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 that it truly approximates the marginal densities once the label switching issue has been solved.

Introduction

Model choice is a central issue in mixture modelling because of the nonparametric nature of mixtures [START_REF] Marin | Bayesian modelling and inference on mixtures of distributions[END_REF][START_REF] Frühwirth-Schnatter | Finite Mixture and Markov Switching Models[END_REF]. Indeed, while a distribution with a density of the form

f k (x|θ k ) = k i=1 p k i g(x|µ k i ) , p k i > 0 , k i=1 p k i = 1 , (1) 
where the densities g are known and the corresponding parameters µ k i 's are unknown, is a welldefined object (with θ k = (p k 1 , . . . , p k k , µ k 1 , . . . , µ k k ), it occurs that, in most settings, the number of components k is uncertain and is an integral part of the inferential goals. This is true for classification as well as for estimation purposes, especially because of the weakly informative nature of mixtures: due to the representation of those distributions as sums of components g(x|µ k i ), samples from f k (x|θ k ) provide relatively little information about each of the components, in the sense that there always is a positive probability that no point in the sample has been generated from a particular component.

Evaluating the number k of components from a sample x = (x 1 , . . . , x n ) from ( 1) is therefore a quite relevant issue in the setting of mixtures and a standard Bayesian approach is to consider the 4 jean-michel.marin@inria.fr and xian@ceremade.dauphine.fr 1 problem from a model choice perspective, i.e. to consider that each value of k defines a different model, with density

f k (x|θ k ) = n i=1 f k (x i |θ k )
and corresponding parameter θ k , and to compute the corresponding Bayes factors

B π k,k+1 (x) = f k (x|θ k )π k (θ k ) dθ k f k+1 (x|θ k+1 )π k+1 (θ k+1 ) dθ k+1 = m k (x) m k+1 (x)
for all pairs (k, k + 1) of interest. Obviously, there exist different Bayesian solutions for the approximation of B π k,k+1 (x) and this is well-documented in the literature (see, e.g., [START_REF] Chen | Monte Carlo Methods in Bayesian Computation[END_REF][START_REF] Frühwirth-Schnatter | Estimating marginal likelihoods for mixture and Markov switching models using bridge sampling techniques[END_REF]. One possible solution is to derive the posterior probabilities of the different values of k (that are proportional to the m k (x)'s) by an reversible jump MCMC algorithm as in [START_REF] Richardson | On Bayesian analysis of mixtures with an unknown number of components (with discussion)[END_REF]. But we consider however that there is a fundamental inefficiency in using a random walk like the reversible jump MCMC algorithm on a structure-the collection of mixture distributions with an unknown number of components-made of a rather small number of terms (since k is usually bounded): the resulting inherent randomness does not seem pertinent in a finite state space. For one thing, the proposed values of the parameters θ k at each step of a reversible jump MCMC algorithm are less likely to be accepted than in a regular Gibbs sampling scheme because of (a) the introduction of an additional proposal to move between models and between the parameters of those models, rather than relying on the exact full conditionals of the true target distribution, (b) the comparison not only of values of the parameters within a model but in connection with the relative likelihoods of different models which, by its very nature, forces the corresponding Markov chain to remain more often in the more probable models and thus slows down the exploration of the less probable models, and (c) the lack of connection between the adjacent elements of the Markov chain since the parameter space changes at every step. This is of course arguable, as defended in [START_REF] Richardson | On Bayesian analysis of mixtures with an unknown number of components (with discussion)[END_REF] who maintain the opposite point of view that using a reversible jump algorithm improves the mixing of the Markov chain within each model. (This is certainly true from a probabilistic perspective, namely that two consecutive values of θ k are less correlated than in a Gibbs scheme because there is an arbitrary large number of intermediate simulations between those two values, but this does not answer the criticism that a proper exploration of each model, i.e. of each value of k, requires in the end a much larger number of simulations than the sum of the numbers of simulations requested by the approximation of each posterior distribution π k (θ k |x), not to mention the additional level of complexity in designing efficient reversible jumps algorithms, see [START_REF] Brooks | Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions (with discussion)[END_REF] Exploring each model/case separately by MCMC and then producing an approximation of the corresponding marginal densities is therefore more reasonable if those marginals can be correctly approximated. Once a sample from the posterior distribution π k (θ k |x) has been produced, there are again many alternatives for approximating the marginals m k (x), as discussed in, for instance, [START_REF] Frühwirth-Schnatter | Estimating marginal likelihoods for mixture and Markov switching models using bridge sampling techniques[END_REF] or [START_REF] Chopin | Contemplating evidence: properties, extensions of, and alternatives to nested sampling[END_REF], but the central point of this note is to stress the point already made in [START_REF] Berkhof | A Bayesian approach to the selection and testing of mixture models[END_REF] that a proper approximation can be found when using a simple correction to [START_REF] Chib | Marginal likelihood from the Gibbs output[END_REF] marginal likelihood approximation, since this solution has somehow been overlooked in the literature, maybe due to the original controversy surrounding [START_REF] Chib | Marginal likelihood from the Gibbs output[END_REF] proposal. We recall in Section 2 the basis of [START_REF] Chib | Marginal likelihood from the Gibbs output[END_REF] approximation and the difficulties surrounding its implementation to the mixture problem, before presenting in Section 3 our correction and demonstrating in Section 4 how this correction recovers the true marginal densities.

2 The original proposal [START_REF] Chib | Marginal likelihood from the Gibbs output[END_REF] method for approximating a marginal (likelihood) is a direct application of Bayes' theorem: given

x ∼ f k (x|θ k ) and θ k ∼ π k (θ k ), we have that m k (x) = f k (x|θ k ) π k (θ k ) π k (θ k |x) ,
for all θ's (since both the lhs and the rhs of this equation are constant in θ). Therefore, if an arbitrary value of θ, θ * say, is selected and if a good approximation to π(θ|x) can be constructed, π(θ|x) say, [START_REF] Chib | Marginal likelihood from the Gibbs output[END_REF] approximation to the marginal likelihood is

mk (x) = f k (x|θ * k ) π k (θ * k ) πk (θ * k |x)
.

(2)

In the special setting of mixtures of distributions, [START_REF] Chib | Marginal likelihood from the Gibbs output[END_REF] approximation is particularly attractive as there exists a natural approximation to π k (θ k |x), based on the Rao-Blackwell [START_REF] Gelfand | Sampling based approaches to calculating marginal densities[END_REF] 

estimate πk (θ * k |x) = 1 T T t=1 π k (θ * k |x, z (t) k ) ,
where the z

(t)
k 's are the latent variables simulated by the MCMC sampler. (We recall that the natural Gibbs sampler in this setting [START_REF] Diebolt | Estimation des paramètres d'un mélange par échantillonnage bayésien[END_REF] is based on two steps: (i) the simulation of the latent variables z ik that correspond to the component indicators, conditional on the parameter θ k , and (ii) the simulation of the parameter θ k , conditional on the latent variables z ik . When conjugate priors are used for θ k , step (ii) can be implemented in one block, see [START_REF] Diebolt | Estimation des paramètres d'un mélange par échantillonnage bayésien[END_REF]Robert, 1990, Casella et al., 2004.) The estimate πk (θ * k |x) is a parametric unbiased approximation of π k (θ * k |x) that converges with rate O( √ T ). This Rao-Blackwell approximation obviously requires the full conditional density π k (θ * k |x, z) to be available in closed form (constant included), but this is the case when the component densities g(x|µ i ) are within an exponential family and when conjugate priors on the µ i 's are used.

To be efficient, [START_REF] Chib | Marginal likelihood from the Gibbs output[END_REF] method requires (a) a central choice of θ * k but, since in the case of mixtures, the likelihood is computable, θ * k can be chosen as the MCMC approximation to the MAP or to the ML estimator, and (b) a good approximation to π k (θ k |x). This later requirement is the core of [START_REF] Neal | Erroneous results in "Marginal likelihood from the Gibbs output[END_REF] criticism in the case of mixtures: while, at a formal level, πk (θ * k |x) is a converging approximation of π k (θ k |x) by virtue of the ergodic theorem, this convergence result relies on the fact that the chain (z (t) k ) converges to its stationarity distribution. Unfortunately, in the case of mixtures, as shown in [START_REF] Celeux | Computational and inferential difficulties with mixtures posterior distribution[END_REF], the Gibbs sampler rarely converges in essence because of the (lack of) label switching phenomenon (see also [START_REF] Jasra | Markov Chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling[END_REF]. In short, due to the lack of identifiability of mixture models (since the components remain invariant under permutations of their indices), the posterior distribution is generaly multimodal and, in the case of an exchangeable prior, it is also exchangeable. Therefore, when the Gibbs output fails to reproduce the exchangeability predicted by the theory, namely when it remains concentrated around one (or a subset) of the k! modes of the posterior distribution, the approximation πk (θ * k |x) is untrustworthy and Neal (1999) demonstrated via a numerical experiment that (2) is significantly different from the true value m k (x) in that case. [START_REF] Chib | Marginal likelihood from the Gibbs output[END_REF] tried to overcome this difficulty by using a constrained parameter set based on an identifiability constraint, but such constraints are notorious for slowing down the corresponding MCMC sampler and, more importantly, for failing to isolate a single mode of the posterior distribution [START_REF] Celeux | Computational and inferential difficulties with mixtures posterior distribution[END_REF].

The fix

There is, however, an easy remedy to this problem, as already demonstrated in [START_REF] Berkhof | A Bayesian approach to the selection and testing of mixture models[END_REF]. Since, when the prior distribution is exchangeable over the components of the mixture, the posterior distribution is also exchangeable, this means that

π k (θ k |x) = π k (σ(θ k )|x) = 1 k! σ∈S π k (σ(θ k )|x)
for all σ's in S k , set of all permutations of {1, . . . , k}. (The notation σ(θ * k ) indicates the transform of θ * k where components are switched according to the permutation σ.) In other words, the distribution of interest is invariant over all permutations and the data brings no information about an ordering of the components. The lack of symmetry in an approximation πk (θ * k |x) is therefore purely ancillary and integrating out this factor of randomness by recovering the label switching symmetry a posteriori can only reduce the variability of the approximation, by a standard Rao-Blackwell argument. We thus propose replacing πk (θ

* k |x) in (2) above with πk (θ * k |x) = 1 T k! σ∈S k T t=1 π k (σ(θ * k )|x, z (t) k ) . 
Note that this solution is taking advantage of the symmetry predicted by the theory, following the general principles stated in [START_REF] Kong | A theory of statistical models for Monte Carlo integration[END_REF].

The modified πk (θ * k |x) is shown (through examples) in the next section to recover the missing mass lost in the lack of exploration of the k! modes of the posterior density, rightly pointed out by [START_REF] Neal | Erroneous results in "Marginal likelihood from the Gibbs output[END_REF]. When the Gibbs sampler starts exploring more than one mode of the posterior density, there is no loss in using the symmetrised estimator πk (θ * k |x) (except for the additional computing time). In the case of "perfect symmetry", both estimators are identical, which is a good indicator of proper mixing. In other cases, a difference between both estimators points out a lack of mixing, at least from the point of view of exchangeability, and it may call for additional simulations with different starting points. The major question in such cases is to ascertain whether or not the Gibbs sampler has completely explored at least one major mode of the posterior distribution. As shown in [START_REF] Marin | Bayesian modelling and inference on mixtures of distributions[END_REF], there may also exist secondary modes where a standard Gibbs sampler gets trapped. In such occurrences, even a symmetrised estimate of π k (θ k |x) fails to produce a proper approximation of m k (x), but this goes undetected. This is however unrelated with the original difficulty of [START_REF] Chib | Marginal likelihood from the Gibbs output[END_REF] approximation and trapping modes can be detected by using tempering devices or other simulation algorithms like Population Monte Carlo [START_REF] Douc | Convergence of adaptive mixtures of importance sampling schemes[END_REF]. (We indeed point out that the approximation (2) can also be used in a setup where a sample θ 115.68 -103.35 -102.66 -101.93 -102.88 -105.48 -108.44 Table 1: Estimations of the marginal likelihoods by the symmetrised Chib's approximation (based on 10 5 Gibbs iterations and, for k > 5, 100 permutations selected at random in S k ). (Source: [START_REF] Lee | Bayesian inference on mixtures of distributions[END_REF] 

Illustration

In this example, we consider the benchmark galaxy dataset (Roeder, 1992, Mengersen and[START_REF] Mengersen | Testing for mixtures: A Bayesian entropic approach (with discussion)[END_REF], that represents the distribution of the radial speeds of n = 82 galaxies as a mixture of k normal distributions with both mean and variance unknown. In this case, label switching mostly does not occur. If we compute log mk (x) using only the original estimate, with θ * k chosen as the MAP estimator, the (logarithm of the) estimated marginal likelihood is mk (x) = -105.1396 for k = 3 (based on 10 3 simulations), while introducing the permutations leads to mk (x) = -103.3479. As already noted by [START_REF] Neal | Erroneous results in "Marginal likelihood from the Gibbs output[END_REF], the difference between the original [START_REF] Chib | Marginal likelihood from the Gibbs output[END_REF] approximation and the true marginal likelihood is close to log(k!) (only) when the Gibbs sampler remains concentrated around a single mode of the posterior distribution. In the current case, we have that -116.3747 + log(2!) = -115.6816 exactly! (We also checked this numerical value against a brute-force estimate obtained by simulating from the prior and averaging the likelihood, up to fourth digit agreement.) A similar result holds for k = 3, with -105.1396 + log(3!) = -103.3479. Both Neal (1999) and Frühwirth-Schnatter ( 2004) also pointed out that the log(k!) difference was unlikely to hold for larger values of k as the modes were getting less separated on the posterior surface and thus the Gibbs sampler was more likely to explore in parts several modes. For k = 4, we get for instance that the original [START_REF] Chib | Marginal likelihood from the Gibbs output[END_REF] approximation is -104.1936, while the average over permutations gives -102.6642. Similarly, for k = 5, the difference between -103.91 and -101.93 is less than log(5!). The log(k!) difference cannot therefore be used as a direct correction for [START_REF] Chib | Marginal likelihood from the Gibbs output[END_REF] approximation because of this difficulty in controlling the amount of overlap. But it is altogether unnecessary since using the permutation average resolves the difficulty. Table 1 shows that the prefered value of k for the galaxy dataset and the current choice of prior distribution is k = 5.

When the number of components k grows too large for all permutations in S k to be considered in the average, a (random) subsample of permutations can be simulated to keep the computing time to a reasonable level when keeping the identity as one of the permutations, as in Table 1 for k = 6, 7. (See [START_REF] Berkhof | A Bayesian approach to the selection and testing of mixture models[END_REF] for another solution.) Note also that the discrepancy between the original [START_REF] Chib | Marginal likelihood from the Gibbs output[END_REF] approximation and the average over permutations is a good indicator of the mixing properties of the Markov chain, if a further convergence indicator is requested.
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