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Continuous crystal and Duistermaat-Heckmann measure for

Coxeter groups.

Philippe Biane, Philippe Bougerol, and Neil O’Connell

Abstract. We introduce a notion of continuous crystal analogous, for gen-
eral Coxeter groups, to the combinatorial crystals introduced by Kashiwara
in representation theory of Lie algebras. We explore their main properties in
the case of finite Coxeter groups, where we use a generalization of the Lit-
telmann path model to show the existence of the crystals. We introduce a
remarkable measure, analogous to the Duistermaat-Heckman measure, which
we interpret in terms of Brownian motion. We also show that the Littelmann
path operators can be derived from simple considerations on Sturm-Liouville
equations.

1. Introduction

The aim of this paper is to introduce a notion of continuous crystals for Coxeter
groups, which are not necessarily Weyl groups. Crystals are combinatorial objects,
which have been associated by Kashiwara to Kac-Moody algebras, in order to pro-
vide a combinatorial model for the representation theory of these algebras, see e.g.
[16], [18], [19], [22] for an introduction to this theory. The crystal graphs defined
by Kashiwara turn out to be equivalent to certain other graphs, constructed inde-
pendently by Littelmann, using his path model. The approach of Kashiwara to the
crystals is through representations of quantum groups and their “crystallization”,
which is the process of letting the parameter q in the quantum group go to zero. This
requires representation theory and therefore does not make sense for realizations of
arbitrary Coxeter groups. On the other hand, as it was realized in a previous paper
[2], Littelmann’s model can be adapted to fit with non-crystallographic Coxeter
groups, but the price to pay is that, since there is no lattice invariant under the
action of the group, one can only define a continuous version of the path model,
namely of the Littelmann path operators. In this continuous model, instead of the
the Littelmann path operators ei, fi we have continuous semigroups et

i, f
t
i indexed

by nonnegative real numbers t ≥ 0. In the crystallographic case it is possible to
think of these continuous crystals as “semi-classical limits” of the combinatorial
crystals, in much the same way as the coadjoint orbits arise as semi-classical limits
of the representations of a compact semi-simple Lie group. These continuous path
operators, and the closely related Pitman transforms, were used in [2] to investigate
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symmetry properties of Brownian motion in a space where a finite Coxeter group
acts, with applications in particular to the motion of eigenvalues of matrix-valued
Brownian motions. In this paper, which is a sequel to [2], but can for the most
part be read independently, we define continuous crystals and start investigating
their main properties. As for now the theory works well for finite Coxeter groups,
there are still several difficulties to extend the theory to infinite groups. This theory
allows us to define objects which are analogues to simplified versions of the Schu-
bert varieties (or Demazure-Littelmann modules) associated with semi-simple Lie
groups. We hope these objects might help in certain questions concerning Coxeter
groups, such as, for example, the Kazhdan-Lusztig polynomials.

This paper is organized as follows. The next section contains the main defini-
tion, that of a continuous crystal associated with a realization of a Coxeter group.
We establish the main properties of these objects, following closely the exposition
of Joseph in [19]. It would have been possible to just refer to [19] for the most part
of this section, however, for the convenience of the reader, and also for convincing
ourselves that everything from the crystallographic situation goes smoothly to the
continuous context, we have preferred to write everything down. The main body of
the proof is relegated to an appendix in order to ease the reading of the paper. In
section 3 we introduce the path operators and establish their most important prop-
erties. The path operators are used in section 4 to introduce the path model, which
provides a concrete realization of continuous crystals and proves their existence, at
least in the finite Coxeter group case. It remains an interesting and challenging
problem to extend these properties to the general case. Our approach to the path
model is different from that in Littelmann [25], in that we base our exposition on
the Pitman transforms, which are defined from scratch, and whose braid relations
play a prominent role. We investigate the analogues of the Berenstein-Zelevinsky
polytopes (see [3]) which contain the Kashiwara coordinates on the crystals, we
also study concatenation of paths, and the action of the Coxeter group, as well as
the Schützenberger involution. We think that even in the crystallographic case our
treatment sheds some light on these topics. In section 5, we introduce an analogue
of the Duistermaat-Heckman measure, motivated by a result of Alexeev and Brion
[1]. We prove several interesting properties of this measure, and show that it is
intimately linked with Brownian motion. In particular (corollary 5.3) we give a
Brownian proof of the fact that the crystal defined by the path model depends
only on the final position of the path. The final section is of a quite different na-
ture, and somewhat independent of the rest of the paper. The Littelmann path
operators have been introduced as a generalization, for arbitrary root systems, of
combinatorial operations on Young tableaux. Here we show how, using some simple
considerations on Sturm-Liouville equations, the Littelmann path operators appear
naturally. In particular this gives a concrete geometric basis to the theory of geo-
metric lifting which has been introduced by Berenstein and Zelevinsky in [3] in a
purely formal way.

2. Continuous crystal

2.1. Basic definition. We use the standard references [4], [17] on Coxeter
groups and their realizations. A Coxeter system (W,S) is a group W generated
by a finite set of involutions S such that, if m(s, s′) is the order of ss′ then the
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relations

(ss′)m(s,s′) = 1

for m(s, s′) finite, give a presentation of W .
A realization of (W,S) is given by a real vector space V with dual V ∨, an action

of W on V , and a subset {(αs, α
∨
s ), s ∈ S} of V × V ∨ such that each s ∈ S acts on

V by the reflection given by

s(x) = x− α∨
s (x)αs, x ∈ V,

so α∨
s (αs) = 2. One calls αs the simple root associated with s ∈ S and α∨

s its
coroot.

We consider a realization of a Coxeter system (W,S) in a real vector space V ,
and the associated simple roots Σ = {αs, s ∈ S} in V and coroots {α∨

s , s ∈ S} in
V ∨. The closed Weyl chamber is the convex cone

C = {v ∈ V ;α∨
s (v) ≥ 0, for all α ∈ S}

thus the simple roots are positive on C. There is an order relation on V induced
by this cone, namely λ ≤ µ if and only if µ− λ ∈ C.

We adapt the definition of crystals due to Kashiwara (see, e.g., Kashiwara [20],
[22], Joseph [18]) to a continuous setting.

Definition 2.1. A continuous crystal is a set B equipped with maps

wt : B → V,

εα, ϕα : B → R ∪ {−∞}, α ∈ Σ,

er
α : B ∪ {0} → B ∪ {0}, α ∈ Σ, r ∈ R,

where 0 is a ghost element, such that the following properties hold, for all α ∈ Σ,
and b ∈ B

(C1) ϕα(b) = εα(b) + α∨(wt(b)),

(C2) If er
α(b) 6= 0 then

εα(er
αb) = εα(b) − r,

ϕα(er
αb) = ϕα(b) + r,

wt(er
αb) = wt(b) + rα,

(C3) For all r ∈ R, b ∈ B one has er
α(0) = 0, e0α(b) = b. If er

α(b) 6= 0 then, for
all s ∈ R,

es+r
α (b) = es

α(er
α(b)),

(C4) If ϕα(b) = −∞ then er
α(b) = 0, for all r ∈ R, r 6= 0.

Sometimes we write, for r ≥ 0,

f r
α = e−r

α .

Example 2.2 (The crystal Bα). For each α ∈ Σ, we define the crystal Bα as
the set {bα(t), t ≤ 0} with the maps given by

wt(bα(t)) = tα, εα(bα(t)) = −t, ϕα(bα(t)) = t,

er
α(bα(t)) = bα(t+ r) if r ≤ −t and er

α(bα(t)) = 0 otherwise,

and, if α′ 6= α, εα′(bα(t)) = −∞, ϕα′(bα(t)) = −∞, er
α′(bα(t)) = 0, when r 6= 0.
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2.2. Morphisms.

Definition 2.3. Let B1 and B2 be continuous crystals.
1. A morphism of crystals is a map ψ : B1∪{0} → B2∪{0} such that ψ(0) = 0

and for all α ∈ Σ and b ∈ B1,

wt(ψ(b)) = wt(b), εα(ψ(b)) = εα(b), ϕα(ψ(b)) = ϕα(b)

and er
α(ψ(b)) = ψ(er

α(b)) when er
α(b) ∈ B1.

2. A strict morphism is a morphism ψ : B1 → B2 such that er
α(ψ(b)) =

ψ(er
α(b)) for all b ∈ B1.
3. A crystal embedding is an injective strict morphism.

The morphism ψ is called a crystal isomorphism if there exists a crystal mor-
phism φ : B2 → B1 such that φ ◦ψ = idB1∪{0}, and ψ ◦φ = idB2∪{0}. It is then an
embedding.

2.3. Tensor product. Consider two continuous crystalsB1 andB2 associated
with (W,S,Σ). We define the tensor product B1 ⊗ B2 as the continuous crystal
with set B = B1 ×B2, whose elements are denoted b1 ⊗ b2, for b1 ∈ B1, b2 ∈ B2.

Let σ = ϕα(b1) − εα(b2) where (−∞) − (−∞) = 0, let σ+ = max(0, σ) and
σ− = max(0,−σ), then the maps defining the tensor product are given by the
following formulas:

wt(b1 ⊗ b2) = wt(b1) + wt(b2)

εα(b1 ⊗ b2) = εα(b1) + σ−

φα(b1 ⊗ b2) = φα(b2) + σ+

er
α(b1 ⊗ b2) = emax(r,−σ)−σ−

α b1 ⊗ emin(r,−σ)+σ−

α b2,

Here b1 ⊗ 0 and 0 ⊗ b2 are understood to be 0. Notice that when σ ≥ 0, one
has εα(b1 ⊗ b2) = εα(b1) and

(2.1) er
α(b1 ⊗ b2) = er

αb1 ⊗ b2, for all r ∈ [−σ,+∞[.

As in the discrete case, one can check that the tensor product is associative (but
not commutative) so we can define without ambiguity the tensor product of several
crystals.

2.4. Highest weight crystal. A crystal B is called upper-normal when, for
all b ∈ B,

εα(b) = max{r ≥ 0; er
α(b) 6= 0}

and is called lower-normal if

ϕα(b) = max{r ≥ 0; e−r
α (b) 6= 0}.

We call it normal (this is sometimes called semi-normal by Kashiwara) when it is
lower and upper normal. Notice that this implies that εα(b) ≥ 0 and ϕα(b) ≥ 0.

We introduce the semigroup F generated by the {f r
α, α simple root, r ≥ 0}:

F = {f r1
α1

· · · f rk
αk
, k ∈ N∗, r1, · · · , rk ≥ 0, α1, · · · , αk ∈ Σ},

and, if b is an element of a continuous crystal B, the subset F(b) = {f(b), f ∈ F}
of B.
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Definition 2.4. Let λ ∈ V , a continuous crystal B(λ) is said to be of highest
weight λ if there exists bλ ∈ B(λ) such that wt(bλ) = λ, er

α(bλ) = 0, for all r > 0
and α ∈ Σ and such that B(λ) = F(bλ).

For a continuous crystal with highest weight λ, such an element bλ is unique,
and called the primitive element of B(λ). If the crystal is normal then λ must be
in the Weyl chamber C̄. The vector λ is a highest weight in the sense that, for all
b ∈ B(λ), wt(b) ≤ λ.

2.5. Uniqueness. The crystal B(∞). Following Joseph [18], [19] we intro-
duce the following definition.

Definition 2.5. Let (B(λ), λ ∈ C̄), be a family of highest weight continuous
crystals. The family is closed if, for each λ, µ ∈ C̄, the subset F(bλ ⊗ bµ) of
B(λ) ⊗B(µ) is a crystal isomorphic to B(λ + µ)

Joseph ([18], 6.4.21) has shown in the Weyl group case, for discrete crystals,
that a closed family of highest weight normal crystals is unique. The analogue holds
in our situation.

Theorem 2.6. For a realization of a Coxeter system (W,S), if a closed family
B(λ), λ ∈ C̄, of highest weight continuous normal crystals exists, then it is unique.

The proof of the theorem, which follows closely Joseph [19], is in the appendix
7.1.

3. Pitman transforms and Littelmann path operators for Coxeter

groups

3.1. The Pitman transform. Let V be a real vector space, with dual space
V ∨. Let α ∈ V and α∨ ∈ V ∨ be such that α∨(α) = 2. The reflection sα : V → V
associated to (α, α∨) is the linear map defined, for x ∈ V , by

sα(x) = x− α∨(x)α.

For T > 0, let C0
T (V ) be the set of continuous path η : [0, T ] → V such

that η(0) = 0, with the topology of uniform convergence. We have introduced
and studied in [2] the following path transformation, similar to the one defined by
Pitman in [32].

Definition 3.1. The Pitman transform Pα associated with (α, α∨) is defined
on C0

T (V ) by the formula:

Pαη(t) = η(t) − inf
t≥s≥0

α∨(η(s))α, T ≥ t ≥ 0.

A path η ∈ C0
T (V ) is called α-dominant when α∨(η(t)) ≥ 0 for all t ∈ [0, T ].

The following properties of the Pitman transform are easily established.

Proposition 3.2. (i) The transformation Pα : C0
T (V ) → C0

T (V ) is continuous.
(ii) For all η ∈ C0

T (V ), the path Pαη is α-dominant and Pαη = η if and only
if η is α-dominant.

(iii) The transformation Pα is an idempotent, i.e. PαPαη = Pαη for all η ∈
C0

T (V ).
(iv)) If π is α-dominant, and 0 ≤ x ≤ α∨(π(T )), then there exists a unique

path η in C0
T (V ) such that

Pαη = π
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and η(T ) = π(T ) − xα. Moreover for 0 ≤ t ≤ T

η(t) = π(t) − min[x, inf
T≥s≥t

α∨(π(s))]α.

3.2. Littelmann path operators. Let V, V ∨, α, α∨ be as above. Using propo-
sition 3.2, as in [2], we can define generalized Littelmann path operators (see [25]).

Definition 3.3. Let η ∈ C0
T (V ), and x ∈ R, then we define Ex

αη as the unique
path such that

PαEx
αη = Pαη and Ex

αη(T ) = η(T ) + xα

if −α∨(η(T )) + inf0≤t≤T α
∨(η(t)) ≤ x ≤ − inf0≤t≤T α

∨(η(t)) and Ex
αη = 0 other-

wise. The following formula holds

Ex
αη(t) = η(t) − min(−x, inf

t≤s≤T
α∨(η(s)) − inf

0≤s≤T
α∨(η(s)))α

if −α∨(T ) + inf0≤t≤T α
∨(η(t)) ≤ x ≤ 0, and

Ex
αη(t) = η(t) − min(0,−x− inf

0≤s≤T
α∨(η(s)) + inf

0≤s≤t
α∨(η(s)))α

if 0 ≤ x ≤ − inf0≤t≤T α
∨(η(t)).

Here, as in the definition of crystals, 0 is a ghost element. The following result
is immediate from the definition of the Littelmann operators.

Proposition 3.4. E0
αη = η and Ex

αEy
αη = Ex+y

α η as long as Ey
αη 6= 0.

We shall also use the notation Fx
α = E−x

α for x ≥ 0, and denote by Hx
α the

restriction of the operator Fx
α to α-dominant paths. Let π be an α-dominant path

in C0
T (V ) and 0 ≤ x ≤ α∨(T ), then Hx

απ is the unique path in C0
T (V ) such that

PαHx
απ = π

and
Hx

απ(T ) = π(T ) − xα.

Observe that in this equality

x = − inf
0≤t≤T

α∨(Hx
απ(t)).

3.3. Product of Pitman transforms. Let α, β ∈ V and α∨, β∨ ∈ V ∨ be
such that α∨(β) < 0 and β∨(α) < 0. Replacing if necessary (α, α∨, β, β∨) by
(tα, α∨/t, β/t, tβ∨), which does not change Pα and Pβ , we will assume that α∨(β) =
β∨(α). We use the notations

ρ = −1

2
α∨(β) = −1

2
β∨(α), X(s) = α∨(π(s)), Y (s) = β∨(π(s)).

The following result is proved in [2].

Theorem 3.5. Let n be a positive integer, then if ρ ≥ cos π
n ,

(PαPβPα . . .
︸ ︷︷ ︸

n terms

)π(t) = π(t) − inf
t≥s0≥s1≥...≥sn−1≥0

(
n−1∑

i=0

Ti(ρ)Z
(i)(si)

)
α

− inf
t≥s0≥s1≥...≥sn−2≥0

(
n−2∑

i=0

Ti(ρ)Z
(i+1)(si)

)
β(3.1)
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where Z(k) = X if k is even and Z(k) = Y if k is odd. The Tk(x) are the Tchebycheff
polynomials defined by

(3.2) T0(x) = 1, T1(x) = 2x, 2xTk(x) = Tk−1(x) + Tk+1(x) for k ≥ 1.

The Tchebycheff polynomials satisfy Tk(cos θ) = sin(k+1)θ
sin θ and, in particular,

under the assumptions on ρ and n, Tk(ρ) ≥ 0 for all k ≤ n − 1. An important
property of the Pitman transforms is the following corollary (see [2]).

Theorem 3.6. (Generalized braid relations for the Pitman transforms.) Let
α, β ∈ V and α∨, β∨ ∈ V ∨ be such that α∨(α) = β∨(β) = 2, and α∨(β) <
0, β∨(α) < 0 and α∨(β)β∨(α) = 4 cos2 π

n , where n ≥ 2 is some integer. Then

PαPβPα . . . = PβPαPβ . . .

where there are n factors in each product.

3.4. Pitman transforms for Coxeter groups. Let (W,S) be a Coxeter
system, with a realization in the space V . For a simple reflection s, denote by Pαs

or Ps the Pitman transform associated with the pair (αs, α
∨
s ). From theorem 3.6

and Matsumoto’s lemma [[4], Ch. IV, No. 1.5. Prop.5] we deduce:

Theorem 3.7. Let w = s1 · · · sr be a reduced decomposition of w ∈ W , with
s1, · · · , sr ∈ S. Then

Pw := Ps1 · · · Psr

depends only on w and not on the chosen decomposition.

When W is finite, it has a unique longest element, denoted by w0. The trans-
formation Pw0 plays a fundamental role in the sequel. The following result is proved
in [2].

Proposition 3.8. For any path η ∈ C0
T (V ), the path Pw0η takes values in

the closed Weyl chamber C. Furthermore Pw0 is an idempotent and PwPw0 =
Pw0Pw = Pw0 for all w ∈ W .

3.5. Braid relations for the H operators. Let w ∈ W and fix a reduced
decomposition w = s1 . . . sp. For any path η in C0

T (V ), denote ηp = η and for
k = 2, . . . , p,

ηk−1 = Psk
. . .Psp

η.

Then ηk−1 = Psk
ηk is αsk

-dominant, by proposition 3.2 (ii) and

ηk = Fxk
sk
ηk−1 = Hxk

sk
ηk−1

where

(3.3) xk = − inf
0≤t≤T

α∨
sk

(ηk(t)).

Observe that

(3.4) xk ∈ [0, α∨
sk

(ηk−1(T ))]

and

ηk−1(T ) = ηk(T ) − xkαsk
;

thus

ηk−1(T ) = π(T ) −
p
∑

i=k

xiαsi
.
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Furthermore,

(3.5) ηk = Hxk
sk
Hxk−1

sk−1
· · ·Hx1

s1
Pwη,

and the numbers (x1, . . . , xk) are uniquely determined by this equation.
Let w ∈ W be an element of the Coxeter group. We consider two reduced

decompositions
w = s1 · · · sp, w = s′1 · · · s′p

of w. Let i = (s1, · · · , sp) and j = (s′1, · · · , s′p).
Let η : [0, T ] → V be a continuous path such that η(0) = 0, and let (x1, . . . , xp),

respectively (y1, . . . , yp), be the numbers determined by equation (3.5) for the two
decompositions i and j. The following theorem states that the correspondance
between the xn’s and the yn’s actually does not depend on the path η. In other
words, we have the following braid relation for the operators H.

(3.6) Hxp
sp

· · ·Hx2
s2
Hx1

s1
= Hyp

s′

p
· · ·Hy2

s′

2
Hy1

s′

1
.

Theorem 3.9. There exists a piecewise linear continuous map φj
i : Rp → Rp

such that for all paths η ∈ C0
T (V ),

(y1, · · · , yp) = φj
i(x1, · · · , xp).

Proof. First step: If the roots α, β generate a system of type A1 × A1 and
w = sαsβ = sβsα, then Pα and Pβ commute, and it is immediate that x1 = y2,
x2 = y1. Let α, α∨ and β, β∨ be such that

α∨(α) = β∨(β) = 2, α∨(β) = β∨(α) = −1,

then α and β generate a root system of type A2 and the braid relation is

w0 = sαsβsα = sβsαsβ.

We prove that the following map

(3.7)
x1 = (y2 − y1) ∧ y3 y1 = (x2 − x1) ∧ x3

x2 = y1 + y3 y2 = x1 + x3

x3 = y1 ∨ (y2 − y3) y3 = x1 ∨ (x2 − x3)

satisfies the required properties. Assume that, for π = Pw0η,

η = Hx3
α Hx2

β Hx1
α π.

Then define η2 = Pαη, η1 = PβPαη, η0 = π = PαPβPαη. Using theorem 3.5 for
computing the paths ηi one gets the explicit formulas.

x3 = − inf0≤s≤T α
∨(η(s))

x2 = − inf0≤s2≤s1≤T (β∨(η(s1)) + α∨(η(s2)))
x1 = − inf0≤s2≤s1≤T (α∨(η(s1)) + β∨(η(s2))) − x3.

Similar formulas are obtained for the yi coming from the other reduced decomposi-
tion, by exchanging the roles of α and β. The formula (3.7) follows by inspection.

In the context of crystals, this result is well known and first appeared in Lusztig
[27] and Kashiwara [20]. We observe that it can also be obtained from the consid-
erations of section 6.6, see especially 6.7.

Second step: When the roots generate a root system of type An, using Mat-
sumoto’s lemma, one can pass from one reduced decomposition to another by a
sequence of braid relations corresponding to the two cases of the first step.
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Third step: We consider now the case where the roots generate the dihedral
group I(m), and w = sαsβ ... = sβsα... is the longest element in W . We will use
an embedding of the dihedral group I(m) in the Weyl group of the system Am−1,
see e.g. Bourbaki [4], ch. V, 6, Lemme 2. Recall the Tchebicheff polynomials Tk

defined in (3.2). Let λ = cos(2π/m), a1 = a2 = 1 and, for k ≥ 1,

a2k = Tk−1(λ), a2k+1 = Tk(λ) + Tk−1(λ)

then,

(3.8) a2k + a2k+2 = a2k+1, a2k+1a2k−1 + a2k+1 = (1 + a3)a2k,

Moreover ak > 0 when k < m and am = 0.
In the Euclidean space V = Rm−1 we choose simple roots α1, · · · , αm−1 which

satisfy 〈αi, αj〉 = aij where aij = 2 if i = j, aij = −1 if |i − j| = 1, aij = 0
otherwise. Let α∨

i = αi and si = sαi
. These generate a root system of type Am−1.

Let Π be the two dimensional plane defined as the set of x ∈ V such that for
all n < m,

〈αn, x〉 = an〈α1, x〉
if n is odd, and

〈αn, x〉 = an〈α2, x〉
if n is even. It follows from the relation (3.8) that the vectors

α =
∑

n odd,n<m

anαn, β =
∑

n even,n<m

anαn

are in Π. Let α∨ = 2α/||α||2, β∨ = 2β/||β||2 and

τ1 = s1s3s5 · · · s2p−1,

τ2 = s2s4s6 · · · s2r,

where 2p = m− 1, r = p when m is odd and 2p = m, r = p− 1 when m is even. Let
w0 be the longest element in the Weyl group of Am−1. Its length is q = (m−1)m/2.
We first consider the case where m is odd, m = 2p+ 1, q = pm. Then

w0 = (τ1τ2)
pτ1, and w0 = τ2(τ1τ2)

p

are two reduced decompositions of w0. Since (τ1τ2)
m = Id the angle between α

and −β is π/m and these vectors are the simple roots of the dihedral system I(m).
Let γ be a continuous path in Π, let γp = γ and for 1 < k ≤ p, γk−1 = Pα2k−1

γk

and

zk(t) = − inf
0≤s≤t

α∨
2k−1(γk(s)).

Lemma 3.10. Let γ be a continuous path with values in Π and let

x(t) = − inf
0≤s≤t

α∨(γ(s)).

Then, for all k, zk(t) = a2k−1x(t) and

Pτ1γ(t) = Pα1Pα3Pα5 · · · Pα2p−1γ(t) = γ(t) − inf
s≤t

α∨(γ(s))α = Pαγ(t).
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Proof. First, notice that α∨(γ(t)) = α∨
1 (γ(t)). Since γ is in Π, one has

zp(t) = − inf
0≤s≤t

α∨
2p−1(γ(s)) = − inf

0≤s≤t
a2p−1α

∨
1 (γ(s)) = a2p−1x(t)

where we use the positivity of a2p−1. Therefore

γp−1(t) = Pα2p−1γ(t) = γ(t) + zp(t)α2p−1 = γ(t) + a2p−1x(t)α2p−1.

Now, since the α2i+1 are orthogonal,

zp−1(t) = − inf
0≤s≤t

α∨
2p−3(γp−1(s)) = − inf

0≤s≤t
α∨

2p−3(γ(s)) = a2p−3x(t),

and

γp−2(t) = Pα2p−3γp−1(t) = γp−1(t) + zp−1(t)α2p−3

= γ(t) + x(t)(a2p−3α2p−3 + a2p−1α2p−1).

Continuing, we obtain that

zk(t) = a2k−1x(t)

γk(t) = γ(t) + x(t)(a2k−1α2k−1 + · · · + a2p−1α2p−1)

Since α = α1 + a3α3 + a5α5 + · · · + a2p−1α2p−1 we obtain the lemma. �

We have similarly, if γ is a path in Π,

Pτ2γ(t) = Pα2Pα4Pα6 · · · Pα2r
γ(t) = γ(t) − inf

s≤t
β∨(γ(s))β = Pβγ(t).

Let i = (si1 , · · · , siq
) = (i1, i2, · · · , im) and j = (sj1 , · · · , sjq

) = (j1, j2, · · · , jm)
where ik = jk+1 = (s1, s3, · · · , s2p−1) when k is odd and ik = jk+1 = (s2, s4, · · · , s2p)
when k is even. We write explicitly

w0 = (τ1τ2)
pτ1 = si1 · · · siq

, w0 = τ2(τ1τ2)
p = sj1 · · · sjq

.

Let us denote by φj
i : Rq → Rq the mapping given by the second step corrresponding

to these two reduced decompositions of w0 in the Weyl group of Am−1.
Let γ be a path with values in Π. If we consider it as a path in V we can set

ηq = η̃q = γ and, for n = 1, 2, . . . , q,

ηn−1 = Pαin
ηn, zn = − inf

0≤t≤T
α∨

in
(ηn(t))

η̃n−1 = Pαjn
η̃n, z̃n = − inf

0≤t≤T
α∨

jn
(η̃n(t)).

Then, by definition,

(z̃1, · · · , z̃q) = φj
i(z1, · · · , zq).

We now consider γ as a path in Π. We let

(u1, u2, · · · , um) = (α, β, α, β, · · · , α)

and

(v1, v2, · · · , vm) = (β, α, β, α, · · · , β).

In I(m) the two reduced decompositions of the longest element are

su1 · · · sum
= sv1 · · · svm

.

We introduce γm = γ̃m = γ, and, for n = 1, 2, . . . ,m,

γn−1 = Pun
. . .Pum

γm, γ̃n−1 = Pvn
. . .Pum

γ̃m

xn = − inf
0≤t≤T

u∨n(γn(t)), x̃n = − inf
0≤t≤T

v∨n (γ̃n(t)).
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It follows from lemma 3.10 and from its analogue with α replaced by β that

z1 = a1x1, z2 = a3x1, · · · , zp = a2p−1x1

zp+1 = a2x2, zp+2 = a4x2, · · · , z2p = a2px2

and more generally, for k = 0, · · ·
a−1
1 z2kp+1 = a−1

3 z2kp+2 = · · · = a−1
2p−1z2kp+p = xk+1

a−1
2 z(2k+1)p+1 = a−1

4 z(2k+1)p+2 = · · · = a−1
2p z(2k+2)p = xk+2.

This defines a linear map

(x1, · · · , xm) = g(z1, z2, · · · , zq).

Analogously exchanging the role of α and β we define a similar map

(x̃1, · · · , x̃m) = g̃(z̃1, z̃2, · · · , z̃q)

(for instance z̃1 = a2x̃1, z̃2 = a3x̃1, · · · ). Then we see that

(x1, · · · , xm) = φ(x̃1, · · · , x̃m)

where
φ = g̃ ◦ φj

i ◦ g−1.

The proof when m is even is similar (when m = 2p, w0 = (τ1τ2)
p and w0 = (τ2τ1)

p

are two reduced decompositions of w0). This proves the theorem in the dihedral
case.

Fourth step. We use Matsumoto’s lemma to reduce the general case to the
dihedral case.

This ends the proof of theorem 3.9. �

Remark 3.11. Although the given proof is constructive, it gives a complicated

expression for φj
i which can sometimes be simplified. In the dihedral case I(m),

for the Weyl group case, i.e. m = 3, 4, 6, these expressions are given in Littelmann
[26]. For m = 5 it can be shown by a tedious verification that it is given when
α, β have the same length, by a similar formula. Thus for m = 2, 3, 4, 5, 6 let
c0 = 1, c1 = 2 cos(π/m), cn+1 + cn−1 = c1cn for n ≥ 1, and

u = max(ckxk+1−ck−1xk+2, 0 ≤ k ≤ m−3), v = min(ckxk+2−ck+1xk+1, 1 ≤ k ≤ m)

Then the expressions are given by

ym = max(xm−1 − c1xm, u)

ym−1 = xm + max(xm−2 − c2xm, c1u)

y2 = x1 + min(x3 − c2x1, c1v)

y1 = min(x2 − c1x1, v)

and
y1 + y3 + · · · = x2 + x4 + · · ·
y2 + y4 + · · · = x1 + x3 + · · ·

This determines completely (y1, · · · , ym) as a function of (x1, · · · , xm) when m ≤ 6.
For m = 7 we think (and made a computer check) that we have to add that

y7 + y5 = x6 + max(c2x1, x4 − c3x7, w)

w = min(c2u, x4 − c2v,max(x6 − c1x5 + x4 + c2u, c1x3 − x2 − c2v).



12 PHILIPPE BIANE, PHILIPPE BOUGEROL, AND NEIL O’CONNELL

We do not know of similar formulas for m ≥ 8.

Remark 3.12. The map given by theorem 3.9 is unique on the set of all possible
coordinates of paths. We will see in the next section that this set is a convex cone.

Since the value of the map φj
i is irrelevant outside this cone, we will assume that

there exists a unique such map for each pair of reduced decompositions i, j.

4. Continuous Littelmann module

4.1. String parametrization of C0
T (V ). Let (W,S, V, V ∨) be a realization

of the Coxeter system (W,S). We say that a path is dominant if it takes its values in
the closed Weyl chamber C. Thus a path is dominant if and only if it is α-dominant
for all simple roots α.

Definition 4.1. Let π ∈ C0
T (V ) be a dominant path, and w ∈W . We define

Lw
π = {η ∈ C0

T (V );Pwη = π}.

These sets are defined for arbitrary Coxeter groups. We shall establish their
main properties in the case of finite Coxeter groups, where they are analogues
of Demazure-Littelmann modules. It remains an interesting problem to establish
similar properties in the general case.

From now on we assume that W is finite, with longest element w0, and we
denote Lπ = Lw0

π , which we call the Littelmann module associated with π. We will
see that Lπ ∪ {0} is invariant under the Littelmann operators.

For notational convenience, we sometimes write α∨η instead of α∨(η).
Let η ∈ Lπ, where π is dominant and w0 = s1 . . . sq be a reduced decomposition,

then we have seen that

η = Hxq
sq
Hxq−1

sq−1
· · ·Hx1

s1
π

for a unique sequence

̺i(η) = (x1, . . . , xq).

Following Berenstein and Zelevinsky [3], we call ̺i(η) the i-string parametrization
of η, or the string parametrization if no confusion is possible.

We let

Cπ
i = ̺i(Lπ),

this is the set of all the (x1, · · · , xq) ∈ Rq which occur in the string parametrizations
of the elements of Lπ.

Proposition 4.2. The set Lπ is compact and the map ̺i is a bicontinuous
bijection from Lπ onto its image Cπ

i .

Proof. The map ̺i has an inverse

̺−1
i (x1, · · · , xq) = Hxq

sq
Hxq−1

sq−1
· · ·Hx1

s1
π,

hence it is bijective. It is clear that ̺i and ̺−1
i are continuous. Since Pw0 is

continuous, Lπ = {η;Pw0(η) = π} is closed. Using ̺−1
i we easily see that Lπ is

equicontinuous, it is thus compact by Ascoli’s theorem. �

We will study Cπ
i in detail in the following sections.
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4.2. The crystallographic case. In this section we consider the case of a
Weyl group W with a crystallographic root system. When α is a root and α∨ its
coroot, then E1

α and E−1
α from definition 3.3 coincide with the Littelmann operators

eα and fα, defined in [25]. Recall that a path η is called integral in [25] if its
endpoint η(T ) is in the weight lattice and if, for each simple root α, the minimum
of the function α∨(η(t)) over [0, T ] is an integer. The class of integral paths is
invariant under the Littelmann operators.

Let π be a dominant integral path. The discrete Littelmann module Bπ is
defined as the orbit of π under the semigroup generated by all the transformations
eα, fα, for all simple roots α.

Let i = (s1, · · · , sq) where w0 = s1 · · · sq is a reduced decomposition, then it
follows from Littelmann’s theory that

Bπ = {η ∈ Lπ;x1, · · · , xq ∈ N} = ̺−1
i ({(x1, · · · , xq) ∈ Cπ

i ;x1 ∈ N, · · · , xq ∈ N}).
Furthermore, the set Bπ has a crystal structure isomorphic to the Kashiwara crystal
associated with the highest weight π(T ). On Bπ the coordinates (x1, · · · , xq) are
called the string parametrization of the dual canonical basis by Berenstein and
Zelevinsky. They are described in Littelmann [26] and Berenstein and Zelevinsky
[3].

When restricted to Bπ, the Pitman operator Pα coincides with emax
α , i.e. the

operator sending η to en
αη, where n = max(k, ek

αη 6= 0).
For any path η : [0, T ] → V and λ > 0 let λη be the path defined by (λη)(t) =

λη(t) for 0 ≤ t ≤ T . The following results are immediate.

Proposition 4.3 (Scaling property). For any λ > 0, λLπ = Lλπ.

Proposition 4.4. If π is a dominant integral path, then the set

Bπ(Q) = ∪n∈N

1

n
Bnπ

is dense in Lπ.

Proposition 4.5. Let η ∈ C0
T (V ), r ∈ R, u > 0, then

Eru
α (uη) = uEr

α(η).

Proposition 4.6. Let π be a dominant path and a > 0 then Caπ
i = aCπ

i and,
for each η ∈ Lπ, ̺aπ(aη) = a̺π(η).

Actually a good interpretation of Lπ in the Weyl group case is as the ”limit” of
1
nBnπ when n→ ∞. In the general Coxeter case only the limiting object is defined.

4.3. Polyhedral nature of the crystal for a Weyl group. Let W be a
finite Weyl group, associated to a crystallographic root system. Let Bπ be the
discrete Littelmann module associated with an integral dominant path π. Recall
that it is the image of π under all the products of the Littelmann operators eα, fα,
for α simple roots. We fix a reduced decomposition w0 = s1 · · · sq of the longest
element and let i = (s1, · · · , sq). We have seen that if ρi : Lπ → Cπ

i is the string
parametrization of the continuous module Lπ, then

Bπ = {η ∈ Lπ;x1, · · · , xq ∈ N} = ̺−1
i ({(x1, · · · , xq) ∈ Cπ

i ;x1 ∈ N, · · · , xq ∈ N}).
Therefore the set

C̃π
i = Cπ

i ∩ Nq
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is the image of the discrete Littelmann module Bπ, or equivalently, the image of
the Kashiwara crystal with highest weight π(T ), under the string parametrization
of Littelmann [26] and Berenstein and Zelevinsky [3]. Let

Kπ = {(x1, · · · , xq) ∈ Rq; 0 ≤ xr ≤ α∨
ir

(π(T ) −
r−1∑

n=1

xnαin
), r = 1, · · · q}.

It is shown in Littelmann [26] that there exists a convex rational polyhedral cone
Ci in Rq, depending only on i such that, for all dominant integral paths π,

C̃π
i = Ci ∩ Nq ∩Kπ.

This cone is described explicitly in Berenstein and Zelevinsky [3]. Recall that
Cπ

i = ̺i(Lπ). Using propositions 4.3, 4.6, 4.5 it is easy to see that the following
holds.

Proposition 4.7. For all dominant paths π,

Cπ
i = Ci ∩Kπ.

4.4. The cone in the general case. We now consider a general Coxeter
system (W,S), with W finite, realized in V .

Theorem 4.8. Let i be a reduced decomposition of w0, then there exists a
unique polyhedral cone Ci in Rq such that for any dominant path π

Cπ
i = Ci ∩Kπ.

In particular Cπ
i depends only on λ = π(T ).

Proof. It remains to consider the non crystallographic Coxeter systems. It is
clearly enough to consider reduced systems. We use their classification: W is either
a dihedral group I(m) or H3 or H4 (see Humphreys [17]), and the same trick as
the one used in the proof of theorem 3.9.

We first consider the case I(m) where m = 2p+ 1 and we use the notation of
the proof of theorem 3.9. Let i = (i1, · · · , iq) be as in that proof, and write

w0 = (τ1τ2)
pτ1 = si1 · · · siq

for the longest word in Am−1. Let γ be a path with values in the plane Π. If we
consider γ as a path in V = Rm−1 we can set, for q = (m− 1)m/2,

ηq = γ

and, for n = 1, 2, . . . , q

ηn−1 = Pαin
ηn, zn = − inf

0≤t≤T
α∨

in
(ηn(t)).

We can also consider γ as a path in Π, with the realization of I(m). Let

u = (u1, u2, · · · , um) = (α, β, α, β, · · · , α).

Let η̃m = γ and, for n = 1, 2, . . . ,m,

η̃n−1 = Pun
. . .Pum

ηm, xn = − inf
0≤t≤T

u∨n(ηn(t)).

We have seen that the map

(x1, · · · , xm) = g(z1, z2, · · · , zq),
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is linear. Let Ci be the cone associated with i in Am−1, then Cu = g(Ci) is the
cone in Rm associated with the reduced decomposition αβ · · ·α of the longest word
in I(m). Furthermore, for any dominant path π in Π, Cπ

u = Cu ∩Kπ.
The proof when m is even is similar.

In order to deal with the cases H3 and H4 it is enough, using an analogous
proof to embed these systems in some Weyl groups.

Let us first consider the case of H4. We use the embedding of H4 in E8 (see
[29]). Consider the following indexation of the simple roots of the system E8:

System E8

87643

5

21

d

dd d dd dd

In the euclidean space V = R8 the roots α1, ..., α8, satisfy 〈αi, αj〉 = −1 or 0

depending whether they are linked or not. Let φ = (1 +
√

5)/2. We consider
the 4-dimensional subspace Π of V defined as the set of x ∈ V orthogonal to
α8−φα1, α7−φα2, α6−φα3 and φα5−α4. Let si be the reflection which corresponds
to αi and

τ1 = s1s8, τ2 = s2s7, τ3 = s3s6, τ4 = s4s5.

One checks easily that τ1, τ2, τ3, τ4 generate H4 and that the vectors

α̃1 = α1 + φα8, α̃2 = α2 + φα7, α̃3 = α3 + φα6, α̃4 = α4 + φ−1α5

are in Π. If π is a continuous path in Π, then, for i = 1, · · · , 4, if α̃∨
i = α̃i/(2||α̃i||2),

Pτi
π(t) = π(t) − inf

0≤s≤t
α̃∨

i (π(s))α̃i.

The case of H3 is similar by using D6:

System D6
6

3

5

421

d

d

@
@@

�
��

dddd

In V = R6 we choose the roots α1, ..., α6 with 〈αi, αj〉 = −1 if they are linked.
We define a 3-dimensional subspace Π defined as the set of x ∈ V orthogonal to
α5 − φα1, α4 − φα2 and φα6 − α3. Then the reflections

(4.1) τ1 = s1s5, τ2 = s2s4, τ3 = s3s6,

generate H3 and

α̃1 = α1 + aα5, α̃2 = α2 + aα4, α̃3 = α3 + bα6

are in Π. �
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We will prove in corollary 5.3 that the cones Ci have the following description:
for any simple root α, let j(α) be a reduced decomposition of w0 which begins by
sα. Then

Ci = {x ∈ Rq;φ
j(α)
i (x)1 ≥ 0, for all simple roots α}.

4.5. The cone in the dihedral case. In this section we provide explicit
equations for the cone, in the dihedral case, following the approach of Littelmann
[26] in the Weyl group case.

Lemma 4.9. Let α, β ∈ V , α∨, β∨ ∈ V ∨ and c = −β∨(α). Consider a contin-
uous path η ∈ C0

T (V ) and π = Pαη. Let

U = min
T≥t≥0

[aβ∨(η(t)) + b min
t≥s≥0

α∨(η(s))],

V = min
T≥t≥0

[a min
t≥s≥0

β∨(π(s) + (ac− b)α∨(π(t))],

W = a min
T≥t≥0

β∨(π(t)) − (ac− b) min
T≥t≥0

α∨(η(t)),

where a, b are real numbers such that a ≥ 0, ac− b ≥ 0. Then U = min(V,W ).

Proof. Since π = Pαη,

β∨(η(t)) = β∨(π(t)) − c min
t≥s≥0

α∨(η(s)),

thus

U = min
T≥t≥0

[aβ∨(π(t)) + (b− ac) min
t≥s≥0

α∨(η(s))]

= min
T≥t≥0

[ min
t≥s≥0

aβ∨(π(s)) + (b− ac) min
t≥s≥0

α∨(η(s))].

where we have used the fact that, if f, g : [0, T ] → R are two continuous functions,
and if g is non decreasing, then

min
T≥t≥0

[f(t) + g(t)] = min
T≥t≥0

[ min
t≥s≥0

f(s) + g(t)].

Since α∨(π(t)) ≥ −mint≥s≥0 α
∨(η(s)),

min
t≥s≥0

aβ∨(π(s)) + (ac− b)α∨(π(t)) ≥ min
t≥s≥0

aβ∨(π(s)) − (ac− b) min
t≥s≥0

α∨(η(s)).

Let t0 be the largest t ≤ T where the minimum of the right hand side is achieved.
Suppose that t0 < T . If α∨(π(t0)) > −mint0≥s≥0 α

∨(η(s)) then mint≥s≥0 α
∨(η(s))

is locally constant on the right of t0. Since mint≥s≥0 aβ
∨(π(s)) is non increasing,

it follows that t0 is not maximal. Therefore, when t0 < T,

α∨(π(t0)) = − min
t0≥s≥0

α∨(η(s))

and

U = min
T≥t≥0

[ min
t≥s≥0

aβ∨(π(s)) − (ac− b) inf
t≥s≥0

α∨(η(s))] = V ≤W.

When t0 = T, then U = W ≤ V . Thus U = min(V,W ). �

We consider a realization of the dihedral system I(m) with two simple roots
α, β and c := −α∨(β) = −β∨(α) = 2 cos π

m . Let

an =
sin(nπ/m)

sin(π/m)
.
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Then a0 = 0, a1 = 1, and an+1 + an−1 = can, an > 0 if 1 ≤ n ≤ m− 1 and am = 0.
Let w0 = s1 . . . sm be a reduced decomposition of the longest element w0 ∈ W ,
i = (s1, · · · , sm) and α1, · · · , αm be the simple roots associated with s1, · · · , sm.
This sequence is either (α, β, α, · · · ) or (β, α, β, · · · ). Clearly the two roots play
a symmetric role, and the cones associated with these two decompositions are the
same. We define α0 as the simple root not equal to α1. As before, when η ∈ C0

T (V ),
we define ηm = η and for k = 0, · · · ,m− 1, ηk = Psk+1

. . .Psm
η, and

xk = − min
0≤t≤T

α∨
k (ηk(t)) for k = 1, . . . ,m.

Proposition 4.10. The cone for the dihedral system I(m) is given by

Ci = {(x1, · · · , xm) ∈ Rm
+ ;

xm−1

am−1
≥ xm−2

am−2
≥ · · · ≥ x1

a1
}.

Proof. For any p, k such that 0 ≤ p ≤ m, 0 ≤ k ≤ p, let

Vk = min
T≥t≥0

[ak+1α
∨
p+1−k(ηp−k(t)) + ak min

t≥s≥0
α∨

p−k(ηp−k(s))],

Wk = ak min
T≥t≥0

α∨
p−k(ηp−k(t)) − ak+1 min

T≥t≥0
α∨

p+1−k(ηp+1−k(t)).

Since ak−1 + ak+1 = cak, the lemma above gives that Vk = min(Wk+1, Vk+1).
Therefore

V0 = min(W1,W2, · · · ,Wp, Vp).

Notice that

Vp = min
T≥t≥0

[ap+1α
∨
1 (η0(t)) + ap min

t≥s≥0
α∨

0 (η0(s))] = 0

and

Wp = ap+1x1

since η0 = Pw0η is dominant. Furthermore

V0 = min
0≤t≤T

α∨
p+1(ηp(t))

since a0 = 0 and a1 = 1. Hence,

(4.2) min
0≤t≤T

α∨
p+1(ηp(t)) = min(a2xp − a1xp−1, · · · , apx2 − ap−1x1, ap+1x1, 0).

The path ηm−1 = Pαm
η is αm-dominant, therefore α∨

m(ηm−1(t)) ≥ 0 and it follows
from (4.2) applied with p = m− 1 that for k = 1, · · · ,m− 2

am−kxk+1 − am−k−1xk ≥ 0,

which is equivalent, since am−k = ak to

xm−1

am−1
≥ xm−2

am−2
≥ · · · ≥ x1

a1
≥ 0.

Conversely, we suppose that these inequalities hold, i.e. that for k = 1, · · · ,m− 2

(4.3) ak+1xm−k − akxm−k−1 ≥ 0,

am−kxk+1 − am−k−1xk ≥ 0,

and that (x1, · · · , xm) ∈ Kπ for some dominant path π. Let us show that

η = Hxm
αm

· · ·Hx1
α1
π
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is well defined. Since the string parametrization of η is x this will prove the propo-
sition. It is enough to show, by induction on p = 0, · · · ,m that

ηp := Hxp
αp
Hxp−1

αp−1
· · · Fx1

α1
π

is αp+1-dominant. This is clear for p = 0 since η0 = π is dominant. If we suppose
that this is true until p− 1 can apply (4.2) and write that

min
0≤t≤T

α∨
p+1(ηp(t)) = min(a2xp − a1xp−1, · · · , apx2 − ap−1x1, ap+1x1, 0)

Since c ≤ 2, it is easy to see that

an−1

an
≥ an−2

an−1

for n ≤ m− 1. Therefore,

xk+1

xk
≥ am−k−1

am−k
≥ ap−k

ap−k+1

and α∨
p+1(ηp(t) ≥ 0 for all 0 ≤ t ≤ T . �

In the definition of Vk and Wk in the proof above, replace the sequence (ak) by
the sequence (ak+1). We obtain the following formula.

Proposition 4.11. If ym = −minT≥t≥0 α
∨
m−1(ηm(t)), then

ym = max{0, am−1xm−1−am−2xm, am−2xm−2−am−3xm−1, · · · , a2x2−a1x3, a1x1}

4.6. Remark on Gelfand Tsetlin cones. In the Weyl group case, the con-
tinuous cone appears in the description ot toric degeneration (see Caldero [5], Alex-
eev and Brion [1]). The polytopes Ci(λ) are called the string polytopes in Alexeev
and Brion [1]. Notice that they have shown that the classical Duistermaat Heckman
measure coincides with the one given below in Definition 5.4. Explicit inequalities
for the string cone Ci (and therefore for the string polytopes) in the Weyl group case
are given in full generality in Berenstein and Zelevinsky in [3, Thm.3.12]. Before,
Littelmann [26, Thm.4.2] has described it for the so called ”nice decompositions”
of w0. As explained in this paper they were introduced to generalize the Gelfand
Tsetlin cones.

For the convenience of the reader let us reproduce the description in the An

case, considered explicitely in Alexeev and Brion [1]. The standard reduced de-
composition of the longest element in the symmetric group W = Sn+1 is

w0 = (s1)(s2s1)(s3s2s1) . . . (snsn−1 . . . s1),

where si denotes the transposition exchanging i with i+ 1. Let us use the coordi-
nates xi,j with i, j ≥ 1, i+ j ≤ n+ 1. The string cone is defined by

xn,1 ≥ 0; xn−1,2 ≥ xn−1,1 ≥ 0; . . . x1,n ≥ · · · ≥ x1,1 ≥ 0,

and to define the polyhedron Cλ
i one has to add the inequalities

xi,j ≤ α∨
j (λ) − xi,j−1 +

i−1∑

k=1

(−xk,j−1 + 2xk,j − xk,j+1).

A more familiar description of this cone is in terms of Gelfand-Tsetlin patterns:

gi,j ≥ gi+1,j ≥ gi,j+1
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in variables gi,j , i, j ≥ 1, i+ j ≤ n+ 1 and with variables g0,i corresponding to λ:

λ =

n+1∑

i=0

g0,iǫi =

n+1∑

i=0

λiǫi, so that α∨
j (λ) = 〈λ, ǫj − ǫj+1〉 = λj − λj+1.

The linear change of coordinates is given by gi,j = λj +
∑i

k=1(xk,j−1 − xk,j).

4.7. Crystal structure of the Littelmann module. We now return to the
general case of a finite Coxeter group.

Let π be a dominant path in C0
T (V ). For η ∈ Lπ we define wt(η) = η(T ). Let

er
α be the generalized Littelmann operator Er

α defined in Definition 3.3, and

εα(η) = max{r ≥ 0; Er
α(η) 6= 0} = − inf

0≤t≤T
α∨(η(t))

ϕα(η) = max{r ≥ 0; E−r
α (η) 6= 0} = α∨(T ) − inf

0≤t≤T
α∨(η(t)).

Theorem 4.12. With the above definitions, Lπ is a normal continuous crystal
with highest weight π(T ).

Proof. All properties have been verified in the preceding sections, except the
highest weight property, but this follows from the fact that any η ∈ Lπ can be
written as

η = Hxq
sq
Hxq−1

sq−1
· · ·Hx1

s1
π,

see proposition 4.2. �

The geometry of this crystal is easy to describe, using the sets Cπ
i which pa-

rametrize Lπ. We have seen (cf. theorem 4.8) that Cπ
i depend on the path π

only through π(T ). We put on Cπ
i a continuous crystal structure in the follow-

ing way. Let i = (s1, · · · , sq) where w0 = s1 · · · sq is a reduced decomposition. If
x = (x1, · · · , xq) ∈ Cπ

i we set

wt(x) = π(T ) −
q
∑

k=1

xkαk.

If the simple root α is αs1 then we define er
α,i for r ∈ R by

er
α,i(x1, x2, · · · , xq) = (x1 + r, x2, · · · , xq) or 0

depending whether (x1 + r, · · · , xq) is in Cπ
i or not. We let, for b ∈ Cπ

i ,

εα(b) = max{r ≥ 0; er
α,i(b) 6= 0}

and

ϕα(b) = max{r ≥ 0; e−r
α,i(b) 6= 0}.

We now consider the case where α is not α1. We choose a reduced decomposition
w0 = s′1s

′
2 · · · s′q with αs′

1
= α and let j = (s′1, s

′
2, · · · , s′q). We can define er

α,j on
Cπ

j , εα, φα as above and transport this action on Cπ
i by the piecewise linear map

φj
i introduced in theorem 3.9. In other words

er
α,i = φj

i ◦ er
α,j ◦ φi

j.

Then ρi : Lπ → Cπ
i is an isomorphism of crystal. This first shows that our con-

struction does not depend on the chosen decompositions w0 = s′1s
′
2 · · · s′q and then

that the crystal structure on Lπ depends only on the extremity π(T ) of the path π:
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Theorem 4.13. If π and π̄ are two dominant paths such that π(T ) = π̄(T )
then the crystals on Lπ and Lπ̄ are isomorphic.

This is the analogue of Littelmann independence theorem (see [25]).

Definition 4.14. When W is finite, for λ ∈ C̄, we denote B(λ) the class of
the continuous crystals isomorphic to Lπ where π is a dominant path such that
π(T ) = λ.

4.8. Concatenation and closed crystals. The concatenation π ⋆ η of two
paths π : [0, T ] → V , η : [0, T ] → V is defined in Littelmann [25] as the path
π ⋆ η : [0, T ] → V given by (π ⋆ η)(t) = π(2t), and (π ⋆ η)(t + T/2) = π(T ) + η(t)
when 0 ≤ t ≤ T/2. Recall that Lπ is the crystal contained in C0

T (V ) generated
by a dominant path π. If π1 and π2 are two dominant paths, let D(π1, π2) =
Pw0(Lπ1 ⋆ Lπ2)) and

L(π1, π2) = ∪{Lπ;π ∈ D(π1, π2)}.
Since L(π1, π2) is a union of crystals it is itself a crystal.

Theorem 4.15. If π1 and π2 are two dominant paths, there exists a crystal
embedding

Θ : Lπ1 ⊗ Lπ2 → L(π1, π2) ⊂ C0
T (V )

defined by Θ(η1 ⊗ η2) = η1 ⋆ η2.

Proof. We have to show that, for simple roots α, for η1 ∈ Lπ1 , η2 ∈ Lπ2 , for
all s ∈ R,

Θ[es
α(η1 ⊗ η2)] = Es

α(η1 ⋆ η2).

This is a purely one-dimensional statement, which uses only one root, hence it
follows from the similar fact for Littelmann and Kashiwara crystals. For the con-
venience of the reader we provide a proof below.

For any x ≥ 0, let

Px
αη(t) = η(t) − min(0, x+ inf

0≤s≤t
α∨η(s))α.

Thus

Px
αη = η if inf

0≤s≤t
α∨η(s) ≥ −x

and

(4.4) Px
αη = Ey

αη

with y = (− inf0≤s≤T α
∨η(s) − x) ∨ 0.

Lemma 4.16. Let η1, η2,∈ C0
T (V ), x ≥ 0, y ∈ [0, α∨π(T )], and π be an α-

dominant path, then

(i) Pα(η1 ⋆ η2) = Pαη1 ⋆ Px
αη2 where x = α∨η1(T ) − inf0≤t≤T α

∨η1(t);
(ii) PαPx

α = Pα;
(iii) Px

αHy
απ = Hx∧y

α π.

Proof. For all t ∈ [0, T/2]

Pα(η1 ⋆ η2)(t) = Pαη1(t).



CONTINUOUS CRYSTAL AND DUISTERMAAT-HECKMANN MEASURE FOR COXETER GROUPS.21

Furthermore,

Pα(η1 ⋆ η2)((T + t)/2)
= (η1 ⋆ η2)((T + t)/2) − min[inf0≤s≤T α

∨η1(s), α
∨η1(T ) + inf0≤s≤t α

∨η2(s)]α
= η1(T ) − inf0≤s≤T α

∨η1(s)α+
η2(t) − min[0, inf0≤s≤t α

∨η2(s) + α∨η1(T ) − inf0≤s≤T α
∨η1(s)]α

= Pαη1(T ) + Px
αη2(t).

This proves (i), and (ii) follows from 4.4. Furthermore, inf0≤s≤T α
∨(Hy

απ(s)) = −y,
therefore (iii) follows also from 4.4. �

Proposition 4.17. Let π1, π2 be α-dominant, x ∈ [0, α∨π1(T )], y ∈ [0, α∨π2(T )],
z = min(y, α∨π1(T ) − x) and r = x+ y − z, then

Hx
απ1 ⋆Hy

απ2 = Hr
α(π1 ⋆Hz

απ2),

Proof. Let s = α∨(Hx
απ1(T )) − inf0≤t≤T α

∨(Hx
απ1)(t). By lemma 4.16:

Pα(Hx
απ1 ⋆Hy

απ2) = Pα(Hx
απ1) ⋆ Ps

α(Hy
απ2)

and Ps
αHy

απ2 = Hs∧y
α π2. Since PαHx

απ1 = π1 one has

Pα(Hx
απ1 ⋆Hy

απ2) = π1 ⋆Hs∧y
α π2.

Notice that s = α∨(π1(T )) − x. On the other hand,

(Hx
απ1 ⋆Hy

απ2)(T ) = Hx
απ1(T ) + Hy

απ2(T ) = π1(T ) + π2(T ) − (x+ y)α

(π1 ⋆Hs∧y
α π2)(T ) = π1(T ) + π2(T ) − (s ∧ y)α

and we know that η = Hr
απ is characterized by the properties Pαη = π and η(T ) =

π(T ) − rα. Therefore the proposition holds for r + s ∧ y = x+ y. �

We now prove that, for α ∈ Σ, η1 ∈ Lπ1 , η2 ∈ Lπ2 , for all s ∈ R,

Θ[es
α(η1 ⊗ η2)] = Es

α(η1 ⋆ η2).

Since es
αe

t
α = es+t

α and Es
αEt

α = Es+t
α it is sufficient to check this for s near 0. We

write η1 = Hx
απ1 and η2 = Hy

απ2 where π1 = Pα(η1), π2 = Pα(η2) are α-dominant.
By proposition 4.17, if z = min(y, α∨π1(T ) − x) and r = x+ y − z, then

Es
α(η1 ⋆ η2) = Es

α(Hx
απ1 ⋆Hy

απ2) = Es
αHr

α(π1 ⋆Hz
απ2).

We first show that if

(4.5) Es
α(η1 ⋆ η2) = 0

then es
α(η1 ⊗ η2) = 0. For |s| small enough (4.5) holds only when r = 0 and s > 0

or when s < 0 and

(4.6) r = α∨((π1 ⋆Hz
απ2)(T )) = α∨π1(T ) + α∨π2(T ) − 2z.

If r = 0, then z = min(y, α∨π1(T )− x) = x+ y hence x = 0 and y ≤ α∨π1(T ). But

εα(η1 ⊗ η2) = εα(η1) − min(ϕα(η1) − εα(η2), 0) = max(2x+ y − α∨π1(T ), x).

(notice that, in general, when π is α-dominant, εα(Hx
απ) = x and ϕα(Hx

απ) =
α∨π(T )− x). Therefore εα(η1 ⊗ η2) = 0 and es

α(η1 ⊗ η2) = 0. Now, if r is given by
(4.6), then

z = α∨π1(T ) − x+ α∨π2(T ) − y

since r = x+y−z. We know that α∨π2(T )−y ≥ 0, hence z = min(y, α∨π1(T )−x)
only if

z = α∨π1(T ) − x, α∨π2(T ) = y, y ≥ α∨π1(T ) − x.
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Then
εα(η1 ⊗ η2) = 2x+ y − α∨π1(T ).

On the other hand,

wt(η1 ⊗ η2) = wt(η1) + wt(η2) = π1(T ) − xα + π2(T ) − yα,

thus, using y = α∨π2(T ),

ϕα(η1 ⊗ η2) = εα(η1 ⊗ η2) + α∨(wt(η1 ⊗ η2)) = 0

and es
α(η1 ⊗ η2) = 0 when s < 0.

We now consider the case where (4.5) does not hold. Then for s small enough,

Es
α(η1 ⋆ η2) = Es

αHr
α(π1 ⋆Hz

απ2) = Hr−s
α (π1 ⋆Hz

απ2).

Using proposition 4.17, if s is small enough, and y > α∨π1(T ) − x, then

Hr−s
α (π1 ⋆Hz

απ2) = Hx−s
α π1 ⋆Hy

απ2 = Θ(es
α(Hx

απ1 ⊗Hy
απ2))

and if y < α∨π1(T ) − x, then

Hr−s
α (π1 ⋆Hz

απ2) = Hx
απ1 ⋆Hy−s

α π2 = Θ(es
α(Hx

απ1 ⊗Hy
απ2)).

The end of the proof is straightforward. �

This proves that the family of crystals B(λ), λ ∈ C̄ is closed. From theorem
4.12 and theorem 2.6, we get

Theorem 4.18. When W is a finite Coxeter group, there exists one and only
one closed family of highest weight normal continuous crystals B(λ), λ ∈ C̄.

4.9. Action ofW on the Littelmann crystal. Following Kashiwara [20],[22]
and Littelmann [25], we show that we can define an action of the Coxeter group
on each crystal Lπ. We first notice that for each simple root α, we can define an
involution Sα on the set of paths by

Sαη = Ex
αη for x = −α∨(η(T )).

In particular,

(4.7) Sαη(T ) = sα(η(T )).

Lemma 4.19. Let η ∈ C0
T (V ) and α ∈ Σ such that α∨(η(T )) < 0. For each

γ ∈ C0
T (V ) there exists m ∈ N such that, for all n ≥ 0,

Pα(γ ⋆ η⋆(m+n)) = Pα(γ ⋆ η⋆m) ⋆ Sα(η)⋆n.

Proof. By lemma 4.16,

Pα(γ ⋆ η⋆(n+1)) = Pα(γ ⋆ η⋆n) ⋆ Px
α(η)

where
x = α∨(γ ⋆ η⋆n)(T ) − min

0≤s≤T
α∨(γ ⋆ η⋆n)(s).

Let γmin = min0≤s≤T α
∨γ(s) and ηmin = min0≤s≤T α

∨η(s). Since α∨γ(T ) < 0,
there exists m > 0 such that for n ≥ m one has,

min
0≤s≤T

α∨(γ ⋆ η⋆n)(s) = min(γmin, α
∨(γ(T ) + kη(T )) + ηmin; 0 ≤ k ≤ n− 1)

= α∨(γ(T ) + (n− 1)η(T )) + ηmin.

Using that (γ ⋆ η⋆m)(T ) = γ(T ) +mη(T ) we have x = α∨η(T )− ηmin. In this case,
Px

α(η) = Sα(η), which proves the lemma by induction on n ≥ m. �
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Theorem 4.20. There is an action {Sw, w ∈ W} of the Coxeter group W on
each Lπ such that Ssα

= Sα when α is a simple root.

Proof. By Matsumoto’s lemma, it suffices to prove that the transformations
Sα satisfy to the braid relations. Therefore we can assume that W is a dihedral
group I(q). Consider two roots α, β generating W . Let η be a path, there exists
a sequence (αi) = α, β, α, . . . or β, α, β, . . . such that sα1sα2 . . . sαr

η(T ) ∈ −C̄. Let
η̃ = Sα1Sα2 . . . Sαr

η. Let sαq
· · · sα1 be a reduced decomposition. We show by

induction on k ≤ q that there exists mk ≥ 0 and a path γk such that

(4.8) Pαk
· · · Pα1(η̃

⋆(mk+n)) = γk ⋆ (Sαk
· · ·Sα1 η̃)

⋆n

For k = 1, this is the preceding lemma. Suppose that this holds for some k. Then

α∨
k+1(Sαk

· · ·Sα1 η̃(T )) ≤ 0

(cf. Bourbaki, [4], ch.5, no.4, Th. 1). Thus, by the lemma, there exists m such
that, for n ≥ 0,

Pαk+1
(γk⋆(Sαk

· · ·Sα1 η̃)
⋆(m+n)) = Pαk+1

(γk⋆(Sαk
· · ·Sα1 η̃)

⋆m)⋆(Sαk+1
Sαk

· · ·Sα1 η̃)
⋆n

Hence, by the induction hypothesis, if γk+1 = Pαk+1
(γk ⋆ (Sαk

· · ·Sα1 η̃)
⋆m), then

Pαk+1
Pαk

· · · Pα1((η̃
⋆(mk+m+n)) = γk+1 ⋆ (Sαk+1

Sαk
· · ·Sα1 η̃)

⋆n

We apply (4.8) with k = q, then there exists two reduced decompositions, and we
see that Sαq

Sαq−1 · · ·Sα1 η̃ does not depend on the reduced decomposition because
the left hand side does not, by the braid relations for the Pα. This implies easily
that Sαq

Sαq−1 · · ·Sα1η also does not depend on the reduced decomposition. �.

Using the crystal isomorphism between Lπ and the crystal B(π(T )) we see that

Corollary 4.21. The Coxeter group W acts on each crystal B(λ), where
λ ∈ C̄, in such a way that, for s = sα in S, and b ∈ B(λ),

Sα(b) = ex
α(b), where x = −α∨(wt(b)).

Notice that these Sα are not crystal morphisms.

4.10. Schützenberger involution. The classical Schützenberger involution

associates to a Young tableau T another Young tableau T̂ of the same shape. If
(P,Q) is the pair associated by Robinson-Schensted-Knuth (RSK) algorithm to

the word u1 · · ·un in the letters 1, · · · , k, then (P̂ , Q̂) is the pair associated with

u∗1 · · ·u∗n where i∗ = k + 1 − i, see e.g. Fulton [8]. It is remarkable that P̂ depends

only on P , and that Q̂ depends only on Q. We will establish an analogous property
for the analogue of the Schützenberger involution defined in [2] for finite Coxeter
groups. The crystallographic case has been recently investigated by Henriques and
Kamnitzer [14], [15], Morier-Genoud [28], and Lenart [24].

For any path η ∈ C0
T (V ), let

κη(t) = η(T − t) − η(T ), 0 ≤ t ≤ T.

Let us show that

Sη = −w0κη,

suitably interpreted, is the analogue of Schützenberger involution. Since w2
0 = id,

S is indeed an involution. The following is proved in [2].
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Proposition 4.22. For any η ∈ C0
T (V ),

Pw0Sη(T ) = Pw0η(T ).

As remarked there, this implies that the transformation on dominant paths

π 7→ Iπ = Pw0Sπ

gives the analogue of the Schützenberger involution on the Q′s. We will consider
the action on the crystal itself, i.e. the analogue of the Schützenberger involution
on the P ′s.

Let π be a dominant path and λ = π(T ). Notice that the transformation S
on C0

T (V ) does not preserve the Littelmann module Lπ. It sends Lπ onto LIπ. By
the preceding proposition λ = π(T ) = Iπ(T ), therefore Lπ and LIπ are crystals
isomorphic to B(λ). More precisely, there is a unique strict morphismG : Lπ → LIπ

such that G(π) = Iπ.
If α is a simple root, then α̃ = −w0α is also a simple root and α̃∨ = −α∨w0.

The following property is straightforward. In the An case, it was shown by Lascoux,
Leclerc and Thibon [23] and Henriques and Kamnitzer [14] that it characterizes
the Schützenberger involution on the crystals B(λ).

Lemma 4.23. For any path η in C0
T (V ), any r ∈ R, and any simple root α, one

has
Er

αSη = SE−r
α̃ η

εα̃(Sη)) = ϕα(η), ϕα̃(Sη)) = εα(η)
Sη(T ) = w0η(T ).

For each simple root α, we define the co-Pitman operators Fα by Fα = κPακ.
Note that these operators were defined in [2], section 4.2, where the unfortunate
notation Eα was used, however we prefer the notation here. If π is α-dominant,
then

FαHx
απ = Hz

απ

where z = α∨π(T ). In other words, FαHx
απ is the “lowest” element in the α-string

of π.

Proposition 4.24. If σ ∈ C0
T (V ), the string parameters of Fασ and Fασ(T )

depend only on the string parameters of σ and σ(T ).

Proof. Choose a reduced decomposition i(α) of w0 which ends with sα (i.e.
αsq

= α) and let ̺i(α)(σ) = (x1, x2, · · · , xq−1, xq). Then σ = Hxq
α Pασ, therefore

Fασ = Hz
αPασ for z = α∨(Pασ(T )) = α∨(σ(T )) + 2xq, hence

̺i(α)(Fασ) = (x1, x2, · · · , xq−1, z).

On the other hand, Fασ(T ) = Pασ(T ) − zα = σ(T ) + (xq − z)α. �

Proposition 4.25. Let η ∈ C0
T (V ), then Sη(T ) and the string parameters of

Sη depend only on η(T ) and on the string parameters of η.

Proof. One has (−w0)Pα(−w0) = Pα̃, (recall that α̃ = −w0α) and,

(4.9) SFα = Pα̃S.

Let i = (s1, · · · , sq), where w0 = s1 · · · sq is a reduced decomposition and i′ =
(s̃1, · · · , s̃q). Then w0 = s̃1 · · · s̃q is also a reduced decomposition. Let us compute
the i′ string coordinates ̺i′(Sη) = (y1, · · · , yq) of Sη, for which

Sη = Hyq

α̃q
Hyq−1

α̃q−1
. . .Hy1

α̃1
Pw0Sη.



CONTINUOUS CRYSTAL AND DUISTERMAAT-HECKMANN MEASURE FOR COXETER GROUPS.25

Let σq = η and, for any k = 0, · · · , q,
σk = Fαk+1

· · · Fαq
η

then, by (4.9),

Sσk = Pα̃k+1
. . .Pα̃q

Sη = Hyk

s̃k
. . .Hy1

s̃1
Pw0Sη.

It follows from the proposition above that σk(T ) and the string coordinates of σk

depend only on η(T ) and the string coordinates of η. In particular this is the case
of α∨

kσk(T ) and min0≤s≤T α
∨
k σk(s) and therefore of

yk = − inf
0≤s≤T

α̃∨
k (Sσk)(s) = − inf

0≤s≤T
α∨

k (−w0Sσk)(s)

= − inf
0≤s≤T

α∨
k (κσk)(s) = − inf

0≤s≤T
α∨

k (σk(T − s) − σk(T ))

= α∨
kσk(T ) − inf

0≤s≤T
α∨

k σk(s). �

Let η ∈ C0
T (V ). Fix a reduced decomposition i = (α1, · · · , αq) of w0 and let

(y1, · · · , yq) = ̺i(Sη) be the string parametrization of Sη. One has, by definition,

(4.10) Sη = Hyq
αq
. . .Hy1

α1
Pw0Sη.

Since Pw0Sη(T ) = Pw0η(T ), by proposition 4.22, we know that (y1, · · · , yq) is in
the polyhedron Cλ

i where λ = Pw0η(T ). Therefore we can define

S̃η = Hyq
αq

· · ·Hy1
α1
Pw0η.

In the An case, in the RSK interpretation the two paths Sη and S̃η have the same
P but not the same Q. It follows from lemma 4.23 that

Lemma 4.26. Let η ∈ C0
T (V ), then

S̃(Er
α(η)) = E−r

α̃ (S̃(η)), wt(S̃(η)) = w0 wt(η),

ϕα(S̃(η)) = εα̃(η), εα(S̃(η)) = φα̃(η).

Theorem 4.27. The map τ : C0
T (V ) → C0

T (V ) defined by

τ(η1 ⋆ η2) = S̃(Sη2 ⋆ Sη1)

is a crystal isomorphism.

Proof. Let η1, η2 ∈ C0
T (V ), σ = ϕα(η1) − εα(η2) and σ̃ = −σ. Then

S(Emin(r,−σ)+σ+

α η2) = E−min(r,−σ)−σ+

α̃ Sη2 = Emax(−r,σ̃)−σ̃−

α̃ Sη2

and

S(Emax(r,−σ)−σ−

α η1) = E−max(r,−σ)+σ−

α̃ Sη1 = Emin(−r,−σ̃)+σ̃+

α̃ Sη1

Therefore, using lemma 4.23,

S(Emin(r,−σ)+σ+

α η2) ⋆ S(Emax(r,−σ)−σ−

α η1) = E−r
α̃ (Sη2 ⋆ Sη1)

hence

τ(Er
α(η1 ⋆ η2)) = τ(Emax(r,−σ)−σ−

α η1 ⋆ Emin(r,−σ)+σ+

α η2)

= S̃(S(Emin(r,−σ)+σ+

α η2) ⋆ S(Emax(r,−σ)−σ−

α η1))

= S̃(E−r
α̃ (Sη2 ⋆ Sη1))

= Er
αS̃(Sη2 ⋆ Sη1)

= Er
ατ(η1 ⋆ η2).
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On the other hand, using lemma 4.26, and the fact that Sη(T ) = w0η(T ),

wt(τ(η1 ⋆ η2)) = wt(S̃(Sη2 ⋆ Sη1)) = w0 wt(Sη2 ⋆ Sη1)

w0(Sη2 ⋆ Sη1)(T ) = w0(w0(η2(T ) + η1(T ))) = wt(η1 ⋆ η2)

One checks analogously the intertwining relations εα◦τ = τ ◦εα and ϕα◦τ = τ ◦ϕα.
�

We can now define an involution Sλ on each continuous crystal of the family
{B(λ), λ ∈ C̄} by transporting the action of S on C0

T (V ):

Lπ

̺π
i

��

S
// LIπ

̺Iπ
i

��

B(λ)
Sλ

// B(λ)

where π is a dominant path such that π(T ) = λ. It does not depend on π itself by

proposition 4.25. Similarly we can define S̃λ by transporting the action of S̃

Lπ

̺π
i

��

S̃
// Lπ

̺π
i

��

B(λ)
S̃λ

// B(λ)

Let λ, µ ∈ C̄. For b1 ∈ B(λ) and b2 ∈ B(µ) let

τλ,µ(b1 ⊗ b2) = S̃γ(Sµb2 ⊗ Sλb1)

where γ ∈ C̄ is such that Sµb2 ⊗ Sλb1 ∈ B(γ).

Theorem 4.28. For λ, µ ∈ C̄, the map

τλ,µ : B(λ) ⊗B(µ) → B(µ) ⊗B(λ)

is a crystal isomorphism.

This follows from theorem 4.27. As in the construction of Henriques and Kam-
nitzer [14], [15] these isomorphisms do not obey the axioms for a braided monoidal
category, but instead we have that:

(1) τµ,λ ◦ τλ,µ = 1
(2) The following diagram commutes:

B(λ) ⊗B(µ) ⊗B(σ)

τ(λ,µ)⊗1

��

1⊗τ(µ,σ)
// B(λ) ⊗B(σ) ⊗B(µ)

τ(λ,(σ,µ))

��

B(µ) ⊗B(λ) ⊗B(σ)τ((µ,λ),σ)

// B(σ) ⊗B(µ) ⊗B(λ)

which makes of B(λ), λ ∈ C̄, a coboundary category.

5. The Duistermaat-Heckman measure and Brownian motion

5.1. In this section, we consider a finite Coxeter group, with a realization in
some Euclidean space V identified with its dual so that, for each root α, α∨ = 2α

‖α‖2 .
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5.2. Brownian motion and the Pitman transform. Fix a reduced de-
composition of the longest word

w0 = s1s2 · · · sq

and let i = (s1, · · · , sq). Recall that for any η ∈ C0
T (V ), its string parameters

x = (x1, · · · , xq) = ̺i(η) satisfy

(5.1) 0 ≤ xi ≤ α∨
si

(λ−
i−1∑

j=1

xjαsj
), i ≤ q;

where λ = Pw0η(T ). For each simple root α choose a reduced decomposition
iα = (sα

1 , · · · , sα
q ) such that sα

1 = sα and denote the corresponding string parameters

̺iα(η) by (xα
1 , · · · , xα

q ). Using the map φiα
i given by theorem 3.9 we obtain a

continuous piecewise linear function Ψi
α : Rq → R such that

(5.2) xα
1 = Ψi

α(x).

Of course

(5.3) Ψi
α(x) ≥ 0, for all α ∈ Σ.

Denote by Mi the set of (x, λ) ∈ R
q
+ × C which satisfy the inequalities (5.1) and

(5.3), and set

Mλ
i = {x ∈ R

q
+ : (x, λ) ∈Mi}.

Let P be a probability measure on C0
T (V ) under which η is a standard Brownian

motion in V . We recall the following theorem from [2].

Theorem 5.1. The stochastic process Pw0η is a Brownian motion in V condi-
tioned, in Doob’s sense, to stay in the Weyl chamber C̄.

This means that Pw0η is the h-process of the standard Brownian motion in V
killed when it exits C̄, for the harmonic function

h(λ) =
∏

α∈R+

α∨(λ),

for λ ∈ V , where R+ is the set of all positive roots. Let ct = tq/2
∫

V e
−‖λ‖2/2t dλ

and

k = c−1
1

∫

C

h(λ)2e−‖λ‖2/2 dλ.

Theorem 5.2. For (σ, λ) ∈Mi,

(5.4) P(̺i(η) ∈ dσ,Pw0η(T ) ∈ dλ) = c−1
T h(λ)e−‖λ‖2/2T dσ dλ.

The conditional law of ̺i(η), given (Pw0η(s), s ≤ T ) and Pw0η(T ) = λ, is the
normalized Lebesgue measure on Mλ

i , and the volume of Mλ
i is k−1h(λ).

This theorem has the following interesting corollary, which gives a new proof
of the fact that the set Cπ

i depends only on π(T ), and is polyhedral.

Corollary 5.3. For any dominant path π, let λ = π(T ), then Cπ
i = Mλ

i , and

Ci = {x ∈ R
q
+; Ψi

α(x) ≥ 0, for all α ∈ Σ}.



28 PHILIPPE BIANE, PHILIPPE BOUGEROL, AND NEIL O’CONNELL

Proof. It is clear that Cπ
i is contained in Mλ

i and the theorem implies that
Cπ

i , equal by definition to the set of ̺i(η) when Pw0η = π, contains Mλ
i . The

description of Ci follows, since Ci = ∪{Cπ
i , π dominant path}. �

Theorem 5.2 is proved in section 5.4.

5.3. The Duistermaat-Heckman measure. Let G be a compact semi-
simple Lie group with maximal torus T . If Oλ is a coadjoint orbit of G, cor-
responding to a dominant regular weight, endowed with its canonical symplectic
structure ω, then this maximal torus acts on the symplectic manifold (Oλ, ω), and
the image of the Liouville measure on Oλ by the moment map, which takes values
in the dual of the Lie algebra of T , is called the Duistermaat-Heckman measure.
It is proved in [1] that this measure is the image of the Lebesgue measure on the
Berenstein-Zelevinsky polytope by an affine map. In analogy with this case, we de-
fine for a realization of a finite Coxeter group, the Duistermaat-Heckman measure,
and prove some properties which generalize the case of crystallographic groups.

Definition 5.4. For any λ ∈ C, the Duistermaat-Heckman measure mλ
DH on

V is the image of the Lebesgue measure on Mλ
i by the map

(5.5) x = (x1, · · · , xq) ∈Mλ
i 7→ λ−

q
∑

j=1

xjαj ∈ V.

Theorem 5.5. The Laplace transform of the Duistermaat-Heckman measure
is given, for z ∈ V ∗, by

∫

V

e〈z,v〉mλ
DH(dv) =

∑

w∈W ε(w)e〈z,wλ〉

h(z)
,

where ε(w) is the signature of w ∈W .
With the notations of theorem 5.2, the conditional law of η(T ), given (Pw0η(s), 0 ≤

s ≤ T ) and Pw0η(T ) = λ, is the probability measure µλ
DH = kmλ

DH/h(λ).

Theorem 5.5 is proved in section 5.5

Proposition 5.6. The Duistermaat-Heckman measure mλ
DH has a continuous

piecewise polynomial density, invariant under W and with support equal to the
convex hull co(Wλ) of Wλ.

Proof. The measuremλ
DH is the image by an affine map of the Lebesgue mea-

sure on the convex polytope Cπ
i when π(T ) = λ. Therefore it has a piecewise poly-

nomial density and a convex support. Its Laplace transform is invariant under W so
mλ

DH itself is invariant under W . The support S(λ) is equal to {η(T ); η ∈ Lπ}. No-
tice that if η is in Lπ, then when x = α∨(η(T )), Ex

αη is in Lπ and Ex
αη(T ) = sαη(T ).

Starting from π(T ) = λ we thus see that Wλ is contained in S(λ). So co(Wλ) is
contained in S(λ). The components of x ∈Mπ

i are non negative, therefore co(Wλ)
contains S(λ) ∩ C̄ and, by W -invariance it contains S(λ) itself. �

5.4. Proof of theorem 5.2. First we recall some further path transforma-
tions which were introduced in [2]. For any positive root β (not necessarily simple),
define Qβ = Pβsβ . Then, for ψ ∈ C0

T (V ),

Qβψ(t) = ψ(t) − inf
t≥s≥0

β∨(ψ(t) − ψ(s))β, T ≥ t ≥ 0.
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Let w0 = s1s2 · · · sq be a reduced decomposition, and let αi = αsi
. Since sαPβ =

Psαβsα, for roots α 6= β, the following holds

Qw0 := Pw0w0 = Qβ1 . . . Qβq
,

where β1 = α1, βi = s1 . . . si−1αi, when i ≤ q. Set ψq = ψ and,

(5.6) ψi−1 = Qβi
. . .Qβq

ψ yi = − inf
T≥t≥0

β∨
i (ψi(T ) − ψi(t)).

Then ψ0 = Qw0ψ and, for each i ≤ q,

Qw0ψ(T ) = ψi(T ) +

i∑

j=1

yjβj.

Define ςi(ψ) := (y1, y2, . . . , yq). Now let η = w0ψ, so that Qw0ψ = Pw0η. Set
ηq = η and, for i ≤ q,

(5.7) ηi−1 = Pαi
. . .Pαq

η xi = − inf
T≥t≥0

α∨
i (ηi(t)).

Then η0 = Pw0η and, for each i ≤ q,

Pw0η(T ) = ηi(T ) +

i∑

j=1

xjαj .

The parameters ̺i(η) = (x1, . . . , xq) are related to ςi(ψ) = (y1, y2, . . . , yq) as follows.

Lemma 5.7. For each i ≤ q, we have:

(i) ηi = si . . . s1ψi,
(ii)

xi = yi + β∨
i (ψi(T )) = β∨

i (Qw0ψ(T ) −
i−1∑

j=1

yjβj) − yi,

(iii)

yi = xi + α∨
i (ηi(T )) = α∨

i (Pw0η(T ) −
i−1∑

j=1

xjαj) − xi.

Proof. We prove (i) by induction on i ≤ q. For i = q it holds because
ηq = η = w0ψ = w0ψq and sq . . . s1 = w0. Note that, for each i ≤ q, we can write

Qβi
= Pβi

sβi
= s1 . . . si−1Pαi

si . . . s1.

Therefore, assuming the induction hypothesis ηi = si . . . s1ψi,

ηi−1 = Pαi
ηi = Pαi

si . . . s1ψi

= si−1 . . . s1Qβi
ψi

= si−1 . . . s1ψi−1,

as required. This implies (ii), using ηi−1(T ) = ηi(T )+xiαi and ψi−1(T ) = ψi(T )+
yiβi:

2xi = α∨
i (ηi−1(T ) − ηi(T ))

= α∨
i (si−1 . . . s1ψi−1(T ) − si . . . s1ψi(T ))

= α∨
i (si−1 . . . s1(ψi(T ) + yiβi) − si . . . s1ψi(T ))

= 2yi + α∨
i (α∨

i (si−1 . . . s1ψi(T ))αi)

= 2yi + 2β∨
i (ψi(T )).
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Finally, (iii) follows immediately from (ii) and (i). �

By (iii) of the preceding theorem, we can define a mapping F : Mi → R
q
+ × C

such that

(ςi(ψ),Qw0ψ(T )) = F (̺i(η),Pw0η(T )).

Let Li = F (Mi). It follows from (ii) that F−1(y, λ) = (G(y, λ), λ), where

G(y, λ) = β∨
i (λ−

i−1∑

j=1

yjβj) − yi.

Thus, Li is the set of (y, λ) ∈ R
q
+ × C which satisfy

(5.8) 0 ≤ yi ≤ β∨
i (λ−

i−1∑

j=1

yjβj) (i ≤ q)

and

(5.9) Ψi
α(G(y, λ)) ≥ 0 α ∈ Σ.

We can interpret the last inequality as follows. Set

(5.10) Φi
α(y, λ) = α∨(λ) − Ψi

α(G(y, λ)).

For each simple root α choose iα = (sα
1 , . . . , s

α
q ) such that sα

1 = sα and write
ςiα(ψ) = (yα

1 , . . . , y
α
q ). Denote the corresponding ψi’s by ψα

i . It follows from

lemma 5.7 that yα
1 = Φi

α(y,Qw0ψ(T )). To see that the inequality (5.9) holds
directly in this context, observe that, if Qw0ψ(T ) = λ then, for each simple α,

Ψi
α(G(y, λ)) = α∨(λ) − Φi

α(y, λ) = yα
1 + α∨(ψα

1 (T )) ≥ 0.

As in [2], we extend the definition of Qβ to two-sided paths. Denote by C0
R
(V )

the set of continuous paths π : R → V such that π(0) = 0 and α∨(π(t)) → ±∞ as
t→ ±∞ for all simple α. For π ∈ C0

R
(V ) and β a positive root, define Qβπ by

Qβπ(t) = π(t) + [ω(t) − ω(0)]β,

where

ω(t) = − inf
t≥s>−∞

β∨(π(t) − π(s)).

It is easy to see that Qβπ ∈ C0
R
(V ). Thus, we can set πq = π and, for i ≤ q,

πi−1 = Qβi
. . .Qβq

π ωi(t) = − inf
s≤t

β∨
i (πi(t) − πi(s)).

Then

π0 = Qw0π := Qβ1 . . . Qβq
π

and, for each i ≤ q,

Qw0π(t) = πi(t) +

i∑

j=1

[ωj(t) − ωj(0)]βj .

The following is an immediate consequence of [2, Lemma 5.5].

Lemma 5.8. If Qw0π(t) = λ and ω(t) = y then

inf
u≥t

α∨(Qw0π(u)) = α∨(λ) − Φi
α(y, λ).
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Introduce a probability measure Pµ under which π is a two-sided Brownian
motion in V with drift µ ∈ C, and set

ψ = (π(t), t ≥ ).

Set ω(t) = (ω1(t), . . . , ωq(t)).

Proposition 5.9. Under Pµ, the following statements hold:

(1) Qw0π has the same law as π.
(2) For each T ∈ R, the random variables ω1(T ), . . . , ωq(T ) are mutually inde-

pendent and exponentially distributed with respective parameters 2β∨
1 (µ), . . . , 2β∨

q (µ).
(3) For each T ∈ R, ω(T ) is independent of (Qw0π(s),−∞ < s ≤ T ).
(4) The random variables infu≥0 α

∨(Qw0π(u)), α a simple root, are indepen-
dent of the σ-algebra generated by (π(t), t ≥ 0).

Proof. We see by backward induction on k = q, · · · , 1 that Qβk
· · · Qβq

π(s), s ≤
T has the same distribution as Qβk−1

· · ·Qβq
π(s), s ≤ T and is independent of ωk(T )

and that ωk(T ) has an exponential distribution with parameter 2β∨
k (µ). At each

step, this is a one dimensional statement which can be checked directly or as a
consequence of the classical Burke output theorem for the single queue, see [30].
This implies that (1), (2), and (3) hold. Moreover

inf
t≥0

β∨
1 (Qw0π(t)) = − inf

s≤0
β∨

1 (Qβ2 · · · Qβq
π(s))

is independent of π(t), t ≥ 0. Since β1 can be chosen as any simple root α, this
proves (4). �

For ξ ∈ C, denote by Eξ the event that Qw0π(s) ∈ C − ξ for all s ≥ 0 and by
Eξ,T the event that Qw0π(s) ∈ C − ξ for all T ≥ s ≥ 0. By proposition 5.9, Eξ is
independent of ψ.

For r > 0, define

B(λ, r) = {ζ ∈ V : ‖ζ − λ‖ < r}
and

R(z, r) = (z1 − r, z1 + r) × · · · × (zq − r, zq + r).

Fix (z, λ) in the interior of Li and choose ǫ > 0 sufficiently small so that R(z, ǫ) is
contained in Li ×B(λ, ǫ) and

(5.11) inf
λ′∈B(λ,ǫ),z′∈R(z,ǫ)

α∨(λ′) − Φi
α(z′, λ′) ≥ 0.

Lemma 5.10.

Pµ(Qw0ψ(T ) ∈ B(λ, ǫ), ςi(ψ) ∈ R(z, ǫ))

= lim
C∋ξ→0

Pµ(Eξ)
−1Pµ(Qw0π(T ) ∈ B(λ, ǫ), ω(T ) ∈ R(z, ǫ), Eξ,T ).

Proof. An elementary induction argument on the recursive construction of
Qw0 shows that, on the event Eξ, there is a constant C for which

max
i≤q

‖yi − ωi(T )‖ ∨ ‖Qw0ψ(T ) −Qw0π(T )‖ ≤ C‖ξ‖.

Hence, for ξ sufficiently small,

Pµ(Qw0ψ(T ) ∈ B(λ, ǫ− C‖ξ‖), ςi(ψ) ∈ R(z, ǫ− C‖ξ‖), Eξ)

≤ Pµ(Qw0π(T ) ∈ B(λ, ǫ), ω(T ) ∈ R(z, ǫ), Eξ)

≤ Pµ(Qw0ψ(T ) ∈ B(λ, ǫ+ C‖ξ‖), ςi(ψ) ∈ R(z, ǫ+ C‖ξ‖), Eξ).
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Now Eξ is independent of ψ, and so

Pµ(Qw0ψ(T ) ∈ B(λ, ǫ− C‖ξ‖), ςi(ψ) ∈ R(z, ǫ− C‖ξ‖))
≤ Pµ(Eξ)

−1Pµ(Qw0π(T ) ∈ B(λ, ǫ), ω(T ) ∈ R(z, ǫ), Eξ)

≤ Pµ(Qw0ψ(T ) ∈ B(λ, ǫ+ C‖ξ‖), ςi(ψ) ∈ R(z, ǫ+ C‖ξ‖)).

Letting ξ → 0, we obtain that

(5.12)
Pµ(Qw0ψ(T ) ∈ B(λ, ǫ), ςi(ψ) ∈ R(z, ǫ))

= limC∋ξ→0 Pµ(Eξ)
−1Pµ(Qw0π(T ) ∈ B(λ, ǫ), ω(T ) ∈ R(z, ǫ), Eξ).

Finally observe that, on the event

{Qw0π(T ) ∈ B(λ, ǫ), ω(T ) ∈ R(z, ǫ)},

we have, by Lemma 5.8 and (5.11),

inf
u≥T

α∨(Qw0π(u)) = α∨(Qw0π(T )) − Φi
α (ω(T ), Qw0π(T ))

≥ inf
λ′∈B(λ,ǫ),z′∈R(z,ǫ)

α∨(λ′) − Φi
α(z′, λ′) ≥ 0.

Thus, we can replace Eξ by Eξ,T on the right hand side of (5.12), and this concludes
the proof of the lemma. �

For a, b ∈ C, define φ(a, b) =
∑

w∈W ε(w)e〈wa,b〉.

Lemma 5.11. Fix µ ∈ C. The functions f(a, b) = φ(a, b)/[h(a)h(b)] and
gµ(a, b) = φ(a, b)/φ(a, µ) have unique analytic extensions to V × V . Moreover,
f(0, b) = k−1 and gµ(0, b) = h(b)/h(µ).

Proof. It is clear that the function φ is analytic in (a, b), futhermore it van-
ishes on the hyperplanes 〈β, a〉 = 0, 〈β, b〉 = 0, for all roots β. The first claim
follows from an elementary analytic functions argument. In the expansion of φ
as an entire function, the term of homogeneous degree d is a polynomial in a, b
which is antisymmetric under W , therefore a multiple of h(a)h(b). In particu-
lar the term of lowest degree is a constant multiple of h(a)h(b). This constant is
nonzero, as can be seen by taking derivatives in the definition of φ. By l’Hôpital’s
rule, lima→0 gµ(a, b) = h(b)/h(µ). It follows that lima→0 f(a, b) is a constant. To
evaluate this constant, note that, since h is harmonic and vanishes at the boundary
of C,

∫

C

h(λ)2e−‖λ‖2/2f(a, λ)dλ = e|a|
2/2

∫

V

e−‖λ‖2/2dλ.

Letting a→ 0, we deduce that f(0, λ) = k−1, as required. �

Denote by Fξ the event that ψ(s) ∈ C − ξ for all s ≥ 0 and by Fξ,T the event
that ψ(s) ∈ C − ξ for all T ≥ s ≥ 0.

Lemma 5.12. For B ⊂ C, bounded and measurable,

lim
C∋ξ→0

Pµ(Fξ)
−1Pµ(ψ(T ) ∈ B, Fξ,T )

= c−1
T h(µ)−1

∫

B

e〈µ,λ′〉−‖µ‖2T/2e−‖λ′‖2/2Th(λ′)dλ′.
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Proof. Set zT =
∫

V
e−‖λ‖2/2T dλ. By the reflection principle,

Pµ(ψ(T ) ∈ dλ, Fξ,T ) = e〈µ,λ〉−‖µ‖2T/2
∑

w∈W

ε(w)pT (wξ, ξ + λ)dλ,

where pt(a, b) = z−1
t e−‖b−a‖2/2t is the transition density of a standard Brownian

motion in V . Integrating over λ and letting T → ∞, we obtain (see [2])

Pµ(Fξ) =
∑

w∈W

ε(w)e〈wξ−ξ,µ〉.

Thus, using lemma 5.11 and the bounded convergence theorem,

lim
C∋ξ→0

Pµ(Fξ)
−1Pµ(ψ(T ) ∈ B, Fξ,T )

= z−1
T lim

C∋ξ→0

∫

B

e〈µ,λ′〉−‖µ‖2T/2e−(|ξ|2+|ξ+λ′|2)/2Tφ(ξ, µ)−1φ

(

ξ,
ξ + λ′

T

)

dλ′

= z−1
T lim

C∋ξ→0

∫

B

e〈µ,λ′〉−‖µ‖2T/2e−(‖ξ‖2+‖ξ+λ′‖2)/2T gµ

(

ξ,
ξ + λ′

T

)

dλ′

= z−1
T h(µ)−1

∫

B

e〈µ,λ′〉−‖µ‖2T/2e−|λ′|2/2Th(λ′/T )dλ′

= c−1
T h(µ)−1

∫

B

e〈µ,λ′〉−‖µ‖2T/2e−‖λ′‖2/2Th(λ′)dλ′,

as required. �

Applying lemmas 5.10, 5.12 and proposition 5.9, we obtain

Pµ(Qw0ψ(T ) ∈ B(λ, ǫ), ςi(ψ) ∈ R(z, ǫ))

= lim
C∋ξ→0

Pµ(Eξ)
−1Pµ(Qw0π(T ) ∈ B(λ, ǫ), ω(T ) ∈ R(z, ǫ), Eξ,T ) (lemma 5.11)

= lim
C∋ξ→0

Pµ(Eξ)
−1Pµ(ω(T ) ∈ R(z, ǫ))Pµ(Qw0π(T ) ∈ B(λ, ǫ), Eξ,T ) (lemma 5.9(3))

= lim
C∋ξ→0

Pµ(Eξ)
−1Pµ(ω(T ) ∈ R(z, ǫ))Pµ(ψ(T ) ∈ B(λ, ǫ), Fξ,T )

=

q
∏

i=1

e−β∨

i (µ)zi [eǫβ∨

i (µ) − e−ǫβ∨

i (µ)] lim
C∋ξ→0

Pµ(Eξ)
−1Pµ(ψ(T ) ∈ B(λ, ǫ), Fξ,T )

(lemma 5.9 (2))

=

q
∏

i=1

e−β∨

i (µ)zi [eǫβ∨

i (µ) − e−ǫβ∨

i (µ)]

×c−1
T h(µ)−1

∫

BV (λ,ǫ)

eµ(λ′)−‖µ‖2T/2e−‖λ′‖2/2Th(λ′)dλ′. (lemma 5.12)

Now divide by ‖B(y, ǫ)‖(2ǫ)q and let ǫ tend to zero to obtain

Pµ(Qw0ψ(T ) ∈ dλ, ςi(ψ) ∈ dz)

=

q
∏

i=1

e−β∨

i (µ)zie〈µ,λ〉−‖µ‖2T/2c−1
T h(λ)e−‖λ‖2/2T dλ dz.

Letting µ→ 0 this becomes, writing P = P0,

(5.13) P(Qw0ψ(T ) ∈ dλ, ςi(ψ) ∈ dz) = c−1
T h(λ)e−‖λ‖2/2T dλ dz.
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Using lemma 5.7, it follows that, for (w, λ) in the interior of Mi,

(5.14) P(̺i(η) ∈ dw, Pw0η(T ) ∈ dλ) = c−1
T h(λ)e−‖λ‖2/2T dw dλ.

Under the probability measure P, η is a standard Brownian motion in V with

transition density given by pt(a, b) = z−1
t e−‖b−a‖2/2t. By theorem 5.1 under P,

Pw0η is a Brownian motion in C. Its transition density is given, for ξ, λ ∈ C, by

qt(ξ, λ) =
h(λ)

h(ξ)

∑

w∈W

ε(w)pt(wξ, λ).

As remarked in [2], this transition density can be extended by continuity to the

boundary of C. From lemma 5.11 we see that qT (0, λ) = k−1h(λ)2e−‖λ‖2/2T . Thus,

(5.15) P(Pw0η(T ) ∈ dλ) = k−1h(λ)2e−‖λ‖2/2Tdλ.

To complete the proof of the theorem, first note that since ςi(ψ) is measurable with
respect to the σ-algebra generated by (Qw0ψ(u), u ≥ T ), ̺i(η) is measurable with
respect to the σ-algebra generated by (Pw0η(u), u ≥ T ). Thus, by the Markov
property of Pw0η, the conditional distribution of ̺i(η), given (Pw0η(s), s ≤ T ),
is measurable with respect to the σ-algebra generated by Pw0η(T ). Combining
this with (5.14) and (5.15), we conclude that the conditional law of ̺i(η), given
(Pw0η(s), s ≤ T ) and Pw0η(t) = λ, is almost surely uniform on Mλ

i , and that the
Euclidean volume of Mλ

i is k−1h(λ), as required.

5.5. Proof of theorem 5.5. Let ψ = w0η and Qw0 = Pw0w0. Denote by Pt

(respectively Qt) the semigroup of Brownian motion in V (respectively C). Under
P, by [2, Theorem 5.6], Qw0ψ is a Brownian motion in C. Let δ ∈ C. The function
eδ(v) = e〈δ,v〉 is an eigenfunction of Pt and the eδ-transform of Pt is a Brownian
motion with drift δ. Setting φδ(v) =

∑

w∈W ε(w)e〈wδ,v〉, the function φδ/h is an
eigenfunction of Qt and the (φδ/h)-transform of Qt is a Brownian motion with
drift δ conditioned never to exit C (see [2, Section 5.2] for a definition of this
process). By theorem 5.2, the conditional law of η(T ), given (Pw0η(s), s ≤ T ) and
Pw0η(T ) = λ, is almost surely given by µλ

DH . It follows that the conditional law of
ψ(T ), given (Qw0ψ(s), s ≤ T ) and Qw0ψ(T ) = λ, is almost surely given by µλ

DH .
Denote the corresponding Markov operator by K(λ, ·) = µλ

DH(·). By [2, Theorem
5.6] we automatically have the intertwining KPt = QtK. Note that Keδ is an
eigenfunction of Qt. By construction, the Keδ-transform of Qt, started from the
origin, has the same law as Qw0ψ

(δ), where ψ(δ) is a Brownian motion in V with drift
δ. Recalling the proof of [2, Theorem 5.6] we note that Qw0ψ

(δ) has the same law as
a Brownian motion with drift δ conditioned never to exit C. It follows that Keδ =
φδ/(c(δ)h), for some c(δ) 6= 0. Now observe (using lemma 5.11 for example) that
limξ→0Keδ(ξ) = 1. Thus, by lemma 5.11, c(δ) = limξ→0 φδ(ξ)/h(ξ) = k−1h(δ).
We conclude that

∫

V

e〈δ,v〉µλ
DH(dv) = k

∑

w∈W ε(w)e〈wδ,λ〉

h(δ)h(λ)
.

This formula extends to δ ∈ V ∗ by analytic continuation (see lemma 5.11 again),
and the proof is complete.
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5.6. A Littlewood-Richardson property. Let i = (s1, . . . , sq) where w0 =
s1 . . . sq is a reduced decomposition. For η ∈ C0

T (V ), let x = ρi(η).
For each simple root α choose now jα = (sα

1 , · · · , sα
q ), a reduced decomposition

of w0, such that sα
q = sα, and denote the corresponding string parameters of the

path η by (x̃α
1 , · · · , x̃α

q ) = ̺jα(η). As in (5.2), there is a continuous function Ψ′
α :

Rq → R such that x̃α
q = Ψ′

α(x). Fix λ, µ ∈ C and suppose that λ + η(s) ∈ C for
0 ≤ s ≤ T . Then x̃α

q = − infs≤T α
∨(η(s)) ≤ α∨(λ). In other words,

(5.16) Ψ′
α(x) ≤ α∨(λ), α ∈ Σ.

Let Mλ,µ
i denote the set of x ∈Mλ

i which satisfy the additional constraints (5.16).

This is a compact convex polytope. Let νλ,µ be the uniform probability distribution

on Mλ,µ
i and let νλ,µ be its image on V by the map

x = (x1, · · · , xq) ∈Mλ,µ
i 7→ λ+ µ−

q
∑

j=1

xjαj ∈ V.

Let η be the Brownian motion in V starting from 0. Observe that, by theorem 3.9,
the event {η(s) ∈ C − λ, 0 ≤ s ≤ T} is measurable with respect to the σ-algebra
generated by ρi(η). Combining this with theorem 5.2 we obtain:

Corollary 5.13. The conditional law of ρi(η), given Pw0η(s), s ≤ T,Pw0η(T ) =
µ and λ + η(s) ∈ C for 0 ≤ s ≤ T , is νλ,µ and the conditional law of λ + η(T ) is
νλ,µ.

For s, t ≥ 0 let

(τsη)(t) = η(s+ t) − η(s), (τsPw0η)(t) = Pw0η(s+ t) − Pw0η(s).

Lemma 5.14. For all s ≥ 0,

Pw0(τsPw0η) = Pw0τsη.

Proof. If π1, π2 : R+ → V are continuous path starting at 0, let π1⋆sπ2 be the
path defined by π1⋆sπ2(r) = π1(r) when 0 ≤ r ≤ s and π1⋆sπ2(r) = π1(s)+π2(r−s)
when s ≤ r. By lemma 4.16, Pw0(π1 ⋆s π2) = Pw0(π1) ⋆s π̃2 where π̃2 is a path such
that Pw0(π̃2) = Pw0(π2). Since τs(π1 ⋆s π2) = π2, this gives the lemma. �

Let γλ,µ be the measure on C given by

γλ,µ(dx) =
h(x)

h(λ)
νλ,µ(dx).

It will follow from theorem 5.15 that this is a probability measure. Consider the
following σ-algebra

Gs,t = σ(Pw0η(a), a ≤ s,Pw0τsη(r), r ≤ t).

The following result is a continuous analogue of the Littelmann interpretation of
the Littlewood-Richardson decomposition of a tensor product.

Theorem 5.15. For s, t > 0, γλ,µ is the conditional distribution of Pw0η(s+ t)
given Gs,t, Pw0η(s) = λ and Pw0τsη(t) = µ.
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Proof. When (Xt, (θt), Px) is a Markov process with shift θt (i.e. Xs+t =
Xs ◦ θt), for any σ(Xr , r ≥ 0)-measurable random variables Z, Y ≥ 0, one has

E(Z ◦ θt|σ(Xs, s ≤ t, Y ◦ θt)) = EX0 (Z|σ(Y )) ◦ θt.

Let us apply this relation to the Markov process X = Pw0η (see [2]). Notice that
since Pw0(τsX) = Pw0(τ0X) ◦ θs, it follows from the lemma that

Gs,t = σ(Xa,Pw0(τ0X)(r) ◦ θs, a ≤ s, r ≤ t).

Therefore, for any Borel nonnegative function f : V → R,

E[f(Pw0η(s+ t)|Gs,t] = EX0 [f(Xt)|σ(Pw0 (τ0X)(r), r ≤ t)] ◦ θs.

One knows (Theorem 5.1 in [2]) that X is the h–process of the Brownian motion
killed at the boundary of C. In other words, starting from X0 = λ, X is the h–
process of λ + η(t) conditionally on λ + η(s) ∈ C, for 0 ≤ s ≤ t. It thus follows
from corollary 5.13 that

Eλ[f(Xt)|σ(Pw0(τ0X)(r), r ≤ t)] =
1

h(λ)

∫

f(x)h(x) dνλ,µ(x)

when Pw0(τ0X)(t) = µ. This proves that

E[f(Pw0η(s+ t))|Gs,t] =

∫

f(x) dµλ,µ(x)

when Pw0η(s) = λ and Pw0τsη(t) = µ.

5.7. A product formula. Consider the Laplace transform of µλ
DH given, for

λ ∈ C, z ∈ V ∗, by

(5.17) Jλ(z) = k

∑

W ε(w)e〈z,wλ〉

h(z)h(λ)
.

This is an example of a generalized Bessel function, following the terminology of
Helgason [13] in the Weyl group case and Opdam [31] in the general Coxeter case.
It was a conjecture in Gross and Richards [10] that these are Laplace transform
of positive measures (this also follows from Rösler [33]). They are positive eigen-
functions of the Laplace and of the Dunkl operators on the Weyl chamber C with
eigenvalue ‖λ‖2 and Dirichlet boundary conditions and Jλ(0) = 1. Let fλ be the
density of the probability measure µλ

DH . One has

(5.18)

∫

V

e〈z,v〉fλ(v) dv = Jλ(z).

Let, for v ∈ C,

fλ,µ(v) =
1

h(µ)

∑

w∈W

h(wv)fλ(wv − µ).

It follows from the next result that fλ,µ(v) ≥ 0.

Theorem 5.16. (i) For λ, µ ∈ C and z ∈ V ∗,

Jλ(z)Jµ(z) =

∫

C

Jv(z)fλ,µ(v) dv.

(ii)

γλ,µ(dx) = fλ,µ(x)dx.
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Proof. The first part is given by the following computation, similar to the
one in Dooley et al [6], we give it for the convenience of the reader. It follows from
(5.17) and (5.18) that

Jλ(z)Jµ(z) =

∫

V

e〈z,v〉Jµ(z)fλ(v) dv = k
∑

W

ε(w)

∫

V

e〈z,wµ+v〉

h(µ)h(z)
fλ(v) dv.

Using the invariance of the measure µλ
DH under W , fλ(wv) = fλ(v) for w ∈ W .

One has

Jλ(z)Jµ(z) = k
∑

W

ε(w)

∫

V

e〈z,w(µ+v)〉

h(µ)h(z)
fλ(v) dv

= k
∑

W

ε(w)

∫

V

e〈z,wv〉

h(µ)h(z)
fλ(v − µ) dv

=
1

h(µ)

∫

V

Jv(z)h(x)fλ(v − µ) dv

=
1

h(µ)

∑

w∈W

∫

w−1C

Jv(z)h(v)fλ(v − µ) dv

=
1

h(µ)

∑

w∈W

∫

C

Jv(z)h(wv)fλ(wv − µ) dv

=

∫

C

Jz(v)fλ,µ(v) dv

where we have used that, up to a set of measure zero, V = ∪w∈Ww−1C. This
proves (i).

Let us now prove (ii), using theorem 5.15. Since η is a standard Brownian
motion in V , {η(r), r ≤ s} and τsη are independent, hence, for z ∈ V ∗,

E(e〈z,η(s+t)〉)|Gs,t) = E(e〈z,η(s)〉e〈z,τsη(t)〉|Gs,t)

= E(e〈z,η(s)〉|σ(Pw0η(a), a ≤ s))E(e〈z,τsη(t)〉|σ(Pw0τsη(b), b ≤ t)).

By theorem 5.5,
Jλ(z) = E(e〈z,η(s)〉|σ(Pw0η(a), a ≤ s)

when Pw0η(s) = λ and, since τsη and η have the same law,

Jµ(z) = E(e〈z,τsη(t)〉|σ(Pw0τsη(b), b ≤ t))

when Pw0τsη(t) = µ. Therefore

E(e〈z,η(s+t)〉|Gs,t) = Jλ(z)Jµ(z).

On the other hand, by lemma 4.16, Gs,t is contained in σ(Pw0η(r), r ≤ s+ t), thus

E(e〈z,η(s+t)〉|Gs,t) = E(E(e〈z,η(s+t)〉|σ(Pw0η(r), r ≤ s+ t))|Gs,t)

= E(Jz(Pw0η(s+ t))|Gs,t).

It thus follows from theorem 5.15 that

Jλ(z)Jµ(z) =

∫

Jv(z) dγλ,µ(v).

Therefore, for all z ∈ V ∗,
∫

Jv(z) fλ,µ(v) dv =

∫

Jv(z) dγλ,µ(v).



38 PHILIPPE BIANE, PHILIPPE BOUGEROL, AND NEIL O’CONNELL

By injectivity of the Fourier-Laplace, transform this implies that

dγλ,µ(v) = fλ,µ(v) dv. �

The positive product formula gives a positive answer to a question of Rösler
[34] for the radial Dunkl kernel. It shows that one can generalize the structure
of Bessel-Kingman hypergroup to any Weyl chamber, for the so called geometric
parameter.

6. Littelmann modules and geometric lifting.

6.1. It was observed some time ago by G. Lusztig that the combinatorics of
the canonical basis is closely related to the geometry of the totally positive vari-
eties. This connection was made precise by Berenstein and Zelevinsky in [3], in
terms of transformations called ”tropicalization” and ”geometric lifting”. In this
section we show how some simple considerations on Sturm-Liouville equations lead
to a natural way of lifting Littelmann paths, which take values in a Cartan alge-
bra, to the corresponding Borel group. Using this lift, an application of Laplace’s
method explains the connection between the canonical basis and the totally positive
varieties.

This section is organized as follows. We first recall the notions of tropicalization
and geometric lifting in the next subsection, as well as the connection between the
totally positive varieties and the canonical basis. Then we make some observations
on Sturm-Liouville equations and their relation to Pitman transformations and the
Littelmann path model in type A1. We extend these observations to higher rank
in the next subsections then we show how they explain the link between string
parametrization of the canonical basis and the totally positive varieties.

6.2. Tropicalization and geometric lifting. A subtraction free rational
expression is a rational function in several variables, with positive real coefficients
and without minus sign, e.g.

t1 + 2t2/t3, (1 − t3)/(1 − t) or 1/(t1t2 + 3t3t4)

are such expressions, but not t1 − t2. Any such expression F (t1, . . . , tn) can be
tropicalized, which means that

Ftrop(x1, , . . . , xn) = lim
ε→0+

ε log(F (ex1/ε, . . . , exn/ε))

exists as a piecewise linear function of the real variables (x1, . . . , xn), and is given by
an expression in the maxplus algebra over the variables x1, . . . , xn. More precisely,
the tropicalization F → Ftrop replaces each occurence of + by ∨ (the max sign
x ∨ y = max(x, y)), each product by a +, and each fraction by a −, and each
positive real number by 0. For example the three expressions above give

(t1 + t2/t3)trop = x1 ∨ (x2 − x3), ((1 − x3)/(1 − x))trop = 0 ∨ x ∨ 2x,

and

(1/(x1x2 + 3x3x4))trop = − ((x1 + x2) ∨ (x3 + x4)) .

Tropicalization is not a one to one transformation, and there exists in general many
subtraction free rational expressions which have the same tropicalization. Given
some expression G in the maxplus algebra, any subtraction free rational expression
whose tropicalization is G is called a geometric lifting of G, cf [3].
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6.3. Double Bruhat cells and string coordinates. We recall some stan-
dard terminology, using the notations of [3]. We consider a simply connected com-
plex semisimple Lie group G, associated with a root system R. Let H be a maximal
torus, and B,B− be corresponding opposite Borel subgroups with unipotent radi-
cals N,N−. Let αi, i ∈ I, and α∨

i , i ∈ I, be the simple positive roots and coroots,
and si the corresponding reflections in the Weyl group W . Let ei, fi, hi, i ∈ I,
be Chevalley generators of the Lie algebra of G. One can choose representatives
w ∈ G for w ∈ W by putting si = exp(−ei) exp(fi) exp(−ei) and vw = v w if
l(v) + l(w) = l(vw) (see [9] (1.8), (1.9)). The Lie algebra of H , denoted by h has
a Cartan decomposition h = a + ia such that the roots αi take real values on the
real vector space a. Thus a is generated by α∨

i , i ∈ I and its dual a∗ by αi, i ∈ I.
A double Bruhat cell is associated with each pair u, v ∈ W as

Lu,v = NūN ∩B−v̄B−.

We will be mainly interested here in the double Bruhat cells Lw,e. As shown in
[3], given a reduced decomposition w = si1 . . . siq

every element g ∈ Lw,e has
a unique decomposition g = x−i1(r1) . . . x−iq

(rq) with non zero complex numbers

(r1, . . . , rq), where x−i(s) = ϕi

(
s 0
1 s−1

)

(where ϕi is the embedding of SL2 into G

given by ei, fi, hi). The totally positive part of the double Bruhat cell corresponds
to the set of elements with positive real coordinates. For two different reduced
decompositions, the transition map between two sets of coordinates of the form
(r1, . . . , rq) is given by a subtraction free rational map, which is therefore subject
to tropicalization.

As a simple example consider the case of type A2. Let the coordinates on
the double Bruhat cell Lw0,e for the reduced decompositions w0 = s1s2s1, and
w0 = s2s1s2 be (u1, u2, u3) and (t1, t2, t3) respectively, then

(6.1)





t2 0 0
t1 t1t3/t2 0
1 t3/t2 + 1/t1 1/t1t3



 =





u1u3 0 0
u3 + u2/u1 u2/u1u3 0

1 1/u3 1/u2





which yields transition maps

t1 = u3 + u2/u1

t2 = u1u3

t3 = u1u2/(u2 + u1u3).

On the other hand, for each reduced expression w0 = si1 . . . siq
we can consider

the parametrization of the canonical basis by means of string coordinates. For
any two such reduced decompositions, the transition maps between the two sets of
string coordinates are given by piecewise linear expressions. As shown by Berenstein
and Zelevinsky, these expressions are the tropicalizations of the transition maps
between the two parametrizations of the double Bruhat cell Lw0,e, associated to
the Langlands dual group. For example, in type A2 (which is its own Langlands
dual) let (x1, x2, x3) be the Kashiwara coordinates of the canonical basis, using
the reduced decomposition w0 = s1s2s1, and (y1, y2, y3) the ones corresponding to
w0 = s2s1s2. The transition map between the two is given by

y1 = x3 ∨ (x2 − x1)
y2 = x1 + x3

y3 = x1 ∧ (x2 − x3)
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which is the tropicalization of (6.3).
We will show how some elementary considerations on the Sturm-Liouville equa-

tion, and the method of variation of constants, together with the Littelmann path
model explain these connections.

6.4. Sturm-Liouville equations. We consider the Sturm-Liouville equation

(6.2) ϕ′′ + qϕ = λϕ

on some interval of the real line, say [0, T ] to fix notations. In general there exists
no closed form for the solution to such an equation. However, if one solution ϕ0 is
known, which does not vanish in the interval then all the solutions can be found
by quadrature. Indeed using for example the ”method of variation of constants”
one sees that every other solution ϕ of this equation in the same interval can be
written in the form

ϕ(t) = uϕ0(t) + vϕ0(t)

∫ t

0

1

ϕ2
0(s)

ds

for some constants u, v. If this new solution does not vanish in the interval I, we
can use it to generate other solutions of the equation by the same kind of formula.
This leads us to investigate the composition of two maps of the form

Eu,v : ϕ 7→ uϕ(t) + vϕ(t)

∫ t

0

1

ϕ2(s)
ds

acting on non vanishing continuous functions. It is easy to see, using integration
by parts, that whenever the composition is well defined, one has

Eu,v ◦ Eu′,v′ = Euu′,uv′+v/u′

therefore these maps define a partial right action of the group of unimodular lower
triangular matrices

(
u 0
v u−1

)

on the set of continuous paths which do not vanish in I. Of course this is equiv-
alently a partial left action of the upper triangular group, but for reasons which
will soon appear we choose this formulation. In particular if we start from ϕ and
construct

ψ(t) = uϕ(t) + vϕ(t)

∫ t

0

1

ϕ2(s)
ds

which does not vanish on [0, T ], then ϕ can be recovered from ψ by the formula

ϕ(t) = u−1ψ(t) − vψ(t)

∫ t

0

1

ψ2(s)
ds.

Coming back to the Sturm-Liouville equation, let η, ρ be a fundamental basis of
solutions at 0, namely η(0) = ρ′(0) = 1, η′(0) = ρ(0) = 0. Then in the two-
dimensional space spanned by ρ, η the transformation is given by

(x, y) 7→ (ux, uy + v/x)

and it is defined on x 6= 0. Again it is easy to check, using this formula, that this
defines a right action of the lower triangular group.



CONTINUOUS CRYSTAL AND DUISTERMAAT-HECKMANN MEASURE FOR COXETER GROUPS.41

Let us now investigate the limiting case u = 0, which gives (assuming v = 1 for
simplicity)

(6.3) T ϕ(t) = ϕ(t)

∫ t

0

ds

ϕ(s)2
.

This map provides a “geometric lifting” of the one-dimensional Pitman transfor-
mation. Indeed set ϕ(t) = ea(t), then using Laplace’s method

(6.4) lim
ε→0+

ε log

(

ea(t)/ε

∫ t

0

e−2a(s)/εds

)

= a(t) − 2 inf
0≤s≤t

a(s).

This time the function ϕ cannot be recovered from T ϕ. If we compute the same

transformation with ϕv(t) := ϕ(t)(1 + v
∫ t

0
1

ϕ(s)2 ds) we get

T ϕv(t) = ϕv(t)
∫ t

0
1

ϕv(s)2 ds

= ϕ(t)(1 + v
∫ t

0
1

ϕ(s)2 ds)

(

1
v − 1

v(1+v
∫

t

0
1

ϕ(s)2
ds)

)

= ϕ(t)
∫ t

0
1

ϕ(s)2 ds

= T ϕ(t).

This is of course not surprising, since T ϕ vanishes at 0, it thus belongs to a one-
dimensional subspace of the space of solutions to the Sturm-Liouville equation, and
T is not invertible. In order to recover the function ϕ from ψ = T ϕ we thus need
to specify some real number. A convenient choice is to impose the value of

ξ =

∫ T

0

1

ϕ(s)2
ds =

ψ(T )

ϕ(T )
.

With this we can compute
∫ T

t

1

ψ(s)2
ds =

1
∫ t

0
1

ϕ(s)2 ds
− 1
∫ T

0
1

ϕ(s)2 ds
=
ϕ(t)

ψ(t)
− 1

ξ

Proposition 6.1. Assume that ψ = T ϕ for some nonvanishing ϕ, then the set
T −1(ψ) can be parametrized by ξ ∈]0,+∞[. For each such ξ there exists a unique

ϕξ ∈ T −1(ψ) such that ξ =
∫ T

0
1

ϕξ(s)2 ds, given by

ϕξ(t) = ψ(t)

(

1

ξ
+

∫ T

t

1

ψ(s)2
ds

)

.

Identifying the positive halfline with the Weyl chamber for SL2, we see that
sets of the form T −1(ψ) are geometric liftings of the Littelmann modules for SL2.
The formula in the proposition gives a geometric lifting of the operator Hx since

Hxa(t) = a(t) − x ∧ 2 inf
t≤s≤T

a(s) = lim
ε→0+

ε log

(

ea(t)/ε(e−x/ε +

∫ T

t

e−2a(s)/εds)

)

.

We shall now find the geometric liftings of the Littelmann operators. For this
we have, knowing an element ϕξ1 ∈ T −1(ψ), to find the solution corresponding to
ξ2. Since

ϕξi
(t) = ψ(t)

(

1

ξi
+

∫ T

t

1

ψ(s)2
ds

)

i = 1, 2



42 PHILIPPE BIANE, PHILIPPE BOUGEROL, AND NEIL O’CONNELL

one has

ϕξ1 = ϕξ2 + ψ(
1

ξ1
− 1

ξ2
) = ϕξ2



1 + (
1

ξ1
− 1
∫ T

0
1

ϕξ2
(s)2 ds

)

∫ t

0

1

ϕξ2(s)
2
ds





Using Laplace method again one can recover the formula for the operators Ex
α,

see definition 3.3.

6.5. A 2 × 2 matrix interpretation. We shall now recast the above com-
putations using a 2 × 2 matrix differential equation of order one, and the Gauss
decomposition of matrices. This will allow us in the next section to extend these
constructions to higher rank groups.

Let N+ be the nilpotent group of upper triangular invertible 2×2 matrices, let
N− be the corresponding group of lower triangular matrices, and A the group of
diagonal matrices, then an invertible 2×2 matrix g has a Gauss decomposition if it
can be written as g = [g]−[g]0[g]+ with [g]− ∈ N−, [g]0 ∈ A and [g]+ ∈ N+. We will
use also the decomposition g = [g]−[g]0+ with [g]0+ = [g]0[g]+ ∈ B = AN+. The
condition for such a decomposition to exist is exactly that the upper left coefficient
of the matrix g be non zero.

Let us consider a smooth path a : [0, T ] → R, such that a(0) = 0, and let the
matrix b(t) be the solution to

(6.5)
db

dt
=

(
da
dt 1
0 − da

dt

)

b; b(0) = Id.

Then one has

b(t) =

(

ea(t) ea(t)
∫ t

0
e−2a(s)ds

0 e−a(t)

)

Now let g =

(
u 0
v u−1

)

and consider the Gauss decomposition of the matrix

bg =

(

uea(t) + vea(t)
∫ t

0
e−2a(s)ds u−1ea(t)

∫ t

0
e−2a(s)ds

ve−a(t) u−1e−a(t)

)

One finds that

[bg]− =

(
1 0

ve−a(t)

uea(t)+vea(t)
∫

t

0
e−2a(s)ds

1

)

and

[bg]0+ =

(

uea(t) + vea(t)
∫ t

0 e
−2a(s)ds u−1ea(t)

∫ t

0 e
−2a(s)ds

0 (uea(t) + vea(t)
∫ t

0 e
−2a(s)ds)−1

)

One can check the following proposition.

Proposition 6.2. The upper triangular matrix [bg]0+ satisfies the differential
equation

d

dt
[bg]0+ =

(
d
dtTu,va(t) 1

0 − d
dtTu,va(t)

)

[bg]0+

where Tu,va(t) = log(Eu,ve
a(t)).
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This equation is of the same kind as the equation (6.5) satisfied by the original
matrix b, but with a different initial point. The right action Eu,v is thus obtained

by taking the matrix solution to (6.5), multiplying it on the right by g =

(
u 0
v u−1

)

and looking at the diagonal part of the Gauss decomposition of the resulting matrix.
Actually in this way the partial action Tu,v extends to a partial action Tg of the
whole group of invertible real 2×2 matrices. One starts from the path a, constructs
the matrix b by the differential equation and then takes the 0-part in the Gauss
decomposition of bg. This yields a path Tga. The statement of the proposition
above remains true for [bg]0+. The importance of this statement is that one can
iterate the procedure and see that Tg1g2 = Tg2 ◦ Tg1 when defined.

Consider now the element s =

(
0 −1
1 0

)

, then

Tsa(t) = a(t) + log

(∫ t

0

e−2a(s)ds

)

.

This is the geometric lifting of the Pitman operator obtained in (6.3). In the next
section we shall extend these considerations to groups of higher rank.

6.6. Paths in the Cartan algebra. We work now in the general framework
of the beginning of section 6.3.

One has the usual decomposition g = n− + a + n+. Correspondingly there is a
Gauss decomposition g = [g]−[g]0[g]+ with [g]− ∈ N−, [g]0 ∈ A, [g]+ ∈ N , defined
on an open dense subset. We denote by [g]0+ = [g]0[g]+ the B = AN+ part of the
decomposition.

The following is easy to check, and provides a useful characterization of the
vector space generated by the ei.

Lemma 6.3. Let n ∈ n+, then one has [h−1nh]+ = n for all h ∈ N− if and
only if n belongs to the vector space generated by the ei.

Let a be a path in the Cartan algebra a and let b be a solution to the equation

d

dt
b = (

d

dt
a+ n)b

where n ∈ ⊕iCei.

Proposition 6.4. Let g ∈ G, and assume that bg has a Gauss decomposition,
then the upper part [bg]0+ in the Gauss decomposition of bg satisfies the equation

(6.6)
d

dt
[bg]0+ = (

d

dt
Tga+ n)[bg]0+

where Tga(t) is a path in the Cartan algebra.

Proof.

Let us write the equation

d

dt
([bg]−[bg]0+) = (

d

dt
a+ n)[bg]−[bg]0+

in the form

[bg]−1
−

d

dt
[bg]− = [bg]−1

− (
d

dt
a+ n)[bg]− − d

dt
[bg]0+[bg]−1

0+
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Since the left hand side of this equation is lower triangular, the right hand side has
zero upper triangular part therefore, by lemma 6.3

n =

[

[bg]−1
− (

d

dt
a+ n)[bg]−

]

+

=

[
d

dt
[bg]0+[bg]−1

0+

]

+

therefore there exists a path Tga such that equation (6.6) holds. �

We now assume that

n =
∑

i

niei

with all ni > 0. When g = s̄i is a fundamental reflection, one gets a geometric
lifting of the Pitman operator

Tsi
a(t) = a(t) + log

(∫ t

0

e−αi(a(s))ds

)

α∨
i

associated with the dual root system, i.e.

lim
ε→0

Tsi
(
1

ε
a) = Pα∨

i
a.

Thanks to the above proposition, one can prove that these geometric liftings satisfy
the braid relations, and Tw provides a geometric lifting of the Pitman operator Pw

for all w ∈W .
Analogously the Littelmann raising and lowering operators also have geometric

liftings.

6.7. Reduced double Bruhat cells. In this section we show how our con-
siderations on Littelmann’s path model allow us to make the connection with the
work of Berenstein and Zelevinsky [3]. We consider a path a on the Cartan Lie
algebra, and the solution b to d

dtb = ( d
dta+ n)b. When we multiply b on the right

by s̄i1 , and take its Gauss decomposition

[bsi1 ]−[bsi1 ]0[bsi1 ]+ = [b]0[b]+si1

then

[b]+si1 [bsi1 ]
−1
+ = [b]−1

0 [bsi1 ]−[bsi1 ]0 ∈ Nsi1N ∩B−L
si1 ,e

and

[b]+si1 [bsi1 ]
−1
+ = x−i1(r1)

for some r1. In fact, using our formula for Littelmann operators,

r1 = eα1(a(T ))

∫ T

0

e−α1(a(s))ds.

Comparing with (3.3) we see that r1e
−α1(a(T )) gives a geometric lifting of the Kashi-

wara coordinate for the Littelmann module. We can continue the process starting
from [bsi1 ]+, to get

[bsi1 ]+si2 [bsi1si2 ]
−1
+ = x−i2(r2)

(using the fact that [g1g2]+ = [[g1]+g2]+ for g1, g2 ∈ G) obtaining successive de-
compositions

[b]+si1 . . . sik
[bsi1 . . . sik

]−1
+ = x−i1(r1) . . . x−ik

(rk)

This gives the Kashiwara coordinates of [[b]+w0]−0 ∈ Lw0,e, which are thus seen to
correspond to the coordinates on the cone by a geometric lifting.
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7. Appendix

This appendix is devoted to the proof of theorem 2.6.

Lemma 7.1. If B(λ), λ ∈ C̄, is a closed normal family of highest weight contin-
uous crystals then for each λ, µ ∈ C̄ such that λ ≤ µ there exists an injective map
Ψλ,µ : B(λ) → B(µ) with the following properties

(i) Ψλ,µ(bλ) = bµ,
(ii) Ψλ,µe

r
α(b) = er

αΨλ,µ(b), for all b ∈ B(λ), α ∈ Σ, r ≥ 0,
(iii) Ψλ,µf

r
α(b) = f r

αΨλ,µ(b) if f r
α(b) ∈ B(λ).

Proof. Let ν = µ−λ. First consider the map φλ,µ : B(λ) → B(λ)⊗B(ν) given
by φλ,µ(b) = b ⊗ bν , when b ∈ B(λ). Since bν is a highest weight εα(bν) = 0. By
normality, for all b ∈ B(λ), ϕα(b) ≥ 0. Therefore σ := ϕα(b) − εα(bν) = ϕα(b) ≥ 0.
By definition, this implies that εα(b⊗ bν) = εα(b), ϕα(b⊗ bν) = ϕα(b), wt(b⊗ bν) =
wt(b) + ν. Using (2.1) we see also that, for r ≥ 0, er

α(b ⊗ bν) = er
αb ⊗ bν and that,

when f r
α(b) ∈ B(λ), r ≤ ϕα(b) = σ by normality, and therefore f r

α(b⊗bν) = f r
αb⊗bν.

Since the family is closed there is an isomorphim iλ,µ : F(bλ ⊗ bν) → B(µ). One
has iλ,µ(bλ ⊗ bν) = bµ. One can take Ψλ,µ = iλ,µ ◦ φλ,µ. �

The family Ψλ,µ constructed above satisfies Ψλ,λ = id and, when λ ≤ µ ≤ ν,
Ψµ,ν ◦ Ψλ,µ = Ψλ,ν , so that we can consider the direct limit B(∞) of the family
B(λ), λ ∈ C̄, with the injective maps Ψλ,µ : B(λ) → B(µ), λ ≤ µ. Still following
Joseph [19], we define a crystal structure on B(∞).

Proposition 7.2. The direct limit B(∞) is a highest weight upper normal
continuous crystal with highest weight 0.

Proof. By definition, the direct limit B(∞) is the quotient set B/ ∼ where
B = ∪λ∈C̄B(α) is the disjoint union of the B(λ)′s and where b1 ∼ b2 for b1 ∈
B(λ), b2 ∈ B(µ), when there exists a ν ∈ C̄ such that ν ≥ λ, ν ≥ µ and Ψλ,ν(b1) =
Ψµ,ν(b2). Let b̄ be the image in B(∞) of b ∈ B. If b ∈ B(λ), then we define
wt(b̄) = wt(b) − λ, εα(b̄) = εα(b), ϕα(b̄) = εα(b̄) + α∨(wt(b̄)) and, when r ≥ 0,

er
α(b̄) = er

α(b). These do not depend on λ, since if µ ≥ λ and b′ = Ψλ,µ(b), then
one has b̄′ = b̄ and wt(b′) = wt(b) + µ− λ. In order to define f r

α(b̄) for r ≥ 0, let us
choose µ ≥ λ large enough to ensure that

ϕα(b′) = εα(b′) + α∨(wt(b)) + α∨(µ− λ) ≥ r.

Then f r
αb

′ 6= 0 by normality and we define f rb̄ = f rb′. Again this does not depend
on µ. Using the lemma we check that this defines a crystal stucture on B(∞).
Each Ψλ,µ, λ ≤ µ, commutes with the er

α, r ≥ 0. This implies that B(∞) is upper
normal. Since each B(λ) is a highest weight crystal, B(∞) has also this property.
�

We will denote b∞ the unique element of B(∞) of weight 0. Note that B(∞)
is not lower normal. For instance,

(7.1) ϕα(b∞) = 0, f(b∞) 6= 0, for all f ∈ F .
For λ ∈ C̄ we define the crystal S(λ) as the set with a unique element {sλ} and

the maps wt(sλ) = λ, εα(sλ) = −α∨(λ), ϕα(sλ) = 0 and er
α(sλ) = 0 when r 6= 0.

Lemma 7.3. The map

Ψλ : b ∈ B(λ) 7→ b̄⊗ sλ ∈ B(∞) ⊗ S(λ)
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is a crystal embedding.

Proof. Let b ∈ B(λ), then

wt(Ψλ(b)) = wt(b̄ ⊗ sλ) = wt(b̄) + wt(sλ) = wt(b) − λ+ λ = wt(b).

Let σ = ϕα(b̄) − εα(sλ). Then σ = ϕα(b) since εα(sλ) = −α∨(λ) and ϕα(b̄) =
ϕα(b) − α∨(λ). Thus σ ≥ 0 by normality of B(λ). By the definition of the tensor
product, this implies that

εα(Ψλ(b)) = εα(b̄ ⊗ sλ) = εα(b̄) = εα(b),

thus ϕα(Ψλ(b)) = ϕα(b). Furthermore,

er
α(Ψλ(b)) = er

α(b̄ ⊗ sλ) = emax(r,−σ)−σ−

α (b̄) ⊗ emin(r,−σ)+σ−

sλ.

When r ≥ −σ, this is equal to er
α(b) ⊗ sλ = Ψλ(er

α(b)). If r < −σ then
er

α(Ψλ(b)) = e−σ
α (b̄)⊗ er+σ

α (sλ) = 0, since es
α(sλ) = 0 when s 6= 0, and on the other

hand, er
α(b) = 0 by normality. Thus Ψλ(er

α(b)) = 0. �

If f = f rn
αn

· · · f r1
α1

∈ F , we say that f ′ ∈ F is extracted from f if f ′ = f
r′

n
αn · · · f r′

1
α1

with 0 ≤ r′k ≤ rk, k = 1, · · · , n. Recall the definition of Bα = {bα(t), t ≤ 0} given
in Example 2.2.

Lemma 7.4. Let f ∈ F and α ∈ Σ, then there exists f ′ extracted from f and
t ≥ 0 such that

f(b∞ ⊗ bα(0)) = f ′b∞ ⊗ bα(−t).
Moreover if λ ∈ C̄ is such that α∨(λ) = 0 and β∨(λ) large enough for all β ∈
Σ − {α}, then for µ ∈ C̄, for the same f ′ ∈ F and t ≥ 0,

f(bλ ⊗ bµ) = f ′bλ ⊗ f t
αbµ.

Proof. The first part follows easily from the definition of the tensor product.
Let λ ∈ C̄ such that α∨(λ) = 0, µ ∈ C̄, β ∈ Σ − {α} and r ≥ 0. If, for some s > 0,
one has es

β(f r
αbµ) 6= 0 then wt(es

β(f r
αbµ)) = µ + sβ − rα is in µ − C̄ (since µ is a

highest weight). This is not possible because β∨(sβ−rα) ≥ sβ∨(β) > 0. Therefore,
by normality, εβ(f r

αbµ) = 0. On the other hand, for all f = f rn
αn

· · · f r1
α1

∈ F ,

ϕβ(fbλ) = β∨(wt(fbλ)) + εβ(fbλ) ≥ β∨(wt(fbλ)) = β∨(λ) −
n∑

k=1

rkβ
∨(αk).

Let σ = ϕβ(fbλ) − εβ(f r
αbµ) = ϕβ(fbλ) and s ≥ 0. Then

σ = ϕβ(fbλ) ≥ β∨(λ) −
n∑

k=1

rkβ
∨(αk).

If β∨(λ) is large enough, then σ ≥ max(s, 0) which implies, see (2.1), that

(7.2) fs
β(fbλ ⊗ f r

αbµ) = (fs
βfbλ) ⊗ f r

αbµ.

On the other hand, ϕα(bλ) = α∨(λ) + εα(bλ) = 0, since εα(bλ) = 0 by normality.
We also know that ϕα(b∞) = 0, see (7.1), hence

ϕα(fbλ) = ϕα(bλ) −
n∑

k=1

rkα
∨(αk) = ϕα(b∞) −

n∑

k=1

rkα
∨(αk) = ϕα(fb∞).
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Thus σ = ϕα(fb∞) and does not depend on λ. It follows that the following decom-
position is independent of λ:

(7.3) fs
α(fbλ ⊗ f r

αbµ) = fσ∧s
α fbλ ⊗ f r+s−σ∧s

α bµ.

Using (7.2) and (7.3), it is now easy to prove the lemma by induction on n, proving
first the second assertion. �

Proposition 7.5. For each simple root α, there is a crystal embedding Γα :
B(∞) → B(∞) ⊗Bα such that Γα(b∞) = b∞ ⊗ bα(0).

Proof. Let us show that the expression

(7.4) Γα(fb∞) = f(b∞ ⊗ bα(0)), f ∈ F ,
defines the morphism Γα. First we check that it is well defined. By definition,
fb∞ = fbν for all ν ∈ C̄ such that fbν 6= 0.

Let us choose λ as in lemma 7.4. For µ ∈ C̄ large enough, fbλ+µ 6= 0. Let us
write

fbλ+µ = f(b̄λ ⊗ b̄µ) = f ′bλ ⊗ f t
αbµ.

Then f ′ and t depend only on fbλ+µ, which by definition depends only on fb∞.
By lemma 7.4,

f(b∞ ⊗ bα(0)) = f ′b∞ ⊗ bα(−t)
which depends only on fb∞ (and not on f itself), showing that Γα is well defined
on Fb∞, and thus on B(∞), since Fb∞ = B(∞). Notice that f(b∞ ⊗ bα(0)) 6= 0

since f ′b∞ 6= 0.
Let us prove that Γα is injective. Suppose that f(b∞ ⊗ bα(0)) = f̃(b∞ ⊗ bα(0))

for some f, f̃ ∈ F . Using lemma 7.4,

f(b∞ ⊗ bα(0)) = f ′b∞ ⊗ bα(−t) and f̃(b∞ ⊗ bα(0)) = f̃ ′b∞ ⊗ bα(−t̃).
If λ ∈ C̄ is as in this lemma, then

f(bλ ⊗ bµ) = f ′bλ ⊗ f t
α(bµ) = f̃ ′bλ ⊗ f t̃

αbµ = f̃(bλ ⊗ bµ),

therefore fbλ+µ = f̃ bλ+µ, thus fb∞ = f̃ b∞. It is clear that Γα commutes with
f r

α, r ≥ 0. Since εα(bα(0)) = ϕα(b∞) = 0,

εα(Γα(b∞)) = εα(b∞ ⊗ bα(0)) = εα(b∞),

hence, if f = f rn
αn

· · · f r1
α1

∈ F ,

εα(Γα(fb∞)) = εα(fΓα(b∞)) = εα(Γα(b∞)) −
n∑

k=1

rkβ
∨(αk) = εα(fb∞)).

Therefore Γα commutes with εα. It also commutes with wt since wt(b∞) = 0. Let
us now consider er

α, r ≥ 0. Let b ∈ B(∞). If er
α(b) 6= 0, then

Γα(b) = Γα(f r
αe

r
α(b)) = f r

α(Γα(er
α(b)) 6= 0

hence Γα(er
α(b)) = er

α(Γα(b)). Suppose now that er
α(b) = 0. Since B(∞) is upper

normal, one has εα(b) = 0, hence εα(Γα(b)) = 0. By the lemma, there is f ′ ∈ F
and t ≥ 0 such that Γα(b) = Γα(b) = f ′b∞ ⊗ bα(−t). Therefore

0 = εα(Γα(b)) ≥ εα(f ′b∞) ≥ 0.

By upper normality this implies that er
α(f ′b∞) = 0, hence

er
α(Γα(b)) = er

α(f ′b∞ ⊗ bα(−t)) = (er
αf

′b∞) ⊗ bα(−t) = 0. �
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The following lemma is clear.

Lemma 7.6. Let B1, B2 and C be three continuous crystals and ψ : B1 → B2

be crystal embeddings. Then ψ̃ : B1 ⊗ C → B2 ⊗ C defined by ψ̃(b ⊗ c) = ψ(b) ⊗ c
is a crystal embedding.

7.1. Uniqueness. Proof of theorem 2.6. Recall that Σ is the set of simple
roots. Fix a sequence A = (· · · , α2, α1) of elements of Σ such that each simple root

occurs infinitely many times and αn 6= αn+1 for all n ≥ 1. Let B̂(A) be the subset
of · · ·Bα2 ⊗ Bα1 in which the k-th entry differs from bαk

(0) for only finitely many

k. One checks that the rules given for the multiple tensor give B̂(A) the structure
of a continuous crystal (see, e.g., Kashiwara, [22], 7.2, Joseph [18],[19]). Let bA be

the element of B̂(A) with entries bαn
(0) for all n ≥ 1. We denote B(A) = FbA.

Proposition 7.7. There exists a crystal embedding Γ from B(∞) onto B(A)
such that Γ(b∞) = bA.

Proof. Let f ∈ F . We can write f = f rk
αk

· · · f r1
α1

where (· · · , α2, α1) = A and
rn ≥ 0 for all n ≥ 1. By lemma 7.4

Γα1(f
r1
α1

(b∞)) = f r1
α1

(Γα1b∞) = f r1
α1

(b∞ ⊗ bα1(0)) = b∞ ⊗ bα1(−r1)
therefore

Γα1(f
rk
αk

· · · f r1
α1
b∞) = (f

r′

k
αk · · · f

r′

2
α2b∞) ⊗ bα1(−r′1)

for some r′1, · · · , r′k ≥ 0. Similarly,

Γα2(f
r′

k
αk · · · f

r′

2
α2b∞) = (f

r′′

k
αk · · · f r′′

3
α3 b∞) ⊗ bα2(−r′′2 )

for some r′′2 , r
′′
3 , · · · , r′′k . If we apply lemma 7.6 to B1 = B(∞), B2 = B(∞) ⊗

Bα2 , ψ = Γα2 , C = Bα1 , we obtain a crystal embedding

Γ̃α2 : B(∞) ⊗Bα1 → B(∞) ⊗Bα2 ⊗Bα1

such that, for b ∈ B(∞), b1 ∈ Bα1

Γ̃α2(b⊗ b1) = Γα2b⊗ b1.

Let Γα2,α1 = Γ̃α2 ◦ Γα1 : B(∞) → B(∞) ⊗Bα2 ⊗Bα1 , then

Γα2,α1(f
rk
αk

· · · f r1
α1
b∞) = Γ̃α2(f

r′

k
αk · · · f

r′

2
α2b∞ ⊗ bα1(−r′1))

= Γα2(f
r′

k
αk · · · f

r′

2
α2b∞) ⊗ bα1(−r′1)

= (f
r′′

k
αk · · · f r′′

3
α3 b∞) ⊗ bα2(−r′′2 ) ⊗ bα1(−r′1).

Again, with Γα3 we build Γα3,α2,α1 = Γ̃α3 ◦ Γα2,α1 . Inductively we obtain strict
morphisms

Γαk,··· ,α1 : B(∞) → B(∞) ⊗ Bαk
⊗ · · · ⊗Bα2 ⊗Bα1

such that for some sk, · · · , s1
Γαk,··· ,α1(f

rk
αk

· · · f r1
α1
b∞) = b∞ ⊗ bαk

(−sk) ⊗ · · · ⊗ bα1(−s1).
Now we can define Γ : B(∞) → B(A) by the formula

Γ(f rk
αk

· · · f r1
α1
b∞) = · · · ⊗ bαk+n

(0) ⊗ · · · ⊗ bαk+1
(0) ⊗ bαk

(−sk) ⊗ · · · ⊗ bα1(−s1).
One checks that this is a crystal embedding. �
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This shows that B(∞) is isomorphic to B(A), which does not depend on the
chosen closed family of crystals, and thus proves the uniqueness. It also shows that
B(A) doest not depend on A, as soon as a closed family exists.
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