

Outline of the results

The goal of this chapter is to define estimators of both the density matrix and the Wigner function and to compare their performance in L 2 risk. In order to compute estimation risks and to tune the underlying parameters, we define a realistic class of quantum states R(B, r), depending on parameters B > 0 and 0 < r ≤ 2, in which the elements of the density matrix decrease rapidly.

In Section 2, we prove that the fast decay of the elements of the density matrix implies both rapid decay of the Wigner function and of its Fourier transform, allowing us to translate the classes R(B, r) in terms of Wigner functions.

In Section 3, we give estimators of the density matrix ρ. The legend was somehow forged that no estimation of the matrix is possible when 0 < η ≤ 1/2. The physicists argue that their machines actually have high detection efficiency, around 0.8 ; it is nevertheless satisfying to be able to solve this problem in any noise condition. We give here the socalled pattern functions to use for estimating the density matrix in the noisy case with any value of η between 0 and 1. These pattern functions allow us to solve an inverse problem which becomes (severly) ill-posed when 0 < η ≤ 1/2. In this case, we regularize the inverse problem and this introduces a smoothing parameter which we will choose in an optimal way. We compute the upper bounds for the rates achieved by our methods, with L 2 risk measure.

In Section 4, we study a kernel estimator of the Wigner function in L 2 risk, over the same class of Wigner functions. It is a truncated version of the estimator in [START_REF] Butucea | Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data[END_REF] and tuned accordingly. We compute upper bounds for the rates of convergence of this estimator in L 2 risk.

To conclude, we may infer that the performances of both estimators are comparable. We obtain nearly polynomial rates for the case r = 2 and intermediate rates for 0 < r < 2 (faster than any logarithm, but slower than any polynomial). It is convenient to have methods to estimate directly both representations of a quantum state. The estimator of the matrix ρ can be more easily projected on the space of proper quantum states. On the other hand, we may capture some features of the quantum states more easily on the Wigner function, for instance when this function has significant negative parts, the fact that the quantum state is non classical.

Decrease and smoothness of the Wigner distribution

We recall that the Wigner distribution W ρ was defined in the introduction. In the Fock basis, we can write W ρ in terms of the density matrix [ρ m,n ] as follows (see Leonhardt [START_REF] Leonhardt | Measuring the Quantum State of Light[END_REF] for the details).

W ρ (q, p) = m,n ρ m,n W m,n (q, p) where W m,n (q, p) = 1 π e 2ipx h m (q -x)h n (q + x)dx. (9) 
It can be seen that W m,n (q, p) = W n,m (q, -p) and if m ≥ n,

W m,n (q, p) = (-1) m π n! m! 1 2 e -(q 2 +p 2 ) × √ 2(ip -q) m-n L m-n n 2q 2 + 2p 2 (10) 
thus, writing

z := q 2 + p 2 , l m,n (z) := |W m,n (q, p)| = 2 m-n 2 π n! m! 1 2 e -z 2 z m-n L m-n n (2z 2 ) (11) 
where L α n (x) := (n!) -1 e x x -α d n dx n (e -x x n+α ) is the Laguerre polynomial of degree n and order α. Concerning the Fourier transforms, we also recall that

W m,n (q, p) = (-i) m+n 2 W m,n q 2 , p 2 . ( 12 
)
In this section we show how a decrease condition on the coefficients of the density matrix translates on the corresponding Wigner distribution. First the case r < 2 :

Proposition 1. Assume that 0 < r < 2 and that there exists B > 0 such that, for all

m ≥ n, |ρ m,n | ≤ e -B(m+n) r/2 .
Then for all β < B, there exists z 0 (depending explicitly on r, B, β, see proof ) such that

z := q 2 + p 2 ≥ z 0 implies |W ρ (q, p)| ≤ A(z)e -βz r (13) 
as well as

W ρ (q, p) ≤ A(z/2)e -β(z/2) r (14) 
where A(z) := 1 π m,n e -B(m+n) r/2 + 4 Br z 4-r .

If r = 2, the result is a little different :

Proposition 2. Suppose that there exists B > 0 such that, for all m ≥ n, m+n) .

|ρ m,n | ≤ e -B(
Then there exists z 0 such that z := q 2 + p 2 ≥ z 0 implies

|W ρ (q, p)| ≤ A(z)e - B (1+ √ B) 2 z 2 (15) 
as well as

W ρ (q, p) ≤ A(z/2)e - B (1+ √ B) 2 (z/2) 2 (16) 
for

A(z) = 1 π m,n e -B(m+n) + 2e B B(1+ √ B) 2 z 2 .
Note that

B (1+ √ B)
2 < min(B, 1). Even when B is very large, we cannot hope to obtain a faster decrease because e -z 2 is the decrease rate of the basis functions themselves (Lemma 2).

The proof of these propositions is defered to Appendix 5. More general results and converses are studied in [START_REF] Aubry | Ultrarapidly decreasing ultradifferentiable functions, Wigner distributions and density matrices[END_REF]. Let us now state a few general utility lemmata.

Lemma 1. Let y and w be two C 2 functions : [x 0 , +∞) → (0, +∞) such that y ′ (x) → 0, w is bounded, satisfying the differential equations

y ′′ (x) = φ(x)y(x) w ′′ (x) = ψ(x)w(x),
with continuous φ(x) ≤ ψ(x), and initial conditions y(x 0 ) = w(x 0 ). Then for all x ≥ x 0 , w(x) ≤ y(x).

Démonstration. Suppose that there exists x 1 ≥ x 0 where w(x 1 ) > y(x 1 ). Then for some

x 2 ∈ [x 0 , x 1 ] we have w ′ (x 2 ) > y ′ (x 2 ) and w(x 2 ) ≥ y(x 2 ). Consequently, for all x ≥ x 2 , w ′′ (x) -y ′′ (x) ≥ 0, and w ′ (x) -y ′ (x) ≥ w ′ (x 2 ) -y ′ (x 2 ). When x → ∞, lim inf w ′ (x) ≥ w ′ (x 2 ) -y ′ (x 2 ) > 0, which contradicts the boundedness of w.
This lemma is used to prove a bound on the Laguerre functions.

Lemma 2. For all m, n ∈ N and s :=

√ m + n + 1, for all z ≥ 0, l m,n (z) ≤ 1 π    1 if 0 ≤ z ≤ s e -(z-s) 2 if z ≥ s. (17) 
Démonstration. When z ≤ s, the result follows from the uniform bound on Wigner functions obtained by applying the Cauchy-Schwarz inequality to [START_REF] D'ariano | Homodyne detection of the density matrix of the radiation field[END_REF]. When z ≥ s, L α n (2z 2 ) doesn't vanish and keeps the same sign as L α n (2s 2 ). Now, as it can be seen from [27, 5.1.2], the function w(z) := √ zl m,n (z) satisfies the differential equation

w ′′ = (4(z 2 -s 2 ) + α 2 -1/4 z 2 )z. On the other hand, y(z) := √ sl m,n (s)e -(z-s) 2 satisfies y ′′ = (4(z -s) 2 -2)y. When z ≥ s, 4(z -s) 2 -2 < 4(z 2 -s 2 ) + α 2 -1/4 z 2 (18) 
from which we conclude with Lemma 1 that w(z) ≤ y(z).

Finally, a lemma to bound the tail of a series.

Lemma 3. If ν > 0 and C > 0, there exists a z 0 such that z ≥ z 0 implies m+n≥z e -C(m+n) ν ≤ 2 Cν z 2-ν e -Cz ν . ( 19 
)
Démonstration. First notice that m+n≥z e -C(m+n) ν = t≥z (t + 1)e -Ct ν ≤ ∞ z (t + 1)e -Ct ν dt.
When t ≥ z and z is large enough, we have

∞ z (t + 1)e -Ct ν dt ≤ 2 Cν ∞ z Cνt -(2 -ν)t 1-ν e -Ct ν dt ≤ 2 Cν z 2-ν e -Cz ν
which is what we needed to prove.

Density matrix estimation

The aim of this part is to estimate the density matrix ρ in the Fock basis directely from the data (Y i , Φ i ) i=1,...,n . We show that for 0 < η ≤ 1/2 it is still possible to estimate the density matrix with an error of estimation tending to 0 as n tends to infinity (Theorem 3). In both cases (η > 1 2 and η ≤ 1 2 ), we construct an estimator of the density matrix (ρ j,k ) j,k≤N -1 from a sample of QHT data. We give theoretical results for our estimator when the quantum state ρ is in the class of density matrix with decreasing elements defined in (6).

Pattern functions

The matrix elements ρ j,k of the state ρ in the Fock basis (1) can be expressed as kernel integrals : for all j, k ∈ N,

ρ j,k = 1 π π 0 p ρ (x, φ)f j,k (x)e -i(k-j)φ dφdx (20) 
where f j,k = f k,j are bounded real functions called pattern functions in quantum homodyne literature. A concrete expression for their Fourier transform using Laguerre polynomials was found in [START_REF] Richter | Realistic pattern functions for optical homodyne tomography and determination of specific expectation values[END_REF] :

for j ≥ k, fk,j (t) = 2π 2 |t| W j,k (t, 0) = π(-i) j-k 2 k-j k! j! |t|t j-k e -t 2 4 L j-k k ( t 2 2 ). (21) 
where fk,j denotes the Fourier transform of the Pattern function f k,j .

Let us state the lemmata which are used to prove upper bounds in Propositions 3, 4 and 5.

Lemma 4. There exist constants C 2 , C ∞ such that

N j+k=0 f k,j 2 2 ≤ C 2 N
17 6 and

N j+k=0 f k,j 2 ∞ ≤ C ∞ N 10 3 .
This is a slight improvement over [1, Lemma 1].

Démonstration. By symmetry we can restrict the sum to j ≥ k. For fixed k and j we have fk,j In view of ( 21), the main result in [START_REF] Krasikov | Inequalities for orthonormal Laguerre polynomials[END_REF] can be rewritten as follows : if k ≥ 35 and j -k ≥ 24, then fk,j

2 ∞ ≤ 2888π 2 (j + 1) 1 2 k -1 6 . (22) 
In consequence, for these values of k and j, fk,j

2 2 ≤ C(jk -1 6 + j 1 2 k 1 3 ). ( 23 
)
On the other hand, a classical bound on Laguerre polynomials found in [START_REF] Szegö | Orthogonal polynomials[END_REF] yields that, for fixed values of j -k, fk,j

2 ∞ ≤ Ck 1 3
, hence for all k ≥ 35 and j -k < 24, fk,j

2 2 ≤ C(j 1 2 k 1 3 + k 5 6 ). ( 24 
)
When k < 35, we can use another result in [START_REF] Krasikov | Inequalities for Laguerre polynomials[END_REF] which gives fk,j

2 ∞ ≤ Ck 1 6 j 1 2 independently of j -k, thus fk,j 2 2 ≤ Cj. (25) 
Comparing ( 23), ( 24) and ( 25) we see that when N is large enough, in the sum over 0 ≤ j, k ≤ N , the terms k ≥ 35, j -k ≥ 24 dominate and ( 23) yields the first inequality.

The second inequality is obtained by doing a similar computation, starting with f j,k ∞ ≤ fj,k 1 and using [START_REF] Meziani | Nonparametric estimation of the purity of a quantum state in quantum homodyne tomography with noisy data[END_REF] to bound fj,k

2 1 ≤ C(j 3 2 k -1 6 + j 1 2 k 5 6 )
when k ≥ 35 and j -k ≥ 24.

In the presence of noise, it is necessary to adapt the pattern functions as follows. From now on, we shall use the notation γ := 1-η 4η . When 1 2 < η ≤ 1, we denote by f η k,j the function which has the following Fourier transform :

f η k,j (t) := fk,j (t)e γt 2 . (26) 
When 0 < η ≤ 1 2 , we introduce a cut-off parameter δ > 0 and define f η,δ k,j via its Fourier transform :

f η,δ k,j (t) := fk,j (t)e γt 2 I |t| ≤ 1 δ . ( 27 
)
Then we compute bounds on these pattern functions.

Lemma 5. For 1 > η > 1/2, there exist constants C η 2 and C η ∞ such that N j+k=0 f η k,j 2 2 ≤ C η 2 N 5 6 e 8γN and N j+k=0 f η k,j 2 ∞ ≤ C η ∞ N 1 3 e 8γN .
Démonstration. The proof is similar to the previous one and we skip some details. Once again we assume j ≥ k and write 

f η k,j 2 
e 2γt 2 dt ≤ C fk,j 2 ∞ s -1 e 8γs 2 .
In the sum we are considering the terms k ≥ 35 and j -k ≥ 24 are dominant and, once again thanks to ( 22), remembering that s =

√ j + k + 1, f η k,j 2 2 ≤ Ck -1 6 e 8γ(j+k)
hence the first inequality.

The second inequality is, in the same fashion, based on

f η k,j 2 ∞ ≤ f η k,j 2 1 ≤ C j 1 4 k -1 12 |t|<2s e γt 2 dt 2 ≤ Cj -1 2 k -1 6 e 8γ(j+k)
when k ≥ 35 and j -k ≥ 24, and the bound on the sum readily follows.

Estimation procedure

For N := N (n) → ∞ and δ := δ(n) → 0, let us define our estimator of ρ j,k for 0

≤ j + k ≤ N -1 by ρη j,k := 1 n n ℓ=1 G j,k Y ℓ √ η , Φ ℓ , (28) 
where

G j,k (x, φ) :=    f η j,k (x)e -i(j-k)φ if 1 2 < η ≤ 1 f η,δ j,k (x)e -i(j-k)φ if 0 < η ≤ 1 2
. using the pattern functions defined in [START_REF] Smithey | Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomogra-26 phy : Application to squeezed states and the vacuum[END_REF] and [START_REF] Szegö | Orthogonal polynomials[END_REF]. We assume that the density matrix ρ belongs to the class R(B, r) defined in [START_REF] Cavalier | Efficient estimation of a density in a problem of tomography[END_REF]. In order to evaluate the performance of our estimators we take the L 2 distance on the space of density matrices τ -ρ 2 2 := tr(|τ -

ρ| 2 ) = ∞ j,k=0 |τ j,k -ρ j,k | 2 .
We consider the mean integrated square error (MISE) and split it into a troncature bias term b 2 1 (n), a regularization bias terms b 2 2 (n) and a variance term

σ 2 (n). E   ∞ j,k=0 ρη j,k -ρ j,k 2   = j+k≥N |ρ j,k | 2 + N -1 j+k=0 E[ρ η j,k ] -ρ j,k 2 + N -1 j+k=0 E ρη j,k -E[ρ η j,k ] 2 =: b 2 1 (n) + b 2 2 (n) + σ 2 (n).
The following propositions give upper bounds for b 2 1 (n), b 2 2 (n) and σ 2 (n) in the different cases η = 1, 1/2 < η < 1 or 0 < η ≤ 1/2 and r = 2 or 0 < r < 2. Their proofs are defered to Appendix 5. Proposition 3. Let ρη j,k be the estimator defined by ( 28), for 0 < η < 1, with δ → 0 and N → ∞ as n → ∞, then for all B > 0 and 0

< r ≤ 2, sup ρ∈R(B,r) b 2 1 (n) ≤ c 1 N 2-r/2 e -2BN r/2 (29) 
where c 1 is a positive constant depending on B and r.

Proposition 4. Let ρη j,k be the estimator defined by [START_REF] Vardi | A statistical model for positron emission tomography[END_REF], for 0 < η ≤ 1/2, with N → ∞ as n → ∞ and 1/δ ≥ 2 √ N . In the case r = 2, for β := B/(1 + √ B) 2 there exists c 2 , while in the case 0 < r < 2, for any β < B there exists c 2 and n 0 such that for n ≥ n 0 :

sup ρ∈R(B,r) b 2 2 (n) ≤ c 2 N 2 δ 4r-12 e -2β (2δ) r -1 2 ( 1 δ -2 √ N ) 2 . ( 30 
)
Note that for 1/2 < η ≤ 1 we have b 2 (n) = 0 for all 0 < r ≤ 2 (ρ η j,k is unbiased). Proposition 5. For ρη j,k the estimator defined by [START_REF] Vardi | A statistical model for positron emission tomography[END_REF],

sup ρ∈R(B,r) σ 2 (n) ≤ c 3 δN 17/6 n e 2γ δ 2 if 0 < η ≤ 1/2 (31) sup ρ∈R(B,r) σ 2 (n) ≤ c ′ 3 N 1/3 n e 8γN if 1/2 < η < 1 (32) sup ρ∈R(B,r) σ 2 (n) ≤ c ′′ 3 N 17 6 n if η = 1 ( 33 
)
where c 3 , c ′ 3 are positive constants depending on η.

We measure the accuracy of ρη j,k by the maximal risk over the class R(B, r)

lim sup n→∞ sup ρ∈R(B,r) ϕ -2 n E   ∞ j,k=0 ρη j,k -ρ j,k 2   ≤ C 0 . ( 34 
)
where C 0 is a positive constant and ϕ 2 n is a sequence which tends to 0 when n → ∞ and it is the rate of convergence. Cases η = 1 (no noise), 1 2 < η < 1 (weak noise) and 0 < η ≤ 1 2 (strong noise) are studied respectively in Theorems 1, 2 and 3.

Theorem 1. When η = 1, the estimator defined in [START_REF] Vardi | A statistical model for positron emission tomography[END_REF] for the model [START_REF] D'ariano | Tomographic measurement of the density matrix of the radiation field[END_REF], where the unknown state belongs to the class R(B, r), satisfies the upper bound (34) with

ϕ 2 n = log(n) 17 3r n -1 obtained by taking N (n) := log(n) 2B 2 r .
Démonstration. With the proposed N (n) one checks that the bias ( 29) is smaller than the variance (33) which is bounded by a constant times log(n)

17 3r n -1 .
Theorem 2. When 1 2 < η < 1, the estimator defined in [START_REF] Vardi | A statistical model for positron emission tomography[END_REF] for the model [START_REF] D'ariano | Tomographic measurement of the density matrix of the radiation field[END_REF], where the unknown state belongs to the class R(B, r), satisfies the upper bound (34) with -For r = 2,

ϕ 2 n = log(n) 12γ+B 3(4γ+B) n -B 4γ+B with N (n) := log(n) 2(4γ+B) 1 + 2 3 log(log n) log(n)
.

-For 0 < r < 2,

ϕ 2 n = log(n) 2-r/2 e -2BN (n) r/2
where N (n) is the solution of the equation 8γN + 2BN r/2 = log(n).

In that case we have

N (n) = 1 8γ log(n) -2B (8γ) 1+r/2 log(n) r/2 + o(log(n) r/2 ).
Démonstration. When r = 2, the proposed N (n) ensures that the variance (32) is equivalent to the bias [START_REF] Vogel | Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase[END_REF], which is bounded by a constant times log(n)

12γ+B 3(4γ+B) n -B 4γ+B .
When 0 < r < 2, the proposed N (n) makes the variance (32) bounded by a constant times e -2BN (n) r/2 , which is smaller than the bias, the latter being bounded by a constant times

N (n) 2-r/2 e -2BN (n) r/2 .
The asymptotic expansion of N (n) is a standard consequence of its definition by the equation 8γN + 2BN r/2 = log(n).

Theorem 3. When 0 < η ≤ 1 2 , the estimator defined in [START_REF] Vardi | A statistical model for positron emission tomography[END_REF] for the model [START_REF] D'ariano | Tomographic measurement of the density matrix of the radiation field[END_REF], where the unknown state belongs to the class R(B, r), satisfies the upper bound (34) with

ϕ 2 n = N 2-r/2 e -2BN r/2
where N and δ are solutions of the system

   2β (2δ) r + 1 2 ( 1 δ -2 √ N ) 2 + 2γ δ 2 = log(n) 2β (2δ) r + 1 2 ( 1 δ -2 √ N ) 2 -2BN r/2 = (log log(n)) 2 (35) 
for arbitrary β < B in the case 0 < r < 2 or    β+4γ 2δ 2 + 1 2 ( 1 δ -2 √ N ) 2 -5 3 log(N ) = log(n) β 2δ 2 + 1 2 ( 1 δ -2 √ N ) 2 -2BN -3 log(N ) = 0 ( 36 
)
with β := B (1+ √ 
B) 2 in the case r = 2. Theses bounds are optimal in the sense that (35) and (36) are obtained by minimizing the sum of the bounds ( 29), ( 30) and (31).

Démonstration. We use the standard notations a

(n) ∼ b(n) if a(n) b(n) → 1 and a(n) ≈ b(n) if there exists a constant M < ∞ such that 1 M ≤ a(n) b(n) ≤ M for all n.
Let us first examine the case 0 < r < 2. Remark that the left-hand term of the second equation in (35) is strictly negative when 1/δ = 2 √ N and increases to ∞ with 1/δ. This proves that the solution satisfies 1/δ > 2 √ N and that Proposition 4 applies. Furthermore, if we suppose that 1/δ √ N is unbounded when n → ∞, then (up to taking a subsequence) by the first equation

1 2 +2γ δ 2
∼ log(n) whereas, by subtracting the two, 2γ δ 2 ∼ log(n), which is contradictory. So 1/δ ≈ √ N and we deduce that N ≈ log(n). Then (30) yields

log b 2 2 (n) N 2-r/2 e -2BN r/2 ≤ (4r -12) log(δ) + r 2 log(N ) -(log log(n)) 2 → -∞ whereas (31) gives log σ 2 (n) N 2-r/2 e -2BN r/2 ≤ log(δ) + ( 5 6 + r 2 ) log(N ) -(log log(n)) 2 → -∞.
We see that the dominant term is the bound (29) on b 2 1 (n), hence the result. When r = 2, the same reasoning as above yields

1/δ > 2 √ N , 1/δ ≈ √ N and N ≈ log(n).
Then the right-hand side of (30) and (31) are of the same order as N e -2BN , which is the bound (29) on b 2 1 (n).

Wigner function estimation 4.1 Kernel estimator

We describe now the direct estimation method for the Wigner function. For the problem of estimating a probability density f : R 2 → R directly from data (X ℓ , Φ ℓ ) with density R[f ] we refer to the literature on X-ray tomography and PET, studied by [START_REF] Vardi | A statistical model for positron emission tomography[END_REF][START_REF] Korostelëv | Minimax theory of image reconstruction[END_REF][START_REF] Iain | Speed of estimation in positron emission tomography and related inverse problems[END_REF][START_REF] Cavalier | Efficient estimation of a density in a problem of tomography[END_REF] and many other references therein. In the context of tomography of bounded objects with noisy observations [START_REF] Goldenshluger | On the shape-from-moments problem and recov-ering edges from noisy Radon data[END_REF] solved the problem of estimating the borders of the object (the support). The estimation of a quadratic functional of the Wigner function has been treated in [START_REF] Meziani | Nonparametric estimation of the purity of a quantum state in quantum homodyne tomography with noisy data[END_REF]. For the problem of Wigner function estimation when no noise is present, we mention the work by [START_REF] Gut | Minimax estimation of the Wigner in quantum homodyne tomography with ideal detectors[END_REF]. They use a kernel estimator and compute sharp minimax results over a class of Wigner functions characterised by their smoothness. In a more recent paper [START_REF] Butucea | Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data[END_REF],

Butucea, Gut ¸ȃ and Artiles treated the noisy problem for the pointwise estimation of W ρ ; however the functions needed to prove minimax optimality there do not belong to the class of Wigner functions that we consider here.

In this chapter, as in [START_REF] Butucea | Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data[END_REF], we modify the usual tomography kernel in order to take into account the additive noise on the observations and construct a kernel K η h which performs both deconvolution and inverse Radon transform on our data, asymptotically. Let us define the estimator :

W η h (q, p) = 1 πn n ℓ=1 K η h q cos Φ ℓ + p sin Φ ℓ - Y ℓ √ η , ( 37 
)
where 0 < η < 1 is a fixed parameter, and the kernel is defined by

K η h (u) = 1 4π 1/h -1/h exp(-iut)|t| N η (t/ √ η) dt, K η h (t) = 1 2 |t| N η (t/ √ η) I(|t| ≤ 1/h), (38) 
and h > 0 tends to 0 when n → ∞ in a proper way to be chosen later. For simplicity, let us denote z = (q, p) and [z, φ] = q cos φ + p sin φ, then the estimator can be written :

W η h (z) = 1 πn n ℓ=1 K η h [z, Φ ℓ ] - Y ℓ √ η .
This is a one-step procedure for treating two successive inverse problems. The main difference with the noiseless problem treated by [START_REF] Gut | Minimax estimation of the Wigner in quantum homodyne tomography with ideal detectors[END_REF] is that the deconvolution is more 'difficult' than the inverse Radon transform. In the literature on inverse problems, this problem would be qualified as severely ill-posed, meaning that the noise is dramatically (exponentially) smooth and makes the estimation problem much harder.

L 2 risk estimation

We establish next the rates of estimation of W ρ from i.i.d. observations (Y ℓ , Φ ℓ ), ℓ = 1, . . . , n when the quality of estimation is measured in L 2 distance. In the literature, L 2 tomography is usually performed for boundedly supported functions, see [START_REF] Korostelëv | Minimax theory of image reconstruction[END_REF] and [START_REF] Iain | Speed of estimation in positron emission tomography and related inverse problems[END_REF]. However, most Wigner function do not have a bounded support ! Instead, we use the fact that Wigner functions in the class R(B, r) decrease very fast and show that a properly truncated estimator attains the rates we may expect from the statistical problem of deconvolution in presence of tomography. Thus, we modify the estimator by truncating it over a disc with increasing radius, as n → ∞. Let us denote

D(s n ) = {z = (q, p) ∈ R 2 : z ≤ s n } ,
where s n → ∞ as n → ∞ will be defined in Theorem 4. Let now

W η, * h,n (z) = W η h,n (z)I D(sn) (z). (39) 
From now on, we will denote for any function f ,

f 2 D(sn) = D(sn) f 2 (z)dz,
and by D(s n ) the complementary set of D(s n ) in R 2 . Then,

E W η, * h -W ρ 2 2 = E W η h -W ρ 2 D(sn) + W ρ 2 D(sn) = E W η h -E W η h 2 D(sn) + E W η h -W ρ 2 D(sn) + W ρ 2 D(sn) .
When replacing the L 2 norm with the above restricted integral, the upper bound of the bias of the estimator is unchanged, whereas the variance part is infinitely larger than the deconvolution variance in [START_REF] Butucea | Sharp optimality for density deconvolution with dominating bias. i and ii[END_REF]. As the bias is dominating over the variance in this setup, we can still choose a suitable sequence s n so that the same bandwidth is optimal associated to the same optimal rate, provided that W ρ decreases fast enough asymptotically. The following proposition gives upper bounds for the three components of the L 2 risk uniformly over the class R(B, r). Proposition 6. Let (Y ℓ , Φ ℓ ), ℓ = 1, . . . , n be i.i.d. data coming from the model ( 7) and let W η h be an estimator (with h → 0 as n → ∞) of the underlying Wigner function W ρ . We suppose W ρ lies in the class R(B, r), with B > 0 and 0 < r ≤ 2. Then, for s n → ∞ as n → ∞ and n large enough,

sup ρ∈R(B,r) W ρ 2 D(sn) ≤ C 1 s 10-3r n e -2βs r n , sup ρ∈R(B,r) E[ W η h ] -W ρ 2 D(sn) ≤ C 2 h 3r-10 e -2 1-r β h r sup ρ∈R(B,r) E W η h,n -E W η h,n 2 
D(sn) ≤ C 3 s 2 n nh exp 2γ h 2 ,
where β < B is defined in Proposition 1 for 0 < r < 2 and

β = B/(1 + √ B) 2 for r = 2, γ = (1 -η)/(4η) > 0, C 1 , C 2 , C 3 are positive constants, C 1 , C 2 , depending on β, B, r and 
C 3 depending only on η.
We measure the accuracy of W η, * h by the maximal risk over the class R(B, r)

lim sup n→∞ sup ρ∈R(B,r) E W η, * h -W ρ 2 ϕ -2 n (L 2 ) ≤ C. ( 40 
)
where C is a positive constant and ϕ 2 n is a sequence which tends to 0 when n → ∞ and it is the rate of convergence.

In the following Theorem we see the phenomenon which was noticed already : deconvolution with Gaussian type noise is a much harder problem than inverse Radon transform (the tomography part). Theorem 4. Let B > 0, 0 < r ≤ 2 and (Y ℓ , Φ ℓ ), ℓ = 1, . . . , n be i.i.d. data coming from the model [START_REF] D'ariano | Tomographic measurement of the density matrix of the radiation field[END_REF]. Then W η, * h defined in (39) with kernel K η h in (38) satisfies the upper bound (40) with

-For r = 2, put β = B/(1 + √ B) 2 ϕ 2 n = (log n) 16γ+3β 8γ+2β n -β 4γ+β , with s n = (h) -1 and h = 2 4γ+β log n + 1 4γ+β log(log n) -1/2
.

-For 0 < r < 2 and β < B defined in Proposition 1,

ϕ 2 n = h 3r-10 exp - 2 1-r β h r ,
where s n = 1/h and h is the solution of the equation

2 1-r β h r + 2γ h 2 = log n -(log log n) 2 .
Sketch of proof of the upper bounds. By Proposition 6, we get sup

Wρ∈R(B,r) E W η h -W ρ 2 ≤ C 1 s 10-3r n e -2βs r n + C 2 h 3r-10 exp - 2β (2h) r + C 3 s 2 n nh exp 2γ h 2 . =: A 1 + A 2 + A 3
For 0 < r < 2 and by taking derivatives with respect to h and s n , we obtain that the optimal choice verifies the following equations :

2βs r n + 2γ h 2 = log(n) + log(hs 2(4-r) n ) 2 1-r β h r + 2γ h 2 = log(n) + log(h 2r-7 s -2 n ).
We notice therefore that A 2 is dominating over A 3 , which is dominating over A 1 . The proposed (s n , h) ensure that the term A 2 is still the dominating term and gives the rate of convergence.

The case r = 2 is treated similarly, by taking derivatives we notice that the term A 2 and the term A 3 are of the same order and that the term A 1 is smaller than the others. 17) and (41). Combining ( 42) and (43) yields the announced result. The bound on W ρ is then a direct consequence of (12).

Proof of Proposition 2

Let φ(z) := θz 2 -1, where θ := 17) and (41). Combining (44) and (45) yields the announced result. The bound on W ρ is then a direct consequence of (12).

1 (1+ √ B) 2 is the solution in (0, 1) of (1 - √ θ) 2 = Bθ. When m + n ≤ φ(z), then s ≤ √ θz and z -s ≥ z(1 - √ θ) = √ Bθz. By (17), this means that l m,n (z) ≤ 1 π e -Bθz

Proof of Proposition 3

By (6) the term b 2 1 (n) can be bounded as follows

b 2 1 (n) = j+k≥N |ρ j,k | 2 ≤ j+k≥N exp(-2B(j + k) r/2 ).
Compare to the double integral and change to polar coordinates to get

b 2 1 (n) ≤ c 1 N 2-r/2 exp(-2BN r/2 ).

Proof of Proposition 4

To study the term b2 2 (n), we denote

F 1 [p ρ (•|φ)](t) := E ρ [e itX |Φ = φ] = W ρ (t cos φ, t sin φ),
the Fourier transform with respect to the first variable.

E[ρ η j,k ] = E[G j,k ( Y √ η , Φ)] = E[f η,δ j,k ( Y √ η )e -i(j-k)Φ ] = 1 π π 0 e -i(j-k)φ f η,δ j,k (y) √ ηp η ρ (y √ η|φ)dydφ = 1 π π 0 e -i(j-k)φ 1 2π f η,δ j,k (t)F 1 [ √ ηp η ρ (• √ η|φ)](t)dtdφ = 1 π π 0 e -i(j-k)φ 1 2π |t|≤1/δ f j,k (t)e γt 2 F 1 [p ρ (•|φ)](t) N η (t)dtdφ.
As N η (t) = e -γt 2 and by using the Cauchy-Schwarz inequality we have

E[ρ η j,k ] -ρ j,k 2 = 1 π π 0 e -i(j-k)φ 1 2π |t|>1/δ f j,k (t)F 1 [p ρ (•|φ)](t)dtdφ 2 ≤ 1 π π 0 1 2π |t|>1/δ f j,k (t) W ρ (t cos φ, t sin φ) dt 2 dφ. If 1/δ ≥ 2 √ N ≥ 2s with s = √ j + k + 1, then whenever t ≥ 1/δ we get by Lemma 2 | f j,k (t)| = π 2 |t|l j,k (t/2) ≤ π|t|e -1 4 (|t|-2s) 2 .
On the other hand, by Propositions 1 and 2 we have

| W ρ (t cos φ, t sin φ)| ≤ A( |t| 2 )e -β( |t| 2 ) r for β := B (1+ √ 
B) 2 in the case r = 2, or for arbitrary β < B and t large enough in the case 0 < r < 2. In both cases A is a polynom of degree 4 -r. We deduce the inequality

E[ρ η j,k ] -ρ j,k 2 ≤ C ∞ 1 δ t 5-r e -1 4 (t-2s) 2 -β2 -r t r dt 2 ≤ C( 1 δ ) 12-4r e -1 by Lemma 8 in [5], hence b 2 (n) 2 ≤ CN 2 ( 1 δ ) 12-4r e -1 2 ( 1 δ -2 √ N ) 2 -β2 1-r ( 1 δ ) r
which covers both cases in the proposition.

Proof of Proposition 5

Let us write σ

2 j,k (n) := E ρη j,k -E[ρ η j,k ] 2 
. We bound it by

σ 2 j,k (n) = E 1 n n ℓ=1 G j,k ( Y ℓ √ η , Φ ℓ ) -E[G j,k ( Y ℓ √ η , Φ ℓ )] 2 = 1 n E G j,k ( Y √ η , Φ) -E[G j,k ( Y √ η , Φ)] 2 ≤ 1 n E G j,k ( Y √ η , Φ) 2 . ( 46 
)
Proof of (31) For 0 < η ≤ 1/2, let us denote by K δ the function with the following

Fourier transform K δ (t) = I(|t| ≤ 1 δ )e γt 2 , then f η,δ j,k = f j,k (t) K δ (t) and we have σ 2 j,k (n) ≤ 1 n E f η,δ j,k ( Y √ η )e -i(j-k)Φ 2 ≤ 1 n E f j,k * K δ ( Y √ η ) 2 ≤ 1 n E f j,k (t)K δ ( Y √ η -t)dt 2 .
By using the Cauchy-Schwarz inequality

σ 2 j,k (n) ≤ 1 n |f j,k (t)| 2 dtE K δ ( Y √ η -t) 2 dt ≤ 1 n |f j,k (t)| 2 dtE 1 2π K δ (u)e -iu Y √ η 2 du ≤ 1 nπ f j,k 2 2 1/δ 0 e 2γu 2 du.
Then,

σ 2 (n) ≤ C nπ N -1 j+k=0 f j,k 2 2 ηδ 1 -η e 2γ δ 2 .
By Lemma 4 we have

N -1 j+k=0 f j,k 2 2 ≤ C 2 N 17/6 thus σ 2 (n) ≤ C 1 ηδN 17/6 nπ(1 -η) e 2γ δ 2 .
Proof of (32) and ( 33) By ( 28), for 1/2 < η ≤ 1,

σ 2 j,k (n) ≤ 1 n E f η j,k ( Y √ η )e -i(j-k)Φ 2 ≤ 1 nπ π 0 f η j,k (y) 2 √ ηp η ρ ( √ ηy|φ)dydφ ≤ 1 nπ f η j,k 2 ∞ For 1/2 < η < 1, by Lemma 5, σ 2 (n) ≤ C ∞ N 1/3 nπ e 8γN .
For η = 1, by Lemma 6

σ 2 j,k (n) ≤ 1 n π 0 |f j,k (x)| 2 p ρ (x, φ)dxdφ ≤ C n f j,k 2 2 
hence by Lemma 4,

σ 2 (n) ≤ C C 2 N 17/6 n .

Proof of Proposition 6

It is easy to see that F E[ W η h ] (w) = W ρ (w)I( w ≤ 1/h).

We have, for n large enough s n ≥ z 0 and by ( 13) in the case r = 2. Now we write for the L 2 bias of our estimator :

W ρ 2 
E[ W η h ] -W ρ 2 D(sn) ≤ E[ W η h ] -W ρ 2 2 = 1 (2π) 2 F E[ W η h ] -W ρ 2 2
= 1 (2π) 2 W ρ (w) , by the assumption on our class and ( 14), for 0 < r < 2. The case r = 2 is similar.

As for the variance of our estimator :

V W η h = E W η h -E W η h 2 D(sn) = 1 π 2 n E K η h [•, Φ] - Y √ η 2 D(sn) -E K n h [•, Φ] - Y √ η 2 D(sn) . (47) 
On the one hand, by using two-dimensional Plancherel formula and the Fourier transform shown above, we get :

E K n h [•, Φ] - Y √ η 2 D(sn) ≤ π 2 |W ρ (w)| 2 dw ≤ π 2 . ( 48 
)
In the last inequality we have used the fact that W ρ We replace in the second order moment, then as h → 0

E K η h [•, Φ] - Y √ η 2 D(sn) ≤ M (η)s 2 n 16γh exp 2γ h 2 (1 + o(1)). ( 49 
)
The result about the variance of the estimator is obtained from (47)-(49). 

2 dt(

 2 with s = √ k + j + 1). Because of Lemma 2, it is clear that the second integral is negligible in front of the first one, which we simply bound by 4s fk,j 2 ∞ .

1 B 2 /r z 2 . 2 ≤ 4 πBr z 4 -

 12224 Let φ(z) := (z -√ βz r/2 ) 2 -1. Since r < 2, for z larger than a certain z 0 (which depends only on β, B and r), it is true that φ(z) ≥ β It follows thate -Bφ(z) r/2 ≤ e -βz r (41) If m + n ≤ φ(z), then s ≤ 1 + φ(z) and z -s ≥ z -1 + φ(z) = √ βz r/2. By[START_REF] Krasikov | Inequalities for Laguerre polynomials[END_REF], this means that l m,n (z) ≤ 1 π e -βz r . So m+n≤φ(z) |ρ m,n |l m,n (z) ≤ Ae -βz r (42) for A := 1 π m,n e -B(m+n) r/2 . On the other hand, using Lemma 3 with ν := r/2, if φ(z) ≥ z 0 , m+n≥φ(z) |ρ m,n |l m,n (z) ≤ 4 πBr φ(z) 2-r/2 e -Bφ(z) r/r e -βz r (43) by (

  2 . So m+n≤φ(z) |ρ m,n |l m,n (z) ≤ Ae -Bθz 2 (44) for A := 1 π m,n e -B(m+n) . On the other hand, by Lemma 3, if φ(z) ≥ z 0 , m+n≥φ(z) |ρ m,n |l m,n (z) ≤ 2 πB φ(z)e -Bφ(z)

9 -

 9 2r exp(-2βt r )dtdφ ≤ C 1 s 10-3r n e -2βs r n , where β < B and for n large enough in the case 0 < r < 2, respectively β = B/(1 + √ B) 2

2 I

 2 r) e -2 1-r β w r dw ≤ C 2 h 3r-10 e -2 1-r β h r

2 2 =2ηh 2 ( 1 +

 221 Tr(ρ 2 ) ≤ 1 where ρ is the density matrix corresponding to the Wigner function W ρ . On the other hand, the dominant term in the variance will be given byE K η h [•, Φ] -•, φ) * N N η ([z, φ] -u)dφdzdu ≤ M (η)πs 2 n (K η h (u)) 2 du,using Lemma 6 below and the constant M (η) > 0 depending only on η, defined therein.Indeed, let us note that√ ηp η ρ (• √ η, φ) is the density of Y / √ η = X + (1 -η)/(2η)ε and let us call N N η the Gaussian density of the noise as normalized in this last equation. Let us first compute, by Plancherel formula, o(1)), as h → 0.

Lemma 6 .p ρ satisfies 0 ≤ π 0 p≤ π 0 p 0 W

 6000 For every ρ ∈ R(B, r) and 0 < η < 1, we have that the corresponding probabilitydensity ρ (•, φ) * N N η (x)dφ ≤ M (η), 0 ρ (x, φ)dφ ≤ Cfor all x ∈ R eventually depending on φ, where M (η) > 0 is a constant depending only on fixed η and C > 0.Démonstration. Indeed, using inverse Fourier transform and the fact that W ρ (w) ≤ 1 we get :π 0 p ρ (•, φ) * N N η (x)dφ ≤ F 1 [p ρ (•, φ)](t) • N N η (t)dtdφ ≤ c(η) π ρ (t cos φ, t sin φ) exp -t 2 (1 -η) 4η dtdφ ≤ c(η) 1 w W ρ (w) exp -w 2 (1 -η) 4η dw ≤ M (η),where c(η), M (η) are positive constants depending only on η ∈ (0, 1).

( 1 δ -2 √ N ) 2 -β2 1-r ( 1 δ ) r