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ALMOST-SURE GROWTH RATE OF GENERALIZED RANDOM FIBONACCI

SEQUENCES

ÉLISE JANVRESSE, BENOÎT RITTAUD, THIERRY DE LA RUE

Abstract. We study the generalized random Fibonacci sequences defined by their first non-

negative terms and for n ≥ 1, Fn+2 = λFn+1 ± Fn (linear case) and F̃n+2 = |λF̃n+1 ± F̃n|
(non-linear case), where each ± sign is independent and either + with probability p or − with
probability 1 − p (0 < p ≤ 1). Our main result is that, when λ is of the form λk = 2 cos(π/k)

for some integer k ≥ 3, the exponential growth of Fn for 0 < p ≤ 1, and of F̃n for 1/k < p ≤ 1,
is almost surely positive and given by

∫ ∞

0
log x dνk,ρ(x),

where ρ is an explicit function of p depending on the case we consider, taking values in [0, 1],

and νk,ρ is an explicit probability distribution on R+ defined inductively on generalized Stern-
Brocot intervals. We also provide an integral formula for 0 < p ≤ 1 in the easier case λ ≥ 2.
Finally, we study the variations of the exponent as a function of p.

1. Introduction

Random Fibonacci sequences have been defined by Viswanath by F1 = F2 = 1 and the random
recurrence Fn+2 = Fn+1 ± Fn, where the ± sign is given by tossing a balanced coin. In [11], he
proved that

n
√
|Fn| −→ 1.13198824 . . . a.s.

and the logarithm of the limit is given by an integral expression involving a measure defined on
Stern-Brocot intervals. Rittaud [8] studied the exponential growth of E(|Fn|): it is given by an
explicit algebraic number of degree 3, which turns out to be strictly larger than the almost-sure
exponential growth obtained by Viswanath. In [5], Viswanath’s result has been generalized to the
case of an unbalanced coin and to the so-called non-linear case Fn+2 = |Fn+1 ±Fn|. Observe that
this latter case reduces to the linear recurrence when the ± sign is given by tossing a balanced
coin.

A further generalization consists in fixing two real numbers, λ and β, and considering the
recurrence relation Fn+2 = λFn+1 ± βFn (or Fn+2 = |λFn+1 ± βFn|), where the ± sign is chosen
by tossing a balanced (or unbalanced) coin. By considering the modified sequence Gn := Fn/βn/2,
which satisfies Gn+2 = λ√

β
Gn+1 ± Gn, we can always reduce to the case β = 1. The purpose of

this article is thus to generalize the results presented in [5] on the almost-sure exponential growth

to random Fibonacci sequences with a multiplicative coefficient: (Fn)n≥1 and (F̃n)n≥1, defined

inductively by their first two positive terms F1 = F̃1 = a, F2 = F̃2 = b and for all n ≥ 1,

(1) Fn+2 = λFn+1 ± Fn (linear case),

(2) F̃n+2 = |λF̃n+1 ± F̃n| (non-linear case),

where each ± sign is independent and either + with probability p or − with probability 1 − p
(0 < p ≤ 1). We are not yet able to solve this problem in full generality. If λ ≥ 2, the linear
and non-linear cases are essentially the same, and the study of the almost-sure growth rate can
easily be handled (Theorem 1.3). The situation λ < 2 is much more difficult. However, the
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method developed in [5] can be extended in a surprisingly elegant way to a countable family of
λ’s, namely when λ is of the form λk = 2 cos(π/k) for some integer k ≥ 3. The simplest case
λ3 = 1 corresponds to classical random Fibonacci sequences studied in [5]. The link made in [5]
and [8] between random Fibonacci sequences and continued fraction expansion remains valid for
λk = 2 cos(π/k) and corresponds to so-called Rosen continued fractions, a notion introduced by
Rosen in [9]. These values λk are the only ones strictly smaller than 2 for which the group (called
Hecke group) of transformations of the hyperbolic half plane H2 generated by the transformations
z 7−→ −1/z and z 7−→ z + λ is discrete.

In the linear case, the random Fibonacci sequence is given by a product of random i.i.d. ma-
trices, and the classical way to investigate the exponential growth is to apply Furstenberg’s for-
mula [3]. This is the method used by Viswanath, and the difficulty lies in the determination of
Furstenberg’s invariant measure. In the non-linear case, the involved matrices are no more i.i.d.,
and the standard theory does not apply. Our argument is completely different and relies on some
reduction process which will be developed in details in the linear case. Surprisingly, our method
works easier in the non-linear case, for which we only outline the main steps.

Our main results are the following.

Theorem 1.1. Let λ = λk = 2 cos(π/k), for some integer k ≥ 3.
For any ρ ∈ [0, 1], there exists an explicit probability distribution νk,ρ onR+ defined inductively

on generalized Stern-Brocot intervals (see Section 3.2 and Figure 1), which gives the exponential
growth of random Fibonacci sequences:

• Linear case: Fix F1 > 0 and F2 > 0. For p = 0, the sequence (|Fn|) is periodic with
period k. For any p ∈]0, 1],

1

n
log |Fn| −−−−→

n→∞
γp,λk

=

∫ ∞

0

log xdνk,ρ(x) > 0

almost-surely, where

ρ := k−1
√

1 − pR

and pR is the unique positive solution of
(

1 − px

p + (1 − p)x

)k−1

= 1 − x.

• Non-linear case: For p ∈]1/k, 1] and any choice of F̃1 > 0 and F̃2 > 0,

1

n
log F̃n −−−−→

n→∞
γ̃p,λk

=

∫ ∞

0

log xdνk,ρ(x) > 0

almost-surely, where

ρ := k−1
√

1 − pR

and pR is, for p < 1, the unique positive solution of
(

1 − px

(1 − p) + px

)k−1

= 1 − x.

(For p = 1, pR = 1.)

The behavior of (F̃n) when p ≤ 1/k strongly depends on the choice of the initial values. This

phenomenon was not perceived in [5], in which the initial values were set to F̃1 = F̃2 = 1. However,
we have the general result:

Theorem 1.2. Let λ = λk = 2 cos(π/k), for some integer k ≥ 3. In the non-linear case, for

0 ≤ p ≤ 1/k, there exists almost-surely a bounded subsequence (F̃nj
) of (F̃n) with density (1−kp).

The bounded subsequence in Theorem 1.2 satisfies F̃nj+1
= |λF̃nj

− F̃nj−1
| for any j, which

corresponds to the non-linear case for p = 0. We therefore concentrate on this case in Section 6.2
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Figure 1. The measure νk,ρ on generalized Stern-Brocot intervals of rank 1 and

2 in the case k = 4 (λk =
√

2). The normalizing constant Z is given by 1+ρ+ρ2.

The endpoints of the intervals are specified by their
√

2-continued fraction expan-
sion.

and provide necessary and sufficient conditions for (F̃n) to be ultimately periodic (see Proposi-

tion 6.5). Moreover, we prove that F̃n may decrease exponentially fast to 0, but that the exponent

depends on the ratio F̃0/F̃1.
The critical value 1/k in the non-linear case is to be compared with the results obtained in

the study of E[F̃n] (see [4]): it is proved that E[F̃n] increases exponentially fast as soon as
p > (2 − λk)/4.

When λ ≥ 2, the linear case and the non-linear case are essentially the same. The study of the
exponential growth of the sequence (Fn) is much simpler, and we obtain the following result.

Theorem 1.3. Let λ ≥ 2 and 0 < p ≤ 1. For any choice of F1 > 0 and F2 > 0,

1

n
log |Fn| −−−−→

n→∞
γp,λ =

∫ ∞

0

log xdµp,λ(x) > 0 a.s.,

where µp,λ is an explicit probability measure supported on
[
B, λ + 1

B

]
, with B :=

λ +
√

λ2 − 4

2
(see Section 7 and Figure 3).

Road map. The detailed proof of Theorem 1.1 in the linear case is given in Sections 2-5: Sec-
tion 2 explains the reduction process on which our method relies. In Section 3, we introduce the
generalized Stern-Brocot intervals in connection with the expansion of real numbers in Rosen con-
tinued fractions, which enables us to study the reduced sequence associated to (Fn). In Section 4,
we come back to the original sequence (Fn), and, using a coupling argument, we prove that its
exponential growth is given by the integral formula. Then we prove the positivity of the integral
in Section 5.

The proof for the non-linear case, p > 1/k, works with the same arguments (in fact it is even
easier), and the minor changes are given at the beginning of Section 6. The end of this section is
devoted to the proof of Theorem 1.2.

The proof of Theorem 1.3 (for λ ≥ 2) is given in Section 7.
In Section 8.1, we study the variations of γp,λ and γ̃p,λ with p. Conjectures concerning variations

with λ are given in Section 8.2.
Connections with Embree-Trefethen’s paper [2], who study a slight modification of our linear

random Fibonacci sequences when p = 1/2, are discussed in Section 9.
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2. Reduction: The linear case

The sequence (Fn)n≥1 can be coded by a sequence (Xn)n≥3 of i.i.d. random variables taking
values in the alphabet {R, L} with probability (p, 1 − p). Each R corresponds to choosing the +
sign and each L corresponds to choosing the − sign, so that both can be interpreted as the right
multiplication of (Fn−1, Fn) by one of the following matrices:

(3) L :=

(
0 −1
1 λ

)
and R :=

(
0 1
1 λ

)
.

According to the context, we will interpret any finite sequence of R’s and L’s as the corresponding
product of matrices. Therefore, for all n ≥ 3,

(Fn−1, Fn) = (F1, F2)X3 . . . Xn.

Our method relies on a reduction process of the sequence (Xn) based on some relations satisfied
by the matrices R and L. Recalling the definition of λ = 2 cos(π/k), we can write the matrix L
as the product P−1DP , where

D :=

(
eiπ/k 0

0 e−iπ/k

)
, P :=

(
1 eiπ/k

1 e−iπ/k

)
, and P−1 =

1

2i sin(π/k)

(
−e−iπ/k eiπ/k

1 −1

)
.

As a consequence, we get that for any integer j,

(4) Lj =
1

sin(π/k)

(
− sin (j−1)π

k − sin jπ
k

sin jπ
k sin (j+1)π

k

)
,

and

(5) RLj =
1

sin(π/k)

(
sin jπ

k sin (j+1)π
k

sin (j+1)π
k sin (j+2)π

k

)
.

In particular, for j = k − 1 we get the following relations satisfied by R and L, on which is based
our reduction process:

(6) RLk−1 =

(
1 0
0 −1

)
, RLk−1R = −L and RLk−1L = −R.

Moreover, Lk = − Id.

We deduce from (6) that, in products of R’s and L’s, we can suppress all patterns RLk−1

provided we flip the next letter. This will only affect the sign of the resulting matrix.
To formalize the reduction process, we associate to each finite sequence x = x3 . . . xn ∈

{R, L}n−2 a (generally) shorter word Red(x) = y3 · · · yj by the following induction. If n = 3,
y3 = x3. If n > 3, Red(x3 . . . xn) is deduced from Red(x3 . . . xn−1) in two steps.

Step 1: Add one letter (R or L, see below) to the end of Red(x3 . . . xn−1).
Step 2: If the new word ends with the suffix RLk−1, remove this suffix.
The letter which is added in step 1 depends on what happened when constructing Red(x3 . . . xn−1):

• If Red(x3 . . . xn−1) was simply obtained by appending one letter, we add xn to the end of
Red(x3 . . . xn−1).

• Otherwise, we had removed the suffix RLk−1 when constructing Red(x3 . . . xn−1); we then
add xn to the end of Red(x3 . . . xn−1), where R := L and L := R.

Example: Let x = RLRLLLRLL and k = 4. Then, the reduced sequence is given by Red(x) = R.

Observe that by construction, Red(x) never contains the pattern RLk−1. Let us introduce the
reduced random Fibonacci sequence (F r

n) defined by

(F r
n−1, F

r
n) := (F1, F2)Red(X3 . . . Xn).

Note that we have Fn = ±F r
n for all n. From now on, we will therefore concentrate our study

on the reduced sequence Red(X3 . . . Xn). We will denote its length by j(n) and its last letter by
Y (n).

The proof of Lemma 2.1 in [5] can be directly adapted to prove the following lemma.
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Lemma 2.1. We denote by |W |R the number of R’s in the word W . We have

(7) |Red(X3 . . .Xn)|R −−−−→
n→∞

+∞ a.s.

In particular, the length j(n) of Red(X3 . . .Xn) satisfies

j(n) −−−−→
n→∞

+∞. a.s.

2.1. Survival probability of an R. We say that the last letter of Red(X3 . . . Xn) survives if,
for all m ≥ n, j(m) ≥ j(n). In other words, this letter survives if it is never removed during
the subsequent steps of the reduction. By construction, the survival of the last letter Y (n) of
Red(X3 . . . Xn) only depends on its own value and the future Xn+1, Xn+2 . . .. Let

pR := P(Y (n) survives
∣∣∣Y (n) = R has been appended at time n

)
.

A consequence of Lemma 2.1 is that pR > 0. We now want to express pR as a function of p.
Observe that Y (n) = R survives if and only if, after the subsequent steps of the reduction, it

is followed by LjR where 0 ≤ j ≤ k − 2, and the latter R survives. Recall that the probability of
appending an R after a deletion of the pattern RLk−1 is 1 − p, whereas it is equal to p if it does
not follow a deletion. Assume that Y (n) = R has been appended at time n. We want to compute
the probability for this R to survive and to be followed by LjR (0 ≤ j ≤ k−2) after the reduction.
This happens with probability

pj := PR be followed by
(

ℓ≥0
deletions︷ ︸︸ ︷
[R . . .]L

)
. . .

(
[R . . .] L

)

︸ ︷︷ ︸
j times

[R . . .]

survives︷︸︸︷
R




=


(1 − p) + p

∑

ℓ≥1

(1 − pR)ℓ(1 − p)ℓ−1p




j

p
∑

ℓ≥0

(1 − pR)ℓ(1 − p)ℓpR

=

(
1 − ppR

p + (1 − p)pR

)j
ppR

p + (1 − p)pR
.

Writing pR =
∑k−2

j=0 pj , we get that pR is a solution of the equation

(8) g(x) = 0, where g(x) := 1 − px

p + (1 − p)x
− (1 − x)1/(k−1).

Observe that g(0) = 0, and that g is strictly convex. Therefore there exists at most one x > 0
satisfying g(x) = 0, and it follows that pR is the unique positive solution of (8).

2.2. Distribution law of surviving letters. A consequence of Lemma 2.1 is that the sequence
of surviving letters

(Sj)j≥3 = lim
n→∞

Red(X3 . . . Xn)

is well defined and can be written as the concatenation of a certain number s ≥ 0 of starting L’s,
followed by infinitely many blocks:

S1S2 . . . = LsB1B2 . . .

where s ≥ 0 and, for all ℓ ≥ 1, Bℓ ∈ {R, RL, . . . , RLk−2}. This block decomposition will play a
central role in our analysis.

We deduce from Section 2.1 the probability distribution of this sequence of blocks:

Lemma 2.2. The blocks (Bℓ)ℓ≥1 are i.i.d. with common distribution law Pρ defined as follows

(9) Pρ(B1 = RLj) :=
ρj

∑k−2
m=0 ρm

, 0 ≤ j ≤ k − 2,

where ρ := 1 − ppR

p + (1 − p)pR
and pR is the unique positive solution of (8).
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In [5], where the case k = 3 was studied, we used the parameter α = 1/(1 + ρ) instead of ρ.

Observe that ρ =
(
(1 − p) + p

∑
ℓ≥1(1 − pR)ℓ(1 − p)ℓ−1p

)
can be interpreted as the probability

that the sequence of surviving letters starts with an L. Since an R does not survive if it is followed
by k− 1 L’s, this explains why the probability 1− pR that an R does not survive is equal to ρk−1.

Proof. Observe that the event En :=“Y (n) = R has been appended at time n and survives” is the
intersection of the two events “Y (n) = R has been appended at time n”, which is measurable with
respect to σ(Xi, i ≤ n), and “If Y (n) = R has been appended at time n, then this R survives”,
which is measurable with respect to σ(Xi, i > n). It follows that, conditioned on En, σ(Xi, i ≤ n)
and σ(Xi, i > n) remain independent. Thus the blocks in the sequence of surviving letters appear
independently, and their distribution is given byPρ(B1 = RLj) =

pj

pR
=

ρj

∑k−2
m=0 ρm

, 0 ≤ j ≤ k − 2.

�

3. Rosen continued fractions and generalized Stern-Brocot intervals

3.1. The quotient Markov chain. For ℓ ≥ 1, let us denote by nℓ the time when the ℓ-th
surviving R is appended, and set

Qℓ :=
F r

nℓ+1−1

F r
nℓ+1−2

, ℓ ≥ 0.

Qℓ is the quotient of the last two terms once the ℓ-th definitive block of the reduced sequence has
been written. Observe that the right-product action of blocks B ∈ {R, RL, . . . , RLk−2} acts on
the quotient F r

n/F r
n−1 in the following way: For 0 ≤ j ≤ k − 2, for any (a, b) ∈ R∗ ×R, if we set

(a′, b′) := (a, b)RLj, then
b′

a′ = f j ◦ f0

(
b

a

)
,

where f0(q) := λ + 1/q and f(q) := λ − 1/q. For short, we will denote by fj the function f j ◦ f0.
Observe that fj is an homographic function associated to the matrix RLj in the following way:

To the matrix

(
α β
γ δ

)
corresponds the homographic function q 7→ β+δq

α+γq .

It follows from Lemma 2.2 that (Qℓ)ℓ≥1 is a real-valued Markov chain with probability transi-
tions P (Qℓ+1 = fj(q)|Qℓ = q) =

ρj

∑k−2
m=0 ρm

, 0 ≤ j ≤ k − 2.

3.2. Generalized Stern-Brocot intervals and the measure νk,ρ. Let us define subintervals
of R: for 0 ≤ j ≤ k − 2, set Ij := fj([0, +∞]). These intervals are of the form

Ij = [bj+1, bj], where b0 = +∞, b1 = λ = f0(+∞) = f1(0), bj+1 = f(bj) = fj(+∞) = fj+1(0).

Observe that bk−1 = fk−1(0) = 0 since RLk−1 =

(
1 0
0 −1

)
. Therefore, (Ij)0≤j≤k−2 is a subdivi-

sion of [0, +∞].
More generally, we set

Ij1,j2,...,jℓ
:= fj1 ◦ fj2 ◦ · · · ◦ fjℓ

([0, +∞]), ∀(j1, j2, . . . , jℓ) ∈ {0, . . . , k − 2}ℓ.

For any ℓ ≥ 1, this gives a subdivision I (ℓ) of [0, +∞] since

Ij1,j2,...,jℓ−1
=

k−2⋃

jℓ=0

Ij1,j2,...,jℓ
.

When k = 3 (λ = 1), this procedure provides subdivisions of [0, +∞] into Stern-Brocot intervals.

Lemma 3.1. The σ-algebra generated by I (ℓ) increases to the Borel σ-algebra on R+.
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We postpone the proof of this lemma to the next section.

Observe that for any q ∈ R+, P(Qℓ ∈ Ij1,j2,...,jℓ
|Q0 = q) = ρj1+···+jℓ

(
∑k−2

0
ρm)ℓ

. Therefore, the proba-

bility measure νk,ρ on R+ defined by

νk,ρ(Ij1,j2,...,jℓ
) :=

ρj1+···+jℓ

(
∑k−2

0 ρm)ℓ

is invariant for the Markov chain (Qℓ). The fact that νk,ρ is the unique invariant probability for
this Markov chain comes from the following lemma.

Lemma 3.2. There exists almost surely L+ ≥ 0 such that for all ℓ ≥ L+, Qℓ > 0.

Proof. For any q ∈ R \ {0}, either f0(q) > 0, or f1(q) = λ − 1/f0(q) > 0. Hence, for any ℓ ≥ 0,P(Qℓ+1 > 0|Qℓ = q) ≥ ρ
∑k−2

0 ρm
.

It follows that P(∀ℓ ≥ 0, Qℓ < 0) = 0, and since Qℓ > 0 =⇒ Qℓ+1 > 0, the lemma is proved. �

To a given finite sequence of blocks (RLjℓ), . . . , (RLj1), we associate the generalized Stern-
Brocot interval Ij1,j2,...,jℓ

. If we extend the sequence of blocks leftwards, we get smaller and
smaller intervals. Adding infinitely many blocks, we get in the limit a single point corresponding
to the intersection of the intervals, which follows the law νk,ρ.

3.3. Link with Rosen continued fractions. Recall (see [9]) that, since 1 ≤ λ < 2, any real
number q can be written as

q = a0λ +
1

a1λ +
1

.. . +
1

anλ+...
where (an)n≥0 is a finite or infinite sequence, with an ∈ Z \ {0} for n ≥ 1. This expression will
be denoted by [a0, . . . , an, . . .]λ. It is called a λ-Rosen continued fraction expansion of q, and is
not unique in general. When λ = 1 (i.e. for k = 3), we recover generalized continued fraction
expansion in which partial quotients are positive or negative integers.

Observe that the function fj are easily expressed in terms of Rosen continued fraction expansion.
The Rosen continued fraction expansion of fj(q) is the concatenation of (j+1) alternated ±1 with
the expansion of ±q according to the parity of j:

(10) fj([a0, . . . , an, . . .]λ) =





[1,−1, 1, . . . , 1︸ ︷︷ ︸
(j+1) terms

, a0, . . . , an, . . .]λ if j is even

[1,−1, 1, . . . ,−1︸ ︷︷ ︸
(j+1) terms

,−a0, . . . ,−an, . . .]λ if j is odd.

For any ℓ ≥ 1, let E (ℓ) be the set of endpoints of the subdivision I (ℓ). The finite elements of
E (1) can be written as

bj = fj(0) = [1,−1, 1, . . . ,±1︸ ︷︷ ︸
j terms

]λ ∀ 1 ≤ j ≤ k − 1.

In particular for j = k − 1 we get a finite expansion of bk−1 = 0. Moreover, by (10),

b0 = f0(0) = ∞ = [1, 1,−1, 1, . . . ,±1︸ ︷︷ ︸
k−1 terms

]λ.

Iterating (10), we see that for all ℓ ≥ 1, the elements of E (ℓ) can be written as a finite λ-Rosen
continued fraction with coefficients in {−1, 1}.
Proposition 3.3. The set

⋃
ℓ≥1 Eℓ of all endpoints of generalized Stern-Brocot intervals is the set

of all nonnegative real numbers admitting a finite λ-Rosen continued fraction expansion.
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The proof uses the two following lemmas

Lemma 3.4.

fj(x) =
1

fk−2−j(1/x)
, ∀ 0 ≤ j ≤ k − 2.

Proof. From (5), we get

RLk−2 =

(
λ 1
1 0

)
, hence fk−2(x) =

1

λ + x
.

Therefore, fk−2(1/x) = 1/f0(x) and the statement is true for j = 0. Assume now that the result
is true for j ≥ 0. We have

fj+1(x) = λ − 1

fj(x)
= λ − fk−2−j

(
1

x

)
= λ − f ◦ fk−3−j

(
1

x

)
=

1

fk−3−j

(
1
x

) ,

so the result is proved by induction. �

Lemma 3.5. For any ℓ ≥ 1, the set E (ℓ) of endpoints of the subdivision I (ℓ) is invariant by
x 7→ 1/x. Moreover, the largest finite element of E (ℓ) is ℓλ and the smallest positive one is 1/ℓλ.

Proof. Recall that the elements of E (1) are of the form bj = fj−1(∞) = fj(0), and the largest
finite endpoint is b1 = λ. Hence, the result for ℓ = 1 is a direct consequence of Lemma 3.4.

Assume now that the result is true for ℓ ≥ 1. Consider b ∈ E (ℓ + 1) \ E (ℓ). There exists
0 ≤ j ≤ k−2 and b′ ∈ E (ℓ) such that b = fj(b

′). Since 1/b′ is also in E (ℓ), we see from Lemma 3.4
that 1/b = fk−2−j(1/b′) ∈ E (ℓ + 1). Hence E (ℓ + 1) is invariant by x 7→ 1/x. Now, since f0 is
decreasing, the largest finite endpoint of E (ℓ + 1) is f0(1/ℓλ) = (ℓ +1)λ, and the smallest positive
endpoint of I (ℓ + 1) is 1/(ℓ + 1)λ. �

Proof of Proposition 3.3. The set of nonnegative real numbers admitting a finite λ-Rosen contin-
ued fraction expansion is the smallest subset of R+ containing 0 which is invariant under x 7→ 1/x
and x 7→ x + λ. By Lemma 3.5, the set

⋃
ℓ≥1 Eℓ is invariant under x 7→ 1/x. Moreover, it is also

invariant by x 7→ fk−2(x) = 1/(x + λ), and contains bk−1 = 0. �

Remark 3.6. The preceding proposition generalizes the well-known fact that the endpoints of
Stern-Brocot intervals are the rational numbers, that is real numbers admitting a finite continued
fraction expansion.

Proof of Lemma 3.1. This is a direct consequence of Proposition 3.3 and the fact that the set of
numbers admitting a finite λ-Rosen continued fraction expansion is dense in R for any λ < 2 (see
[9]). �

4. Coupling with a two-sided stationary process

If |Fn+1/Fn| was a stationary sequence with distribution νk,ρ, then a direct application of the
ergodic theorem would give the convergence stated in Theorem 1.1. The purpose of this section
is to prove via a coupling argument that everything goes as if it was the case. For this, we embed
the sequence (Xn)n≥3 in a doubly-infinite i.i.d. sequence (X∗

n)n∈Z with Xn = X∗
n for all n ≥ 3.

We define the reduction of (X∗)−∞<j≤n, which gives a left-infinite sequence of i.i.d. blocks, and
denote by q∗n the corresponding limit point, which follows the law νk,ρ. We will see that for n large
enough, the last ℓ blocks of Red(X3 . . .Xn) and Red((X∗)−∞<j≤n) are the same. Therefore, the
quotient qn := F r

n/F r
n−1 is well-approximated by q∗n, and an application of the ergodic theorem to

q∗n will give the announced result.

4.1. Reduction of a left-infinite sequence. We will define the reduction of a left-infinite i.i.d.
sequence (X∗)0−∞ by considering the successive reduced sequence Red(X∗

−n . . . X∗
0 ).

Proposition 4.1. For all ℓ ≥ 1, there exists almost surely N(ℓ) such that the last ℓ blocks of
Red(X∗

−n . . . X∗
0 ) are the same for any n ≥ N(ℓ).
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This allows us to define almost surely the reduction of a left-infinite i.i.d. sequence (X∗)0−∞ as
the left-infinite sequence of blocks obtained in the limit of Red(X∗

−n . . . X∗
0 ) as n → ∞.

Let us call excursion any finite sequence w1 . . . wm of R’s and L’s such that Red(w1 . . . wm) = ∅.
We say that a sequence is proper if its reduction process does not end with a deletion. This means
that the next letter is not flipped during the reduction.

The proof of the proposition will be derived from the following lemmas.

Lemma 4.2. If there exists n > 0 such that X∗
−n . . . X∗

−1 is not proper, then X∗
0 is preceded by a

unique excursion.

Proof. We first prove that an excursion can never be a suffix of a strictly larger excursion. Let
W = W1RW ′ be an excursion, with RW ′ another excursion. Then WL = W1RW ′L = ±R and

RW ′L = ±R, which implies that W1 = ± Id. It follows that Red(W1) =

(
±1 0
0 ±1

)
. Observe

that Red(W1) cannot start with L’s since Red(W1RW ′) = ∅. Therefore, it is a concatenation of
s blocks, corresponding to some function fj1 ◦ · · · fjs

which cannot be x 7→ ±x unless s = 0. But
s = 0 means that Red(W1) = ∅, so Red(W ) = Red(LW ′) = ∅, which is impossible.

Observe first that, if X∗
0 is not flipped during the reduction of X∗

−(n−1) . . . X∗
0 but is flipped

during the reduction of X∗
−n . . . X∗

0 , then X∗
−n is an R which is removed during the reduction

process of X∗
−n . . .X∗

0 . In particular, this is true if we choose n to be the smallest integer such
that X∗

0 is flipped during the reduction of X∗
−n . . . X∗

0 . Therefore there exists 0 ≤ j < n such
that X∗

−n . . .X∗
−(j+1) is an excursion. If j = 0 we are done; otherwise the same observation proves

that X∗
−j is an L which is flipped during the reduction process of X∗

−n . . . X∗
−j. Therefore, X∗

0 is
flipped during the reduction of RX∗

−(j−1) . . . X∗
0 , but not during the reduction of X∗

−ℓ . . .X∗
0 for any

ℓ ≤ j−1. Iterating the same argument finitely many times proves that Red(X∗
−n . . . X∗

−1) = ∅. �

Lemma 4.3. ∑

w excursions

P(w) < 1.

Proof. X0 is an R which does not survive during the reduction process if and only if it is the
beginning of an excursion. By considering the longest such excursion, we get

p(1 − pR) =
∑

w excursions

P(w)
[
(1 − p)pR + p

]
.

Hence,

(11)
∑

w excursions

P(w) =
p(1 − pR)

(1 − p)pR + p
< 1.

�

We deduce from the two preceding lemmas:

Corollary 4.4. There is a positive probability that for all n > 0 the sequence X∗
−n . . . X∗

−1 be
proper.

Proof of Proposition 4.1. We deduce from Corollary 4.4 that with probability 1 there exist infin-
itely many j’s such that

• X∗
−j is an R which survives in the reduction of X∗

−j . . . X∗
0 ;

• X∗
−n . . . X∗

−j−1 is proper for all n ≥ j.

For such j, the contribution of X∗
−j . . . X∗

0 to Red(X∗
−n . . . X∗

0 ) is the same for any n ≥ j. �

The same argument allows us to define almost surely Red((X∗)n
−∞) for all n ∈ Z, which is

a left-infinite sequence of blocks. Observe that we can associate to each letter of this sequence
of blocks the time t ≤ n at which it was appended. We number the blocks by defining Bn

0 as
the rightmost block whose initial R was appended at some time t < 0. For n > 0, we have
Red((X∗)n

−∞) = . . . Bn
−1B

n
0 Bn

1 . . . Bn
L(n) where 0 ≤ L(n) ≤ n. The random number L(n) evolves

in the same way as the number of R′s in Red(X3 . . . Xn). By Lemma 2.1, L(n) → +∞ as n → ∞
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almost surely. As a consequence, for any j ∈ Z the block Bn
j is well-defined and constant for

all large enough n. We denote by Bj the limit of Bn
j . The concatenation of these blocks can be

viewed as the reduction of the whole sequence (X∗)+∞
−∞. The same arguments as those given in

Section 2 prove that the blocks Bj are i.i.d. with common distribution law Pρ.
It is remarkable that the same result holds if we consider only the blocks in the reduction of

(X∗)0−∞.

Proposition 4.5. The sequence Red((X∗)0−∞) is a left-infinite concatenation of i.i.d. blocks with
common distribution law Pρ.

Proof. Observe that Red((X∗)0−∞) = Red((X∗)L
−∞) where L ≤ 0 is the (random) index of the

last letter not removed in the reduction process of (X∗)0−∞. For any ℓ ≤ 0, we have L = ℓ if and

only if (X∗)ℓ
−∞ is proper and (X∗)0ℓ+1 is an excursion. For any bounded measurable function f ,

since E[f(Red((X∗)ℓ
−∞))

∣∣ (X∗)ℓ
−∞ is proper

]
does not depend on ℓ, we haveE[f(Red((X∗)0−∞)

]

=
∑

ℓ

P(L = ℓ) E[f(Red((X∗)ℓ
−∞))

∣∣ L = ℓ
]

=
∑

ℓ

P(L = ℓ) E[f(Red((X∗)ℓ
−∞))

∣∣ (X∗)ℓ
−∞ is proper, (X∗)0ℓ+1 is an excursion

]

=
∑

ℓ

P(L = ℓ) E[f(Red((X∗)ℓ
−∞))

∣∣ (X∗)ℓ
−∞ is proper

]

= E[f(Red((X∗)0−∞))
∣∣ (X∗)0−∞ is proper

]
.

This also implies that the law of Red((X∗)0−∞) is neither changed when conditioned on the fact

that (X∗)0−∞ is not proper.
Assume that (X∗)0−∞ is proper. The fact that the blocks of Red((X∗)0−∞) will not be sub-

sequently modified in the reduction process of (X∗)∞−∞ only depends on (X∗)∞1 . Therefore,E[f(Red((X∗)0−∞))
∣∣ (X∗)0−∞ is proper

]
is equal toE[f(Red((X∗)0−∞))

∣∣ (X∗)0−∞ is proper and blocks of Red((X∗)0−∞) are definitive
]
.

The same equality holds if we replace “proper” with “not proper”. Hence, the law of Red((X∗)0−∞)
is the same as the law of Red((X∗)0−∞) conditioned on the fact that blocks of Red((X∗)0−∞) are
definitive. But we know that definitive blocks are i.i.d. with common distribution law Pρ. �

4.2. Quotient associated to a left-infinite sequence. Let n be a fixed integer. For m ≥ 0, we
decompose Red((X∗)n−m<i≤n) into blocks Bℓ, . . . , B1 = (RLjℓ), . . . , (RLj1), to which we associate
the generalized Stern-Brocot interval Ij1,j2,...,jℓ

. If we let m go to infinity, the preceding section
shows that this sequence of intervals converges almost surely to a point q∗n. By Proposition 4.5,
q∗n follows the law νk,ρ.

Since (q∗n) is an ergodic stationary process, and log(·) is in L1(νk,ρ), the ergodic theorem implies

(12)
1

N

N∑

n=1

log q∗n −−−−→
N→∞

∫R+

log q dνk,ρ(q) almost surely.

The last step in the proof of the main theorem is to compare the quotient qn = F r
n/F r

n−1 with q∗n.

Proposition 4.6.

1

N

N∑

n=3

∣∣log q∗n − log |qn|
∣∣ −−−−→

N→∞
0 almost surely.

We call extremal the leftmost and rightmost intervals of I (ℓ).

Lemma 4.7.

sℓ := sup
I∈I (ℓ)

Inot extremal

sup
q,q∗∈I

| log q∗ − log q| −−−→
ℓ→∞

0
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Proof. Fix ε > 0, and choose an integer M > 1/ε. By Lemma 3.1, since log(·) is uniformly
continuous on [1/Mλ, Mλ], we have for ℓ large enough

sup
I∈I (ℓ)

I⊂[1/Mλ,Mλ]

sup
q,q∗∈I

| log q∗ − log q| ≤ ε.

If I ∈ I (ℓ) is a non-extremal interval included in [0, 1/Mλ] or in [Mλ, +∞], there exists an integer
j ∈ [M, ℓ] such that I ⊂ [1/(j + 1)λ, 1/jλ] or I ⊂ [(j + 1)λ, jλ]. Hence,

sup
q,q∗∈I

| log q∗ − log q| ≤ log

(
j + 1

j

)
≤ log

(
1 +

1

M

)
≤ ε.

�

Proof of Proposition 4.6. For any j ∈ Z, we define the following event Ej :

• X∗
j is an R which survives in the reduction of (X∗

i )i≥j ;
• X∗

i . . . X∗
j−1 is proper for all i < j.

Observe that if Ej holds for some j ≥ 3, then for all n ≥ j,

Red(X3 . . .Xn) = Red(X3 . . .Xj−1) Red(Xj . . . Xn)

and Red((X∗)n
−∞) = Red((X∗)j−1

−∞) Red(X∗
j . . .X∗

n).

Hence, since Xj . . .Xn = X∗
j . . . X∗

n, they give rise in both reductions to the same blocks, the first
one being definitive. Since each Ej holds with the same positive probability, the ergodic theorem
yields

(13)
1

n

n∑

j=3

1Ej
−−−−→
n→∞

P(E3) > 0 almost surely,

hence the number of definitive blocks of Red(X3 . . . Xn) and of Red((X∗)n
−∞) which coincide grows

almost surely linearly with n as n goes to ∞ (these definitive blocks may be followed by some
additional blocks which also coincide).

Recall the definition of L+ given in Lemma 3.2 and observe that for n ≥ nL+
, qn > 0. Observe

also that, by definition of Ij1,j2,...,jℓ
, if q and q∗ are two positive real numbers, fj1 ◦ fj2 ◦ · · · ◦ fjℓ

(q)
and fj1 ◦ fj2 ◦ · · · ◦ fjℓ

(q∗) belong to the same interval of I (ℓ).
From (13), we deduce that, almost surely, for n large enough, at least L+ +

√
n definitive blocks

of Red(X3 . . . Xn) and of Red((X∗)n
−∞) coincide (possibly followed by some additional blocks

which also coincide). This ensures that qn and q∗n belong to the same interval of the subdivision
I (

√
n).

By Lemma 4.7, it remains to check that, almost surely, there exist only finitely many n’s such
that q∗n belongs to an extremal interval of the subdivision I (

√
n). But this is a direct application

of Borel-Cantelli Lemma, observing that the measure νk,ρ of an extremal interval of I (ℓ) decreases
exponentially fast with ℓ. �

We now conclude the section by the proof of the convergence to the integral given in Theo-
rem 1.1, linear case: Since Fn = ±F r

n , we can write n−1 log |Fn| as

1

n
log |F2| +

1

n

n∑

j=3

log q∗j +
1

n

n∑

j=3

(
log |qj | − log q∗j

)
,

and the convergence follows using Proposition 4.6 and (12).

5. Positivity of the integral

We now turn to the proof of the positivity of γp,λk
. It relies on the following lemma, whose

proof is postponed.

Lemma 5.1. Fix 0 < ρ < 1. For any t > 0,

(14) ∆t := νk,ρ ([t,∞)) − νk,ρ ([0, 1/t]) ≥ 0.

Moreover, there exists t > 1 such that the above inequality is strict.
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Using Fubini’s theorem, we obtain that γp,λk
is equal to

∫ ∞

0

log xdνk,ρ(x) =

∫ ∞

1

log xdνk,ρ(x) −
∫ 1

0

log(1/x) dνk,ρ(x)

=

∫ ∞

0

νk,ρ([e
u,∞))du −

∫ ∞

0

νk,ρ([0, e−u])du

which is positive if 0 < ρ < 1 by Lemma 5.1. Thus, γp,λk
> 0 for any p > 0. This ends the proof

of Theorem 1.1, linear case.

Proof of Lemma 5.1. By Lemma 3.1, it is enough to prove the lemma when t is the endpoint of
an interval of the subdivision I (ℓ). This is done by induction on ℓ. Obviously, ∆0 = ∆∞ = 0.
When ℓ = 1 and ℓ = 2, if t 6= 0,∞, it can be written as fj(bi) for 0 ≤ j ≤ k − 2 and 0 ≤ i ≤ k− 2,

and we get 1/t = fk−2−j(bk−1−i) (see Lemma 3.4). Setting Z :=
∑k−2

s=0 ρs, we have

νk,ρ ([t,∞)) =

j−1∑

s=0

νk,ρ ([bs+1, bs)) + νk,ρ ([t, bj)) =

j−1∑

s=0

ρs

Z
+

ρj

Z
νk,ρ ([0, bi]) =

j−1∑

s=0

ρs

Z
+

ρj

Z

k−2∑

s=i

ρs

Z
.

Therefore,

νk,ρ ([t,∞)) − νk,ρ ([0, 1/t])

=

j−1∑

s=0

ρs

Z
+

ρj

Z

k−2∑

s=i

ρs

Z
−




k−2∑

s=k−1−j

ρs

Z
+

ρk−2−j

Z

k−2−i∑

s=0

ρs

Z




=

j−1∑

s=0

ρs

Z

(
1 − ρk−1−j

)
+

1

Z

(
ρi+j − ρk−2−j

) k−2−i∑

s=0

ρs

Z
.

Since i ≤ k − 2, we have ρi+j − ρk−2−j ≥ ρk−2−j(ρ2j − 1). Moreover,
∑k−2−i

s=0
ρs

Z ≤ 1. Thus,

Z∆t ≥
j−1∑

s=0

ρs
(
1 − ρk−1−j

)
− ρk−2−j(1 − ρ2j).

Observe that (1−ρk−1−j) = (1−ρ)
∑k−2−j

s=0 ρs and that 1−ρ2j = (1+ρj)(1−ρ)
∑j−1

s=0 ρs. Hence,

Z∆t ≥ (1 − ρ)

j−1∑

s=0

ρs

(
k−2−j∑

s=0

ρs − ρk−2−j(1 + ρj)

)
,

which is positive as soon as j < k − 2. The quantity ∆t is invariant when t is replaced by 1/t, so
we also get the desired result for j = k − 2.

Assume (14) is true for any endpoint of intervals of the subdivision I (j), j ≤ ℓ − 1. Let t
be an endpoint of an interval of I (ℓ); then there exists an interval [t1, t2] of I (ℓ − 2) such that
t ∈ [t1, t2]. We can write

νk,ρ ([t,∞)) = νk,ρ ([t2,∞)) + νk,ρ ([t1, t2]) νk,ρ ([u,∞))

and νk,ρ ([0, 1/t]) = νk,ρ ([0, 1/t2]) + νk,ρ ([1/t2, 1/t1]) νk,ρ ([0, 1/u])

for some endpoint u of an interval of I (2). If νk,ρ ([t1, t2]) ≥ νk,ρ ([1/t2, 1/t1]), we get the result
since (14) holds for u, and t2. Otherwise, we can write ∆t as

∆t1 − νk,ρ ([t1, t2]) + νk,ρ ([1/t2, 1/t1]) + νk,ρ ([t1, t2]) νk,ρ ([u,∞))− νk,ρ ([1/t2, 1/t1]) νk,ρ ([0, 1/u])

which is greater than

∆t1 + νk,ρ ([t1, t2]) ∆u ≥ 0.

�
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Remark 5.2. We can also define the probability measure νk,ρ for ρ = 1. (When k = 3, this
is related to Minkowski’s Question Mark Function, see [1].) It is straightforward to check that
νk,1 ([t,∞)) − νk,1 ([0, 1/t]) = 0 for all t > 0, which yields

∫ ∞

0

log xdνk,1(x) = 0.

6. Reduction: The non-linear case

In the non-linear case, where F̃n+2 = |λF̃n+1 ± F̃n|, the sequence (F̃n)n≥1 can also be coded
by the sequence (Xn)n≥3 of i.i.d. random variables taking values in the alphabet {R, L} with
probability (p, 1 − p). Each R corresponds to choosing the + sign and can be interpreted as the

right multiplication of (F̃n−1, F̃n) by the matrix R defined in (3). Each L corresponds to choosing
the − sign but the interpretation in terms of matrices is slighty different, since we have to take into

account the absolute value: Xn+1 = L corresponds either to the right multiplication of (F̃n−1, F̃n)

by L if (F̃n−1, F̃n)L has nonnegative entries, or to the multiplication by

(15) L′ :=

(
0 1
1 −λ

)
.

Observe that for all 0 ≤ j ≤ k − 2, the matrix RLj has nonnegative entries (see (5)), whereas

RLk−1 =

(
1 0
0 −1

)
. Therefore, if Xi = R is followed by some L’s, we interpret the first (k − 2)

L’s as the right multiplication by the matrix L, whereas the (k − 1)-th L corresponds to the
multiplication by L′. Moreover, RLk−2L′ = Id, so we can remove all patterns RLk−1 in the
process (Xn).

We thus associate to x3 . . . xn the word R̃ed(x3 . . . xn), which is obtained by the same reduction
as Red(x3 . . . xn), except that the letter added in Step 1 is always xi. We have

(F̃n−1, F̃n) = (F̃1, F̃2)R̃ed(x3 . . . xn).

Since the reduction process is even easier in the non-linear case, we will not give all the details
but only insist on the differences with the linear case. The first difference is that the survival
probability of an R is positive only if p > 1/k.

Lemma 6.1. For p > 1/k, the number of R’s in R̃ed(X3 . . . Xn) satisfies

|R̃ed(X3 . . .Xn)|R −−−−→
n→∞

+∞ a.s.

and the survival probability pR is for p < 1 the unique solution in ]0, 1] of

(16) g̃(x) = 0, where g̃(x) := (1 − x)

(
1 +

p

1 − p
x

)k−1

− 1 .

If p ≤ 1/k, pR = 0.

Proof. Since each deletion of an R goes with the deletion of (k − 1) L’s, if p > 1/k, the law of
large numbers ensures that the number of remaining R’s goes to infinity. If p < 1/k, there only
remains L’s, so pR = 0.

Doing the same computations as in Section 2.1, we obtain that, for all 0 ≤ j ≤ k − 2, the
probability pj for an R to be followed by LjR after the subsequent steps of the reduction is

pj =
(1 − p)jppR

(1 − p + ppR)j+1
.

Since pR =
∑k−2

j=0 pj, we get that pR is solution of g̃(x) = 0. Observe that g̃(0) = 0, g̃(1) = −1,

g̃′(0) > 0 for p > 1/k and g̃′ vanishes at most once on R+. Hence, for p > 1/k, pR is the unique
solution of g̃(x) = 0 in ]0, 1]. For p = 1/k, g̃′(0) = 0 and the unique nonnegative solution is
pR = 0. �
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6.1. Case p > 1/k. As in the linear case, the sequence of surviving letters

(Sj)j≥3 = lim
n→∞

R̃ed(X3 . . . Xn)

is well defined for p > 1/k, and can be written as the concatenation of a certain number s ≥ 0 of
starting L’s and of blocks:

S1S2 . . . = LsB1B2 . . .

where for all ℓ ≥ 1, Bℓ ∈ {R, RL, . . . , RLk−2}. These blocks appear with the same distributionPρ as in the linear case, but with a different parameter ρ.

Lemma 6.2. In the non-linear case, for p > 1/k, the blocks (Bℓ)ℓ≥1 are i.i.d. with common
distribution law Pρ defined by (9), where ρ := k−1

√
1 − pR and pR is given by Lemma 6.1.

As in Section 4.1, we can embed the sequence (Xn)n≥3 in a doubly-infinite i.i.d. sequence
(X∗

n)n∈Z with Xn = X∗
n for all n ≥ 3. We define the reduction of (X∗)−∞<j≤n by considering the

successive R̃ed(Xn−N . . .Xn). The analog of Proposition 4.1 is easier to prove than in the linear
case since the deletion of a pattern RLk−1 does not affect the next letter. The end of the proof is
similar.

6.2. Case p ≤ 1/k. Since in this case the survival probability of an R is pR = 0, the reduced

sequence R̃ed(X∞
0 ) contains only L’s. We consider the subsequence (F̃nj

) where nj is the time
when the j-th L is appended to the reduced sequence. This subsequence satisfies, for any j,

F̃nj+1
= |λF̃nj

− F̃nj−1
|, which corresponds to the non-linear case for p = 0.

Therefore, we first concentrate on the deterministic sequence F̃n+1 = |λF̃n − F̃n−1|, with given

nonnegative initial values F̃0 and F̃1.

Proposition 6.3. For any choice of F̃0 ≥ 0 and F̃1 ≥ 0, the sequence defined inductively by

F̃n+1 = |λF̃n − F̃n−1| is bounded.

Lemma 8.5 in the next section gives a proof of this proposition for the specific case λ = 2 cosπ/k.
We give here another proof based on a geometrical interpretation, which can be applied for any
0 < λ < 2.

The key argument relies on the following observation: Let θ be such that λ = 2 cos θ. Fix two
points P0, P1 on a circle centered at the origin O, such that the oriented angle (OP0, OP1) equals
θ. Let P2 be the image of P1 by the rotation of angle θ and center O. Then the respective abscissae
x0, x1 and x2 of P0, P1 and P2 satisfy x2 = λx1 − x0. We can then geometrically interpret the

sequence (F̃n) as the successive abscissae of points in the plane.

Lemma 6.4 (Existence of the circle). Let θ ∈]0, π[. For any choice of (x, x′) ∈ R2
+ \ {(0, 0)}, their

exist a unique R > 0 and two points M and M ′, with respective abscissae x and x′, lying on the
circle with radius R centered at the origin, such that the oriented angle (OM, OM ′) equals θ.

Proof. Assume that x > 0. We have to show the existence of a unique R and a unique t ∈
] − π/2, π/2[ (which represents the argument of M) such that

R cos t = x and R cos(t + θ) = x′.

This is equivalent to

R cos t = x and cos θ − tan t sin θ =
x′

x
,

which obviously has a unique solution since sin θ 6= 0.
If x = 0, the unique solution is clearly R = x′/ cos(θ − π/2) and t = −π/2.
Remark: Since x1 > 0, we have t + θ < π/2. �

Proof of Proposition 6.3. At step n, we interpret F̃n+1 in the following way: Applying the lemma

with x = F̃n−1 and x′ = F̃n, we find a circle of radius Rn > 0 centered at the origin and two
points M and M ′ on this circle with abscissae x and x′. Consider the image of M ′ by the rotation

of angle θ and center O. If its abscissa is nonnegative, it is equal to F̃n+1, and we will have
Rn+1 = Rn. Otherwise, we have to apply also the symmetry with respect to the origin to get a
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π/k

π/k π/k

π/k

F̃nF̃n+2 F̃n+1 F̃n−1

O

Figure 2. Rn = Rn+1 is the radius of the largest circle, and Rn+2 is the radius
of the smallest.

point with abscissa F̃n+1. The circle at step n + 1 may then have a different radius, but we now
show that the radius always decreases (see Figure 2).

Indeed, denoting by α the argument of M ′, we have in the latter case π/2 − θ < α ≤ π/2,

F̃n = Rn cosα and F̃n+1 = Rn cos(α + θ + π) > 0. At step n + 1, we apply the lemma with

x = Rn cosα and x′ = Rn cos(α+θ+π). From the proof of the lemma, if F̃n = 0 (i.e. if α = π/2),

Rn+1 = Rn cos(α + θ + π)/ cos(θ − π/2) = Rn. If F̃n > 0, we have Rn+1 = Rn cosα/ cos t, where
t is given by

cos θ − tan t sin θ =
cos(α + θ + π)

cosα
= −(cos θ − tan α sin θ).

We deduce from the preceding formula that tan t+tanα = 2 cos θ/ sin θ > 0, which implies t > −α.
On the other hand, as noticed at the end of the proof of the preceding lemma, t + θ < π/2, hence
t < α. Therefore, cosα < cos t and Rn+1 < Rn.

Since F̃n ≤ Rn ≤ R1 for all n, the proposition is proved. �

We come back to the specific case λ = 2 cosπ/k.

Proposition 6.5. Let (F̃n) be inductively defined by F̃n+1 = |λF̃n − F̃n−1| and its two first
positive terms. The following properties are equivalent:

(1) F̃0/F̃1 admits a finite λ-continued fraction expansion.

(2) The sequence (F̃n) is ultimately periodic.

(3) There exists n such that F̃n = 0.

Proof. We easily see from the proof of Proposition 6.3 that (2) and (3) are equivalent. We now

prove that (3) implies (1) by induction on the smallest n such that F̃n = 0. If F̃2 = 0, then

|λF̃1 − F̃0| = 0, and we get F̃0/F̃1 = λ. Let n > 2 be the smallest n such that F̃n = 0. By the
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induction hypothesis, F̃1/F̃2 admits a finite λ-continued fraction expansion. Therefore,

F̃0

F̃1

= λ ± 1

F̃1/F̃2

admits a finite λ-continued fraction expansion.
It remains to prove that (1) implies (3). We know from Proposition 3.3 that all positive real

numbers that admit a finite λ-continued fraction expansion are endpoints of generalized Stern-
Brocot intervals, hence by (10), can be written as [1, a1, . . . , aj ]λ with ai = ±1 for any i and
such that we never see more than (k − 1) alternated ±1 in a row. We call such an expansion a
standard expansion. Conversely, all real numbers that admit a standard expansion are endpoints

of generalized Stern-Brocot intervals, hence are nonnegative. Assume (1) is true. If F̃0/F̃1 = [1]λ,

then F̃2 = 0. Otherwise, let [1, a1, . . . , aj ]λ be a standard expansion of F̃0/F̃1. Then,

F̃1

F̃2

=
1

|λ − F̃0/F̃1|
=
∣∣∣[a1, . . . , aj ]λ

∣∣∣.

If a1 = 1, then [a1, . . . , aj ]λ ≥ 0 and it is equal to F̃1/F̃2. Otherwise, F̃1/F̃2 = [−a1,−a2, . . . ,−aj]λ.

In both cases, we obtain a standard expansion of F̃1/F̃2 of smaller size. The result is proved by
induction on j. �

Remark 6.6. In general, if F̃0/F̃1 does not admit a finite λ-continued fraction expansion, (F̃n)

decreases exponentially fast to 0. However, the exponent depends on the ratio F̃0/F̃1.

We exhibit two examples of such behavior.

Let q := (λ +
√

λ2 + 4)/2 be the fixed point of f0. Start with F̃0/F̃1 = q. Then, by a

straightforward induction, we get that for all n ≥ 0, F̃n = q−nF̃0.

Start now with F̃0/F̃1 = q′, where q′ is the fixed point of f1. Then, we easily get that for all

n ≥ 0, F̃2n = (q′f0(q
′))−nF̃0 and F̃2n+1 = F̃2n/q′. The exponent is thus 1/

√
q′f0(q′), which is

different from 1/q: For k = 3, q = φ (the golden ratio) and
√

q′f0(q′) =
√

φ.

Proof of Theorem 1.2. We have seen that the subsequence (F̃nj
), where nj is the time when the

j-th L is appended to the reduced sequence, satisfies, F̃nj+1
= |λF̃nj

− F̃nj−1
| for any j. From

Proposition 6.3, this subsequence is bounded. Moreover, we can write nj = j+kdj , where dj is the
number of R’s up to time nj. By the law of large numbers, dj/nj → p, and we get j/nj → 1− kp.
This achieves the proof of Theorem 1.2. �

7. Case λ ≥ 2

The case λ ≥ 2 (p > 0) is even easier to study since there is no reduction process.
Observe that the linear and the non-linear case are essentially the same. Indeed, in the non-

linear case, P(F̃n+1/F̃n ≥ 1|F̃n−1, F̃n) ≥ p and if F̃n+1/F̃n ≥ 1, then F̃n+2/F̃n+1 ≥ 1. Therefore,

with probability 1, there exists N+ such that for all n ≥ N+, the quotients F̃n+1/F̃n are larger
than 1. Moreover, for n ≥ N+, there is no need to take the absolute value and the sequence
behaves like in the linear case. We thus concentrate on the linear case.

We now fix λ ≥ 2. The sequence of quotients Qn := Fn/Fn−1 is a real-valued Markov chain
with probability transitionsP(Qn+1 = fR(q)

∣∣∣Qn = q
)

= p and P(Qn+1 = fL(q)
∣∣∣Qn = q

)
= 1 − p,

where fR(q) := λ + 1/q and fL(q) := λ − 1/q.

Let B :=
λ +

√
λ2 − 4

2
∈ [1, λ] be the largest fixed point of fL. Note that we have P(Qn+1 ≥

λ|Qn) ≥ min(p, 1−p) for any n ≥ 2 and, again, if Qn ≥ B, then Qn+1 ≥ B. Thus, with probability
1, there exists N+ such that for all n ≥ N+, the quotients Qn are larger than B. Without loss of
generality, we can henceforth assume that the initial values a and b are such that Q2 ≥ B.



ALMOST-SURE GROWTH RATE OF GENERALIZED RANDOM FIBONACCI SEQUENCES 17

We inductively define sub-intervals of R+ indexed by finite sequences of R’s and L’s:

IR := fR([B,∞]) =

[
λ, λ +

1

B

]
and IL := fL([B,∞]) = [B, λ],

and for any finite sequence X in {R, L}∗,
IXR := fR(IX) and IXL := fL(IX).

Obviously, all these intervals are included in
[
B, λ + 1

B

]
.

Lemma 7.1. Let W and W ′ be two finite words in {R, L}∗.
• If W is a suffix of W ′, then IW ′ ⊂ IW ;
• If neither W is a suffix of W ′ nor W ′ is a suffix of W , then IW and IW ′ have disjoint

interiors.

Proof. The first assertion is an easy consequence of the definition of IW . To prove the second
one, consider the largest common suffix S of W and W ′. Since LS and RS are suffix of W and
W ′, by the first assertion, it is enough to prove that ILS and IRS have disjoint interiors. This
can be shown by induction on the length of S, using the fact that fR and fL are monotonic on
[B,∞]. �

Lemma 7.2. Let (Wi)i≥1 be a sequence of R’s and L’s. Then
⋂

n≥1 IWn...W1
is reduced to a single

point.

Proof. By Lemma 7.1, IWn+1Wn...W1
⊂ IWn...W1

. Since the intervals are compact and nonempty,
their intersection is nonempty. It remains to prove that their length goes to zero. First consider
the case λ > 2. The derivatives of fL and fR are of modulus less than 1/B2 < 1. Therefore,
the length of IWn...W1

is less than a constant times (1/B2)n. Let us turn to the case λ = 2.

Observe that ILj =
[
1, j+1

j

]
, which is of length 1/j. Hence, if Wn . . .W1 contains j consecutive

L’s, then IWn...W1
is included, for some r < n, in ILjWr ...W1

= fW1
◦ · · · ◦ fWr

(ILj ) which is of
length less than 1/j (recall that the derivatives of fL and fR are of modulus less than 1). On the
other hand, the derivatives of fL ◦ fR and fR ◦ fR are of modulus less than 1/(2B + 1)2 = 1/9 on
[B,∞]. Therefore, considering the maximum number of consecutive L’s in Wn . . .W1, we obtain
supWn...W1

|IWn...W1
| −−−−→

n→∞
0. �

1 3
4/3 7/5 11/7 8/5 12/5 17/7 8/313/5

IL IR

1 − p p

ILL IRL IRR ILR

ILLL ILRR IRRR IRLR

(1 − p)2 (1 − p)p (1 − p)pp2

(1 − p)p2

3/2 5/3 7/3 5/2

p3 (1 − p)p2 (1 − p)2p(1 − p)p2 (1 − p)2p(1 − p)3 (1 − p)2p

ILRLIRRLIRLL ILLR

2

Figure 3. First stages of the construction of the measure µp,2.

We deduce from the preceding results the invariant measure of the Markov chain (Qn).
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Corollary 7.3. The unique invariant probability measure µp,λ of the Markov chain (Qn) =
(Fn/Fn−1) is given by

(17) µp,λ (IW ) := p|W |R(1 − p)|W |L

for any finite word W in {R, L}∗, where |W |R and |W |L respectively denote the number of R’s
and L’s in W .

We can now conclude the proof of Theorem 1.3 by invoking a classical theorem about law of
large numbers for Markov chain (see e.g. [6], Theorem 17.0.1).

Note that the explicit form of the invariant measure when p = 1/2 and λ ≥ 2 was already given
by Sire and Krapivsky [10].

8. Variations of the Lyapunov exponents

8.1. Variations with p.

Theorem 8.1. For any integer k ≥ 3, the function p 7→ γ̃p,λk
is increasing and analytic on ]1/k, 1[,

and the function p 7→ γp,λk
is increasing and analytic on ]0, 1[. Moreover,

(18) lim
p→0

γp,λk
= lim

p→1/k
γ̃p,λk

= 0,

and

(19) lim
p→1

γp,λk
= γ1,λk

= lim
p→1

γ̃p,λk
= γ̃1,λk

= log

(
λk +

√
λ2

k + 4

2

)
.

For any λ ≥ 2, the function p 7→ γp,λ is increasing and analytic on ]0, 1[.

The proof of the theorem relies on the following proposition, whose proof is postponed to the
end of the section.

Proposition 8.2. Let (Xi) be a sequence of letters in the alphabet {R, L} and (X ′
i) be a sequence

of letters in the alphabet {R, L} obtained from (Xi) by turning an L into an R. If λ = λk for

some k ≥ 3, then, in the non-linear case, any label F̃n coded by the sequence (Xi) is smaller than

the corresponding label F̃ ′
n coded by (X ′

i). If λ ≥ 2, and if F2/F1 ≥ 1, any label Fn coded by the
sequence (Xi) is smaller than the corresponding label F ′

n coded by (X ′
i).

Proof of Theorem 8.1. Let λ = λk for some integer k ≥ 3. Let 1/k < p ≤ p′ ≤ 1. Let (Xi)
(respectively (X ′

i)) be a sequence of i.i.d. random variables taking values in the alphabet {R, L}
with probability (p, 1 − p) (respectively (p′, 1 − p′)). We can realize a coupling of (Xi) and (X ′

i)

such that for any i, Xi = R implies X ′
i = R. From Proposition 8.2, it follows that the label F̃n

coded by (Xi) is always smaller than the label F̃ ′
n coded by (X ′

i). We get that

γ̃p,λk
= lim

1

n
log F̃n ≤ lim

1

n
log F̃ ′

n = γ̃p′,λk
.

Therefore, p 7→ γ̃p,λk
is a non-decreasing function on [1/k, 1].

Observe that p 7→ pR is non-decreasing in both (linear and non-linear) cases. Hence, the
function ρ : p 7→ k−1

√
1 − pR is non-increasing in both cases. We conclude that p 7→ γp,λk

is
non-decreasing on [0, 1].

Since γp,λk
> 0 for 0 < p < 1, the upper Lyapunov exponent associated to the product of

random matrices is simple, and we know from [7] that γp,λk
is an analytic function of p ∈]0, 1[,

thus it is increasing. Via the dependence on ρ which is an analytic function of p, we get that γ̃p,λk

is an analytic increasing function of p ∈]1/k, 1[.
Now, observe that ρ 7−→

∫∞
0 log xdνk,ρ(x) is continuous on [0, 1] (as the uniform limit of con-

tinuous functions). When p goes to zero in the linear case (or p → 1/k in the non-linear case),
pR tends to 0 and ρ tends to 1. By continuity of the integral, we obtain (18) using Remark 5.2.

When p = 1, the deterministic sequence Fn = F̃n grows exponentially fast, and the expression of
γ1,λk

follows from elementary analysis.
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When λ ≥ 2 (we do not need to distinguish the linear case from the non-linear cases), the proof
is handled in the same way, using Proposition 8.2. �

Proof of Proposition 8.2 when λ ≥ 2. We let the reader check that in this case, for all s ≥ 0 the
matrix RLs has nonnegative entries. Suppose the difference between (Xi) and (X ′

i) occurs at
level j. For any n ≥ j, the sequence Xj . . . Xn can be decomposed into blocks of the form RLs,
s ≥ 0, hence the product of matrices Xj · · ·Xn has nonnegative entries. If n ≥ j, we can thus
write F ′

n as a linear combination with nonnegative coefficients: F ′
n = C1F

′
j−2 +C2F

′
j−1. Moreover,

Fn = −C1Fj−2 + C2Fj−1 = −C1F
′
j−2 + C2F

′
j−1, hence Fn ≤ F ′

n (since F2/F1 ≥ 1, all Fn’s are

positive). �

The proof of Proposition 8.2 when λ = λk uses three lemmas. The first one can be viewed as
a particular case when the sequence of R’s and L’s is reduced.

Lemma 8.3. Let λ = λk. Let a > 0, b > 0, j1 ≥ 0 and j2 ≥ 0 such that j1 + 1 + j2 ≤ k − 2. If
(a′, b′) = (a, b)RLj1RLj2 and (a′′, b′′) = (a, b)RLj1+1+j2 , then b′ ≥ b′′.

Proof. For any ℓ ∈ {0, . . . , j2}, set (xℓ, xℓ+1) := (a, b)RLj1RLℓ, and (yℓ, yℓ+1) := (a, b)RLj1+1+ℓ.
Then the quotient xℓ+1/xℓ lies in Iℓ (see Section 3), whereas the quotient yℓ+1/yℓ lies in Ij1+1+ℓ. It
follows that yℓ+1/yℓ ≤ xℓ+1/xℓ, and since x0 = y0, we inductively get that for all ℓ ∈ {0, . . . , j2+1},
yℓ ≤ xℓ. The lemma is proved, observing that b′ = xj2+1 and b′′ = yj2+1. �

Lemma 8.4. Let λ = λk. Let (Xi)i≥2 be a sequence of matrices in {R, L}, which does not
contain k − 1 consecutive L’s and such that X2 = R. Let x0 > 0, x1 > 0, and set inductively
(xi, xi+1) := (xi−1, xi)Xi+1. Then for any i ≥ 0, xi+k ≥ xi.

Proof. If Xi+1 = R, this is just a repeated application of the following claim: If a > 0, b > 0,
0 ≤ j ≤ k − 3, and if we set (a′, b′) := (a, b)RLj, then b′ ≥ b. Indeed, by (5), we have b′ ≥
b sin

(
(j + 2)π/k

)
/ sin

(
π/k

)
≥ b.

If Xi+1 = L, we first prove the lemma when the sequence Xi+1 . . .Xi+k contains only one
R: Xi+j = R for some j ∈ {2, . . . , k − 1}. We proceed by induction on j. If j = 2, then

(xi+k−1, xi+k) = (xi−1, xi)LRLk−2. By (5), the second column of RLk−2 is

(
1
0

)
, thus xi+k = xi.

Now, assume j > 2 and that we have proved the inequality up to j − 1. Since the sequence
of matrices starts with an R and does not contain k − 1 consecutive L’s, we have xi+1/xi ∈ Iℓ

for some ℓ ≤ k − j (see Section 3). In particular, xi+1/xi ≥ bk−j . Now define x′
i+k+1 by

(xi+k, x′
i+k+1) := (xi+k−1, xi+k)L. We have x′

i+k+1/xi+k ∈ Ik−j+1, thus is bounded below by
bk−j . Using the induction hypothesis x′

i+k+1 ≥ xi+1, we conclude that xi+k ≥ xi.
Finally, assume that the sequence Xi+1 . . . Xi+k starts with an L and contains several R’s.

Turning the last R into an L, we can apply Lemma 8.3 to compare xi+k with the case where there
is one less R, and prove the result by induction on the number of R’s. �

Lemma 8.5. Let λ = λk. Let F̃n be inductively defined by F̃0 ≥ 0, F̃1 ≥ 0 and F̃n+1 =

|λF̃n − F̃n−1| for any n ≥ 1. Then for any n ≥ 0, F̃n+k ≤ F̃n.

Proof. For n ≤ 0, let Gn := F̃−n ≥ 0. Then, for any n ≤ −1, we have

(Gn, Gn+1) =

{
(Gn−1, Gn)L if λF̃n ≥ F̃n−1,

(Gn−1, Gn)R otherwise.

Moreover, we can assume that the sequence of matrices in {R, L} corresponding to (Gn) never

contains k − 1 consecutive L’s. Indeed, the second column of Lk−1 is

(
−1
0

)
. Thus, if we had

k − 1 consecutive L’s, we could find n such that −Gn−1 = Gn+k−1, which is possible only if
Gn−1 = Gn+k−1 = 0. But if such a situation occurs we can always turn the first L into an
R without changing the sequence (because (0, Gn)R = (0, Gn)L). The result is thus a direct
application of Lemma 8.4. �
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Proof of Proposition 8.2 when λ = λk. Suppose the difference between (Xi) and (X ′
i) occurs at

level j. We decompose (Xj)i≥j as LLrY and (X ′
j)i≥j as RLrY , where 0 ≤ r ≤ +∞ and Y =

(Yi)i≥j+r+1 is a sequence of letters in the alphabet {R, L} such that Yj+r+1 = R.

Suppose first that, after the difference, all letters are L’s (Y = ∅). Let j1 ∈ {0, . . . , k − 2} be

such that F̃j−1/F̃j ∈ Ij1 . Without loss of generality, we can assume that the sequences (Xi) and
(X ′

i) are reduced before their first difference. Then, Xj−j1−1 . . . Xj−1 = X ′
j−j1−1 . . .X ′

j−1 = RLj1 .

By Lemma 8.3, F̃j+s ≥ F̃ ′
j+s for all 0 ≤ s ≤ j2, where j2 := k − 3 − j1.

Now, by Lemma 8.4, for all 1 + j2 ≤ s ≤ k − 2, F̃j+s ≥ F̃j+s−k, which is equal to F̃ ′
j+s−k

since s < k. On the other hand, when s = j2 + 1, we have F̃ ′
j+j2+1−k = F̃ ′

j+j2+1 because

X ′
j−j1−1 . . . X ′

j+j2+1 = RLk−1. Moreover, by Lemma 8.5, F̃ ′
j+s−k ≥ F̃ ′

j+s for all 1+j2 < s ≤ k−2.

We thus get that F̃j+s ≥ F̃ ′
j+s for all j2 + 1 ≤ s ≤ k − 2.

If s ≥ k − 1, reducing the pattern RLk−1 in the sequence (Xj)i≥j , we have F̃j+s = F̃ ′
j+s−k

which is larger than F̃ ′
j+s by Lemma 8.5.

Suppose now that the suffix Y is reduced. The above argument shows that all labels up to

j + r are well-ordered: In particular, F̃j+r−1 ≤ F̃ ′
j+r−1 and F̃j+r ≤ F̃ ′

j+r . Since Y is reduced,

we can write, for any n ≥ j + r, (F̃n, F̃n+1) = (F̃j+r−1, F̃j+r)Yj+r+1 · · ·Yn+1, where each Yi is

interpreted as the corresponding matrix (the same equality is valid if we replace F̃ by F̃ ′). The
product Yj+r+1 · · ·Yn+1 can be decomposed into blocks of the form RLℓ, with 0 ≤ ℓ ≤ k − 2,

which are matrices with nonnegative entries. Therefore, for any n ≥ j + r, the label F̃n is a linear

combination of F̃j+r−1 and F̃j+r , with nonnegative coefficients. Moreover, it is also true with the

same coefficients if we replace F̃ by F̃ ′. We conclude that F̃n ≤ F̃ ′
n.

In the general case, we make all possible reductions on Y . We are left either with a reduced
sequence or with a sequence of L’s, which are the two situations we have already studied. �

Remark 8.6. In [5], a formula for the derivative of γp,1 with respect to p was given, involving the
product measure ν3,ρ ⊗ ν3,ρ. We do not know whether this formula can be generalized to other
k’s.

8.2. Variations with λ. For p = 1, the deterministic sequence Fn = F̃n grows exponentially fast,
and we have in that case

γ̃1,λ = γ1,λ = log

(
λ +

√
λ2 + 4

2

)
,

which is increasing with λ.
We conjecture that, when p is fixed, γp,λk

and γ̃p,λk
are increasing with k, and that γp,λ is

increasing with λ for λ ≥ 2 (see Figure 4).

9. Connections with Embree-Trefethen’s paper

9.1. Positivity of the Lyapunov exponent. We have proved that the largest Lyapunov expo-
nent corresponding to the linear λ-random Fibonacci sequence is positive for all p. In [2], Embree
and Trefethen study a slight modification of our linear random Fibonacci sequence when p = 1/2.
To be exact, they study the random sequence xn+1 = xn ± βxn−1, which by a simple rescaling
gives our linear λ-random Fibonacci sequence where λ = 1/

√
β (see our introduction). However,

the exponential growth is not preserved by this rescaling. More precisely, the exponential growth
σ(β) = lim |xn|1/n of Embree and Trefethen’s sequence satisfies

log σ(β) = γ1/2,λ − log λ.

In particular, σ(β) < 1 if and only if γ1/2,λ < log λ, which according to the simulations described
in their paper happens for β < β∗ ≈ 0.70258 . . . (which corresponds to λ > 1.19303 . . .).

By Theorem 8.1, the function p 7→ γp,λ is continuous and increasing from 0 to γ1,λ > log λ.
Hence there exists a unique p∗(λ) ∈ [0, 1] such that, for p < p∗, γp,λ < log λ and for p > p∗,
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k = 3

k = 4

k = 5

k = 10

λ = 2

λ = 2.05

λ = 2.1

λ = 2.5

λ = 3

p
10

p
10

γp,λ γ̃p,λ

Figure 4. The value of γp,λ (linear case, left) and γ̃p,λ (non-linear case, right)
for λ = λk, k = 3, 4, 5, 10, λ = 2 (bold), λ = 2.05, 2.1, 2.5 and 3. Numerical
computations support the conjecture that γp,λ and γ̃p,λ are increasing with λ.

γp,λ > log λ. According to [2], for λ = 1 we have p∗ < 1/2, and for λ = λk (k ≥ 4) and λ ≥ 2,
p∗ > 1/2.

For λ ≥ 2, we can indeed prove that γ1/2,λ < log λ: By Jensen’s inequality, we have

γ1/2,λ < log

(∫ λ+1/B

B

xdµ1/2,λ

)
,

which is equal to log λ by symmetry of the measure µ1/2,λ.
For λ = 1, we know that γp,1 > 0 for all p > 0 thus p∗ = 0. When λ = λk, k ≥ 4, numerical

computations of the integral confirm that p∗ > 1/2, but we do not know how to prove it.

9.2. Sign-flip frequency. Embree and Trefethen introduce the sign-flip frequency as the propor-

tion of values n such that FnFn+1 < 0, and give (without proof) the estimate 2−πλ/
√

4−λ2

for this
frequency, as λ → 2, λ < 2.

Note that, for λ ≥ 2, there are no sign change as soon as n is large enough, and the sign-flip
frequency is zero.

For λ = λk, recall that for n large enough, the sign of the reduced sequence (F r
n) is constant

(see Lemma 3.2). Moreover, by (6) and the fact that for all 0 ≤ j ≤ k − 2 the matrix RLj has
nonnegative entries (see (5)), the product FnF r

n changes sign if and only if a pattern RLk−1 is
removed. Thus, the sign-flip frequency is equal to the frequency of deletions in the reduction
process.

Note that we have to make sure that this frequency indeed exists. This can be seen by consider-
ing the reduction of the left-infinite i.i.d. sequence (X∗)0−∞ (Section 4.1), since for n large enough,
deletions in the reduction process of (X)n

3 occur at the same times as in the reduction process of
(X∗)n

−∞. In the latter case, the ergodic theorem ensures that the frequency σ of deletions exists

and is equal to the probability that (X∗)0−∞ be not proper. By Lemma 4.2, (X∗)0−∞ is not proper

if and only if there exists a unique ℓ > 0 such that (X∗)0−ℓ is an excursion, and (X∗)−ℓ−1
−∞ is proper.

Thus,

σ =
∑

w excursions

P(w)(1 − σ).

By (11), we get that the sign-flip frequency is equal to

(20) σ = σ(λk, p) =
p(1 − pR)

p + (1 − p)pR + p(1 − pR)
.

Now, for a fixed p ∈]0, 1[, we would like to obtain an estimate for σ as k → ∞. First, observe
that pR = pR(k) → 1 as k → ∞. Indeed, recalling the expression of the function g given by (8),
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for any x ∈]0, 1[, we have g(x) < 0 for k large enough, which implies pR > x. Then, since pR

satisfies

1 − pR =

(
1 − ppR

p + (1 − p)pR

)k−1

,

we get that pR → 1 exponentially fast with k. Using this estimation in the above equation,
elementary computations lead to

1 − pR ∼
k→∞

(1 − p)k−1.

Thus,
σ(λk, p) ∼

k→∞
p(1 − p)k−1.

For p = 1/2, this proves the estimate provided in [2] in the special case λ = λk.
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Élise Janvresse, Thierry de la Rue: Laboratoire de Mathématiques Raphaël Salem, Université de
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